
Exakat Documentation
Release 1

Damien Seguy

May 02, 2024

CONTENTS

1 Introduction 3

2 Release Note 7

3 Standard installation 151

4 Docker installation 155

5 Tutorials 159

6 Overview 163

7 PHP Version 171

8 Library & Framework Support 173

9 Configuration 185

10 Scoping analysis 201

11 Rule 433

12 Report 435

13 Cobbler 437

14 Rules 441

15 Rulesets 2075

16 Reports 2245

17 Cobblers 2319

18 Real Code Cases 2367

19 Installation 2539

20 Upgrading 2545

21 Configuration 2547

22 Commands 2555

i

23 Frequently Asked Questions 2567

24 Glossary 2575

25 Annex 2577

ii

Exakat Documentation, Release 1

Contents:

CONTENTS 1

Exakat Documentation, Release 1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

This is the documentation of the Exakat engine, version 2.6.8 (Build 1504), on Thu, 02 May 2024 05:05:10 +0000.

1.1 What is Exakat ?

Exakat is a tool for analyzing, reporting and assessing PHP code source efficiently and systematically. Exakat processes
PHP 5.2 to 7.4 and 8.3 code, as well as reporting on security, performance, code quality, migration.

Exakat reads the code, builds an AST and several dependency graphs, then indexes all of it in a graph database. From
there, exakat runs analysis, collecting potential errors and descriptive information about the code. Finally, exakat
produces reports, both for humans and machines.

1.2 Use Cases

1.2.1 Code quality

Exakat detects hundreds of issues in PHP code : dead code, incompatible calls, undefined calls, illogical expressions,
etc. Exakat is built for PHP, and cover common mistakes.

1.2.2 PHP version migration

Every PHP middle version is a migration by itself : based on the manual and common practices, exakat find both
backward incompatibilities, that prevent migration, and new features, that makes code modern.

Exakat review code for minor version, and spot bug fixes that may impact the code.

1.2.3 Framework code quality

Common best practices and recommendations for specific plat-forms like Wordpress, CakePHP or Zend Framework
are covered.

3

Exakat Documentation, Release 1

1.2.4 PHP configurations

Exakat detects several specialized analyzes, for Web security : making the code more secure online; PHP performances
: allowing faster execution.

1.2.5 Security, performances, testability

Exakat has several specialized analyzes, for Web security : making the code more secure online; PHP performances :
allowing faster execution; Testability : targeting the common pitfalls that makes code less testable.

1.2.6 Feature inventories

When auditing code, it is important to have a global view. Exakat collects all PHP features (magic functions, any
operator, special functions or patterns) and represents them in one report, giving auditors a full view.

Exakat inventories all literals for later review, helping with the magic number syndrome and any data refactoring.

1.3 Exakat compared to others

1.3.1 Code sniffer

Automated coding standard violation detection for PHP review the code for syntax layout. Exakat is not a coding
standard detection tool, as it focuses on bug finding, rather than coding layout.

While checking for coding standard, some bugs may be detected, and when checking for bugs, some coding standards
may be found too.

Using AST, dependency graphs and knowledge databases, Exakat reviews the code, checks its potential usage and
mis-usage. Exakat doesn’t take any presentation nor comments into accounts : only functions, variables and their
effects.

1.3.2 Phan, PHPstan, PHP

PHP code quality checks, based on type compatibility, and structure definitions. Exakat shares AST style analysis but
it goes a bit further by including common mistakes and actual PHP features detections.

1.3.3 PHP7mar, PHP7cc

Code review for PHP 5 to migrate to PHP 7. Exakat covers every middle version from PHP 5.3 to PHP 7.3.

4 Chapter 1. Introduction

Exakat Documentation, Release 1

1.3.4 PHP-ci, Jenkins, Grumphp

Continuous integration and code quality management check the code by running code quality tools and collecting all
the reported informations. Exakat is a good companion for those tools.

Exakat provides machine readable format reports, such as json, xml, text that may be consumed by CI. Exakat provides
also human readable format, such as HTML, for interactive review of the reports, and a longer usage life span.

1.4 Platforms

Exakat is an Open Source tool. The code is available on Github.com/exakat/exakat, as Docker image and Vagrant file.
It is also available as a phar download.

Exakat Cloud is a SaaS platform, offering exakat audits on code, anytime, at reduced cost.

Exakat SAS is a Service company, providing consulting and training services around automated analysis and code
quality for PHP.

1.5 Architecture

Exakat relies on PHP to lint and tokenize the target code; a graph database to process the AST and the tokens; a SQLITE
3 database to store the results and produce the various reports.

Exakat itself runs on PHP 7.2, with a short selection of extensions. It is tested with PHP 7.0 and 7.3.

Source code is imported into exakat using VCS client, like git, SVN, mercurial, tar, zip, bz2 or even symlink. Only
reading access is actually required : the code is never modified in any way.

At least one version of PHP have to be used, and it may be the same running Exakat. Only one version is used for
analysis and it may be different from the running PHP version. For example, exakat may run with PHP 7.2 but audit
code with PHP 5.6. Extra versions of PHP are used to provide compilations reports. PHP middle versions may be
configured separately. Minor versions are not important, except for edge cases.

The gremlin server is used to query the source code. Once analyzes are all finished, the results are dumped into a
SQLITE database and the graph may be removed. Reports are build from the SQLITE database.

1.4. Platforms 5

http://www.exakat.io/
https://github.com/exakat/exakat
https://hub.docker.com/r/exakat/exakat/
https://github.com/exakat/exakat-vagrant
https://www.exakat.io/download-exakat/
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/get-php-expertise/

Exakat Documentation, Release 1

6 Chapter 1. Introduction

CHAPTER

TWO

RELEASE NOTE

Here is the release note of exakat.

Version 2.6.9 (, 2024-01-11)
• Architecture

–
• Cobbler

–
• Report

– Ambassador : upgraded manual rendering

• Analysis
– New analysis : new rule for Deprecated attribute (analysis)

– Updated analysis : modernized Pss Without CITE

– Updated analysis : modernized Pss Without CITE

– Updated analysis : refactored ‘useless arguments’, with named parameters

– Updated analysis : Undefined Property skips dynamic properties

– Updated analysis : Unused variable in catch now handles other names than $e

– Updated analysis : Do not report abstract exceptions as unthrown

– Updated analysis : Useless catch is moved to WIP

– New analysis : report constants used only once

– New analysis : report relay constants (which are relaying another constant value)

– Updated analysis : Hidden Nullable

– Updated analysis : Useless constructor takes into account promoted properties

– Updated analysis : Undefined Enum Case now handles class constant relays

• Tokenizer
–

Version 2.6.8 (, 2024-04-24)
• Architecture

–

7

Exakat Documentation, Release 1

• Cobbler
–

• Report
–

• Analysis
– New analysis : new rule for Deprecated attribute (analysis)

• Tokenizer
–

Version 2.6.7 (Zhang Gongjin, 2024-03-21)
• Analysis

– New analysis : report variables used with include.

– New analysis : report named parameters with no-named-parameters

– New analysis : new rule for Deprecated attribute (analysis)

Version 2.6.6 (Gao Shilian, 2024-03-14)
• Report

– Ambassador : fixed documentation display of PHP scripts

– CallGraph : displays the call graph in dot format

• Analysis
– Refactored analysis : fixed bug in Missing New (confusion with property)

– Augmented analysis : null coalesce and ?? with members

– New analysis : useless coalesce operator

– New analysis : report empty json_decode()

– Refactored analysis : No Parenthesis For Language Construct now covers yield and yield from

– New analysis : exit/die without parenthesis

– New analysis : count() is not negative

– Refactored analysis : Must return now skips generators and exited functions

– Refactored analysis : Double object assignation now focuses on variables, properties.

– Refactored analysis : Removed false positives with ‘Can Call Generator’

– Refactored analysis : Removed false positives with OnlyVariablePassedByReference

– Refactored analysis : Useless reference in foreach

– New analysis : report possible confusion between parameter and variable in arrow functions

– New analysis : report usage of the new PHP 8.1 types

– New analysis : report usage of the new PHP 8.2 types

– New analysis : report usage of strpos() < 1 (possible bug)

• Tokenizer
– Made property inside a string with a Name, not a Identifier

8 Chapter 2. Release Note

Exakat Documentation, Release 1

– Mark variable in append as modified

Version 2.6.5 (Cheng Yaojin, 2024-01-31)
• Architecture

– Added support for NEXT in Sequence, Method definition, Functioncall, concatenations

• Cobbler
–

• Report
–

• Analysis
– Refactored analysis : Structures/UselessTrailingComma handles method calls

– Refactored analysis : Structures/UnreachableCode handles never returntype

– Refactored analysis : Classes/AbstractOrImplements

– Fixed analysis : Complete/ReturnType had a bug with Classanonymous

– Refactored analysis : Variables/InconsistentUsage had a bug with Classanonymous

– New analysis : report useless nullsafe operator usage

– New analysis : report file_put_contents(, [])

– New analysis : report nested match() calls

– New analysis : report useless short ternary

– New analysis : dump all combined method calls

• Tokenizer
– Fixed display of ?-> inside strings

– Refactored Goto labels with a common atom between goto and labels

– Fixed minor errors with SEQUENCE (via NEXT)

Version 2.6.4 (, 2023-12-31)
• Architecture

– Moved assert configuration to ini_set and php.ini

– Added a set of token values for Debian 12 and 8.3

– Void is now a single atom in the graph (speed up, less resources)

– Speed up Load with less arrays, more classes

• Analysis
– New analysis : report PHP native attribute usage

– New analysis : check for injectable version, based on attribute declaration

– New analysis : report multiple definition for the same property in a class family

– Refactored analysis : multiply by one now reports +$a as a hidden cast.

– New analysis : is_a() or instanceof favorite

– Refactored analysis : Use Stdclass has extended coverage now

9

Exakat Documentation, Release 1

– Refactored analysis : Undefined Classes includes Enum now

– Refactored analysis : Pss outside a class include Enum now

– New analysis : suggest using (array)

– Refactored analysis : set class_alias() definitions

– Refactored analysis : Could Use Null-safe operator now covers new situations

– New analysis : check after nullsafe operator

– New analysis : Don’t use Null typed elements with a null-safe operator

– New analysis : report invalid casts

– New analysis : could use strcontains()

– New analysis : suggest removing unused variable in catch

– New analysis : suggest adding readonly to property

– New analysis : spot calls just after an instantiation

– New analysis: report try without catch but with finally

– New analysis: report precedence errors with coalesce and comparisons

– Refactored analysis : Cache Outside Loop was upgraded to spot cases in for, while and do while.

– Refactored analysis : Join On File is extended with the reverse: file_get_contents() with explode()

– New analysis: report exported properties

– Removed analysis: remove duplicate rule OnlyVariableForReference

– New analysis: report literal passed by reference

• Tokenizer
– Added CALLED link to new calls

– Fixed edgecases with match and readonly

Version 2.6.3 (Ma Sanbao, 2023-12-14)
• Analysis

– New analysis : report non-static method called from static method

– New analysis : report properties that are untyped, uninitialized, and no set in the constructor.

– New analysis : report traits used in a type

– New analysis : report short assignations on appends (should not be possible)

– Updated analysis : report usage of static properties with ??= and other short assignations

– New analysis : added support for the friend attribute

– New analysis : report method names starting with __

– New analysis : report $array[count($array)] append system

– Updated analysis : unknown directive names cover more PHP functions and combinaisons

– New analysis : report when void is returned by reference in a method

– Updated analysis : Can Count Iterable was upgraded with types

– New analysis : can’t call a generator directly

10 Chapter 2. Release Note

Exakat Documentation, Release 1

– New analysis : report useless trailing comma

– Removed analysis : propagate calls (Complete)

– New analysis : report non-int and non-string used as index in an array call

– New analysis : report attempt to instantiate non-class (e, t, i)

– Updated analysis : Too Many Variables in Method

• Tokenizer
– Fixed bug with short assignment left operand not being marked as read as well as written

– Added fullnspath to Staticclass atom

– Added support for THROWN, CALLED, YIELDED links in methods

Version 2.6.2 (Duan Zhixian, 2023-11-21)
• Analysis

– New analysis : Casting Method Favorite

– Updated analysis : Ellipsis detection improved

– New analysis : report arrays that are used for append and direct index access at the same time

– New analysis : report get_class() and get_parent_class() without arguments

– Updated analysis : Literal inventory now reports float, array() and heredocs

– New analysis : report usage of advanced static variable initialisation

– New analysis : cannot be readonly

– New analysis : report triplet stats from the internal graph

– New analysis : report static variables outside a method

– Updated analysis : Missing types are now covering class constants too

– New analysis : report usage of Deprecated features (CITE, functions, parameters. . .)

– Updated analysis : Could Be Typed * now supports class constants

– New analysis : add support for #[Override] before PHP 8.3

– New analysis : report variables that use their type as name

Version 2.6.1 (Liu Hongji, 2023-10-19)
• Cobbler

– New Cobbler : Logical to In_array() conversion

• Analysis
– Updated analysis : Use same types for comparisons was refactored

– Updated analysis : Add Zero skips ?? and ?: when it is used to create default values

– Updated analysis : Implode() args order was refactored with type support

– New analysis : report multiline expressions

– New analysis : report usage of typed constants

– Updated analysis : sprintf() argument counts is improved

– Updated analysis : double instruction skips try, while, do while.

11

Exakat Documentation, Release 1

– Updated analysis : useless instruction refactored clone expressions

– Updated analysis : array Append in a list() call

– Updated analysis : written only variables now take into account isset() too

– Updated analysis : recursive functions don’t report recursion via property or method call()

– Updated analysis : Shell favorite

Version 2.6.0 (Xue Rengui, 2023-10-04)
• Architecture

– Refactored generation of VCS

• Cobbler
– New cobbler : rename namespace

– New cobbler : rename function

– New cobbler : rename constant

– New cobbler : rename class

– New cobbler : rename interface

– New cobbler : rename enums

– New cobbler : rename trait

– New cobbler : rename method

– New cobbler : rename class constant

– New cobbler : rename property

• Report
– Added Classes dependencies table to Ambassador

– Added Classes dependencies counts table to Ambassador

– Added Classes dependent counts table to Ambassador

– Added Namespaces to Exception tree

– Added list of repeated class names

– New report : Naming, that checks spelling

• Analysis
– Updated analysis : Useless Null Coalesce now omits stdclass

– New analysis : report rewritten final class constant

– New analysis : report uselessly rewriten class constant

– Updated analysis : Fixed detection of use for functions and constants

– Removed analysis : Removed ‘Mark callable’

– Updated analysis : Fixed detection of calls to __construct

– Updated analysis : Avoid Boolean as Argument sped up

– Updated analysis : Property Could Be Local sped up

– New analysis : Report blind variable used beyond their foreach() loop

12 Chapter 2. Release Note

Exakat Documentation, Release 1

– Updated analysis : Could Use Try has more exceptions sources

– New analysis : Report recalled conditions

– Updated analysis : Upgraded Classes depencencies list with attributes, New initializers and instanceof

– New analysis : Report incompatible property definition between trait and class

– Updated analysis : Deep definition now includes define() calls and enums

– Updated analysis : Collection of File dependencies now include interfaces

– Updated analysis : Fixed but in Could Be Spaceship

– Updated analysis : Upgraded ‘unthrown exception’ to handle variables

– New analysis : report usage of self:: on

– New analysis : report usage of DNF

– Updated analysis : readonly usage covers classes and anonymous classes

– New analysis : report usage of FTN as standalone type

– New analysis : Collect usage of throw and their method

– New analysis : Collect literals used in comparisons

– New analysis : Suggest using array_combine()

– New analysis : Report comparisons with distinct scalar types

– New analysis : reports null being used as array’s index

– New analysis : collect all named things in the source code

– Updated analysis : isComponent also supports enum and declare

– New analysis : report useless Try clauses

– New analysis : report converted exceptions

– New analysis : report methods that are no more than a single if

– New analysis : suggest to ditch default before assigning it

– Updated analysis : Unset or Cast was refactored with less raw() calls

– Updated analysis : PPP declaration style

– New analysis : collect the number of injections in a constructor

– New analysis : collect the property usage level for each class

– New analysis : collect structures, instead of in dump

– New analysis : collect catch, to complete results with throw collect

– Updated analysis : report usage of standalone True, False, Null.

– New analysis : report identical cases in match and switch

– New analysis : report usage of constants in traits

– New analysis : preference between short and formal comparison

– New analysis : report yield that can be turned into a yield from

– New analysis : report usage of enum cases in static constant expressions

– New analysis : report modification of readonly properties in __clone()

13

Exakat Documentation, Release 1

– New analysis : report usage of internal classes with class_alias()

– New analysis : report usage PHP 8.3 new dynamic

– New analysis : static variables may be initialized with arbitrary expression in PHP 8.3

– New analysis : report when an interface’s class constant visibility is not public when in the class

– Updated analysis : upgraded pre-calculate used variable in closure

– Updated analysis : Insufficient typehint (extended coverage)

– New analysis : Report final trait method that are overwritten

• Tokenizer
– Added support for typed constants

– Checked support for readonly anonymous classes

– Fixed LINK in DNF types

– Added support for attributes in enum, trait, interface and enumcase

Version 2.5.2 (Wang Gui, 2023-02-04)
• Report

– New report : Format for SonarCube

• Analysis
– New analysis : report array literal, used by index.

– New analysis : Cannot use empty strings with explode()

– New analysis : Report max() and min() applied on empty arrays.

– Updated analysis : Unused methods now skips internal use

– Updated analysis : Date formats are collected only on Datetime and Datetimeimmutable

– New analysis : strpos() used to convert integer to their ascii value

– New analysis : report double checks in the code

– New analysis : skip empty arrays in array_merge()

– New analysis : ellipis is slower than array_merge()

– Updated analysis : variable type is detected with cast too.

– New analysis : follow unvalidated data in $_SESSION

– Updated analysis : updated in_array() to also report short arrays

– Updated analysis : closure2string skips when other arguments are necessary

– Updated analysis : condition is always true is upgraded with more work on is_a() and class type

– Updated analysis : htmlspecialchars() changed behavior in 8.1

– Updated analysis : always false does a better job at comparing types

– Updated analysis : upgraded analysis with types

– New analysis : new functions in PHP 8.3

– New analysis : suggestion for str_ends_with()

– New analysis : suggestion for str_starts_with()

14 Chapter 2. Release Note

Exakat Documentation, Release 1

– Updated analysis : dirname with 3rd arg is suggested when using ‘$path/../’ strings

– New analysis : collect the number of arguments per PHP native calls

– New analysis : report if/then when a variable is assigned in one branch, but not in the other

– New analysis : report mono or multi bytes favorite

– New analysis : count the number of arguments to PHP native calls

– Updated analysis : Null on boolean now takes into account types

– Updated analysis : upgraded Make One Call analysis to spot calls within same expression

– Updated analysis : incompatible type with incoming now covers call with superglobals

– Updated analysis : fixed bug when calculating DEFINITION for superglobals

– New analysis : report different constructors

– New analysis : report usage of short ternary operator

– New analysis : report when finalizing the call before the closure is better

– New analysis : report object cast to int or float

– New analysis : report variables initialized before an if condition with reinitialisation

– New analysis : report incompatible constructors

– New analysis : Report sidelined methods from a trait

– New analysis : Report misused Generators

– New analysis : Substr() for partitions in a loop

– New analysis : suggest caching local calls to reduce processing

– New analysis : report list of PHP 8.3 new classes

• Tokenizer
– Added support for readonly + final/abstract class

– Fixed DEFINITION for static in new

– Fixed DEFINITION for global variable definitions

– Upgraded support for variable types with PDFF

– Adapted support for undefined Identifier between PHP 7 and 8

Version 2.5.1 (Wang Gui, 2023-01-19)
• Architecture

– Extracted Called* to external class

– Introduced parallel loading for nodes and properties (links are WIP)

• Analysis
– New analysis : suggest omitting empty arrays before array_merge()

– Updated analysis : more calls are collected

– Updated analysis : Strict comparison with boolean covers array_search and array_keys

– New analysis : report useless methods

– Updated analysis : Add Zero also covers syntax like +$a

15

Exakat Documentation, Release 1

– New analysis : report weak tests on array, without checks on index

– New analysis : report multiple types in switch (PHP 8 compability)

– New analysis : could be a readonly class

– Updated analysis : Comparison strings to int include in_array() and co

– New analysis : report class invasions

– New analysis : report property invasions

– New analysis : collect all setlocale() calls

– Updated analysis : Collected calls includes __construct()

– Updated analysis : Collected calls includes __clone()

– New analysis : report usage of ++ on strings

– New analysis : report usage of deprecated mb_string encodings

• Tokenizer
– Fixed edge cases with readonly/namespace as method name

– Fixed handling of static keyword with rare combinaisons

Version 2.5.0 (Wang Gui, 2023-01-05)
• Architecture

–
• Cobbler

–
• Report

–
• Analysis

– Refactored analysis : WrongTypeWithCall skips variables without a type

– Refactored analysis : BailoutEarly skips blocks with one element only

– Refactored analysis : NonStaticMethodsCalledStatic extended to Stubs

– New analysis : ambiguous types for variables

– Refactored analysis : Unpreprocessed skips static::class

– Refactored analysis : Undefined constant skips class constants with variables

– New analysis : report exception that can’t be chained

– Refactored analysis : ShellExec preferences

– Refactored analysis : CreateMagicProperty was extended

– New analysis : report possible ::class usage

– New analysis : report wrong order of argument with variadic

– New analysis : report wrong encoding usage with mbstring

– Refactored analysis : Sped up ‘could be abstract method’

– Refactored analysis : Undefined Interfaces differentiate classes and interfaces

16 Chapter 2. Release Note

Exakat Documentation, Release 1

– New analysis : Ternary and Coalesce Operators order

– Refactored analysis : Set Parent DEFINITION also adds DEFINITION for CPM

– Refactored analysis : NativeClassTypeCompatibility upgraded fully to stub support

– New analysis : Report useless assignation of promoted properties

– Refactored analysis : Parameter name checking works with methods

– Refactored analysis : Classes/CouldUseClassOperator is extended to all CITE

– Refactored analysis : Classes/UndefinedConstants skips situations where the class is a variable of
unknown type

– Refactored analysis : Infinite recursion also detects coalesce

– New analysis : Report methods / property confusions

– New analysis : Suggest using __NAMESPACE__, instead of hardcoded string

– Refactored analysis : Indirect injection is extended with ?? ?: and ? :

– New analysis : Report too many chained calls one in the other

– Refactored analysis : ‘This is for classes’ is extended to traits and enums

– Refactored analysis : ‘Unsupported types with operator’ is now using Stubs files

– New analysis : Report wrong typed with incoming values

– Refactored analysis : ‘Queries in loops’ is now using extended to methods and one functioncall down.

– Refactored analysis : Identical Variables in Foreach now searches inside the source

– New analysis : Empty Loops

– New analysis : Report arrays that are too much extracted

– New analysis : Report methods where variables are not needed (only unique usage)

– New analysis : Report possible emission of TypeError

– Refactored analysis : Cant Throw now skips Interfaces

– Refactored analysis : fixed false positive with Always False

– Refactored analysis : Constant Invalid names do not confuse the constant and its value

– Refactored analysis : Undefined Variable in Catch, now skips variables also created in the catch clause

– Refactored analysis : Implicit conversion to int : skip float returned values

– Refactored analysis : Closure could be static now checks for internal definitions of enums or anony-
mous class

– Refactored analysis : Dont Collect void is extended to unspecified return types

– Refactored analysis : useless coalesce

– Refactored analysis : Indirect Injections

– Refactored analysis : Useless Reference now checks PHP, ext and stubs

– New analysis : Suggest to throw exceptions with json_*code()

– Refactored analysis : Scalar are not arrays cleaned

– Refactored analysis : No net for xml now enforces class too

– Refactored analysis : Static for classes now omits static variables

17

Exakat Documentation, Release 1

– Refactored analysis : Incompatibility signature now omits __construct

– Refactored analysis : Unreachable code

– New analysis : collect all calls from methods to methods

– New analysis : set fullnspath to method calls

– New analysis : report variables with an initial capital S (readability)

– New analysis : type dodging in parameter with union type

• Tokenizer
– Fixed bug with related to readonly position

– Fixed bug where define was not correctly set with fullnspath

– Fixed priorities for print and yield

– Added support for DNF in the engine

– Added definition with static calls, within a class

– Added support for methods and properties with static calls to parent:

– Refactored handling of scope with $this and self/static

– Created a Precedence class for each version

– Refactored calculations for currentMethods in external class

– Migrating from Method to readsStubs (WIP)

– Handled edge cases in Yield (yield yield)

– Removed link between bool and int values when loading (edge case of numeric strings)

– Cleaned Load of GlobalVars array

Version 2.4.9 (Wang Gui, 2022-09-07)
• Analysis

– Refactored analysis : Uses Default now supports PDFF and functions

– Refactored analysis : Using PDFF with ext/seaslog and ext/memcache

– Removed analysis : ext/wikidiff2, ext/wincache, ext/iis, ext/libevent, ext/mhash, ext/parsekit, ext/kdm5

– New analysis : date() versus DatetTime preferences.

– New analysis : identify unused public methods

– Refactored analysis : Detecting wrong visibility with implemented methods was sped up

– Removed analysis : Interface/ConcreteVisibility, double with Classes/ImplementedMethodsArePublic

– New analysis : identify potential abstract methods

– Refactored analysis : Upgraded ‘Wrong Type With Call’ to use the known variable types

– Refactored analysis : No Parent now takes traits into account.

– Refactored analysis : Should Have Destructor : removed some false positives, refactored documenta-
tion.

– Refactored analysis : No Parent now also checks for traits

– Refactored analysis : Uses default argument skips Virtualproperties

18 Chapter 2. Release Note

Exakat Documentation, Release 1

– New analysis : Complete/SolveTraitConstants adds support for constants in traits (PHP 8.2)

– Refactored analysis : Complete/SetParentDefinition was trimmed of 2 useless queries

– Refactored analysis : PPP declaration style

– Refactored analysis : Is Global Constant (removed usage of .ini)

– Refactored analysis : Overwritten* are simplified for speed up and deduplication

– Refactored analysis : UndefinedClasses speed up

– Refactored analysis : Should Preprocess now adds Heredocs and skips variables inside strings

– Refactored analysis : Should use Ternary now skips elsif

– Refactored analysis : ext/fann now use pdff

• Tokenizer
– Added support for PHP keywords in namespace names.

Version 2.4.8 (Xue Rengui, 2022-08-24)
• Architecture

–
• Cobbler

–
• Report

–
• Analysis

– Refactored analysis : strange names now covers types too.

– Removed analysis : ext/proctitle, Composer/IsComposerName, ext/cyrus

– Removed analysis : Composer/IsComposerInterface,

– Refactored analysis : VariableTypehint now skips self-transforming variables in default

– Refactored analysis : ErrorMessages now also tracks trigger_error()

– New analysis : ext/teds, ext/scrypt, ext/geospatial

– Refactored analysis with pdff : ext/crypto, ext/ev, ext/enchant

– Refactored analysis : refactored ‘could use short assignation’

– Removed analysis : ext/ereg, ext/async

– Refactored analysis : undefined class constants are also looked in the children classes

– Refactored analysis : vendor/symfony and vendor/phalcon

– Refactored analysis : Unused Methods now handles foreach() with new()

– New analysis : vendor/feast framework

– Checked unit tests : 4480 / 4450 test pass (99.3% pass)

• Tokenizer
– Fixed detection of constant in ternary/coalesce

– Finish adding types

19

Exakat Documentation, Release 1

Version 2.4.7 (Xu Jingzong, 2022-08-03)
• Architecture

–
• Cobbler

– New cobbler : remove brackets to single-instruction commands

• Report
– New inventory : IP

• Analysis
– Refactored analysis : Could Use Array_sum()

– Refactored analysis : Wrong Attribute with properties

– Refactored analysis : implode Args order now support types

– Refactored analysis : fopen mode does accept rw

– Refactored analysis : references on objects (full refactor)

– New analysis : finding empty arrays with comparisons

– New analysis : using strict with in_array or not

– New analysis : no default for referenced parameter

– New analysis : No clone constant before PHP 8.1

– New analysis : Complete enum cases with definition to value and name

– Refactored analysis : better handling of clone in Variable Typehint

– Refactored analysis : cleaned some false positives with Undefined Properties

– Refactored analysis : Unresolved use now uses stubs; upgrade in function/const coverage

– Removed analysis : ext/recode, ext/runkit, ext/ming

– Refactored analysis : Better coverage for 1 + []

– Refactored analysis : Difference preference has gremlin upgraded

– New analysis : Ext/random (PHP 8.2)

– New analysis : IP inventory

– Refactored analysis : JsonSerialize and ReturnTypeWIllChange cover new methods

• Tokenizer
– Added support for -> out of Enum cases (with name and value)

– Added new classes from PHP 8.2

– Fixed missing fullnspath for attributes with absolute path

– Added all attributes to properties

Version 2.4.6 (Li Yuanji, 2022-07-20)
• Architecture

– Skip loading of WS property when only doing an audit (speed up loading)

– Finished moved to Gremlin 3.6

20 Chapter 2. Release Note

Exakat Documentation, Release 1

• Cobbler
– New cobbler : adds brackets to single-instruction commands

• Report
– Ambassador : refactored trait matrix

• Analysis
– Refactored analysis : Wrong Type Hint with First Class Callable

– New analysis : PHP 8.2 new functions

– Refactored analysis : Useless Cast takes advantages of const types

• Tokenizer
– Typed all internal atoms

– Added types to internal loading engine

Version 2.4.5 (Li Yuanji, 2022-07-07)
• Architecture

– Docs : fixed presentation for cobblers

• Cobbler
– New cobbler : remove abstract option

• Report
–

• Analysis
– Refactored analysis : No Pss Outside Class also checks for static closures

– New analysis : Report errors in sprintf() formats

– New analysis : Report methods and properties with the same name in a class

– New analysis : Report invalid chars in date scanning formats

– Refactored analysis : Useless Coalesce applied to PHP native methods

– New analysis : Report Abstract Private methods in traits (php 8.0-)

– Refactored analysis : Dynamic New now also works on parenthesis

– New analysis : Report Utf8_encode() and utf8_decode() deprecation

– Refactored analysis : Create Default Values checks on self-transforming variables

– Refactored analysis : Missing Typehint skips constructor and destructor

– Refactored analysis : Useless constructor skip one that has other constructor calling it

– New analysis : Some Magic methods have compulsory return types

– Refactored analysis : Overwritten const is extended to classes without constants (but in their parent or
interfaces)

– Refactored analysis : Nested ternaries now checks assignations, New parameter to set the min depth

– Refactored analysis : Instantiating Abstract now uses PDFF

– Refactored analysis : $this may be OK in closures (they can be rebinded later)

21

Exakat Documentation, Release 1

– Refactored analysis : Adding ‘Void’ returntype when possible

– Refactored analysis : Don’t Collect Void was upgraded with methods returning nothing.

– Refactored analysis : Identical Expressions, now checks = and omits short assignations

– New analysis : If Then Return Favorite

– Refactored analysis : Useless Casting checks % distinctly

– Refactored analysis : Add Zero skips variables more often

– New analysis : Could Be Resource

– New analysis : DateTime Immutable is not immutable

• Tokenizer
– Fixed namespace’s names dectection for older PHP versions

– Fixed Functioncall detection inside a new operator.

Version 2.4.4 (Li Jiancheng, 2022-06-23)
• Architecture

– Upgraded to Gremlin 3.6.0 (tinkergraph)

– Prepared engine to work with GSneo4j 3.6.0

• Cobbler
– New cobbler : turn ${a} into {$a} for PHP 8.2 compatibility

– Refactored cobbler : Adds null type to nullable parameters

• Report
–

• Analysis
– Refactored analysis : Non nullable setter skip properties set in constructor

– Removed analysis : ext/ffmpeg, ext/fdf, ext/xcache, ext/yis, ext/cairo

– Refactored analysis : ext/rdkafka, ext/zookeeper now uses PDFF

– Refactored analysis : Should Preprocess, now include local constant strings

– Refactored analysis : Undefined Interface, now not reporting extra Types

– New analysis : retyped reference, when a parameter with a type, eventually get a new type

– Refactored analysis : Static methods called from object, modernization

– Refactored analysis : New Analyzers, omits local defaults values

– Refactored analysis : Access Protected now takes into account PDFF

– Refactored analysis : Null type detection includes null defaut value for parameters.

– New analysis : Report type error for default values

– Refactored analysis : ‘ds’, ‘ssh2’ were upgraded to PDFF

– Checked unit tests : 4373 / 4349 test pass (99.5% pass)

– New analysis : Ice framework

– New analysis : taint

22 Chapter 2. Release Note

Exakat Documentation, Release 1

• Tokenizer
– Fixed ‘constant’ bug with functioncall on a nsname

– Upgraded Typehint detection to handle clone() calls

– Upgraded Typehint inference for properties and variables

Version 2.4.3 (Emperor Gaozu of Tang, 2022-06-02)
• Architecture

– Doctor failed to copy the tinkergraph configuration files

– Removed old connector GSneo4j/Tinkergraph

– Refactored starting/emptying of gremlin database

– Testing on PHP 8.2

• Cobbler
– Added suggestions when the -P is not found

– New cobbler : add Final to classes

– New cobbler : removes Final from classes

– Upgraded cobbler : removes Readonly from classes

• Report
– Ambassador, Emissary, Diplomat : removed link to the source code.

– Ambassador, Emissary, Diplomat : fixed link to online documentation

• Analysis
– Fixed analysis : Undefined Classes and Trait where affected by the recent Complete/Returntyping

– Refactored analysis : ‘Variables Used Once’ not omit inherited parameters.

– Refactored analysis : ‘Functions without return’ not skip methods with Never and methods that throw
in the main sequence.

– New analysis : ‘Parent is not Static’, but rather self

– Refactored analysis : ‘Use This’

– Refactored analysis : ‘Extension/Extxhprof’ to PDFF

– Refactored analysis : Removing usage of methods, moving to PDFF

– New analysis : ‘No magic method for Enums’

– Refactored analysis : ‘Multiple Identical Keys’ now also processes automated index

– New analysis : ‘Modifying Readonly’ (WIP)

– Refactored analysis : ‘Could use short assignation’ skips usage of ??

– New analysis : ‘Readonly Can only be assigned in defining class’

– Refactored analysis : ‘Runkit7’ was upgraded to PDFF

– Refactored analysis : ‘Gnupg’ was upgraded to PDFF

– Refactored analysis : ‘xdiff’ was upgraded to PDFF

– Refactored analysis : ‘event’ was upgraded to PDFF

23

Exakat Documentation, Release 1

– New analysis : ext/stomp, ext/csv

– New analysis : Suggestion making the default assignation in property definition

– Refactored analysis : ‘Redefined private properties’ now covers PDFF too

– Refactored analysis : ‘Failing Stubstr Comparison’ now accepts != <>

– Refactored analysis : ‘Insufficient typehint’ extended with class constants

– Refactored analysis : ‘Unused constant’ takes advantage of hierarchy

– Refactored analysis : ‘Useless Abstract’ extended to include single extended classes

– Refactored analysis : ‘Mismatched Default Value’ now omits parameters without default value

– New analysis : method is identity

– New analysis : report overloaded existing names in use, from PDFF

– New analysis : collect incoming date inventory

– New analysis : collect vendor’s API usage

– New analysis : report Array addition usage

– Checked unit tests : 4373 / 4349 test pass (99.5% pass)

• Tokenizer
– Added support for PHP 8.2 readonly classes

– Fixed bug that made VariableTypehint automatically isPHP

Version 2.4.2 (Li Chunfeng, 2022-05-18)
• Analysis

– Refactored analysis : ‘Raised access Level’ now supports PDFF files

– Refactored analysis : ‘Cant Extends Final’ also Works with anonymous classes

– New analysis : Report ‘Lowered access levels’

– Refactored analysis : ‘Final methods’ extended to traits

– Refactored analysis : ‘Overwritten Methods’ fixed bug with Traits

– New analysis : ‘Cant extends Final Methods’

– Refactored analysis : ‘Cant extends Final Constants’ with PDFF support

– New analysis : ‘Extension Excimer’

– New analysis : ‘Report implicit float to int conversions’

– Refactored analysis : ‘Is always false’ is extended to typed properties

– New analysis : ‘Report inegalities with different types’

– New analysis : Report traits used once

– Refactored analysis : ‘Is Not Implements’ now supports PDFF; support for trait added.

– Refactored analysis : ‘Wrong name with paramter’ : added support for PDFF

– Fixed analysis : ‘Overwritten Methods’ skipped some interfaces

– Refactored analysis : ‘Fossilized methods’ was counting methods that are defined with Virtualmethod

– Refactored analysis : ‘Fix bug’ when missing fqn in New for Classes/WrongTypedPropertyInit

24 Chapter 2. Release Note

Exakat Documentation, Release 1

– New analysis : Report unknown locales.

– New analysis : ext/pkcs11

– New analysis : ext/spx

– Checked unit tests : 4314 / 4317 test pass (99% pass)

– Refactored analysis : ‘Basename suffix’ detection extended

• Tokenizer
– Fixed bug with float and power

– Fixed bug in global variable creation

– Create all possible links to static keyword

– Speed up creation of links to $GLOBALS

Version 2.4.1 (Yuan Tiangang, 2022-05-04)
• Architecture

– New Dump : collect all stub’s structures

• Report
– Sarif : Fixed URI (no initial /) and Exakat version

– Unused : report unused stuff in the code

– Ambassador : upgrade presentation of the Exception Treephp

• Analysis
– New analysis : Deprecated String interpolation in PHP 8.2

– Refactored analysis : Spaceship features is used for isRead property

– Refactored analysis : Skip analysis of returntypes for methods with throw/assert/trigger_error()

– New analysis : Report unused Enumeration Cases

– Refactored analysis : Can’t instantiate class now takes local class into account

– Refactored analysis : Many new examples extracted from the docs

– Refactored analysis : fixed bug with ‘Wrong Type With Call’

– Refactored analysis : Conditional structures now includes Enums too.

– New analysis : Don’t throw raw exceptions

– New analysis : Useless Coalesce operator (when there is a type available)

– New analysis : ext/yar

– Refactored analysis : ‘Wrong number of argument’ now includes methods defined in a trait in a PDFF

– Refactored analysis : moved ext/amqp to PDFF

Version 2.4.0 (Yin Kaishan, 2022-04-20)
• Report

– Ambassador : suggest literals to be turned into a constant, based on assignation and comparison

• Analysis
– Refactored analysis : ‘Classes/WrongCase’ reported too many arguments

25

Exakat Documentation, Release 1

– New analysis : No constructor in interfaces

– Refactored analysis : Bail Out Early also report if/then when in last position of an sequence

– Refactored analysis : Useless Casting also checks for double application of typehint/cast

– New analysis : Could Be A constant (in Dump)

– New analysis : Could Be Spaceship

– Refactored analysis : Vendors/Concrete5 is updated to Concrete5 v9.0

– New analysis : Vendors Sylius

– Refactored analysis : Vendors/Joomla is updated to Joomla 4.2.0

– Refactored analysis : Wrong Number Of Arguments supports Constructors and methods (static and
normal)

Version 2.3.9 (Fu Yi, 2022-04-06)
• Architecture

– Changed Loading system to handle globals directly with gremlin, and without ids

• Cobbler
– New cobbler : adds ‘function array_key_exists’ to the list of use statements to speed up ar-

ray_key_exists.

• Analysis
– Refactored analysis : Fixed bug with ‘each’ and namespaces in Php/Deprecated

– Refactored analysis : Next Month Trap was updated with support for datetime (Immutable)

– Refactored analysis : TimeStamp Differences now covers any seconds additions. Date-
time::format(‘U’) was also added to sources.

– New analysis : Avoid using 86400 to handle days when calculating dates.

– New analysis : Do not reuse the source name in a foreach($a as $a)

– New analysis : Use constants when the function returns them

– Updated analysis : New constants for ‘Use Constants As Arguments’

– Refactored analysis : many Extensions/Ext* are moving to pdff support

– Refactored analysis : speedup Should Preprocess analysis

– Refactored analysis : Modernized Overwritten class constants

– New analysis : Report overwritten final constants from PDFF

– Refactored analysis : Moving Extensions/Ext* to PDFF

– Refactored analysis : Repeated Regex

– New analysis : Report string / integer comparison for PHP 8.0 migration

– Refactored analysis : Defined Class Constants differentiate from Enumeration cases

– New analysis : Complete functions with obvious typehints

– New analysis : Extension protobuf

– Refactored analysis : Upgraded Property analysis to use PDFF

– Refactored analysis : ‘Multiple identical keys’ now has an array size limit (15000)

26 Chapter 2. Release Note

Exakat Documentation, Release 1

– New analysis : Constant favorite : use or not?

– Refactored analysis : Upgraded ‘Unresolved classes’ with Pdff support

• Tokenizer
– Fixed isPhp/isExt/isStub detection for catch classes

Version 2.3.8 (Xiao Yu, 2022-03-23)
• Architecture

– Speed up gremlin queries

• Report
– Pdff : added support for hasDefault in properties and parameters

• Analysis
– New analysis : Report type of string introspection used in the code, as a favorite

– New analysis : Report functions to be of type ‘never’.

– Refactored analysis : Variables used once by context, now omits Blind variables

– Refactored analysis : Redeclared PHP functions works with PHP 8.1’s functions

– Refactored analysis : Modern Empty

– Refactored analysis : Deprecated Functions

– Refactored analysis : Removed usage of IsExtInterface in UndefinedClasses

– Refactored analysis : Suggesting static class names over objects takes into account the nature of the
typehint available.

– Refactored analysis : Using PDFF with ext/gender, ext/decimal, ext/xxtea, ext/mailparse, ext/uuid.

– Refactored analysis : Using PDFF with ext/xmlreader, ext/writer, ext/mongodb, ext/gd, ext/dom

– Refactored analysis : Class Usage rule now skips Interfaces in Implements

– Removed analysis : Modules/*

– Removed analysis : Extensions/Extzbarcode

Version 2.3.7 (Xiao Yu, 2022-03-09)
• Architecture

– Fixed all internal step’s case

• Report
– New report : PerRule (same as PerFile, but grouped by rules)

– New report : CompatibilityPHP56 (based on Perfile, dedicated to Compatibility PHP 5.6)

– Updated report : Ambassador now lists @keywords in phpdocs (inventories)

– Updated report : Manual includes sections for namespaces, and global constants

• Analysis
– New analysis : Use variables when they are created inside a loop

– New analysis : Simplify Foreach()

– New analysis : Identical Conditions on If-elseif

27

Exakat Documentation, Release 1

– Refactored analysis : Undefined Instanceof now relies on isPhp/isExt/IsStub

– Refactored analysis : First byte only, now uses variable typehints

– Refactored analysis : Dont loop on yield

– Refactored analysis : Interfaces suggestion now accepts php/ext/stubs configuration

– Refactored analysis : Static calls to traits exclude self, parent, static

– Refactored analysis : Don’t read and write at the same time : Extended to all containers, removed edge
cases

– Refactored analysis : Undefined interfaces takes Variable Typehint into account

– Refactored analysis : Incompatible Method signature

– Refactored analysis : Unfinished objects now checks called internal methods

– Refactored analysis : Better coverage for Class Constants

– Refactored analysis : Insufficient typehint skips properties without a type

• Tokenizer
– Extended support for Variable typehints

Version 2.3.6 (Qin Qiong, 2022-02-16)
• Architecture

–
• Cobbler

– Refactored cobbler : ‘SetTypehint’ checks more before adding a class typehint

• Report
– Ambassador : added the list of extended dependencies as an audit report

– Diplomat : removed 4 rules from Analyze (Classes/Redefined*)

• Analysis
– New analysis : Too Many Stringed If-then-elsif

– New analysis : Undefined Enumeration case

– New analysis : Unfinished objects

– New analysis : Class Alias usage

– New analysis : Undefined Methods

– New analysis : Suggest array_sum(), from the code

– New analysis : Missing type on any structure (method, parameter, property)

– New analysis : Spot unreachable methods

– New analysis : Public Reach lists the paths from public methods to private ones.

– New analysis : Avoid Static calls on objects when possible

– Deprecated analysis : Is Php Function

– Refactored analysis : Removed usage of IsExtFunction analysis

– Refactored analysis : ‘Could Be array’ relies on . . . too

28 Chapter 2. Release Note

Exakat Documentation, Release 1

– Refactored analysis : ‘No need for else’ now skips elseif

– Refactored analysis : ‘Undefined constants, functions, traits, interfaces, classes{const, static P/M}’
now leverages the stubs

– Refactored analysis : ‘Insufficient typehint’ checks for union types

– Refactored analysis : ‘Used Once Properties’ now omits classes that have dynamic properties

– Refactored analysis : ‘Unused class constants’

– Refactored analysis : ‘Reuse variable’ has a narrower focus, and takes scope into account.

– Refactored analysis : ‘Weak Type’ Extended analysis to typed containers

– Refactored analysis : Definitions stats now break down to isPHP/isStub/isExt

– Refactored analysis : Isset() calls with more complex expressions

– Bug: fixed PHp/MixedKeyword in analyzer database

– Checked unit tests : 4123 / 4132 test pass (99% pass)

• Tokenizer
– Refactored Foreach variable detection

– Fixed constant detection in deep namespaces

– Restored Stubs from configuration and commandline

– Added fullnspath to static properties

– Added Complete/Is*Structure, to finish marking atoms with isPhp, isStub

– Deprecating Composer/IsComposerNsname

– Fixed bug with class_alias

– Added Not to guess list

– Fixed bug in engine with comments at the end of scripts.

Version 2.3.5 (Yuchi Gong, 2022-02-02)
• Architecture

– ‘Complete’ ruleset will run the configured rulesets that are not already run

• Cobbler
– New cobbler : removes readonly option on properties

– New cobbler : removes useless variables

• Report
– Ambassador : added counts with the actual sizes of the classes (constants, properties, methods)

– Ambassador : Fixed display of compatibility features

– Uml : Report number of classes exported

• Analysis
– New analysis : List all external dependencies extensions

– New analysis : report recycling of foreach() sources

– New analysis : report usage of readonly

29

Exakat Documentation, Release 1

– New analysis : Suggest updating if-then to ternary operator

– New analysis : Report multiple similar calls in a row

– New analysis : Suggest using FILE_APPEND with file_put_contents()

– New analysis : Report missing visibilities

– New analysis : Identify literal that may actually be existing constants.

– Fixed analysis : Cancelled parameter shall take ??= into consideration

– Refactored analysis : ‘Cannot use static with closure’ analysis is extended to properties

– Refactored analysis : Upgraded detection of variable modified by a reference in a PHP or custom
function/methodcall.

– Refactored analysis : Fixed bug with ‘This is for class’ where typehint where not correctly seen inside
a class.

– Refactored analysis : ‘Insufficient typehint’ was upgraded with class constants checks

– Refactored analysis : ‘Undefined class’ skips ? as a class

– Refactored analysis : ‘Static loops’ now takes into account modifications in the conditions

– Refactored analysis : ‘Complex expressions’ omits match

– Refactored analysis : ‘Cache variable outside loop’ fixed bug with function names and new expressions

– Refactored analysis : ‘Logical mistakes’ now checks for constants on the rest of the comparison

– Refactored analysis : ‘Cant instantiate class’ now takes into account self/static

– Refactored analysis : ‘Should use self’ also reports self opportunities in new expression.

– Refactored analysis : ‘Written only’ fixed a bug with propperties

– Refactored analysis : ‘No choice’ also spots ?: null and ?? null

– Refactored analysis : Written Only Variable now takes into account references in parameters

– Refactored analysis : Classes’s strange names covers methods, properties and classes.

– Refactored analysis : Caught but never thrown exceptions have an updated list of exception

– Refactored analysis : Unresolved Catch uses updated PHP exception/error list

– Refactored analysis : PHP 8.0 new types now covers mixed and also properties.

– Refactored analysis : PHP 8.0 union type differentiate between ?A and null|A

– Refactored analysis : CIT same names was extended to Enumeration

• Tokenizer
– Fixed boolval for multiplications

– Fixed spaceship for string and boolean values

– Added processing to isPhp/isExt/isStub to implemented names

Version 2.3.4 (Yuchi Gong, 2022-01-19)
• Cobbler

– New cobbler : remove unused use expression

– Added 4 directives to each rules : namespaces, ignore_dirs, include_dirs and file_extensions. They
filter out some of the results.

30 Chapter 2. Release Note

Exakat Documentation, Release 1

• Report
– Composer : upgrade the list of core PHP extensions

• Analysis
– New analysis : Mark simple getters/setters in classes

– New analysis : Report unchecked divisions (int and operators)

– New analysis : report possible abstract constants in classes (which should be defined in a parent)

– New analysis : report recycled variables

– Refactored analysis : Upgraded ‘Object references’ with union and intersectional types

– Refactored analysis : Removed edges cases in ‘Don’t collect void’

– Refactored analysis : Extension detection now takes into account enums

– Refactored analysis : Upgraded AlwaysFalse with better typehinting inference

– Refactored analysis : indentation levels missed several results while reporting

– Refactored analysis : interfaces, traits and constants were missing for use expression resolution

– Refactored analysis : Undefined Interfaces now exclude better PHP or ext’s interfaces

– Refactored analysis : Never Used Parameter confused Void and first argument

– Refactored analysis : Self were reported as outside a class when in foreach()

– Refactored analysis : Clone with non-arrays now checks PHP native functions too

– Refactored analysis : Excluded powers from calculations in IsZero

– Refactored analysis : Fixed discrepancy between ‘ and “ handling of

– Extended tests : match without default

• Tokenizer
– Fixed a bug where static keyword is processed as a simple nsname

– Fixed a bug where typehints were not marked as isPhp, isExt or isStub

– Fixed an edge case with array functions inside match() syntax

– Fixed an edge case with Closures and reference-use variable

– Fixed an edge case with static inside ternary

– Fixed yield expression scope

– Added Table for PHP 8.2 compilations checks

– Removed extra void with use expression for traits

Version 2.3.3 (Xu Maogong, 2022-01-05)
• Cobbler

– New Cobbler : removes attributes

• Report
–

• Analysis
– New analysis : suggest using ?-> when Null is a possiblity

31

Exakat Documentation, Release 1

– New analysis : Report backward incompatibility with overloaded interface constants

– New analysis : Mark variables as local constants when only assigned once

– New analysis : suggest using iterable, based on array|traversable usage

– New analysis : Report usage of PHP 8.1 intersection typehints

– Refactored analysis : Hidden Nullable rule now handles intersection types

– Refactored analysis : ‘Use Nullable’ covers properties too

– Refactored analysis : ‘Could Be stringable’ is extended to trait usage

– Refactored analysis : skip static and globals when counting variable usage in methods

– Refactored analysis : PHP 8.0 Union type detection includes properties

– Added tests to Complete/Overloaded* (CPM)

• Tokenizer
– Fixed a bug with Ternary and constants

Version 2.3.2 (Wei Zheng, 2021-12-16)
• Cobbler

– New cobbler : removes a method

• Report
–

• Analysis
– New analysis : suggest ::class instead of get_class()

– New analysis : report when a class extends stdclass (for dynamic properties review)

– New analysis : Reports when checks are made on the existence of properties

– Upgraded analysis : Useless Typechecks is upgraded with union and intersectional type checks

– Upgraded analysis : Reporting invalid access to protected CPM

– Upgraded analysis : Removed Used Properties with classes with dynamic properties

– Fixed bug in PropagateConstants

• Tokenizer
– Added detection of typehints for variables

Version 2.3.1 (Li Shimin, 2021-12-01)
• Cobbler

– Fixed bug with Settypehint when multiple types are available

• Report
– New Pdff report : PHP Document File Format

• Analysis
– New analysis : report promoted properties

– New analysis : report deprecated PHP 8.2 callable

– New analysis : report new in initializers

32 Chapter 2. Release Note

Exakat Documentation, Release 1

– New analysis : report nested attributes

– New analysis : report direct calls to Trait methods and properties

– New analysis : report auto vivification of false (PHP 8.1)

– New analysis : report implicit float to integer conversion for arrays

– Updated analysis : Declare Static and Global early.

– Updated analysis : No Null For Native now uses typehints

– Updated analysis : refined No Static variable in method

• Tokenizer
– Fixed bug with __METHOD__ when it is called outside a method

Version 2.3.0 (Wei, 2021-11-18)
• Architecture

– Catchup tokens from PHP 5.6 till 7.2

– Report unknown Rulesets during reports command

– Extended ‘catalog’ command to list rules too

– Extended ‘catalog’ command to return YAML format

• Report
– Added several new analysis to the Rector report

– Added mixed and never to Appinfo report

– Ugraded Sarif report with bartlett/sarif-php-sdk

• Analysis
– New analysis : report the missing mixed returntype for jsonserialize

– New analysis : report final with constants

– New analysis : report never usage (typehint)

– New analysis : report PHP 8.1 typehint incompatibilities

– New analysis : report PHP 8.0 typehint incompatibilities

– New analysis : report PHP 8.0 named parameters

– New analysis : report First Class Callable Syntax

– New analysis : New Functions in PHP 8.1

– New analysis : Removed functions in PHP 8.1

– New analysis : Prepare ‘never’ for PHP 8.1

– New analysis : Prepare ‘mixed’ for PHP 8.0

– New analysis : detect mixed and never usage as typehints

– Upgraded analysis : Wrong Number of arguments also works with new first class callable syntax

– Upgraded analysis : Typehint stats now includes union and intersection types

– Upgraded analysis : Removed functions in PHP 8.0

Version 2.2.5 (Wood star, 2021-11-03)

33

Exakat Documentation, Release 1

• Analysis
– New analysis : Calling Trait Static Method directly is deprecated in PHP 8.1

– New analysis : No reference for returned void

– New analysis : No Null for PHP native methods

– Updated analysis : Wrong type for argument now covers classes, union type and intersection types.

– Updated analysis : Wrong type for argument now covers classes, union type and intersection types.

– Updated analysis : Unused Private Methods are also detected with array($this, ‘xx’) syntax

– Checked unit tests : 3821 / 3805 test pass (99% pass)

• Cobblers
– New cobbler : remove typehints from arguments, returns and properties

Version 2.2.4 (Gold star, 2021-10-21)
• Dataset

– Updated PHP native dataset with missing classes and typehint.

• Analysis
– New analysis : Report incompatible typehint with native PHP methods in PHP 8.1

– New analysis : Report Missing Attribute Attribute

– New analysis : Report full_path index in $_FILES usage

– Updated analysis : Type detection also include return type from methods

• Cobblers
– Updated cobbler : Set typehint handles typehint from arguments

• Tokenizer
– Added more cases for Constant types

Version 2.2.3 (Wu, 2021-10-06)
• Architecture

– Updated INI files for PHP 8.1

• Data
– Extended PHP directives lists

• Report
– New report Migration 8.1

• Analysis
– New analysis : PHP 8.1 removed directives

– New analysis : PHP 8.1 removed constants

– New analysis : Wrong named parameter for PHP native function

– New analysis : Report duplicate named arguments

– New analysis : htmlentities (and co) default 2nd argument

– Updated analysis : Scalars are not arrays. Extemded with type support.

34 Chapter 2. Release Note

Exakat Documentation, Release 1

• Tokenizer
– Support for callable strlen(. . .)

– Test for new syntax for octal 0o123

Version 2.2.2 (Si, 2021-09-22)
• Architecture

– Refactored documentation

• Report
– Added support for PHP 8.1 compatiblity

• Analysis
– New analysis : Restrict $GLOBALS usage

– New analysis : No object as array’s index

– New analysis : Overreaching classes (PHP feature)

– New analysis : Report Enum usage

– Updated analysis : Typehints/* got new Unit Tests

– Updated analysis : Explode optimisation

• Tokenizer
– Reduced the number of DEFAULT creation for properties

– Added support for new PHP 8.1 syntax (Enum)

Version 2.2.1 (Chen, 2020-11-20)
• Architecture

– Export : WIP of exporting PHP code from graph

– New directives : rules_version_max, rules_version_min, ignore_rules and ignore_namespace

• Report
– Sarif : Fixed line number that may be null or less

– Ambassador : Fixed visibility report

• Analysis
– New analysis : check for match as a keyword

– New analysis : replace static variable by static properties

– New analysis : warn about usage of get_object_vars()

– New analysis : report global and static variables that are declared multiple times

– Updated analysis : extended Used Classes to abstract classes

– Updated analysis : wrong number of argument now supports $this()

– Updated analysis : parse_str last argument doesn’t apply anymore in PHP 8

– Updated analysis : useless argument now omits parameter with default value

– Checked unit tests : 3797 / 3800 test pass (99% pass)

• Tokenizer

35

Exakat Documentation, Release 1

– Fixed race condition with phpdocs

– Refactored static and global variables definitions (avoid double definitions)

– Fixed detection of [] inside a list()

– Fixed detection of alternative syntax for switch

– Added use property to usenamespace too (for grouping)

Version 2.2.0 (Mao, 2020-10-15)
• Architecture

– Extended Export command to produce PHP scripts from the graph database

– Added more typehints

– Added new command ‘onefile’

– Sped up database restart with id reset

– Updated list of functions for several extensions. Started adding methods, class constants..

• Report
– Ambassador : updated popularities

– Ambassador : added missing PHP 8.0 ruleset

• Analysis
– New analysis : report arguments and properties whose name clashes with the typehint

– New analysis : report long preparation before throw command

– New analysis : missing __isset() method

– New analysis : suggest array_keys() for array_search in loops

– New analysis : array_map() complains with values by reference

– New analysis : report final private properties

– New analysis : report misnamed constant/variable

– New analysis : check for attribute configuration (PHP 8.0)

– New analysis : suggest dropping variable in catch clause

– New analysis : report resources that should not be tested with is_resource (PHP 8.0)

– New analysis : check for named arguments and variadic

– Updated analysis : wrong number of argument now supports $this()

– Updated analysis : redefined private property uses OVERWRITE

– Updated analysis : refactored UndefinedFunctions for speed

– Updated analysis : array_map() complains with values by reference

– Updated analysis : removed false positives on properties in strings

– Updated analysis : unsupported types with operators skips cast values

– Updated analysis : cancelled parameters are also for array_map/array_walk

– Updated analysis : variable variable skips variables inside strings

– Updated analysis : removed functions are not reported when in if/then with function_exists()

36 Chapter 2. Release Note

Exakat Documentation, Release 1

– Updated analysis : wrong optional parameter fixed false positive with . . .

– Updated analysis : extended list of removed directives, functions and constants

– Removed analysis : RealVariables

– Checked unit tests : 3761 / 3772 test pass (99% pass)

• Tokenizer
– Added Void to empty default/case

– Bitoperation added to isRead

– Fixed list[] in a Foreach

– Fixed token T_OPEN_DOLLAR_CURLY_BRACKET

Version 2.1.9 (Yin, 2020-10-01)
• Architecture

– Removed old and unused commands

– Modernized usage of docker as phpexec

– New directive php_extensions to managed list of ext

• Report
– Ambassador : removed 3 gremlins from typehint stats, added scalar types

– New Migration80 report, dedicated to PHP 8.0 migrations

– New Stubs.ini report, dedicated to exakat extensions production

• Analysis
– New analysis : report arguments which are not nullable because of constants.

– New analysis : could use stringable interface

– New analysis : suggest explode()’s third argument when applicable

– New analysis : suggest PHP 8.0 promoted properties

– New analysis : report arrays with negative index, and auto-indexing

– New analysis : report unsupported types with operators

– New analysis : report usage of track_errors directive (PHP 8.0)

– New analysis : report useless types on __get/__set

– New analysis : count the number of use expressions in a file

– New analysis : Avoid modifying typed arguments

– New analysis : Report Assumptions in the code

– New analysis : array_fill() usage with objects

– New analysis : mismatch between parameter name and type

– Updated analysis : magic methods definitions also find usage for __invoke()

– Updated analysis : noscream operator usage may have exceptions

– Updated analysis : identical methods and identical closures

– Updated data : list of exceptions and their emitters

37

Exakat Documentation, Release 1

• Tokenizer
– Upgraded detection of extensions’ structures, beyond functions

Version 2.1.8 (Chou, 2020-09-18)
• Architecture

– added ‘–’ options, and kept the ‘-’ options, for migration purposes. (–format and -format are both
available)

– Added support for PHP 8 attributes in dump.sqlite

– Added ‘precision’ to rule docs.

– Moved all but one data collection from Dump -collect to Dump/ analysis.

• Report
– New report : SARIF

– Typehint suggestion report : Tick classes when they are fully covered

– Weekly report : fix donuts display.

– Stubsjson : Added support for PHP attributes

– Stubs : Added support for PHP attributes

• Analysis
– New ruleset : CI-Checks

– New analysis : ‘Multiple declare(strict_types = 1)’

– New analysis : ‘No more (unset) in PHP 8’

– New analysis : Cancel methods in parent : when methods should not have been abstracted in parent
class.

– New analysis : ‘$php_errormsg is removed in PHP 8’

– New analysis : ‘Mismatch Parameter Name’ checks parameter names between inherited methods for
consistency

– Upgraded analysis : ‘Useless Arguments’ is accelerated

– Upgraded analysis : ‘Don’t use Void’ weeded out false positives

– Upgraded analysis : ‘Wrong type for native calls’ weeded out false positives

– Upgraded analysis : ‘Non static methods called statically’ was refactored for PHP 8.0 support

– Upgraded analysis : ‘PHP Keywords’ includes ‘match’

– Upgraded analysis : ‘Useless instruction’ reports ‘$a ?? null’ as useless.

– Upgraded analysis : ‘Uncaught exceptions’ is extended to local variables

– Upgraded analysis : ‘Foreach favorites’ also covers the keys

– Upgraded analysis : ‘Should Preprocess’ skips expressions with constants

– Upgraded analysis : ‘Compare Hashes’ has more functions covered

– Removed analysis : ‘Normal Properties’ : no need anymore.

• Tokenizer
– Moved isPhp attribute to Task/Load plugin

38 Chapter 2. Release Note

Exakat Documentation, Release 1

– Created isExt attribute to Task/Load plugin

Version 2.1.7 (zi, 2020-09-07)
• Architecture

– Refactored loading class, to keep query load at optimal size for Gremlin

– GC during load to free memory

– More typehints

– Move several collections to Dump/ ruleset

• Report
– Upgraded Typesuggestion report with report on closures and arrow functions

– Added Arrowfunctions in inventories

– Added collection of arguments and details for closures and arrowfunctions

• Analysis
– New analysis : Could Be In Parent : suggest methods that should be defined in a parent

– New analysis : Don’t pollute namespace

– New analysis : report insufficient return typehints

– Upgraded analysis : ‘Method signature must be compatible’ now PHP 8.0 compatible

– Upgraded analysis : ‘Wrong type with native function’ fixes false positives

– Upgraded analysis : ‘Same condition’ added coverage for || conditions

– Upgraded analysis : ‘Missing returntype’ extended to class typehints

– Upgraded analysis : ‘Should Use This’ also covers special functions like get_class_called()

– Upgraded analysis : ‘No concat in loop’ skips nested loops

– Upgraded analysis : ‘Always false’ covers typehint usage

– Upgraded analysis : ‘NoChoice’ doesn’t report large expressions

– Upgraded analysis : ‘Dont mix PlusPlus’ skip () and =

– Upgraded analysis : ‘Fallthrough’ don’t report final cases without break

– Checked unit tests : 3663 / 3630 test pass (99% pass)

• Tokenizer
– Removed ‘root’ property

– Upgraded to new Attributes #[] in detection and normalisation

– Fixed constant detection within instanceof

– Created RETURN and RETURNED for Arrowfunctions (there is no return otherwise)

– Parent method also calls children methods when those are not defined there

– Support for multiple attributes in one syntax

Version 2.1.6 (Night Patrol Deity, 2020-08-28)
• Architecture

– More typehints coverage

39

Exakat Documentation, Release 1

– Various speed-up

– Lighter logging with gremlin

– Fixed installation path

• Report
– Upgraded Typesuggestion report

– Upgraded Stubs and Stubsjson

• Analysis
– New analysis : report PHP 8.0 unknown parameters

– New analysis : overwritten methods with different argument counts

– New analysis : Warn of iconv and TRANSLIT for portability

– New analysis : Warn of glob and {} for portability

– Upgraded analysis : ‘Useless check’ covers new situations.

– Upgraded analysis : ‘Abstract away’ now covers new calls.

– Upgraded analysis : ‘Must return Typehint’ skips Void.

– Upgraded analysis : ‘Missing new’ with less false positives

– Checked unit tests : 3559 / 3630 test pass (98% pass)

• Tokenizer
– Support for Virtualmethod and imports from traits

– Refactored Usenamespace atom

– Fixed calculations of fullnspath for static::class

– Fixed detection of null/true/false in new()

– Added support for T_BAD_CHARACTER

Version 2.1.5 (Day Patrol Deity, 2020-08-04)
• Architecture

– Fixed comment size estimation by 1 for T_COMMENT

– Added more typehints to code

• Report
– Typehint suggestions : added ticks to fully typed methods

– Emissary : Extract more information from dump.sqlite, instead of datastore.sqlite

– Ambassador : Added a list of parameters, defined in the application

– Ambassador : Added a list of fossilised methods

– Stubs : Added check around PHP native functions and CIT

– StubsJson : Added property for PHP native structures

• Analysis
– New analysis : Report insufficient initialisation for array_merge() collector variable

– New analysis : Report useless triple equals

40 Chapter 2. Release Note

Exakat Documentation, Release 1

– New analysis : Don’t compare typed boolean return values

– New analysis : Report wrong type used with PHP functions

– New analysis : Suggest abstracting away some PHP native functions

– New analysis : Report try block that are too large

– New analysis : Report variables potentially undefined in catch clause

– New analysis : Report swapped arguments in methods overwriting

– Upgraded analysis : InvalidPackFormat speed up

– Upgraded analysis : Added parameter to Security/ShouldUsePreparedStatement to choose the prepar-
ing method

– Upgraded analysis : Added parameter to Security/HardcodedPasswords to choose the name of prop-
erties/index

– Upgraded analysis : PHP 8.0 new scalar typehint, stringable interface

• Tokenizer
– Added support for named parameters (PHP 8.0)

– Trimmed some properties from atoms

– Removed non-existent atom mentions

– Added support for Attributes (WIP)

– Added support for ?->

– Added support for new T_*_NAME tokens

Version 2.1.4 (Marshal of Heavenly Blessing, 2020-07-23)
• Architecture

– Added time of last commit in audit results

– Added more typehints

– Upgraded PHP native method description with typehints (WIP)

• Report
– Typehint suggestion report

– New toplogies : call order,

– Ambassador : new statistics for typehint usage

• Analysis
– New analysis : Report double assignation of objects

– New analysis : Typehints/CouldBe*, which makes suggestions for typehints

– New analysis : Checks for argument type when typehint is present in custom methods

– Upgraded analysis : Too Many Finds may be configured for threshold and prefix/suffix

– Upgraded analysis : Typehints stats were extended to properties and multiple typehints

– Upgraded analysis : Global outside Loop is extended to static variable too

– Upgraded analysis : ErrorMessages also detect local variable contents

41

Exakat Documentation, Release 1

– Upgraded analysis : Speed up for NullBoolean, Interfaces IsNotImplemented, InvalidPackFormat,
arrayIndex, noWeakCrypto

– Checked unit tests : 3532 / 3496 test pass (99% pass)

• Tokenizer
– Removed ‘aliased’ property in atoms

– Fixed spotting of PHP native constants, when in Define() structure

– Fixed loading of false values

– Added support for the trailing comma in closure’s use expression

– more handling of phpdocs

– Null is now reused when it is a default value, as a typehint.

– Logical was split in two : Logical and Bitoperation

– Added support for match() {} expression

– Fixed boolean calculations during Load

– Removed auto-referencing in DEFAULT calculations

Version 2.1.3 (Marshal of the Heavenly Canopy, 2020-07-02)
• Architecture

– Removed all usage of datastore in Reports, and only rely on dump.

– ignore_rules is now case insensitive

– Moved some of the loading to a separate gremlin call to reduce the size of node load.

– Fixed the branch option with Git calls.

– Storing trait’s use expresion’s options.

• Report
– Ambassador ; New inventory : PHP protocol used (php, phar, glob://. . .)

– Stubs and StubsJson, have been tested extensively

• Analysis
– New analysis : report double assignations of the same object ($a = $b = new C)

– New analysis : report cyclic references

– Upgraded analysis : Used Constants edge situations

– Upgraded analysis : No real comparison : extended analysis to constants

– Upgraded analysis : extended detection of dynamic method calls to call_user_func*

– Upgraded analysis : paths are detected with new functions

– Checked unit tests : 3490 / 3520 test pass (99% pass)

• Tokenizer
– More phpdoc support (from code to report)

– Added isPHP to absolute FQN notations

Version 2.1.2 (Mountain Deity, 2020-06-25)

42 Chapter 2. Release Note

Exakat Documentation, Release 1

• Architecture
– Removed files task from initproject.

– Added ignore_rule directive, to ignore specific rules while running a specific report

– More documentation (in particular, modifications section)

– Exakat avoids to return twice the same results (file and line)

– Sped up some analysis, and added a time limit per analysis

– Removed double linking for static variables

• Report
– New reports ; Stubs and StubsJson, which produce the stubs of the audited code (PHP and JSON

format) (WIP)

– New report ; Typehint suggestion (WIP)

– Ambassador ; offers the configuration for all the rules that spotted issues in the current audit, for reuse
in other codes

– Collect the number of property per class

• Analysis
– New analysis : Report methods that are too much indented on average

– New analysis : Report possible confusion between a class and an alias

– New analysis : Report variables that are static and global at the same time

– New analysis : Report statement with long blocks

– New analysis : Report phpdoc’s deprecated methods and function calls

– Upgraded analysis : Dereferencing levels now include () and =

– Upgraded analysis : Unused Methods now skips classes that calls themselves dynamically

– Upgraded analysis : No Need Get_class() was refactored

– Upgraded analysis : Avoid Optional Properties was refactored

– Upgraded analysis : Variable inconsistent Usage was extended with more reach

– Upgraded analysis : Indirect Injections was upgraded with better reach with variables

– Upgraded analysis : Direct Injections was upgraded with include

– Upgraded analysis : PHP 8.0 new scalar typehint, stringable interface

– Upgraded analysis : Mismatch Type and default now avoids undefined constants

– Upgraded analysis : Wrong Optional Parameter is upgraded for PHP 8.0

– Upgraded analysis : Indentation level was refactored

– Checked unit tests : 3480 / 3510 test pass (99% pass)

• Tokenizer
– Upgraded detection of PHP native constants, when they are in absolute notation

– Dump task stores use expressions’ options, plus minor fixes

– Added support for Attributes (PHP 8.0)

– Added support for Union types (PHP 8.0)

43

Exakat Documentation, Release 1

– AtomIs step (WITH_VARIABLE) was extended with local variables

– DEFAULT doesn’t point anymore on auto-updated values

– Extended support for phpdoc in the code

– Added support for promoted properties (PHP 8.0)

Version 2.1.1 (Earth Deity, 2020-06-01)
• Architecture

– Using timeLimit() to prevent Gremlin from running too deep in the rabbit hole

– Added Neo4j Graphson V3 Graph driver

– Moved ‘Dump’ rules to a specific Ruleset for easier administration

– Propagated the upgrade to PHP 8.0 union types to three more rules

– Fixed access to the list of ignored files

– Added support for explicit stub files

– Fixed multiple calls to Dump (better reentrant)

• Report
– New report : Meters, which holds measures for the audited code.

– Ambassador : inventory of OpenSSL ciphers

• Analysis
– New analysis : Report unused traits

– New analysis : Report chmod 777 system calls

– New analysis : Check for keylength when generated by PHP

– New analysis : Report methods with prefix/suffix and expected typehint

– New analysis : Mark classes when they call dynamically their own methods

– New analysis : Check for constants hidden in variable names ${X} != $X;

– New analysis : Throw will be an expression in PHP 8.0

– Upgraded analysis : Dangling operator now checks for loops too

– Upgraded analysis : ‘Variables used once’ now skips variable definitions

– Upgraded analysis : ‘Access Private’ takes into account dynamic classes

– Upgraded analysis : ‘Could Centralize’ now uses a custom threshold. Default is 8 usage of an expres-
sion to centralize.

– Upgraded analysis : ‘Return true/false’ checks that they are alone in the blocks

– Upgraded analysis : ‘Unreachable code’ checks on constants values before reporting the next expres-
sion

– Upgraded analysis : ‘Magic methods’ are case insensitive

– Upgraded analysis : ‘No Hardcoded passwords’ has new functions that require a password

– Upgraded analysis : ‘Unused methods’ are omitted for dynamically called methods and overwritten
methods

– Upgraded analysis : Insufficient Property Typehint also works for untyped properties

44 Chapter 2. Release Note

Exakat Documentation, Release 1

– Upgraded analysis : PHP 8.0 new scalar typehint, stringable interface

– Checked unit tests : 3383 / 3444 test pass (98% pass)

• Tokenizer
– Arguments with null as default values, automatically are nullable

– Intval is also an integer for logical operations

– Default Values now omits recursives assignations

– Fixed fullnspath for PHP short tags

– Added link between new command and constructor of anonymous classes.

Version 2.1.0 (City God, 2020-05-13)
• Architecture

– results stored in HashResults are now testable

– Moved all query methods to Query/DSL namespace, from Analyzer class

• Report
– New report : ClassReview, with focus on classes structures

– New report : Typechecks, with focus on type hint usage

– Ambassador : Added typehint stats section

– Ambassador : fixed display of classes name in classes tree

– Ambassador : some missing sections have been rehabilitated

• Analysis
– New analysis : Trailing comma in signature (PHP 8.0)

– New analysis : Hidden nullable types

– New analysis : Not implemented abstract methods

– New analysis : Report confusion between variables and arguments with arrow functions

– Upgraded analysis : No literal for reference was extended

– Upgraded analysis : Add zero is extended to constants

– Upgraded analysis : This is for classes is now valid with arrow functions

– Upgraded analysis : Useless arguments takes also into account constants

– Upgraded analysis : Wrong Type With Call supports variadic arguments

– Upgraded analysis : Extension constants now support fully qualified names

– Upgraded analysis : Bad Typehint relay is compatible with union types

– Upgraded analysis : Multiple Identical Cases now handles constants too

– Checked unit tests : 3437 / 3477 test pass (99% pass)

• Tokenizer
– Restored ‘List’ atom

– Interface methods are now ‘abstract’ by default

– Added ‘array’ typehint for variadic arguments

45

Exakat Documentation, Release 1

– Distinguish between argument and local variable in fn functions

– Removed nullable property

– propagate calls now propagates closures and arrow functions

– Added support for union types (PHP 8.0)

– Check all error messages from php, not just the first ones

Version 2.0.9 (Jialan, 2020-04-30)
• Architecture

– Added option in TU for analysis that won’t fill the result table.

– Reduced the number of duplicate links in the graph

– Upgraded tokens for PHP 8.0.

• Analysis
– New analysis : Don’t collect void

– New analysis : Wrongly inited properties

– New analysis : Not inited properties

– Upgraded analysis : PHP 8.0 removed functions

– Upgraded analysis : Useless instructions also include global/static variables

– Upgraded analysis : Bad Relay Function now works with return types and property types

– Upgraded analysis : ‘Scalar or object properties’ are upgraded with static calls

– Removed analysis : Classes and Arrays IsRead and IsModified. Use properties now.

– Checked unit tests : 3347 / 3420 test pass (97% pass)

• Tokenizer
– Fixed edge case for xor, with intval

– Refactored multiple calculation for cast values

– Added support for links between constants and use expressions

– Linked classes with calls, when using use expression

Version 2.0.8 (Ao Run, 2020-04-20)
• Architecture

– Added new information in dump.sqlite, to make report autonomous

• Analysis
– Upgraded analysis : Paths are also recognized with constants, and more functions

– Upgraded analysis : Should Use single Quotes

– Checked unit tests : 3328 / 3398 test pass (97% pass)

• Tokenizer
– Fixed detection of PHP constants

Version 2.0.7 (Ao Shun, 2020-04-14)
• Architecture

46 Chapter 2. Release Note

Exakat Documentation, Release 1

– Adopted strict_types

– Removed ctype1 attribute

– Moved linting into separate processes

– Refactored analysis to export to dump via SQL

– Added ‘None’ ruleset to Dump task

• Report
– Ambassador : Added Constant’s order report

– None : Added support for No report

• Analysis
– Upgraded analysis : Undefined class constants

– Upgraded analysis : Undefined global constants

– Upgraded analysis : Undefined property

– Checked unit tests : 3347 / 3420 test pass (97% pass)

• Tokenizer
– Support PHP 8.0’s tokens

– Added support for multiple typehint in the engine

– Fixed edge case for boolean type casting

Version 2.0.6 (Ao Qin, 2020-03-04)
• Architecture

– Refactored analysis types for first UT

– Moving to PHP 7.4 by default

• Report
– Rector : added more coverage

– All : better display of typed properties

• Analysis
– New analysis : Semantic names of arguments

– New analysis : !$a == $b

– New prototype : possibles interfaces

– Upgraded analysis : Overwritten literals now skips .=

– Upgraded analysis : Scalar or object handles return type

– Checked unit tests : 3322 / 3420 test pass (97% pass)

Version 2.0.5 (Ao Guang, 2019-11-25)
• Architecture

– Fixed access to severity and timetofix from compiled extension

• Report
– Ambassador : Fixed links to documentation

47

Exakat Documentation, Release 1

• Analysis
– Upgraded analysis : Mismatched Type and Default now omit undefined constants

– Checked unit tests : 3366 / 3402 test pass (99% pass)

Version 2.0.4 (Army Defeating Star of Heaven’s Gate, 2019-11-18)
• Architecture

– Reducing Analyzer’s class method count

– Moving more collections to Dump/ and Complete/

• Report
– Rector : added more coverage

– Ambassador : Skiped analysis are now reported, not with -1

– Ambassador : Foreach favorites’s graph is displayed

– Ambassador : Visibility suggestion has full method names

• Analysis
– Upgraded analysis : Don’t Mix ++ now skips $a[$b++]

– Upgraded analysis : Type hint stats skips some return values

– Checked unit tests : 3365 / 3401 test pass (99% pass)

Version 2.0.3 (Military Star of the North Pole, 2019-11-11)
• Architecture

– Added check on xdebug presence (nesting limit)

– Moving more collections to Dump/

• Analysis
– New analysis : Nullable typehint requires a test on NULL

– New analysis : Typehint that requires too much

– Upgraded analysis : Printf check on arguments works with ‘.’

– Upgraded analysis : No magic for arrays skips __get()

– Upgraded analysis : Const recommended, but not when methods are used

– Upgraded analysis : Written only variables handles compact()

– Upgraded analysis : Callbacks need returns, but not for spl_autoload_register()

– Upgraded analysis : Extended analysis to Concatenation an Heredoc for Email

– Upgraded analysis : Disconnected classes handles case sensitivity

– Checked unit tests : 3371 / 3397 test pass (99% pass)

Version 2.0.2 (Danyuan Star of Honesty and Chasity, 2019-11-04)
• Architecture

– Adding more typehint

– Created new class to build Dot files

– Cleaned double examples

48 Chapter 2. Release Note

Exakat Documentation, Release 1

– Dump handles multiple definitions for constants, class, trait, functions.

• Report
– Added new Topology report

– Added new Type hint topology sort

– Stubs : added class constant visibility

• Analysis
– New analysis : Report argument whose name clashes with typehint

– New analysis : Report properties that are insufficiently typed

– Moved ‘Inclusions’ to Dump/

– Added steps to find original and relayed arguments

• Tokenizer
– Fixed paralellisation bug in Load

Version 2.0.1 (Military Star of the North Pole, 2019-10-28)
• Architecture

– Added more return type

– Centralized reading for ini or json

• Report
– Ambassador: fixed Foreach favorites

– Ambassador: added sort to number of parameter list

– Checked unit tests : 3345 / 3377 test pass (99% pass)

• Analysis
– Upgraded xmlwriter to json

Version 2.0.0 (Civil Star of Mystery and Darkness, 2019-10-21)
• Architecture

– Manual file/line fixes

– More simplifcations in load step

• Report
– Ambassador : fixed performance display

– Ambassador : report list of shell commands

– Typehint4all : first report

– Perfile : fixed sorting

• Analysis
– New analysis : Report possible typehint for bool, int, string, array. WIP

– Upgraded analysis : common alternatives are extended to switch and elsif

– Upgraded analysis : xmlreader description includes class constants, properties and methods.

– Upgraded analysis : callback needs return, is extended to php native functions

49

Exakat Documentation, Release 1

– Checked unit tests : 3345 / 3377 test pass (99% pass)

Version 1.9.9 (Lasting Prosperity Star of True Man, 2019-10-14)
• Architecture

– Documentation review

• Report
– New reports : Stubs, Rector

– Typehint stats

– Stubs takes into account use expression

– Added Concrete5 and Typo3 as vendors

• Analysis
– New analysis : checks on is_a third argument

– New analysis : Invalid mbstring encodings

– New analysis : Weird Index in arrays

– New analysis : Avoid FILTER_SANITIZE_MAGIC_QUOTES

– New analysis : Don’t forget third argument

– New analysis : Hard to update methods

– New analysis : Merge two ifthen into one

– New analysis : Report wrong type with calls

– New analysis : Check case for namespaces

– Updated analysis : Undefined interfaces now includes interfaces extensions

– Updated analysis : Report more wrong types with return type

– Updated analysis : Register globals also applied to class

– Updated analysis : Could Use Try covers more new, functions and static calls

– Updated analysis : Useless Cast also reports (string) array (always Array)

– Checked unit tests : 3343 / 3366 test pass (99% pass)

• Tokenizer
– Create default values for foreach

– Load captures empty files, and omit them

– Create default values also handles ??=

Version 1.9.8 (Giant Gate Star of Dark Essence, 2019-10-07)
• Architecture

– Upgraded dump command to handle multiple -P

– .yaml configuration handles multiple reports

– Started journey to strict_types

– Code cleaning

• Report

50 Chapter 2. Release Note

Exakat Documentation, Release 1

– Ambassador : Fixed report of Flexible Docs

– Ambassador : trimmed delimiters in inventories

– Inventory : Foreach, with key values

• Analysis
– New analysis : Wrong case for functions

– New analysis : Parameter Hiding

– New analysis : Report usage of Traversable

– Updated analysis : Undeclared properties skips undefined properties

– Updated analysis : Useless Interface, modernized query

– Updated analysis : String Holding Variables now skips default, const, sprintf

– Updated analysis : Binaries are not confused with hex

– Updated analysis : Extended ‘Insufficient typehint’ to abstract classes

– Checked unit tests : 3324 / 3343 test pass (99% pass)

• Tokenizer
– Fixed handling of large powers

– Added more escaping when storing to SQLITE

Version 1.9.7 (Greedy Wolf Star of Sunlight, 2019-09-30)
• Architecture

– Added support for analysis reporting missing values in a reference list

– Fixe batch dumping of results

• Report
– Ambassador : new inventory : dereferencing levels

• Analysis
– New analysis : Use PHP Native URL parsing functions

– New analysis : Maximum dereferencing level

– New analysis : Use case value in a switch : it was already tested

– Updated analysis : No class as typehint accepts abstract classes

– Updated analysis : Create Magic Property reachs out to traits

– Updated analysis : Security also reports usage of unserialize()

– Updated analysis : Mistmatched default argument also covers methods

– Updated analysis : Never used parameter also covers methods

– Updated analysis : Unused global also cover static variables

– Updated analysis : Duplicate strings threshold is not 15, not 5.

– Checked unit tests : 3289 / 3319 test pass (99% pass)

• Tokenizer
– RETURNTYPE, TYPEHINT, and DEFAUT are not always on, with Void atom, or better.

51

Exakat Documentation, Release 1

– DEFAULT value targets end-values, skips ??, ?:, () and =.

– Exceptions now reports errors in the Query, not where it is thrown

Version 1.9.6 (Star of Birth, 2019-09-23)
• Architecture

– Moved new elements to Complete/

– Moved new elements to Dump/

– Initial configuration of project now includes analysis parameters with default

– Added descriptions to Rulesets

– New command Config : displays current configuration for reuse and editing

– Upgraded Doctor : support for docker-php, in-code

• Report
– Ambassador : removed {} on magic property inventory

– Ambassador : new inventory of network protocols used (udp://, ssh2://. . .)

• Analysis
– New analysis : avoid mb_string inside loops

– New analysis : avoid SSLvx and TLSv1.0

– New analysis : report duplicate literal in the code, with parameter

– New analysis : warn about null property

– New coverage : calls to __call and __callStatic

– Updated coverage : expressions with parenthesis

– Updated coverage : default values are now targeting the final value in multiple assignations.

– Updated analysis : Strange Variable name skips Staticdefinition and its default value

– Updated analysis : Useless instructions are upgrade with pure functions

– Updated analysis : Extended Closure2string with Arrowfunctions

– Updated analysis : Extended ‘Could be local variable’ to traits

– Updated analysis : Unused Global also covers static variables

– Checked unit tests : 3279 / 3304 test pass (99% pass)

• Tokenizer
– Updated tokens for PHP 7.4

Version 1.9.5 (Star of Adversity, 2019-09-16)
• Architecture

– Added count property to Analysis node, stepstone for Diff analysis

– Added support for ‘optional’ step

– Added support for ‘interfaces’ as typehint for remote definitions

– Removed more true/false values

– Fixed strtolower with mb_strtolower in Dump

52 Chapter 2. Release Note

Exakat Documentation, Release 1

• Report
– Added several PHP error messages

– Ambassador : added inventory of magic properties

– Ambassador : added inventory of typehints for methods (WIP)

– Added support for function/closure/argument arguments

– Added support for function/closure/argument arguments

• Analysis
– New analysis : No literal value as referenced argument

– New analysis : use array_slice or array_splice

– New analysis : Useless typechecks with Typehint

– New analysis : Report non-implemented interfaces

– New analysis : Incompatible Signatures with Self (PHP 7.4+)

– New analysis : Report wrong expectations from interfaces

– Upgraded analysis : Excluded __construct and __destruct from Magic Methods

– Upgraded analysis : Concat and Addition : Now also for bitshift

– Upgraded analysis : Incompatible Signatures with Self (PHP 7.3)

– Upgraded analysis : Elseif and Sequences are omitted in Level analysis

• Tokenizer
– Upgraded support for magic properties

Version 1.9.4 (Star of Benefit, 2019-09-09)
• Architecture

– Dump avoid storing multiple definition for the same class

– Added more native return definitions

– Adding UT for Complete/

– Dump inventories are being moved to analysis class

– Moving more Themes => rulesets

• Report
– Ambassador : Fixed several internal links

– Ambassador : Displays the levels of nesting in the code

– Ambassador : Upgraded compatibility report with PHP 7.4

– New report : Stubs

• Analysis
– New analysis : PHP 7.4 New Directives

– New analysis : Too many dimensions with array

– New analysis : Check concat and coalesce precedence

– New analysis : Adopt explode() third argument

53

Exakat Documentation, Release 1

– New analysis : Ternary and useless assignation

– New analysis : Nested ternary without parenthesis

– New analysis : Spread operator with arrays

– New analysis : Max level of indentation

– New analysis : Use Arrowfunctions

– Upgraded analysis : Clone with non object handles containers

– Upgraded analysis : Calling non-static methods statically

– Upgraded analysis : Unresolved Instanceof

– Upgraded analysis : Array_merge and variadic, extended to isset

– Checked unit tests : 3234 / 3259 test pass (99% pass)

• Tokenizer
– Last element of list() is not omitted anymore

Version 1.9.3 (Star of Longevity, 2019-09-02)
• Architecture

– Created new Complete category, with data complement for analysis

– Refactored constant propagation

– Made code compatible with PHP 7.4

– Rename project_themas to project_rulesets

– Added support of -p with .exakat.yaml

• Report
– Ambassador : reworked presentation for visibility suggestions

• Analysis
– New analysis : report covariance and contravariance for compatibility

– New analysis : no spread operator for hash values

– New analysis : self-closing tags are omitted by strip_tags

– New analysis : report Openssl_random_pseudo_byte second argument usage

– New analysis : CURLPIPE_HTTP1 is obsolete

– New analysis : removed PHP 7.4 directives

– New analysis : do not use . . . with array_merge without checks

– Updated analysis : added crc32c as hash algorithm

– Removed analysis : Removed Curly Arrays (double take)

– Checked unit tests : 3219 / 3240 test pass (99% pass)

• Tokenizer
– Extended OVERWRITE to Interfaces

– Extended support for class_alias()

Version 1.9.2 (Star of Prosperity, 2019-08-26)

54 Chapter 2. Release Note

Exakat Documentation, Release 1

• Architecture
– Introduced a new set of analysis : Complete

– Cleaned code for PHP 7.4 usage

– Refactored Query to skip impossible Gremlin calls

– Now using Project for project names

• Report
– New report : classes dependencies (HTML version)

– New report : files dependencies (HTML and DOT version)

– Ambassador : datas -> data

• Analysis
– New analysis : {} are deprecated in PHP 7.4

– New analysis : Don’t use ENT_IGNORE

– New analysis : fn is a PHP 7.4 keyword

– Updated analysis : Functions/UseConstantAsArguments covers also password_hash()

– Updated analysis : printf arguments now handles positional formatters

– Checked unit tests : 3172 / 3199 test pass (99% pass)

• Tokenizer
– Fixed precedence for left associativity

Version 1.9.1 (Star of Life, 2019-08-19)
• Architecture

– Fixed zip as code source

• Report
– Ambassador : Fixed issues list for Favorites

– Owasp : switched dashboards

• Analysis
– Updated analysis : Loop Calling got one extra check

– Checked unit tests : 3148 / 3187 test pass (99% pass)

Version 1.9.0 (Ming Wenzhang of Jiayin, 2019-07-29)
• Architecture

– Added missing configuration file for tinkergraph 3.4

– Upgraded support for running exakat with PHP 7.4

• Analysis
– New analysis : array_key_exists() now report object usage

– New analysis : report mb_strrpos 4th argument

– New analysis : Reflection export are deprecated

– New analysis : Report classes without parents but with ‘parent’

55

Exakat Documentation, Release 1

– New analysis : Don’t use scalar as arrays

– New analysis : Report use of PHP 7.4 serialize method

– Updated analysis : Multiple Identical Keys checks for undefined keys first

– Updated analysis : Dont be too manual : extended to catch clauses

– Updated analysis : setcookie detection anchors the keyword at the beginning of the string

– Updated analysis : Failed Substr comparison now works with constants

– Updated analysis : Added support for continue 2 and 3

– Checked unit tests : 3147 / 3186 test pass (99% pass)

• Tokenizer
– Added support for __serialize and __unserialize

– Added support for numeric literal separator

– Skip entirely unparsable files

Version 1.8.9 (Meng Feiqing of Jiachen, 2019-07-22)
• Architecture

– Check on graphdb configuration : default to nogremlin

– Added support for baseline for project and report

– Moved more doc to ruleset

– Check on .git folder for update

– Added -version option for upgrade command

– Doctor honors .exakat.yml file

• Analysis
– New analysis : Report useless type of checks

– New analysis : Disconnected classes

– New analysis : Avoid using mb_detect_encoding()

– New analysis : Check that source and blind variables are different in foreach

– New analysis : ~ or ! favorite

– Updated analysis : Is Zero omits multiplications

– Updated analysis : Used Private Property is upgraded

– Updated analysis : Multiple Identical Keys : refactored

– Updated analysis : Undefined variables now skips extract, include, eval

– Checked unit tests : 3147 / 3166 test pass (99% pass)

• Tokenizer
– Refactored support for Foreach : each blind variable is in VALUE

– Upgraded precedence for ! (not)

– Propagate constants with assignations

– Fixed link to $this inside heredoc and co

56 Chapter 2. Release Note

Exakat Documentation, Release 1

– Fixed an edgecase where Static method call was confused with Newcall

Version 1.8.8 (Wei Yuqing of Jiawu, 2019-07-15)
• Architecture

– Modernized tinkergraph support

– When pcntl is available, stubs are produced in a child process

– Removed duplicated methods

– Exported sequences to helpers

– More UT libraries are supported

– Federated BUSYTIMEOUT in constant

• Report
– Ambassador and all dependend reports were refactored : menu is configurable with Yaml

– Emissary is the upcoming configurable report.

• Analysis
– New step : Load data from code

– New analysis : Variables used for setting aside value temporarily

– New analysis : Use PHP array_* functions, instead of loops

– Updated analysis : Unused methods now skips methods from PHP native interfaces (Arrayaccess)

– Updated analysis : No class for typehint is now omitting PHP and extensions classes

– Updated analysis : Switch to Switch applies to comparisons now

– Updated analysis : Close namingg was sped up significantly

– Updated analysis : array_column() suggestion was refined

– Updated analysis : Htmlentities parameters also support some parenthesis usage

– Updated analysis : Constant Scalar Expression only target specified expressions

– Updated analysis : Static Properties skip Virtual properties

– Checked unit tests : 3131 / 3155 test pass (99% pass)

• Tokenizer
– Refactored support for Exit and Die

– Added raw support for phpdoc

Version 1.8.7 (Hu Wenchang of Jiashen, 2019-07-08)
• Architecture

– Added bugs fixes up to 7.3.7

– New factory method for the graph

• Analysis
– New analysis : Backward compatible check on generators (can’t return)

– New analysis : Report wrong return typehint

– New analysis : Use DateTimeImmutable

57

Exakat Documentation, Release 1

– New concept : Methods that throw errors

– Updated analysis : Recursive functions disambiguate methods

– Updated analysis : Refactored property/variable confusion

– Updated analysis : Could typehint checks on type validations

– Updated analysis : Variable used once check for abstract methods

– Updated analysis : Array_merge in loops omits file_put_contents()

– Updated analysis : Simple Regex covers all special sequences, and unicode sequences

– Checked unit tests : 3131 / 3142 test pass (99% pass)

• Tokenizer
– Differentiated support for self and static in calls

– Moved Symfony support to its extension

– Reworked loading to make it parallels.

Version 1.8.6 (Wei Yuqing of Jiawu, 2019-07-01)
• Architecture

– Added support for Tinkegraph 3.4

– Extended support for Dev

– Renamed Themes to Ruleset (WIP)

– Split several long running queries into smaller chunks

– Cached files to memory, write them once only

– Optimized sides queries : omitting them when possible

– Added count of issues in Analyse node

– Optimized loading by grouping by inV

– More coverage for Arrowfunction

• Report
– Dump : collect PHP cyclomatic complexity

• Analysis
– New analysis : Dependant abstract classes

– New analysis : Don’t use Null or Boolean as an array

– New analysis : Infinite recursion

– Updated analysis : Raised levels

– Updated analysis : Method signature must be compatible

– Updated analysis : Access Private in Trait is OK

– Updated analysis : Recursive function

– Checked unit tests : 3099 / 3105 test pass (99% pass)

• Tokenizer
– Upgraded support for ‘Modules’

58 Chapter 2. Release Note

Exakat Documentation, Release 1

Version 1.8.5 (Zhan Zijiang of Jiaxu, 2019-06-24)
• Architecture

– Fixed several bugs in the online documentation

– Started removing analysis, replacing with analysis

– Fixed path in docker PHP usage.

• Report
– Ambassador : Export full INI and YAML config to replicate audit

• Analysis
– New analysis : Unused class constants

– New analysis : Could Use available Trait

– New analysis : literal that Could Be Constant

– Updated analysis : Access Private in Trait is OK

– Updated analysis : multiple identical argument is extended to closures, methods

– Updated analysis : ext/rdkafka

– Updated analysis : No Hardcoded Hash is accelerated

– Updated analysis : Extended printf() check to constants

– Updated analysis : Optimized ‘redefined method’

– Updated analysis : Memoize Magic Call

– Updated analysis : set_locale requires constants

– Checked unit tests : 3099 / 3105 test pass (99% pass)

• Tokenizer
– Added missing isModified to Foreach keys

– Class Method Definition handles old style constructor

– strict_types don’t yield a block

– Added typed values for magic constants

– Refactored new -> constructor link for Self, Static, parent

– Added missing arguments count to Newcall

Version 1.8.4 (Wang Wenqing of Jiazi, 2019-06-17)
• Architecture

– Added support for PHP in docker images for compilation tests

– First prototype for Gremlin in a specific docker image

• Report
– Ambassador : restored original URL

– Replaced ‘Complexity’ => ‘Time To Fix’

– Replaced ‘Receipt’ => Ruleset

• Analysis

59

Exakat Documentation, Release 1

– New analysis : regex with arrays

– New analysis : Complex property names

– New analysis : array_key_exists speed up

– New analysis : curl_version forbidden argument

– New analysis : PHP 7.4 new functions, classes and constants

– Fixed analysis : Long Variable

– Updated analysis : printf() format check extended to constants

– Updated analysis : Written only variables is extended to static and global

– Updated analysis : refactored ‘Make default’

– Updated analysis : ‘Wrong number of arguments’ is extended to methods

– Updated analysis : ‘Use coalesce’ checks for

– Updated analysis : Refactored ‘Nested ifthen’ to have a parameter

– Updated analysis : Extended ‘Class Usage’ to return typehint

– Updated analysis : Sped up ‘Used Classes’

– Checked unit tests : 2993 / 3071 test pass (97% pass)

• Tokenizer
– Upgraded handling of declare with strict_types

– Support for magic properties across classes and traits

– Added support for parent with properties

– Properties are handled with static and normal at the same time

– Fixed virtualproperties with static keyword (self and parent are ok)

– Added argument count for ‘new A’, without parenthesis

– Restored old break behavior for PHP 5 and older.

Version 1.8.3 (Jade Man of Yang, 2019-06-10)
• Architecture

– Extension docs show version numbers

– Manual uses internal links

• Report
– New report : SARB

– Updated report : Ambassador list number of arguments in natural order

• Analysis
– New analysis : from substr() to trim()

– New analysis : suggest making magic property a concrete one (2 ways)

– New analysis : no array auto-append

– Updated analysis : ‘Scalar or object property’ refactored

– Updated analysis : ‘Multiple identical keys’ get a new check on intval, broadened to constants

60 Chapter 2. Release Note

Exakat Documentation, Release 1

– Updated analysis : ‘Indirect injection’ accelerated

– Updated analysis : ‘Could be class constant’ accelerated

– Updated analysis : ‘Never used property’ refactored

– Updated analysis : ‘Modern empty’ modernized and broadened

– Updated analysis : ‘Useless check’ skips isset/empty as they may be useful

– Updated analysis : ‘Identical methoods’ skips abstract methods

– Updated analysis : ‘No Count Zero’ also uses sizeof(), skips switch()

– Checked unit tests : 2993 / 3071 test pass (97% pass)

• Tokenizer
– Upgraded local definitions for properties to Load phase

– Handle static keyword in closures

– Moved ‘Real’ to ‘Float’

– Created ‘Scalartypehint’ atom

– Fixed intval, boolval for true and false

Version 1.8.2 (Zhao Ziyu of Dingchou, 2019-06-03)
• Architecture

– Refactored ‘Update’ command, to VCS

– Collect missing definitions counts

– Report handles a list of analysis names

• Analysis
– New analysis : No Need To Get_Class

– New analysis : Report identical inherited methods

– New analysis : Function returning -1 in case of error

– Updated analysis : TypeHint must be returned, doesn’t apply to abstract methods or interface methods

– Updated analysis : ‘Could Use Interface’ also checks for static and visibility

– Updated analysis : ‘Concat empty’ skips variables

– Checked unit tests : 3024 / 3048 test pass (99% pass)

• Tokenizer
– Created ‘virtual’ properties, for limiting children agglomerations

– Fixed normalized code for use traits

– Added DEFAULT to all variable definitions

– Connect strings to class definitions

– Handle variable in ‘compact’, when they are static

Version 1.8.1 (Zhang Wentong of Dinghai, 2019-05-27)
• Architecture

– Fixed Symlink destination

61

Exakat Documentation, Release 1

– Added collecting classes children, traits and interfaces counts

– Added support for constants and functions in modules

– Added missing functions in data

• Report
– New report : exakatYaml, which help configuring exakat

– New report : Yaml

– New report : Top10

– Updated report : Json, text and xml get ‘fullcode’

• Analysis
– Updated analysis : Should use self is extended to parent classes

– Updated analysis : Should use prepared statement now skips some SQL queries

– Checked unit tests : 3024 / 3048 test pass (99% pass)

Version 1.8.0 (Zang Wengong of Dingyou, 2019-05-20)
• Architecture

– Added missing native PHP functions

– Restored anchor for ignore_dirs[] configuration

– Removed more MAX_LOOPING usage

• Report
– Ambassador : removed { & @ } artefacts from globals

• Analysis
– New analysis : Function returning -1 in case of error

– New analysis : Report PHP 7.4 unpacking inside array

– New analysis : Report PHP 7.4 new functions and fn

– New analysis : Useless arguments

– New analysis : Addition and concatenation precedence for PHP 7.4

– New analysis : report concatenation of empty strings

– New analysis : casting has precedence over ternary

– New analysis : report already used traits

– New analysis : report missing traits in use expression

– Updated analysis : isset on whole arrays : extended analysis to Phpvariables

– Updated analysis : SQLITE3 requires single quotes

– Updated analysis : Dir then slash : extended to constants

– Updated analysis : Variable Strange Name extended to strange types

– Updated analysis : Possible interface’s analysis is sped up

– Checked unit tests : 3021 / 3045 test pass (99% pass)

• Tokenizer

62 Chapter 2. Release Note

Exakat Documentation, Release 1

– Fixed fullcode of Usetrait

– Extended method definitions to traits

– Extended fluent interface detection to parents

– Fixed dump for visibility change

– Handle method aliases in use expression (as)

– Better noDelimiter for double quotes strings

Version 1.7.9 (Shi Shutong of Dingwei, 2019-05-13)
• Architecture

– Upgraded list of functions by extension : openssl, math, hrtime

– Added global atom to track all globals

– Rewrote several Dump queries with DSL

– Added support for Notice in Phpexec

– Added support for .exakat.ini and .exakat.yaml

– Added support for arrow functions : fn =>

– Added support for spread operator in arrays [. . . [1,2,3]]

• Report
– Inventories : added ‘inclusions’ and ‘global variables’

– Ambassador : added global variables

• Analysis
– New analysis : support for ext/ffi, uuid

– Updated analysis : Nested Ternary handles parenthesis

– Updated analysis : Static loops is extended to references and arrays

– Updated analysis : Recursive function is extended to Magic methods and Closures

– Checked unit tests : 3014 / 3019 test pass (99% pass)

• Tokenizer
– Moved ‘is_in_ignored_dir’ to a property

– Cleaned getFullnspath() call in Load

– Fixed latent bug on Function fullnspath

– Heredoc and Nowdoc are reported as constant if needed

– Isset() is not read

– Ignore PHP notices when linting

– Globals are now centralised across a repository

– Extended definitions for Virtualproperties

– Removed double DEFINITION link with new

Version 1.7.8 (Cui Juqing of Dingyi, 2019-05-06)
• Architecture

63

Exakat Documentation, Release 1

– renamed test.php to ut.php in tests

– reorganized destinations folders

– organized exakat for ‘inside code’ audit

• Analysis
– New analysis : support for libsvm

– Updated analysis : Multiple unset() handles unset() at the beginning of the scope

– Updated analysis : undefined static class now accounts for PHP and module classes

– Checked unit tests : 2961 / 2995 test pass (99% pass)

• Tokenizer
– Extended class usage to static::class.

– refactored 2 analysis for speed : double instruction and double assignations

– fixed recent bug where Project token is twice.

Version 1.7.7 (Sima Qing of Dingmao, 2019-04-29)
• Architecture

– Upgraded to gremlin-php 3.1.1

– Moved autoload into its own namespace

– Started extending themes to modules

– Skip external libraries when unit testing

– Dump got one more query moved to DSL

– Fixed build for overwritten methods, extended to magic methods

– Load tokens by batch (5000+ tokens), not by file.

• Analysis
– New analysis : Security : integer conversion

– New analysis : implode() with one argument

– Updated analysis : Invalid Regex handles \ more precisely

– Updated analysis : delimiter detection was checked for all of them

– Checked unit tests : 2947 / 2983 test pass (99% pass)

• Tokenizer
– Upgraded Fallback detection for functions

Version 1.7.6 (Jade Maiden of Yin, 2019-04-22)
• Architecture

– Refactored Class definition with return typehint

– Added configuration for including development extensions.

– Extended LoadFinal typehint hunting

• Report
– Phpcsfixer : new report

64 Chapter 2. Release Note

Exakat Documentation, Release 1

– Ambassador : report usage of overridden PHP functions

– Ambassador : new favorite : variable name in catch clause

• Analysis
– New analysis : array_merge and ellipsis should use coalesce

– New analysis : Report overridden PHP native functions

– New analysis : Merge all unset() into one

– Updated analysis : Added missing constant for curl, pgsql, openssl

– Updated analysis : Variadic are not variable arguments

– Updated analysis : Useless Reference argument extended to foreach()

– Updated analysis : Use Constant also covers pi()

– Updated analysis : Inclusion Wrong Case handles dirname with 2nd argument

– Updated analysis : Useless Argument : handles some edge cases with arrays

– Checked unit tests : 2947 / 2975 test pass (99% pass)

• Tokenizer
– Upgraded handling of isRead and isModified attributes

– Changed variadic argument counts in method declarations

– Fixed original value in ‘Sign’

Version 1.7.5 (Xue King Zhuanlun, 2019-04-15)
• Architecture

– Cleaned unused variables

• Report
– Ambassador : bugfixes report version 7.3, dropped 5.6 and 5.5

• Analysis
– Updated analysis : Already interface : extended to interface parents

– Updated analysis : Else if to elseif : extended to one-liners

– Updated analysis : No reference for ternary was extended

– Updated analysis : Implements is for interface

– Updated analysis : Refactored Is a Magic Property

– Updated analysis : Refactored Conditional structures for constants

– Checked unit tests : 2926 / 2950 test pass (99% pass)

• Tokenizer
– Link properties to magicmethod

– Deduplicated virtual properties

– Added isRead and IsModified properties. Omitting the corresponding analysis.

Version 1.7.4 (Lu King Pingdeng, 2019-04-08)
• Architecture

65

Exakat Documentation, Release 1

– reports, themes may be specified multiple times

– ‘project’ command also work on themes and report from command line

– Added htmlpurifier in auto-ignored libraries

– Counting definitions, omitting Virtualproperties

– Automatically detect identical files

• Report
– Inventories are grouped by values, sorted by count

• Analysis
– Updated analysis : This is for class : extended analysis to self and parent

– Updated analysis : Undefined Classes

– Updated analysis : Refactored Defined Parent MP

– Updated analysis : Redefined PHP function is restricted to global scope

– Updated analysis : Could Use Alias also covers functions, constants.

– Updated analysis : Refined SQL detection

– Fixed step : goToALlParentsTrait missed some of the parent

– Checked unit tests : 2916 / 2944 test pass (99% pass)

• Tokenizer
– Removed impossible implementations of traits

– Fixed functioncalls’ ‘absolute’ property

– Refined parent’s definitions

– Trait also sports virtualproperties

– Virtualproperties now respect visibilities

– Distinguish Variables from Staticpropertynames

– Added missing DEFINITION for Use (namespaces)

Version 1.7.3 (Huang, King Dushi, 2019-04-01)
• Architecture

– New command ‘show’ that display project creation command

– Refactored UT detection mechanism

• Report
– Ambassador : report identical files in the code

– Ambassador : global variable inventory is now grouped by name

• Analysis
– Updated analysis : PPPDeclaration style : handles Virtualproperties

– Updated analysis : Closure2string : extended analysis

– Updated analysis : Non-Ascii variable skips { }, & and @

– Updated analysis : Could Be Static exclude abstract methods

66 Chapter 2. Release Note

Exakat Documentation, Release 1

– Updated analysis : MismatchedTypehint : handles methodcalls and class hierarchy

– Updated analysis : Could Use Try : refined analysis to avoid literals

– Updated analysis : Hidden use, handles Virtualproperty

– Updated analysis : Classes, wrong case, handles FQN

– Checked unit tests : 2846 / 2926 test pass (97% pass)

• Tokenizer
– Moved creation of Virtualproperty early, to catch more situations

– Virtualproperty mimic Propertydefinition

– Added extra check when roaming the classes tree

– Handles Sign constant values correctly

Version 1.7.2 (Dong King Taishan, 2019-03-25)
• Architecture

– Restored the external library checker

– Added support for extension’s CIT (Symfony, Drupal)

• Report
– Ambassador : added Suggestions theme to docs.

– Perfile : New report, text, per file

• Analysis
– New analysis : Report potential ‘unsupported operand type’

– New analysis : Check for existence with __call() and __callstatic

– Updated analysis : Wrong number of arguments (methods) upgraded

– Updated analysis : Could Be Static ignores empty methods, constants methods

– Updated analysis : Added Variable to possibly useless expression

– Updated analysis : Constant names are detected based on available noDelimiter

– Updated analysis : Abstract classes may have no abstract methods

– Checked unit tests : 2889 / 2912 test pass (99% pass)

• Tokenizer
– Added link between __clone and clone

– Now handling functions and constants when ignored

– Fixed dynamic constants in collector

Version 1.7.1 (Bi King Biancheng, 2019-03-18)
• Report

– Ambassador : report lines that concentrate lots of issues

• Analysis
– Extended GoToAllImplements to extended interfaces

– Updated analysis : NoScream usage, with authorized functioncall list like fopen

67

Exakat Documentation, Release 1

– Updated analysis : HiddenUse with support for virtual properties

– Checked unit tests : 2867 / 2900 test pass (99% pass)

• Tokenizer
– Added support for ‘Virtualproperties’

– Harmonized file escaping feature

Version 1.7.0 (Bao King Yama, 2019-03-11)
• Architecture

– Added auto-documenting ‘ignored’ cit to weed out obvious false positive

• Report
– Made Diplomat the default report

– Added History report : it stores metrics from audit to audit

• Analysis
– New analysis : Identify self transforming variables ($x = foo($x))

– New analysis : Report unclonable variables

– Updated analysis : Undefined Classes, Interfaces and Trait now omit ‘ignored’ cit from folders

– Updated analysis : Inconsistent usage is refactored for properties

– Updated analysis : Useless expression, with clone new x

– Updated analysis : Only Variable For Reference accepts $this, $_GET

– Updated analysis : Lost References was modernized

– Checked unit tests : 2854 / 2884 test pass (99% pass)

• Tokenizer
– Refactored support for Staticmethod (in a trait’s use)

– Added definitions for trait’s use

Version 1.6.9 (Lu King Wuguan, 2019-03-04)
• Architecture

– Optimized Dump when navigating the links to the File Atom

– Refactored LoadFinal into separate classes

– Upgraded to Tinkergraph 3.3.5

– Added options to cleandb to stop and start gremlin from exakat

– Skip the task if no analysis has to run

• Analysis
– New analysis : Report inconsistent usage of properties or variables

– New analysis : Typehinted return must return

– Updated analysis : Variables used once handles closure (use) correctly

– Updated analysis : Is Zero was refactored partially (WIP)

– Updated analysis : Bad Typehint relay got a fix

68 Chapter 2. Release Note

Exakat Documentation, Release 1

– Updated analysis : Function Subscripting is only suggested for one usage

– Updated analysis : Lost References was modernized

– Checked unit tests : 2854 / 2881 test pass (99% pass)

• Tokenizer
– Added definition for injected properties

– Fixed sack() for subqueries

– $this is not a classic variable

– Removed double DEFINITION links

– Fixed edge case with define() at the end of a script

Version 1.6.8 (Yu King Songdi, 2019-02-25)
• Architecture

– Added support for PHP 8.0

– Fixed Constant FNP

– Advance progressbar when ignoring files

• Report
– Ambassador : report usage of factories

– Collect stats about Foreach usage

• Analysis
– New analysis : Report violation of law of Demeter

– New analysis : Report removed constants and functions in PHP 8.0

– Updated analysis : Refactored Nullable Typehint

– Checked unit tests : 2851 / 2872 test pass (99% pass)

• Tokenizer
– Fixed edge case for Logical with strings

– Reduced max level of looping in GoToAllParents

– Distinguish $$ and ${$

Version 1.6.7 (Li King Chujiang, 2019-02-18)
• Architecture

– Documentation covers more PHP functions

– Added some missing PHP functions

– Fixed destination folder for extensions

• Report
– Ambassador : limited size of default values in visibility report.

– Ambassador : reporting class depth

– Ambassador : reporting dynamically created constants

– Diplomat : leanner, meaner version of Ambassador

69

Exakat Documentation, Release 1

– New category : Top 10 classic mistakes

• Analysis
– New analysis : Report when relayed typehint are not the sames

– Updated analysis : Regex now handles local variables and constants

– Updated analysis : Variables Used Once now covers closures and use

– Checked unit tests : 2846 / 2867 test pass (99% pass)

• Tokenizer
– Defineconstant may be constant

– Fixed handling of Nullable for typehint

– Started preparing for Gremlin 3.4.0 : WIP

Version 1.6.6 (Jiang King Qinguang , 2019-02-11)
• Architecture

– Removed FetchContext() from DSL

– Added options to follow constants from atomIs.

• Report
– Now dumps magic methods

• Analysis
– New analysis : Report insufficient interfaces in typehint

– Updated analysis : Class constant now ignore empty classes

– Checked unit tests : 2837 / 2858 test pass (99% pass)

• Tokenizer
– Moved ‘Define’ to its own atom

– Upgraded Logical to hanlde Strings as PHP

– Fixed T_POWER => T_POW

– Refactored calculation for globalpath

– Fixed edgecase with endswitch;

Version 1.6.5 (Mahagate, 2019-02-04)
• Architecture

– Added CVS as an external service

– Graph GSNeo4j export variable for shell access. putenv is not sufficient

– Dump : report class name, not its code

– Extended listAllThemes to extensions

– Fixed bug in extension loader with phar

• Report
– Ambassador : restored file dependencies tree

– Ambassador : fixed altered directive filename

70 Chapter 2. Release Note

Exakat Documentation, Release 1

– Ambassador : added direct link to docs

• Analysis
– New analysis : arrays that are initialized with strings

– New analysis : Avoid Lone variables as conditions

– New analysis : Added support for weakref and pcov

– Updated analysis : extended regex to arrays in preg_* calls

– Updated analysis : Implicit globals now also marks the variable in global space

– Updated analysis : Add Zero, Multiply by One also cover 2 * $x = 1;

– Updated analysis : Could Use Interface now takes into account PHP interfaces, and classes first level.

– Updated analysis : Relay Functions now omits calls to parent’s __construct and __destruct

– Checked unit tests : 2830 / 2852 test pass (99% pass)

Version 1.6.4 (Parasamgate, 2019-01-28)
• Architecture

– Added support for CVS as a VCS

– Upgraded support for tar as a VCS

– Added support modification counts by files

– Added first tracking for closures

– Upgraded Tinkergraph driver

• Report
– Added Atoms in the documentations

– Extra protection for Class Changes

• Analysis
– Updated analysis : Use-arguments are now counted as arguments

– Updated analysis : Max Argument check was refactored

– Updated analysis : IsModified now takes into account extensions

– Updated analysis : Should Use This now exclude empty methods

– Updated analysis : undefined classes now support PHP 7.4 typed properties

– Updated analysis : added missing scalar PHP types

– Updated analysis : uncaught exceptions now cover parents

– Updated analysis : refactored incompatibility checks for methods

– Checked unit tests : 2824 / 2841 test pass (99% pass)

• Tokenizer
– Refactored alternative ending, removed extra VOID

– Upgraded contexts and their nesting

– Added extra checks on variables names

– Added support for ??= (PHP 7.4)

71

Exakat Documentation, Release 1

Version 1.6.3 (Paragate, 2019-01-21)
• Architecture

– Better presentation for exakat extensions

– Added build.xml for Jenkins

– Fixed copyright years

• Report
– Ambassador : fixed class name for Phpcompilation

• Analysis
– New analysis : assign and compare at the same time

– Updated analysis : uncaught exceptions now cover parents

– Updated analysis : strpos too much is extended to strrpos and strripos

– Updated analysis : Refactored Indirect injections for more refined reports

– Updated analysis : Empty Block doesn’t omit Ifthen anymore

– Updated analysis : Implemented methods are public mistook interface methods

– Updated analysis : Object Reference omits arguments that are wholly assigned

– Checked unit tests : 2808 / 2826 test pass (99% pass)

• Tokenizer
– Added support for PHP 7.4 typed properties (needs PHP 7.4-dev)

Version 1.6.2 (Silver Headed Gate, 2019-01-14)
• Architecture

– Fixed infinite loop when an option missed a value

– Produce phpversion in config.ini, but leave it commented

• Report
– Ambassador : colored syntax for visibility report

– Ambassador : inventory reports now display number of usages

• Analysis
– Updated analysis : Added support for PHP 7.2.14

– Updated analysis : Avoid Using Class handles

– Updated analysis : Unused Functions works with multiple identical functions

– Checked unit tests : 2795 / 2817 test pass (99% pass)

• Tokenizer
– Fixed bug that mixed T_OR and T_XOR

– Fixed bug that missed intval for Power

– Handles multiple definitions of functions

– Removed one Void too many with closing tag

Version 1.6.1 (Golden Light Gate, 2019-01-07)

72 Chapter 2. Release Note

Exakat Documentation, Release 1

• Architecture
– Upgraded documentation for Extensions

– Upgraded processing of files, specially with special chars

– Project stops when no token are found

– Storing hash for each files. RFU.

• Report
– Ambassador : added support for class constant’s changes

– Ambassador : added classSize report

– Ambassador : ‘New issues’ now takes line difference into account

– Themes are better dumped

• Analysis
– New analysis : array_key_exists() is faster in PHP 7.4

– New analysis : partial report from preg_match()

– Updated analysis : Avoid Using Class handles

– Updated analysis : Class Usage uses class_alias()

– Updated analysis : Empty traits

– Updated analysis : Unused arguments now skips __set()

– Updated analysis : Path strings

– Updated analysis : Missing include handles more concatenations

– Checked unit tests : 2792 / 2812 test pass (99% pass)

• Tokenizer
– Fixed precedence for identical operators

– Fixed bug with ?> inside switch

Version 1.6.0 (VirupakSa, 2018-12-31)
• Architecture

– VCS are not tested when they are not used

• Analysis
– Updated analysis : Php Reserved names ignores variable variables

– Updated analysis : Array not using a constant, with Heredoc

– Updated analysis : Long arguments

– Updated analysis : Empty With Expression ignores simple assignations

– Refactored analysis : Callback needs returns

– Refactored analysis : No Return used

– Checked unit tests : 2780 / 2805 test pass (99% pass)

• Tokenizer
– Fixed regression with Yield and =>

73

Exakat Documentation, Release 1

– Fixed edge case “$a[-0x00]”

Version 1.5.9 (Dhrtarastra, 2018-12-24)
• Architecture

– Use PHP in project config for default PHP version

– cleandb uses -p

– Moved projects/.exakat to projects/<-p>/.exakat folders

– Using $config and not more hardcoded tinkergraph

– Extra check on doctor

• Report
– Ambassador : extra check for ‘previous’ report

• Analysis
– Upgraded analysis : Empty With Expression skip a few false positive

– Checked unit tests : 2770 / 2795 test pass (99% pass)

• Tokenizer
– Fixed edgecase for methods named ‘class’

– Fixed class name in Project

Version 1.5.8 (Virudhaka, 2018-12-17)
• Architecture

– Handles themas provided by extensions

– Added busyTimeout for dump.sqlite

– Reduced size of thema tables

– Docs handle parameter dynamically

– Added ‘update’ for extensions

• Report
– Ambassador : added a ‘Path’ inventory, with file paths

• Analysis
– New analysis : Closures that are identical

– Upgraded analysis : Url and SQL detection, case sensitivity

– Upgraded analysis : Could Use array_fill_keys

– Upgraded analysis : Undefined functions doesn’t miss functions inside classes, handles interfaces

– Upgraded analysis : Empty Functions better handles return;

– Upgraded analysis : Long Argument may be configured

– Upgraded analysis : Fixed bug with empty include path

– Checked unit tests : 2770 / 2795 test pass (99% pass)

• Tokenizer
– Added FNP to strings

74 Chapter 2. Release Note

Exakat Documentation, Release 1

– First link between method and definition with typehint

– Support for class_alias

– Fixed edge case with use ?>

– Fixed variable in string behavior for $this and $php variables

Version 1.5.7 (Vaisravana, 2018-12-10)
• Architecture

– Extended Dump to support aliased methods

– Support for SQLITE in extensions

– Moved each framework to extensions

– Added Laravel extension

• Documentation
– First version for the Extension chapter

– Fixed mysterious ‘ in the docs

• Report
– Ambassador : added a ‘New issues’ section, with new analysis

– Ambassador : added trait matrix

– Ambassador : fixed an infinite loop when trait include themselves in cycles

– Added more message count to several reports

• Analysis
– New analysis : method could be static

– New analysis : multiple inclusion of traits

– New analysis : avoid self using traits

– New analysis : ext/wasm and ext/async

– Upgraded analysis : No Hardcoded Hash, skip hexadecimal numbers

– Upgraded analysis : Defined properties extends to traits

– Upgraded analysis : PSS outside a class, when PSS are in strings

– Upgraded analysis : Access private works with methods (not just static)

– Checked unit tests : 2772 / 2785 test pass (99% pass)

• Tokenizer
– Fixed bug in Dump, when nothing to clean

– Fixed edge bug on Callable detection

– Extended support for self, static and parent, in typehint and new

– Fixed precedence of yield and yield from

– Fixed handling of throw at the end of a script

– Added support to solve conflict on traits

Version 1.5.6 (Jingang, 2018-12-03)

75

Exakat Documentation, Release 1

• Architecture
– Moved all framework to extensions. WIP.

– Code cleaning

– Refactored the analysis dependency sorting

– Now display progress bar for files

– Fixed configuration for directories and files

• Report
– Fixed FileDependecy and DependencyWheel, to actually count messages

• Analysis
– Added a lot more new method descriptions for PHP native classes

– New analysis : suggestion simplification for !isset($a) || !isset($a[1])

– New analysis : Useless Trait alias

– New analysis : report usage of ext/sdl

– Upgraded analysis : Refactored IsZero, to handle assignations and parenthesis

– Upgraded analysis : pack format is better checked

– Checked unit tests : 2759 / 2771 test pass (99% pass)

• Tokenizer
– Fixed a missing fullnspath for origin in Use for Traits

– Handles simple aliases for traits methods

– Fixed mishandling of variables inside strings

– Fixed support of negative numbers inside strings

– Fixed bug with yield inside an array

– Fixed strange case with define and integers as constant names

Version 1.5.5 (Ratnadhvaja, 2018-11-25)
• Architecture

– Initial version of Exakat extensions

– Moved processing of 2-tokens files to Load

– Speed up CSV creations

– Upgrades are read from https, no http

– Moved loading’s sqlite to memory for speed gain

– Doctor now auto-create test folder

• Report
– New report : Php city. See your PHP code as a city

– Ambassador : Appinfo() now reports keywords used as method or property

– Fixed reported names of properties

• Analysis

76 Chapter 2. Release Note

Exakat Documentation, Release 1

– New analysis : checks some HTTP headers for security

– New analysis : Use _file() functions, not file_get_contents()

– New analysis : Optimize looks for fgetcsv()

– Upgraded analysis : Several refactored analysis

– Checked unit tests : 3083 / 3096 test pass (99% pass)

• Tokenizer
– Fixed encoding error in loading, for clone types.

Version 1.5.4 (Mahakasyapa, 2018-11-19)
• Architecture

– Added error message for memory limit

– Added GC to Project action

– Migrated Melis to extension

– Dumping data is now done en masse

– Analysers now handle side-queries

– Clear message in case of memory limit

– Doctor doesn’t stop at missing helpers

– VCS leak less errors

– Added support for 7z

– Extended validation for themas

– Restored Tinkergraph driver

– Upgrade logs with extra reports

• Analysis
– New analysis : Report problems with class constant visibilities

– New analysis : Avoid self, parent and static in interfaces

– Upgraded analysis : Variable reuse now skips empty arrays

– Checked unit tests : 3077 / 3090 test pass (99% pass)

• Tokenizer
– Fixed bug where variable was mistaken for a string inside strings

Version 1.5.3 (Ananda, 2018-11-12)
• Architecture

– Extended results to methods, traits

– Added support for PHP 7.2.12

– ‘master’ is not used anymore as default branch

– Fixed creation of initial config/exakat.ini

– Fixed handling badly written exakat.ini or PHP binary paths

• Report

77

Exakat Documentation, Release 1

– Ambassador : report classes that could be final or abstract

• Analysis
– New analysis : Property Used Once : now includes redefined functions

– New analysis : iterator_to_array() should use yield with keys or array_merge()

– New analysis : Don’t loop on yield : use yield from

– Upgraded analysis : Dependant trait now include parent-traits

– Checked unit tests : 3080 / 3093 test pass (99% pass)

• Tokenizer
– Changed handling of variable that are both global AND local

– Disambiguated variables and properties

– Extended OVERWRITE to constants and methods

Version 1.5.2 (Master Puti, 2018-11-05)
• Report

– Fixed storage of themes in dump.sqlite

– Ambassador : report nothing when there are no trait, interface or class in the tree.

• Analysis
– New analysis : idn_to_ascii() will get new default

– New analysis : support for decimal extension

– New analysis : support for psr extension

– Upgraded analysis : Extended support to PHP native exceptions

– Upgraded analysis : Could use typecast now handles intval() second param

– Upgraded analysis : Variable strange names avoids properties

– Checked unit tests : 3058 / 3085 test pass (99% pass)

• Tokenizer
– Upgraded support for arrays inside strings (string/constant distinction)

– Added DEFINITION for constant() and defined()

– Fixed value of line for some placeholder definition

Version 1.5.1 (Eighteen Arhats, 2018-10-29)
• Analysis

– New analysis : could use basename() second args

– Upgraded analysis : Variables strange names do not report . . .

– Checked unit tests : 3061 / 3079 test pass (99% pass)

• Tokenizer
– Moved TRAILING as a property

– Moved NULLABLE as a property

– Sync ALIAS with AS

78 Chapter 2. Release Note

Exakat Documentation, Release 1

– Fixed link between Use expression when using an alias

Version 1.5.0 (Pilanpo Bodhisattva, 2018-10-22)
• Architecture

– Fixed “ in the examples of the manual

– Upgraded stability with new history testing

• Report
– Ambassador : now report interface and trait hierarchy

– Ambassador : new format inventory for pack and printf

– Dump : Fixed list of traits

• Analysis
– New analysis : Could Use Try, for native calls that may produce an exception

– New analysis : idn_to_ascii() will get new default

– Upgraded analysis : Undefined variables exclude $this

– Upgraded analysis : Variables used once avoid properties

– Upgraded analysis : ext/json : JsonException

– Upgraded analysis : added new PHP 7.3 constants (curl, pgsql, mbstring, standard)

– Upgraded analysis : scalar or object property now ignore NULL as default

– Refactored analysis : UsedProtectedMethod

– Checked unit tests : 3059 / 3071 test pass (99% pass)

• Tokenizer
– Handles NaN and INF when the literals reach them

– Static constant may be variable if object is variable

– Removed superfluous linking for static calls.

Version 1.4.9 (Lingji Bodhisattva, 2018-10-15)
• Architecture

– Extended documentation with phpVersion, time to fix and severity

– Upgraded bufixes to PHP 7.2.11

– Added more tests on arguments in the DSL

– Removed double definitions for class constants

– Initial support for extension folder

• Report
– Collect the number of local variables, per method

• Analysis
– New analysis : report accessing properties the wrong way

– New analysis : suggest named patterns

– New analysis : check Pack() arguments

79

Exakat Documentation, Release 1

– New analysis : Return in generators, for PHP 7.0 +

– New analysis : Repeated interfaces

– New analysis : Static properties shouldn’t use references until PHP 7.3

– New analysis : Don’t read and write in the same expression

– Upgraded analysis : is interface methods, extended to magic methods

– Upgraded analysis : empty regex

– Upgraded analysis : never used properties

– Upgraded analysis : logical operators in letters

– Upgraded analysis : could use interface, extended with PHP native interfaces

– Upgraded analysis : Is Zero, better handling of mixed expressions

– Refactored analysis : Empty functions

– Refactored analysis : Used Private Methods

– Checked unit tests : 3036 / 3055 test pass (99% pass)

• Tokenizer
– Added DEFINITION between new and __construct

– Added support for className::class()

– Added better support for dynamic method calls

– Added better support for dynamic property calls

– Removed some usage of TokenIs

Version 1.4.8 (Ksitigarbha, 2018-10-08)
• Architecture

– Adding more validation at DSL step level : stricter check on args, speed gain

– Cleaning more analysis from MAX_LOOPING variable

– Better protection for file names

– Removed static properties from DSL

• Analysis
– New analysis : Don’t use __clone before PHP 7.0

– New analysis : Watch out for filter_input as a data source

– Upgraded analysis : Method Used Below refactored for speed

– Upgraded analysis : Undefined class constants now takes into account interfaces

– Removed anaysis : Relaxed Heredoc was double with Flexible Heredoc

– Checked unit tests : 3016 / 3033 test pass (99% pass)

• Tokenizer
– Build links between methodcall and method in a class

– Added links between method and its overwritten version in child

– Fixed fallback for functions

80 Chapter 2. Release Note

Exakat Documentation, Release 1

– Fixed linked between traits and their definition

– Removed variable definition for Parametername

– Simplified double usage between return and pushExpression()

Version 1.4.7 (Maitreya, 2018-10-01)
• Architecture

– Added ‘Suggestions’ section to documentation, for many rules

– WIP : removing usage of MAX_LOOPING in analysis

– Added a lot of new external services

– Added documentation for creating a new analysis

• Analysis
– Upgraded analysis : No interface was dropped in PHP 7.2

– Upgraded analysis : IsAMagicProperty extended to parents

– Removed anaysis : Relaxed Heredoc was double with Flexible Heredoc

– Checked unit tests : 3017 / 3029 test pass (99% pass)

• Tokenizer
– Linking variable in closure’s use to its local variable

– Removed some unused atoms from GraphElements

Version 1.4.6 (Dipankara, 2018-09-24)
• Architecture

– Various code refactorisations

– Migration to PHPUnit 7.3.5

– Fixed filenames case

– Better handling of VCS

– More validations for project names

– More docs

• Report
– Ambassador/Weekly : fixed ‘ in analyser titles

• Analysis
– Upgraded analysis : Fopen mode accepts ‘r+b’

– Upgraded analysis : Unused Traits

– Upgraded analysis : Undefined Variables

– Checked unit tests : 3020 / 3033 test pass (99% pass)

• Tokenizer
– New analysis : report literal used with reference

– Added support for boolval to Keyvalue

– Fixed support for boolval to Arraylist

81

Exakat Documentation, Release 1

– Added DEFINITION to static methods

– Added Variabledefinition for local variables

– Fixed bug in Not

Version 1.4.5 (Guanyin Bodhisattva, 2018-09-17)
• Architecture

– Removed times() for until() in Dumps

• Report
– Manual : added folders tree

• Analysis
– New analysis : Add Default To Parameter

– Upgraded analysis : Avoid reporting PHP function as classes

– Upgraded analysis : More empty Functions than just foo() {}

– Upgraded analysis : Wrong Number of argument now takes into account variadic

– Upgraded analysis : Should Use Constant now encompasses () and ?: structures

– Upgraded analysis : This Is Not An Array now takes ArrayObject/SimpleXmlElement into account

– Checked unit tests : 3009 / 3020 test pass (99% pass)

• Tokenizer
– Fixed ‘constant’ status with Arrayliteral

– Fixed bug where strings are build close to the end of the script

Version 1.4.4 (White Dragon Horse, 2018-09-10)
• Architecture

– Doctor reports the set of tokens used

– Lots of docs checks

• Report
– Ambassador / Phpconfiguration : report disable_functions and disable_classes

– Finished Weekly report

• Analysis
– New analysis : report ext/seaslog

– Upgraded analysis : Incompatible signatures

– Fixed DSL : analysisIs

– Checked unit tests : 3000 / 3010 test pass (99% pass)

• Tokenizer
– Closure are now processed with runplugin

– Removed depencencies to usedClasses

– Fixed detections of Closure at the end of a script

Version 1.4.3 (Sha Wujing, 2018-09-03)

82 Chapter 2. Release Note

Exakat Documentation, Release 1

• Architecture
– No error if missing svn

– Extended ‘First’ thema

– Now reporting PHP native CIT, constants and functions

• Report
– Ambassador : php.ini suggestions includes disable_functions

• Analysis
– New analysis : report typecasting for json_decode

– New analysis : report classes that could be final

– New analysis : simplify closure into callback

– New analysis : report inconsistent elseif conditions

– Upgraded analysis : Reduced false positive on Type/Default mismatch

– Upgraded analysis : Drop Else After Return uses elsif

– Upgraded analysis : Unused Private Property (rare)

– Checked unit tests : 2990 / 3004 test pass (99% pass)

• Tokenizer
– Removed extra Void after function definitions

– Fixed fullnspath with define()

Version 1.4.2 (Zhu Bajie, 2018-08-27)
• Architecture

– Fixed leftover bugs in the new DSL language

– Adopter Query in LoadFinal (first test)

– Extended support for clone type 1

• Report
– New Report : Weekly report

• Analysis
– New analysis : report forgotten conflict in traits

– New analysis : undefined insteadof

– New analysis : undefined variable

– New analysis : report classes that must call parent::__construct

– Upgraded analysis : Inexistant Compact variable

– Upgraded analysis : Test class was refactored

– Checked unit tests : 2975 / 2989 test pass (99% pass)

• Tokenizer
– New atom : Staticmethod, for Insteadof (replacing ‘Staticconstant’)

– Added DEFINITION link for array(‘class’, ‘method’) structure

83

Exakat Documentation, Release 1

Version 1.4.1 (Tang Sanzang, 2018-08-20)
• Architecture

– Spined off Query for Gremlin, with Exakat DSL.

– Centralized ‘methods’ property in Analysis class

– Extended MAX_LOOPING usage

• Analysis
– Added new thema : Class Review

– Upgraded analysis : Defined Parent MP (less queries)

– Upgraded analysis : Less false positives

– Added support for PHP 7.2.9

– Checked unit tests : 2965 / 2980 test pass (99% pass).

• Tokenizer
– Fixed Edge case with Ternary and Boolean

– Added Staticpropertyname to distinguish from variables

– Added support for remote definitions to methods

– Removed global path for CIT (no fallback)

Version 1.4.0 (Sun Wu Kong, 2018-08-13)
• Architecture

– Chunked result inserts for Dump

– More support for PHP 7.4

• Report
– Ambassador : added new Appinfo for relaxed Heredoc, trailing comma. . .

• Analysis
– New analysis : class can be abstract

– New analysis : trailing comma

– New analysis : relaxed heredoc

– New analysis : removed functions in PHP 7.3

– New analysis : continue versus break

– Upgraded analysis : Hardcoded passwords is extended to objects

– Checked unit tests : 2964 / 2979 test pass (99% pass).

• Tokenizer
– Measure definitions stats for classes.

– Added support for relaxed heredoc

– Added support for closure as a return value

– Refactored support for Ternary and Labels

Version 1.3.9 (Du Ruhui, 2018-08-06)

84 Chapter 2. Release Note

Exakat Documentation, Release 1

• Architecture
– Added support for PHP 7.4

– ‘Copy’ won’t update anymore

• Report
– Ambassador : fixed repeated ‘compatibility’ menu entry

• Analysis
– New analysis : avoid __CLASS__ and get_called_class().

– New analysis : prepare for (real) deprecation

– New analysis : const / define preference

– New analysis : define case sensitivity preference

– New analysis : avoid defining assert() in namespaces

– Removed analysis : Variables/Arguments

– Checked unit tests : 2957 / 2971 test pass (99% pass).

• Tokenizer
– Removed Noscream - AT atom

– Added definition for class constants

– Fixed bug : can’t apply ~ to false

– Extended DEFINITION support to closure’s use and references

Version 1.3.8 (Fang Xuanling, 2018-07-30)
• Architecture

– ‘Copy’ won’t update code anymore.

• Analysis
– Upgraded analysis : ‘should use operator’ only applies to constant chr() call

– Upgraded analysis : Useless Instructions is faster

– Checked unit tests : 2948 / 2962 test pass (99% pass).

• Tokenizer
– Added support for variable definitions in methods

Version 1.3.7 (unnamed demon, 2018-07-16)
• Architecture

– Fixed handling of multiple updates

• Report
– More documentations

• Analysis
– New analysis : report usage of callback to process array

– New analysis : report usage of case insensitive constants

– Upgraded analysis : Hardcoded passwords is extended to objects

85

Exakat Documentation, Release 1

– Upgraded analysis : Go To Key Directly handles comparisons

– Added support for PHP 7.0.20

– Checked unit tests : 2948 / 2962 test pass (99% pass).

Version 1.3.6 (Zhang Gongjin, 2018-07-16)
• Architecture

– Added support for Rar archives

– Removed call to gremlin server at ‘status’ time

• Analysis
– New analysis : support for msgpack extension

– New analysis : support for lzf extension

– Upgraded analysis : added missing function names in several extensions

– Checked unit tests : 2941 / 2955 test pass (99% pass).

Version 1.3.5 (Gao Shilian, 2018-07-09)
• Architecture

– Removed 4 unused exceptions

– Extracted Query from Analysis

• Report
– Reports : centralized all doc reading

– Reports : doc reading now parses sections (avoid overlap)

– Ambassador : Added exakat version and build to dashboard.

– Ambassador : Added Class Tree (All class hierarchies)

• Analysis
– Fixed bug with ‘last’ and ‘2last’

– New analysis : Report undefined::class

– New analysis : Report returned assignations as useless

– New analysis : Split scalar typehint by versions

– Upgraded analysis : Extended Reuse Variable to instantiations

– Upgraded analysis : Masking parenthesis are only for referenced arguments

– Upgraded analysis : Wrong case doesn’t apply to parent/static/self

– Upgraded analysis : Locally Unused Properties are extended to traits

– Upgraded analysis : Should Preprocess is extended to concatenations

– Upgraded analysis : Array_key_fill exclude variables by default

– Upgraded analysis : Ambiguous static reports the whole property definition

– Checked unit tests : 2919 / 2944 test pass (99% pass).

• Tokenizer
– Added missing constants

86 Chapter 2. Release Note

Exakat Documentation, Release 1

– Fixed support for goto true;

– Fixed edge case for nested ternaries and boolean

– Moved Goto and Label to Name Atom

Version 1.3.4 (Cheng Yaojin, 2018-07-02)
• Architecture

– Added check when unarchiving tar.gz and tar.bz

– Added check for neo4j installation, (error grabing)

– Moved Upgrade to tmp folder

• Analysis
– Parameters are actually defined in the class

– New analysis : ambiguous visibilities of properties

– New analysis : report usage of PHP 7.1+ hash algorithm

– New analysis : csprng (random_bytes and random_int)

– New analysis : ext/libeio

– New analysis : report incompatible signatures for methods

– Upgraded analysis : Unused Private Methods handles fluent interfaces

– Upgraded analysis : Defined Parent keyword

– Upgraded analysis : Recursion

– Refactored codeIs/codeIsNot

– Checked unit tests : 2908 / 2923 test pass (99% pass).

• Tokenizer
– Added support for ‘parent’ definitions

– Fixed element counts in concatenation

– Fixed operator priority in Strval

– Upgraded handling of undefined constants to string

Version 1.3.3 (Ma Sanbao, 2018-06-25)
• Architecture

– Better handling of fallback to global for functions

– Weekly code clean

– Refactored several analysis for speed

• Report
– Ambassador : fixed regression in the dashboard

– Fixed edge case with properties

• Analysis
– New analysis : closure that can be static

– Upgraded analysis : empty function doesn’t count static or global

87

Exakat Documentation, Release 1

– Upgraded analysis : reported globals include $GLOBALS also

– Checked unit tests : 2881 / 2911 test pass (98% pass).

• Tokenizer
– Moved collection of functioncall to LoadFinal

– Added collection of interfaces and newcall

– Moved Declare to its own token

– Moved Property definitions to its own token

Version 1.3.2 (Duan Zhixian, coming up)

• Architecture
– Reading stats from store, not graph.

– Git now fails silently if login is requested at clone / pull

• Report
– New analysis : == or === favorites

– New analysis : > or < favorites

– Upgraded analysis : written only variables is now faster

– Upgraded analysis : PHP reserved words has now 2 parameters

– Removed analysis : Type/Integer, Real, Closures.

– Checked unit tests : 2901 / 2914 test pass (99% pass).

• Tokenizer
– Static, PPP, Final and Abstract are now properties

– Fixed regex in several rules

– Added support for code clone detection (WIP)

Version 1.3.1 (Liu Hongji, 2018-06-03)
• Architecture

– Cleaned code of unused classes and ;

– Fixed connexion script to the database

– Fixed check of php.log folder

• Report
– Ambassador : display correct compilation state

• Analysis
– Upgraded analysis : used constant is also applied to defined()

– Upgraded analysis : used protected methods is case insensitive

– Upgraded analysis : Empty class omits extended classes

– Upgraded analysis : More sequences to SimplePreg

– Upgraded analysis : Throwable is not ‘unthrown’ anymore

– Removed analysis : Static CPM

88 Chapter 2. Release Note

Exakat Documentation, Release 1

– Checked unit tests : 2901 / 2914 test pass (99% pass).

• Tokenizer
– Upgraded support for ::class

Version 1.3.0 (Xue Rengui, 2018-06-03)
• Architecture

– Added support for Tinkergraph 3.3.3

– Handles situations where exakat has no database

– Check for PHP version at bootstrap

• Report
– Ambassador : Updated PHP recommendation report with PHP 7.3

– All : Variables don’t sport . . . nor & anymore

• Analysis
– New analysis : Single Use Variable

– New analysis : Should Use Operator

– New analysis : Check JSON production

– New analysis : Report visibility usage with constants

– Upgraded analysis : used constant is also applied to defined()

– Upgraded analysis : used protected methods is case insensitive

– Upgraded analysis : used directives handle function version

– Upgraded analysis : added lcg_value for better rand

– Upgraded analysis : Use Nullable extended to methods, closures.

– Upgraded analysis : Fixed support for ‘_’ native function

– Checked unit tests : 2895 / 2907 test pass (99% pass).

Version 1.2.9 (Wang Gui, 2018-05-28)
• Architecture

– Removed query cache from gremlin

– Added pre-query check to prevent queries that have no chance of result

• Report
– Ambassador : first 50% of documentation fix : double quotes are not well displayed

– Ambassador : Results are ordered by files, then by lines

• Analysis
– New analysis : Flexible Heredoc syntax

– New analysis : Non-compatible methods

– New analysis : Use the Blind Var

– New analysis : Inexistant Compact

– New analysis : Typehint / default value mismatch

89

Exakat Documentation, Release 1

– Upgraded analysis : strict_types are not recognized as undefined constant

– Upgraded analysis : More new methods for PHP 7.3

– Upgraded analysis : Dependant traits

– Upgraded analysis : Strpos comparison

– Upgraded analysis : Method Must Return

– Checked unit tests : 2885 / 2889 test pass (99% pass).

• Tokenizer
– Interface may have const, not traits (Loading)

– Added support for static call to methods

Version 1.2.8 (Xu Jingzong, 2018-05-21)
• Architecture

– Implemented a cache for speed boost.

– Refactored files finding method

– Git VCS always submit a user when cloning (using exakat by default)

– Moved custom themes from themas.ini to themes.ini

• Report
– Ambassador : fixed naming the audit

– Ambassador : added ‘Dead code’ section

– Doctor : split themes display (default/customs)

• Analysis
– New analysis : Report what should be done in SQL

– New analysis : Typehinted reference

– New analysis : Strpos doing too much work

– New analysis : Can’t instantiate class

– Upgraded analysis : Don’t echo error

– Upgraded analysis : PPP Declaration style

– Upgraded analysis : Useless abstract class

– Upgraded analysis : Buried assignation doesn’t report declare anymore

– Upgraded analysis : Abstract methods are not reported as unused

– Upgraded analysis : relaxed version constraint for all Extensions/*

– Checked unit tests : 2852 / 2856 test pass (99% pass).

• Tokenizer
– Fixed handling of short_open_tags

– Fixed edge case with %

Version 1.2.7 (Li Yuanji, 2018-05-14)
• Architecture

90 Chapter 2. Release Note

Exakat Documentation, Release 1

– Extended status command to all VCS

– Added support for customized themes

– Added Upgrading section, List of parametrized analysis, revamped summary

– Simplified handling of commandline options

– Removed usage of JSON for ‘doctor’

• Report
– A lot more documentation, examples, links.

– Optimized type downloader

– Added report themes pre-requisites

• Analysis
– New analysis : ext/cmark

– Upgraded analysis : too many children is configurable

– Upgraded analysis : error_reporting 0 and -1 are not reported as issues.

– Checked unit tests : 2835 / 2839 test pass (99% pass).

• Tokenizer
– Fixed bug where constant self referenced.

– Moved Identifiers to Names

– Added first definitions for members.

Version 1.2.6 (Li Jiancheng, 2018-05-07)
• Architecture

– Moved more classes to helpers

– Removed constants for Tokens

– Upgraded to Robo 1.2.3

• Report
– Added support for custom themas for reports.

• Analysis
– New analysis : zookeeper

– New analysis : Report missing parenthesis

– New analysis : Report invalid interval checks

– New analysis : Suggest array_unique when possible

– New analysis : Report when callback needs a return

– New analysis : Reduce the number of if

– Updated Exception list, up to PHP 7.3

– Upgraded analysis : Printf Arguments

– Upgraded analysis : Count On Null

– Upgraded analysis : Regex on Collector

91

Exakat Documentation, Release 1

– Upgraded analysis : File Inclusion wrong case handles parenthesis

– Upgraded analysis : Make globals a property

– Upgraded analysis : Invalid regex

– Checked unit tests : 2814 / 2818 test pass (99% pass).

• Tokenizer
– Added definition links for staticmethodcalls.

– Added boolean and int values to __DIR__ and co.

– Removed several static properties

– Fixed precedence of instanceof

– Added support for Null val

Version 1.2.5 (Li Yuan, 2018-04-30)
• Architecture

– Added command ‘config’ to configure project from commandline

– Made Exakat reentrant

– Moved Configuration creation to external file

– Upgraded status when audit isn’t run yet

• Analysis
– New analysis : Regex on Collector

– Upgraded analysis : Only Variable with reference argument

– Upgraded analysis : File Inclusion Wrong Case

– Upgraded analysis : Invalid Regex

– Added support for PHP 7.2.5, 7.1.17 and 7.0.30

– Checked unit tests : 2802 / 2809 test pass (99% pass).

• Tokenizer
– Fixed various bugs with constant scalar expression

Version 1.2.4 (Li Chunfeng, 2018-04-23)
• Architecture

– Now fail with explicit message for memory running out

• Report
– Ambassador : Updated ‘confusing variables’ report

• Analysis
– Upgraded analysis : Could be short assignment

– Upgraded analysis : Could be static

– Upgraded analysis : Fail Substr Comparison (handles constants)

– Checked unit tests : 2796 / 2801 test pass (99% pass).

• Tokenizer

92 Chapter 2. Release Note

Exakat Documentation, Release 1

– Added propagation of constants when value can be processed

– Introduced ‘Parameter’ token, to differentiate with Variable

– Fixed syntax highlighting

– Fixed a bug with negative bitshift

Version 1.2.3 (Yuan Tiangang, 2018-04-16)
• Architecture

– New append for logs

• Report
– New report : Manual.

– Ambassador : Rewrote the export of ‘confusing variables’

• Analysis
– New analysis : report strtr bad usage

– New analysis : don’t unset properties

– Upgraded analysis : Invalid Regex

– Upgraded analysis : Property Could Be Local

– Upgraded analysis : No Hardcoded path

– Upgraded analysis : echo/print preferences also report printf

– Removed analysis : Close Naming (now done at Report level)

– Checked unit tests : 2770 / 2786 test pass (99% pass).

• Tokenizer
– Removed double definition for functioncalls

Version 1.2.2 (Yin Kaishan, 2018-04-09)
• Architecture

– Cleaned doctor so it works even without requirements

– Fixed special chars with git URL

• Report
– Ambassador : new inventory with classes changes in heritage

– Ambassador : new inventory of large expressions

– Upgraded report : Defined Exceptions are cleaned of doubles

• Analysis
– New analysis : report Redefined Private Properties

– New analysis : report substr() usage with strlen

– Upgraded analysis for Inclusion Wrong Case filenames

– Upgraded analysis : Cast To Boolean is extended to True/False

– Upgraded analysis : Omit negative lengths

– Upgraded analysis : interface search also include parameter counts

93

Exakat Documentation, Release 1

– Upgraded analysis : Failed Substr Comparison handles special chars

– Upgraded analysis : Identical consecutive omits arrays

– Checked unit tests : 2757 / 2775 test pass (99% pass).

Version 1.2.1 (Fu Yi, 2018-04-02)
• Architecture

– Fixed generation of analysis logs

– Fixed doctor, which wouldn’t diagnostic the absence of needed extensions

• Report
– More real-life examples in docs

• Analysis
– New favorites : property declaration unique or multiples ?

– New analysis : $a = +$b;

– New analysis for Melis : Regex check and Route constraints

– Upgraded analysis : Constant used below

– Checked unit tests : 2760 / 2766 test pass (99% pass).

• Tokenizer
– Fixed counts in property declarations

– Fixed final new lines in heredoc/nowdoc

Version 1.2.0 (Xiao Yu, 2018-03-26)
• Architecture

– Upgraded concurrency with analysis

– Replaced $_SERVER[‘_’] by PHP_BINARY

– Removed old code (> 1.0.0)

– Adopted ‘stable’ version for progressbar

– Fixed loading with Bazaar

– Added support for Parametrized analysis

– Better initial configuration with doctor

• Report
– Ambassador : upgraded analysis settings table

• Analysis
– New analysis : Report Private functions for Wordpress

– New analysis : Suggest simplifying chr(123);

– New analysis : Too many native calls

– Updated analysis : fallthrough are not reported with die

– New Theme : Random

– Collecting more stats for classes.

94 Chapter 2. Release Note

Exakat Documentation, Release 1

– Checked unit tests : 2758 / 2741 test pass (99% pass).

• Tokenizer
– Upgraded support for Heredoc

Version 1.1.9 (Qin Qiong, 2018-03-19)
• Architecture

– Better documentation for reports

– Adding Real Code examples to documentation

– Refactored Config reading

– Moved more VCS information to its own class

• Report
– Upgraded report : Ambassador reports the number of parameters in methods

– New report : favorites (spin-off from Ambassador)

– Upgraded report : Inventories also covers Dateformat, Regex, Sql, Url, Email, Unicode Blocks.

• Analysis
– New analysis : too many parameters

– New analysis : report mass creation of arrays

– Checked unit tests : 2755 / 2738 test pass (99% pass).

Version 1.1.8 (Yuchi Gong, 2018-03-12)
• Architecture

– Reduced cache when running analysis

– Fixed order of analysis

• Report
– Ambassador : fixed faceted search problems

– Codacy : added codacy-style report

• Analysis
– New analysis : support for IBM db2, leveldb

– New analysis : should use count’s second argument

– Upgraded analysis : Randomly sorted arrays

– Checked unit tests : 2749 / 2731 test pass (99% pass).

• Tokenizer
– Fixed edge case where die is an argument

– Fixed edge case where Yield returns a array

Version 1.1.7 (Xu Maogong, 2018-03-05)
• Architecture

– Removed most static in Analysis

• Report

95

Exakat Documentation, Release 1

– New format : All, that produces all reports

– Ambassador : new report estimates fitting PHP version

– Ambassador : report enable_dl in configuration

• Analysis
– New analysis : report dynamic library loading

– New analysis : suggest array_fill_keys()

– New analysis : PHP 7.3 optional last argument

– New analysis : added support for xxtea, opencensus, varnish, uopz

– Upgraded BugFixes report to PHP 7.2.3

– Updated analysis : ext/cairo has new functions

– Updated analysis : PHP 7.3 new functions

– Removed analysis : NullCoalesce (double)

– Checked unit tests : 2743 / 2731 test pass (99% pass).

• Tokenizer
– Moved ‘constant’ to plugins

– Fixed bug when updating with HG

Version 1.1.6 (Wei Zheng, 2018-02-26)
• Architecture

– Created ‘First’, a recipe of initial analysis

– Prepared installation for compose

• Report
– Restored ‘INLINE’ results

– New reports : Stats

– Collect PHP native function cool

• Analysis
– New analysis : report suggest compact instead of array

– New analysis : list with references (PHP 7.3+)

– New analysis : report situation where check is done on non-cast value

– New analysis : foreach($array as $o -> $v) as error prone

– Handle cases where PHP regex are not compilable anyway

– Checked unit tests : 2732 / 2722 test pass (99% pass).

• Tokenizer
– Propagate constant concatenation values.

– Fixed calculation of intval

– Refactored Configuration readers

– Fixed bug when calculating __METHOD__

96 Chapter 2. Release Note

Exakat Documentation, Release 1

Version 1.1.5 (Li Shimin, 2018-02-19)
• Architecture

– Refactored all reports

– Removed outdated Devoops report

• Report
– Upgraded BugFixes report to PHP 7.2.2

– Ambassador : generates a list of confusing variables

– New report : OWASP

• Analysis
– New analysis : Use Math

– New analysis : Extensions ext/hrtime

– New analysis : Possible Infinite Loops

– Upgraded analysis : addZero, Multiply by one supports new situations

– Upgraded analysis : added microtime, uniqid .. to better rand.

– Checked unit tests : 2719 / 2724 test pass (99% pass).

• Tokenizer
– Fixed check on script compilation that was too strict.

– Fixed internal assert()

– Exported VCS to separate classes

– Refactored load with 3 separate plugins : intval, noDelimiter, booval

Version 1.1.4 (The Great White Turle, 2018-02-12)
• Architecture

– Build concatenation values in scalar constante expression.

– Upgraded export of file dependencies values

• Report
– Ambassador : fixed duration of audit.

– Composer : provides a full list of depend extensions

• Analysis
– New analysis : Report useless catch

– New analysis : suggest using array_search / array_keys instead of foreach

– New analysis : double array_flip is slow

– New analysis : Suggest using cached values

– New analysis : Functions that fallback to global namespace

– Upgraded analysis : Encoded letters supports leading 0 in unicode codepoint

– Upgraded analysis : Variable strange names now report 3 identical consecutive letters

– Upgraded analysis : Upgraded support to __dir__

97

Exakat Documentation, Release 1

– Checked unit tests : 2716 / 2711 test pass (99% pass).

• Tokenizer
– Fixed definitions link for functions

Version 1.1.3 (The fairy Su’e, 2018-02-05)
• Report

– Fixed Ambassador : the favorites weren’t displayed.

• Analysis
– New analysis : Report useless references

– New analysis : Melis configuration : Undefined configuration array

– New analysis : Melis configuration : make string.

– Upgraded analysis : Parent first

– Checked unit tests : 2700 / 2695 test pass (99% pass).

• Tokenizer
– Better handling of Labels.

– Fixed edge case where class and constants where mistaken one for the other

Version 1.1.2 (Jade Rabbit Spirit, 2018-01-29)
• Architecture

– Upgraded docs to tinkergraph 3.2.7

• Analysis
– New analysis : Report missing included files

– New analysis : ZF3 : No Echo Outside a View.

– New analysis : Local Global variable : report variable that looks global but are not

– Upgraded analysis : Directive names are check with case sensitive analysis

– Checked unit tests : 2687 / 2693 test pass (99% pass).

• Tokenizer
– Magic Constant hold their actual value

– Fixed Fullnspath for constants (case sensitive)

– Fixed edge case with exit and die

– Fixed edge case with exit and die and -1

Version 1.1.1 (Wood Xie of Dipper, 2018-01-22)
• Architecture

– Fixed path when calling exakat from outside its install folder

– First analysis for Melis Framework

– Optimized dictionary collection

• Report
– Ambassador : upgraded graph for class sizes

98 Chapter 2. Release Note

Exakat Documentation, Release 1

• Analysis
– New analysis : report case problems with includes

– New analysis : Melis framework

– New analysis : inventory of view properties for Zend Framework

– New analysis : report view files for Zend Framework

– Upgraded analysis : + is accepted as regex delimiter

– Upgraded analysis : same condition searches inside blocks

– Checked unit tests : 2665 / 2671 test pass (99% pass).

• Tokenizer
– Magic constants __DIR__ and __FILE__ get their actual value in noDelimiter

– Created Eval atom

– Removed ‘Name’ token for echo, print, die, exit.

– Upgraded handling of constant names inside strings

– Removed a bug when storing dictionary.

Version 1.1.0 (Wood Dragon of Horn, 2018-01-15)
• Architecture

– Replaced ‘code’ property with a dictionary

• Tokenizer
– Introduced ‘Magicmethod’ for Magic methods in class

– Fixed a bug when ‘ is in file path

– Fixed a bug when several raw HTML are in a PHP script.

Version 1.0.11 (Wood Dragon of Well, 2018-01-08)

• Architecture
– Added assertion for property name.

• Report
– Ambassador : Added report of classes’s size.

– Fixed missing audit end’s time.

• Analysis
– New analysis : Sqlite3 doesn’t escape “

– Upgraded analysis : Strange names also report qqqq sequences in variable names

– Checked unit tests : 2617 / 2657 test pass (99% pass).

• Tokenizer
– Fixed fullnspath handling for constants (case insensitive for the constant name)

Version 1.0.10 (Wood Wolf of Legs, 2018-01-01)

• Architecture
– Fixed Sqlite3 escaping error : use ‘, not “

99

Exakat Documentation, Release 1

• Report
–

• Analysis
– Upgraded analysis : ? is possible as delimiter

– Analysis works better with nested structures

– Checked unit tests : 2601 / 2649 test pass (99% pass).

• Tokenizer
– First plugin for Load Task.

– Upgraded support for define-d constant.

– Introduced Phpvariable

– Fixed scoping with array index.

Version 1.0.9 (King of Dust Protection, 2017-12-25)
• Report

– Ambassador : list complex expressions.

– Dump : added function inventory

– Dump : added begin and end line for structures.

• Analysis
– New analysis : report reference error with Ternary operator

– New analysis : report Undefined classes in Wordpress.

– Upgraded analysis : preg option E, tighter regex.

• Tokenizer
– Better handling of long path name. TBC.

– Introduced Parent, Static, Self, Exit, Echo, Print.

Version 1.0.8 (King of Heat Protection, 2017-12-18)
• Architecture

– Doctor reports memory_limit and JAVA_OPTIONS/JAVA_HOME

– Made database restart more portable

– Added spell checking on docs

• Report
– Ambassador : Regex inventory added

– Ambassador : Largest expressions reported

• Analysis
– New analysis : report identical operands on both sides of operator

– New analysis : report potentially mistaken concatenation in array

– New analysis : report mistaken scalar typehint

– New analysis : report undefined classes by symfony version

100 Chapter 2. Release Note

Exakat Documentation, Release 1

– New analysis : report undefined classes by wordpress version

– Upgraded analysis : Interfaces are also reported from return typehint

– Upgraded analysis : Mistaken concatenation got rid of various false-positives

– Checked unit tests : 2601 / 2633 test pass (99% pass).

• Tokenizer
– Isset, Empty, Phpvariables now have their own atom.

– Fixed edge case with $ token

– Fixed Constant fqn building

– UTF-8 protection for propertyname

Version 1.0.7 (King of Heat Protection, 2017-12-11)
• Architecture

– Added /var to default omitted folders

• Analysis
– New analysis : should use array_filter.

– New analysis : ext/igbinary

– Checked unit tests : 2533 / 2599 test pass (97% pass).

• Tokenizer
– Fixed

Version 1.0.6 (Fuli, 2017-12-04)
• Architecture

– Refactored description

– Moved PHPsyntax to a function

• Analysis
– New analysis : Never used parameter.

– New analysis : always use named boolean parameters

– Upgraded analysis : unused arguments

– Checked unit tests : 2573 / 2585 test pass (99% pass).

• Tokenizer
– Added new token : This for $this

– Updated loader to handle PHP 7.3 functioncall syntax (final ,)

– Turned Markcallable into an independant analysis

Version 1.0.5 (King of Cold Protection, 2017-11-27)
• Architecture

– Configured Exakat for Tinkergraph 3.3. Still unfinished.

– Documentation now has an external link to extensions.

• Report

101

Exakat Documentation, Release 1

– Ambassador : added more inventories : URL SQL, email, GET index, MD5, Mime

• Analysis
– New analysis : parent first

– New analysis : Report uncommon Environment Vars

– New analysis : Report invalid Regex

– New analysis : Report contatenation in Zend DB

– Fixed analysis : Deprecated Functions

– Fixed analysis : Unknown PCRE2 option

– Upgraded analysis : hardcoded password

– Upgraded analysis : array_merge in loops

– Upgraded analysis : substr() first. Handle following expressions

– Refactored analysis : Used Functions

– Refactored analysis : Add Zero

– Checked unit tests : 2573 / 2585 test pass (99% pass).

• Tokenizer
– Fixed a bug that linked functions and definitions

Version 1.0.4 (Boxiang Demon, 2017-11-20)
• Architecture

– PhpExec, get only path to binary.

– Cleaned docs of double links

– Cleaned code

• Report
– Added libsodium, Argon2 to Crypto; DL() usage to PHP.

– Compatibility report only focuses on backward incompatibilities.

– New recipes will cover ‘suggestions for better code’. Coming up.

• Analysis
– New analysis : “ string is better than ‘ (sorry. . .)

– New analysis : PHP 7.3’s PCRE 2

– New analysis : report missing ‘new’ in front of class name.

– New analysis : use is_object instead of is_resource for ext/hash

– New analysis : report non-countable calls

– New analysis : report DL usage in Appinfo

– New analysis : slice first, then map arrays.

– New analysis : Avoid 5th argument in PHP 7.2 for set_error_handler

– New analysis : avoid null with get_class()

– New analysis : suggest using list() with foreach instead of arrays

102 Chapter 2. Release Note

Exakat Documentation, Release 1

– New analysis : avoid using $this as argument in constructor

– New analysis : Report usage of ext/vips

– New inventory : GPC variables

– Updated analysis : Use Class Operator doesn’t report methods names anymore

– Updated analysis : Long argument size is raised to 60 chars

– Updated analysis : ignore when missing break is in last case

– Updated analysis : Use This ignores ‘self’.

– Updated analysis : Randomly sorted Arrays ignores arrays of 3 or less.

– Updated analysis : ext/mcrypt gets its constants

– Updated analysis : more strange names being used in code

– Updated analysis : more PHP 7.2 removed functions

– Checked unit tests : 2563 / 2572 test pass (99% pass).

• Tokenizer
– Reduced duplicated that may lead to loading error.

Version 1.0.3 (Baize Demon, 2017-11-13)
• Architecture

– Fixed driver Tinkergraph, which was not setting the right ids.

– Doctor now reports $JAVA_OPTIONS, in case one need to allocate more memory

– Doctor now reports token limit

– Moved config.ini creation to first phase of init.

– Fixed collect of error when init with git.

– Upgraded driver gremlin-php to 3.0.2

• Report
– Ambassador : Now reports the namespaces as a tree.

– New analysis : report members that are static and not.

– Updated analyzis : normal method called statically.

• Analysis
– Added support for Drupal, FuelPHP and Phalcon.

Version 1.0.2 (Suanni Demon, 2017-11-06)
• Architecture

– Better report of error messages from VCS.

– Updated support for Vagrant

• Report
– Ambassador : Fixed display for ‘Callback’

• Analysis
– New analysis : substr() first, then replace.

103

Exakat Documentation, Release 1

– New analysis : report double prepare (WP).

– New analysis : avoir the +1 month trap

– New analysis : check for printf() options

– New analysis : check for placeholder in prepare (WP)

– New analysis : avoid direct injection into prepare (WP)

– New analysis : performance recommendation for switch.

– New analysis : merge if/if into if/then/else

– Checked unit tests : 2500 / 2536 test pass (99% pass).

Version 1.0.1 (Xueshi Demon, 2017-10-30)
• Architecture

– Created Result class for Graphdb results

– Docker image is updated with version 1.0.1

– Vagrant files are updated with version 1.0.1

– Preparing support for Gremlin 3.3.0

• Report
– Added support for PHP 7.1.11 and 7.0.25

• Analysis
– New analysis : could be else (for consecutive opposite if/then)

– Checked unit tests : 2517 / 2527 test pass (99% pass).

Version 1.0.0 (Roushi Demon, 2017-10-23)
• Architecture

– Tested on Gremlin 3.2.6. Checked Gremlin 3.3.0, but it needs more work.

– Upgraded doctor for installation and report.

– Upgraded docs to set gremlin-server as default install.

• Report
– Added support for Clang-style report.

– Ambassador : fixed link to exception Tree.

– Inventories : Date format,

– Audit names are reported in every Ambassador-style report.

• Analysis
– Upgraded PHP directive list.

– Functions In For loop : prevent issue if the function uses a loop variable.

– Useless instruction : do not report return $i++ if $i is reference

– Useless instruction : Avoir reporting properties when they are magic

– New analysis : mark properties to be magic.

– Upgraded list of PHP logins, to report hard coded passwords.

104 Chapter 2. Release Note

Exakat Documentation, Release 1

– Upgraded close naming : variables that differ with 1 chars are reported.

– Added assert(false. . .) to list of branching syntax.

– Checked unit tests : 2515 / 2525 test pass (99% pass).

Version 0.12.16 (Tawny Lion Demon, 2017-10-16)

• Report
– Beta version for Drill Instructor

– Upgraded Inventories report with Sessions, Cookies, Incoming variables

• Analysis
– New analysis : Expression too complex.

– New analysis : Session Handler must implements SessionUpdateTimestampHandlerInterface

– New analysis : is Zero : additions that negate some terms

– New analysis : unconditional loops

– Upgraded Zend Framework review with latest versions (feed, http, eventmanager. . .)

– Upgraded ‘Strange names’ with new typos

– Upgraded ‘Logical to in_array’ to handle separated comparisons

– Checked unit tests : 2505 / 2515 test pass (99% pass).

• Tokenizer
– Fixed bug with Sign in Additions.

Version 0.12.15 (Nine Headed Lion, 2017-10-09)

• Architecture
– Server : now supports stop, start and restart.

– Every audit gets a random name, for easy differentiation

– Added support for PHP 7.3

• Report
– Ambassador : list of analysis that report nothing : Good job!

– Slim report : fixed build

• Analysis
– New analysis : file upload names vulnerability check

– New analysis : variable that may hold different types of date

– New analysis : always anchor regex

– Checked unit tests : 2475 / 2480 test pass (99% pass).

Version 0.12.14 (Grand Saint of Nine Spirits, 2017-10-02)

• Architecture
– Support UTF-8 on Gremlin Server (other encoding are not)

– Better display of vcs updates

• Report

105

Exakat Documentation, Release 1

– Ambassador : added Security and Performances

– Ambassador : Upgraded exception presentation

• Analysis
– New analysis : report fallthrough in switch

– New analysis : inventory regex

– Added support for PHP 7.1.10 and 7.0.24

Version 0.12.13 (King of the Southern Hill, 2017-09-25)

• Architecture
– Code cleaning

• Report
– Ambassador : changed display of the audit

• Analysis
– Refactored several analysis

Version 0.12.12 (Ruler of the Kingdom of Miefa, 2017-09-18)

• Report
– Ambassador : fixed collect of interfaces and trait names

• Analysis
– New analysis : ext/Parle

– New analysis : help optimize pathinfo() usage

– New analysis : catch array_values() usage with list and pathinfo()

– Updated analysis : Don’t show error messages with catch->getMessage();

– Updated analysis : No concat in loop handles $x = $c . $x;

– Checked unit tests : 2456 / 2461 test pass (99% pass).

• Tokenizer
– Added support for ‘, “ and > in file names. Still missing support for

– Restaured fallback to global constants.

– Fixed special case : <?php ++$x ?>

Version 0.12.11 (Half-Guanyin, 2017-09-11)

• Architecture
– Added support options for branches and tags

– Added support for config in server mode

• Report
– Fixed methods dump for interfaces.

• Analysis
– Added all analysis to report could be private/protected for

• Tokenizer

106 Chapter 2. Release Note

Exakat Documentation, Release 1

– Fixed handling of ‘<’ char in paths

Version 0.12.10 (Golden Nosed Albino Rat Spirit, 2017-09-04)

• Architecture
– Upgraded server version with config alteration features.

– New generated config-cache

• Report
– Fixed property names in Visibility report

• Analysis
– Arrays/IsModified : arrays are not modified unless in a (unset)

• Tokenizer
– Fixed ‘constant’ for functioncalls

– Introduced ‘Name’ for Identifier without a fullnspath

– Added support for branches and tags in init

– Fixed edge case with $o->$$b

Version 0.12.9 (Lady Earth Flow, 2017-08-28)

• Architecture
– Creates config.cache, with cached calculated configs. Remove to update.

• Report
– GraphQL : Upgraded GraphQL report, with relationships.

• Analysis
– New analysis : suggest moving for() to foreach()

– New analysis : shell_exec/exec/backtick favorite

– Update analysis : Abstract Static is for PHP 7.0-

• Tokenizer
– Removed Arguments and ARGUMENTS.

– Finished ‘factory’ from Config.

– Better handling of long path names.

Version 0.12.8 (ruler of the Kingdom of Biqiu, 2017-08-21)

• Analysis
– New analysis : use foreach, not for()

– New analysis : ext/fam, ext/rdkafka

• Tokenizer
– Fixed edge case where pathnames are too long on OSX.

Version 0.12.7 (Old Man of the South Pole, 2017-08-14)

• Architecture
– Fixed project_vcs when none is used.

107

Exakat Documentation, Release 1

• Analysis
– Better documentation for in_array replacements and array_unique()

– Added support for PHP 7.1.8 and 7.0.22

Version 0.12.6 (White Faced Vixen Spirit, 2017-08-07)

• Analysis
– New analysis : no negative for strings before 7.1

– New analysis : use in_array instead of ||

– Updated analysis : preg_quote has no delimiter

• Tokenizer
– Fixed bug in handling real value for negative numbers

Version 0.12.5 (White Deer Spirit, 2017-07-31)

• Architecture
– Removed config singleton

• Report
– New report : simpletables (HTML)

• Analysis
– New analysis : report optional parameters

– New analysis : report concat inside a loop

– Updated analysis : Could Be Class Constant, when no visibility is provided.

Version 0.12.4 (peacock Mahamayuri, 2017-07-24)

• Architecture
– Optimized performances for large projects (over 2M tokens)

– Support Neo4j as a driver for Tinkgerpop

• Report
– Now covering all PHP 7.2 features

• Analysis
– New analysis : Extension xattr

– New analysis : report ‘object’ as a class name

– New analysis : No Array for magic property

– New analysis : suggest reducing code for isset

– New favorite : and / &&

– Updated analysis : fetch correct delimiter, even if escaped.

– Extended coverage for several analysis

– Removed several nested-subqueries (bad for performances)

• Tokenizer
– Tinkergraph/Neo4j : reworked loading data from disk.

108 Chapter 2. Release Note

Exakat Documentation, Release 1

– Added protection for $ in filename

Version 0.12.3 (Golden Winged Great Peng, 2017-07-17)

• Architecture
– Prepared options for several back servers : Tinkergraph, Gremlin-Server/Neo4j, Janusgraph

• Report
– New report : Marmelab (GraphQL server)

• Analysis
– New analysis : Report when a property is used as object or scalar

– New analysis : Mismatched Typehint

– New analysis : Mismatched Default values

– Upgraded analysis :

– Fixed a gremlin bug in noAtomInside

• Tokenizer
– Added support for trailing comma in group use (PHP 7.2)

– Fixed building of constants’ values

Version 0.12.2 (Samantabhadra, 2017-07-10)

• Architecture
– Added support for Tinkergraph as graph backend

• Report
– Ambassador : reports callback/closures, all 3 declares (ticks, encoding, strict_types)

– Ambassador : reports strict_types as favorite

– PlantUML : upgraded report

• Analysis
– New analysis : Mismatched ternary branches

– New analysis : mkdir, by default, uses 777.

– New analysis : ext/lapack

– Upgraded analysis : option E for preg_match, refined results

– Checked unit tests : 2337 / 2366 test pass (99% pass).

• Tokenizer
– Added support for Instanceof and GROUPUSE with Nsname

Version 0.12.1 (Yellow Toothed Elephant, 2017-07-03)

• Architecture
– Refactored structures extractions in dump

• Report
– New report : PlantUML

– Ambassador : Appinfo now reports how popular is a feature

109

Exakat Documentation, Release 1

• Analysis
– New analysis : Const / Define() favorite for constants

– New analysis : do not return in finally

– Upgraded analysis : Add Zero was refactored

• Tokenizer
– Prepared list of tokens and relations

Version 0.12.0 (Manjusri, 2017-06-26)

• Architecture
– Added support for Janusgraph (Gremlin 3)

– Refactored dump’s data collection for speed.bb

• Report
– Added support for Wordpress and Joomla as Frameworks

• Analysis
– New analysis : Avoid Optional properties

– New analysis : Multiple declarations of functions

– New analysis : Non breakable spaces in names

– New analysis : Favorite Heredoc delimiter

– New analysis : ext/swoole

• Tokenizer
– Modified several nodes/links names, for compatibility purposes

Version 0.11.8 (Xiaozuanfeng, 2017-06-19)

• Architecture
– Starte working on JanusGraph to add to Neo4j/Gremlin3

• Report
– Ambassador : reports Strings encoding and Unicode-block (when available)

– Ambassador : reports framework founds (first 6, more as we go).

– Ambassador : reports how frequently an analysis yield results to compare with current situation

• Analysis
– New analysis : Classes where declaration order differs from : use, const, properties and methods.

– New analysis : Could use interface (but implements is missing)

– New analysis : Cant Inherit Abstract Method (PHP 7.2 upgrade)

– New analysis : use session_start() options

– Updated analysis : Dynamica method calls cover {} too

– Checked unit tests : 2305 / 2305 test pass (100% pass).

• Tokenizer
– Checked code on early PHP 7.2 version

110 Chapter 2. Release Note

Exakat Documentation, Release 1

Version 0.11.7 (Long Armed Ape Monkey, 2017-06-12)

• Report
– Ambassador : report detected patterns (2 firsts)

– None report : for when dump is sufficient

• Analysis
– New analysis : could factor functioncalls

– New analysis : PSR-* usage

– New analysis : support for Judy and Gender extensions

– Added thema for Compatibility PHP 7.3

– Added thema for Dependency Injection

• Tokenizer
– Fixed edge case where classes starting with ‘namespace’ where mistakenly processed

– Removed Block from CIT

Version 0.11.6 (Red Bottomed Horse Monkey, 2017-06-05)

• Architecture
– Removed singleton to Config. WIP

• Report
– Ambassador : reports usage of PSR 3,6,7,11,13,16.

– UML : report now protects file names

• Analysis
– New analysis : Ext stats

– New analysis : report mixed concatenation / interpolation strings

– Updated analysis : htmlentities actually uses combinaison, not alternatives,

– Updated analysis : Close Tag consistency ignores __HALT_COMPILER files

Version 0.11.5 (Intelligent Stone Monkey, 2017-05-30)

• Report
– Ambassador : fixed visibility suggestion

– New report : Dependency wheel

• Analysis
– New analysis : avoid typehinting with classes

– New analysis : implemented methods must be public

– New analysis : no reference on left of assignement

– New analysis : Could typehint with instanceof

– Updated analysis : Useless parenthesis cover clone, yield, yield from.

– Updated analysis : Make One Call also reports nested calls

• Tokenizer

111

Exakat Documentation, Release 1

– Split functions and closures,

– Split classes and anonymous classes

– Split variable with definitions (Property, Static and Global)

– File count is always reported (even 0)

Version 0.11.4 (Six Eared Macaque, 2017-05-22)

• Architecture
– Results : returns now multiple results at once

• Report
– New report : codeflower

– Ambassador : report usage of Debug functions, browscap

– Ambassador : omits 0 in donuts

– Ambassador : faceted search for compatiblity

• Analysis
– New analysis : report functions whose return is not used

– New analysis : only variable can be passed by reference

– Added limits to all in-depth searches

– Checked unit tests : 2216 / 2216 test pass (100% pass).

• Tokenizer
– Fixed edge case, where return is finished by a close tag

– Split Variables into Variables, Objects and Arrays.

Version 0.11.3 (Sun Deity of Mao, 2017-05-15)

• Architecture
– Speed up batch processing for lists of analysis

– Split data collection from the initial dump.

• Report
– Ambassador : Upgraded presentation of issues, and internals links.

• Analysis
– New analysis : Sphinx extension

– New analysis : GRPC extension

– New analysis : reports arrays that are randomly sorted.

– New analysis : report multiple catch clauses

– Updated analysis : direct injections include all SERVER_* values

– Upgrade for PHP 7.1.15 and 7.0.19

• Tokenizer
– Split Functioncall into Functioncall, MethocallCall and Newcall.

– Added support for ‘namespace’ in any full name.

112 Chapter 2. Release Note

Exakat Documentation, Release 1

Version 0.11.2 (Scorpion Demon, 2017-05-08)

• Architecture
– Code cleaning, and more stability

• Analysis
– New analysis : Report preference between != and <>

– New analysis : report empty regex and wrong delimiters

– Added protection for $ in RegexDelimiters

Version 0.11.1 (Ruler of Women’s Country, 2017-05-01)

• Architecture
– Fixed handling for large list of data in gremlin queries

– Handles static in anonymous classes correctly

• Report
– Reports handle traits like class.

• Analysis
– New analysis : ends arrays with , or not (favorite)

– New analysis : suspicious comparison

– New analysis : strange spaces in strings

• Tokenizer
– Arrays are now Arrayliteral, split from Functioncall

Version 0.11.0 (Immortal Ruyi, 2017-04-24)

• Architecture
– Removed prepared statements from loops in dump

– made Gremlin cache compatible with 32bits platforms

• Report
– Ambassador : first work on upgrading visibilities for properties.

• Analysis
– New analysis : could use str_repeat()

– New analysis : Crc32() Might Be Negative

– Update analysis : Queries in loop reports cubrid and sqlsrv, prepared statements.

– Update analysis : type mismatch for indices works on constants too.

– Update analysis : Loop calling covers less ground

• Tokenizer
– Split function and method entities for differentiated processing

Version 0.10.9 (Single Horned Rhinoceros King, 2017-04-17)

• Architecture
– File extensions are processed before include/ignore dirs.

113

Exakat Documentation, Release 1

– Reduced number of DEFINITION links, leading to less processing.

– Added several assertion() in the code

– Added assertions report in doctor (better leave them out with phar)

• Report
– Added support for PHP 7.0.18 and 7.1.4

– Ambassador : better layout for favorites

– Zend Framework : 8 new components supported

– Zend Framework : now supports zendframework/zendframework too

– Zend Framework : report unused components

• Analysis
– New analysis : report nested Use expressions

– New analysis : report repeated regex (to be federated)

– New analysis : report code that output directly to std

– Updated analysis : Should use this now omits overwritten methods

– New analysis : report overwritten methods

– Upgraded analysis : 2123 / 2123 test pass (100% pass)

Version 0.10.8 (King of Spiritual Touch, 2017-04-10)

• Report
– Slim report : list of routes used.

• Analysis
– New analysis : report Group Use Declaration (PHP 7.0+)

– Zend Framework : 30 components are now covered.

– Slim : No echo in route callable and Inventory of routes.

– PHP : list of new PHP 7.2 functions.

• Tokenizer
– Sped up loading time by 10%.

– Added support for PHP6 binary string : $a = u’b’;

Version 0.10.7 (Immortal of Antelope Power, 2017-04-03)

• Report
– Ambassador : fixed composer report.

– Added report for Composer (beta phase)

– Added report for Slim framework.

• Analysis
– Added support for Slim versions.

– Added 10 new components for Zend Framework 3

• Tokenizer

114 Chapter 2. Release Note

Exakat Documentation, Release 1

– Fixed support for $ in file names.

Version 0.10.6 (Immortal of Elk Power, 2017-03-27)

• Architecture
– Major speed up of loading and analysis

– Fixed themes configuration.

• Report
– Ambassador : report cookies usage, infinite and NAN usage

– Zend Framework : Report incompatibilites component/version for ZF3

• Analysis
– Upgraded analysis : 1941 / 1941 test pass (100.00% pass)

– New analysis : Zend Framework 3 Deprecated

– New analysis : Zend cache, view, db.

– New analysis : Report missing type tests.

– New analysis : suggest setcookie() with safe arguments

– New analysis : Do not cast to Int

– New analysis : CakePHP classes compatibilities from 2.5 to 3.3

– Upgraded analysis : instanceof doesn’t report traits anymore

– Upgraded analysis : mb_ereg has options in the 4th arguments

– Upgraded analysis : more strange names

• Tokenizer
– Reviewed most of the load processing.

– Reduced the number of ‘fullnspath’ properties.

Version 0.10.5 (Immortal of Tiger Power, 2017-03-13)

• Architecture
– Collect graph size in dump.sqlite

– Collect memory usage in dump.sqlite

– Now uses the calling PHP version to run all parts of exakat (no config)

– Doctor report the ran gremlin version.

• Report
– Ported the Zend Framework report to ambassador

– Added regex delimiter in favorites.

– Ambassador : syntax coloring

• Analysis
– New analysis : could be typehinted ‘callable’

– New analysis : encoded letters in strings for security

– New analysis : report arguments that may be callable

115

Exakat Documentation, Release 1

– New analysis : report strangely named variables

– New analysis : report strangely named constants

– New analysis : too many FindsBy*() methods

– Updated analysis : Useless Instructions doesn’t report array_merge(_recursive) with one argument

– Updated analysis : array_replace handles . . .

– Updated analysis : 7.2 deprecation with assert()

– Generalized usage of commons for CIT

– Added first 4 set of analysis for Zend Framework 3

– Added support for dynamic new $a[i];

• Tokenizer
– Fixed fullnspath with new on functioncall

– Reduced the number of fullnspath loaded

– Added support for ‘s’() as functioncall

– Fixed case where file names has ‘ ‘ in it

Version 0.10.4 (Dragon King of the West Sea, 2017-03-06)

• Architecture
– Ignore some classic files by default (README, LICENSE. . .)

• Report
– Ambassador : protection of HTML values

– PHPcompilation : fixed export to stdout

• Analysis
– New analysis : report useless else branches

– New analysis : should regenerate session Id, for PHP and Zend Framework

– Added support for Extension Data structures (ext/ds)

– Upgraded analysis : Hardcoded Hash

– Speed up analysis for extensions

• Tokenizer
– Fixed edge case where a constant was used inside a ternary operator

– Fixed processing of labels

Version 0.10.3 (Dragon King of the Jing River, 2017-02-27)

• Architecture
– Added URL glossary to Manual.

– Extended CS ruleset

– Use exakat/exakat as user/login for git.

– New helper to rename analysis

– Project command now accept -P/-T to run one analysis/Thema directly

116 Chapter 2. Release Note

Exakat Documentation, Release 1

• Report
– New report style : Codesniffer

• Analysis
– New analysis : suggest usage for array_column()

– New analysis : __DIR__ must be concatenated with a string starting with ‘/’

– New analysis : report usage of parent, self and static outside a class/trait

– New analysis : report properties used only in one method

– New analysis : report properties used only once at all

– New analysis : multiple aliases per class

– Updated analysis : Fopen() mode support ‘e’ option (7.1.2 +)

– Updated analysis : Make One Call covers str_replace, substr_replace, preg_replace*

– Updated analysis : Unused arguments : now ignores arguments from interface or parent

• Tokenizer
– Removed double DEFINITION link. Faster loading, less processing.

– Fixed an edge case when function name is boolean or null.

– Cleaned atom and tokens names

– Fixed edge case when object is instantiated in a ternary

Version 0.10.2 (Water Lizard Dragon, 2017-02-20)

• Architecture
–

• Report
– Text format now understand -T, -P to extract only some of the results.

– Fixed dump of extends.

• Analysis
– Added support for PHP 7.1.2 and PHP 7.0.16

– New analysis : report forgotten ‘throw’ keyword.

– New analysis : report class / function confusing name

– Added support for libsodium

– Upgraded PHP Relaxed Keyword : Ignore properties.

– Upgraded analysis : 1824 / 1826 test pass (99.9% pass)

• Tokenizer
– Fixed a bug that mistakes native PHP classes for functions

– Fixed rare situation with grouped const/function.

Version 0.10.1 (King of Wuji Kingdom, 2017-02-13)

• Architecture
– Report SVN revision when updating or not.

117

Exakat Documentation, Release 1

– Default reports are in config.

– Configure now supports include_dirs, to include files.

– Project name is now noted in datastore.

– Inventories is a default themas; PHP Compatibility < 5.6 are not default anymore.

• Documentation
– Fixed outgoing links

– Better coverage of PHP functions

• Report
– Added ‘Inventories’ report : reports all names and literals

– Ambassador : Added list of included files, Yield From and classes stats

• Analysis
– New Analysis : Strange Names For Methods (Classes/StrangeName)

– New Analysis : SQL queries (Type/Sql)

– New Analysis : Avoid Non Wordpress Globals (Wordpress/AvoidOtherGlobals)

– Upgraded analysis : Should be single quote, escape sequences refined.

– Upgraded analysis : Should Preprocess now support determinist PHP functions

– Upgraded analysis : 1817 / 1824 test pass (99.6% pass)

• Tokenizer
– Fixed LOC counting.

– Fixed edge case when closure is directly use as argument

– Fixed double inventories for Use’s Definitions

Version 0.10.0 (Azure Lion, 2017-02-06)

• Architecture
– Replacement of booleans with constants (WIP)

– Removed PHPloc (merged features into load)

– Added coding standard for Code Sniffer (ruleset.xml)

– PHP version used default to running script version

– Now reading Token Constants from the binaries

– Doctor reports project configuration if -p is used

• Report
–

• Analysis
– New Analysis : No Boolean As Default

– New Analysis : Raised Access Level

– New Analysis : Recommend Wpdb->prepare when variables are in query

– Directive suggestion now include error_log

118 Chapter 2. Release Note

Exakat Documentation, Release 1

– Upgraded analysis : UselessParenthesis also checks Typehint

– Upgraded analysis : 1804 / 1811 test pass (99.6% pass)

• Tokenizer
– Reinforced detection of parsable PHP script

– Fixed Files command : it now cleans data before running

– Removed warning about memory

– Index creation made lighter

Version 0.9.9 (Pilanpo Bodhisattva, 2017/01/30)

• Architecture
– Moving true/false to constants

• Report
– Ambassador : Added ‘Compilation’ and Version compatibility reports.

– Prepared collection of dependencies in dump

• Analysis
– New Thema : Compatibility PHP 7.2

– New analysis : Deprecated Features of PHP 7.2

– New analysis : Removed Function for PHP 7.2

– New preference : New Line Style

– Upgraded analysis : 1781 / 1802 test pass (98.9% pass)

Version 0.9.8 (Multiple Eyed Creature, 2017-01-23)
• Architecture

– Moved ‘Truthy/Falsy’ as ‘boolean’ characteristics

– Updated Gremlin3 interface to handle Groovy maps

– Added default name when creating project

• Report
– Added checks on merged table at Dump stage

– Added support for PHP 7.1.1 and 7.0.15

• Analysis
– New analysis : variables assigned twice or more

– New preference : new x() / new x;

– Upgraded analysis : 1785 / 1794 test pass (99.5% pass)

– Fixed Interface usage : missing interfaces extends interfaces

– Added extra check for Functioncalls

• Tokenizer
– Added support for instanceof + several names

Version 0.9.7 (Hundred Eyed Demon Lord, 2017-01-16)

119

Exakat Documentation, Release 1

• Architecture
– Fixed constant names for tokens in Load

– Changed duplication check to dedup(). Cleaned analysis for duplicates.

– Speed but for large projects. Work in Progress.

– Reduced usage of static properties

– Better detection of PHP scripts during project

• Report
– Fixed generation of inventories when no target is provided

• Analysis
– New analysis : Could Be Protected Property (not a public)

– New analysis : avoid large literal arrays in local variables.

– New analysis : report long arguments.

– Removed analysis : Structures/EchoArguments (double with Echo With Concat)

• Tokenizer
– Fixed list of constants for PHP 7.1

Version 0.9.6 (Spider Demons, 2017-01-09)
• Architecture

– Added support for report/analysis theme list in config (exakat and project)

– Better cleaning of projects

– Doctor : Initialisation with themes/reports; Reports executable being used.

– Added a log for gremlin Queries

– Rebuild the server command

– Added ‘catalog’ command

• Report
– Split Phpconfiguration into eponymous and Phpcompilation

• Analysis
– New analysis : avoid Glob, use scandir without sorting.

– New analysis : always configure ext/sqlite3 FetchRow()

– New analysis : no string with append

– Removed analysis : Structures/ForeachSourcesNotVariable

– Upgraded Analysis ‘Should Import Functions’

– Upgraded analysis : 1764 / 1773 test pass (99.5% pass).

• Tokenizer
– Added ‘aliased’ property to nodes.

Version 0.9.5 (Immortal Ziyang, 2017-01-04)
• Architecture

120 Chapter 2. Release Note

Exakat Documentation, Release 1

– Better check of PHP version

• Report
– Ambassador : report analysis settings

– PHP Compilations : supports all extensions

– New report : Inventories

• Analysis
– New analysis : Don’t Use Fallback to Global space

– New analysis : MongoDB (ext/mongo version 3)

– New analysis : zbarcode

– Bug : Fixed intval for octals in Arrays/MultipleIdenticalKeys

– Removed analysis : Php/InconsistantClosingTag (double)

• Tokenizer
– Ranking arguments, not functioncall

Version 0.9.4 (Lady of Jinsheng Palace, 2016-12-19)
• Architecture

– Rewrote the concurrence check (removed needs for ext/sem)

– Results are never double anymore

– Upgraded gremlin calls, to handle n

– Dump cleans the previous values before dumping

– Excluded namespaces classes when searching for external libraries

• Report
– Ambassador : extension usage, inventories, global lists, stats, PHP Compilation directives

– Covers more compilation directives (Not finished)

• Analysis
– New analysis : Final by Ocramius

– Upgraded : Comparison with == : added curl_exec

– Upgraded : isset with constant (mistake on properties as arrays)

– Upgraded : Avoid using now uses full NS path

– Upgraded : Useless instructions handles for() correctly

– Upgraded : Recursive, IsGenerator and Loop Calling includes yield from

– Upgraded analysis : 1741 / 1750 test pass (99.5% pass).

Version 0.9.3 (Purple-Gold Bells, 2016-12-12)
• Architecture

– Lots of cleaned code

– Harmonized data for extensions

– Stop ‘project’ if no code is available

121

Exakat Documentation, Release 1

– Now using stub in phar.

• Report
– Added directives, bugfixes, external services and

– Added support for PHP 7.0.14 and 5.6.29

• Analysis
– New analysis : Wordpress, recommend prepare()

– More favorite reports : final ?> and unset()/(unset)

– Reduced number of double reports for many analysis

– Update : Fixed analysis with $THIS

– Upgrade : report useless casting of comparisons

– Update : Should use this takes into account parent

Version 0.9.2 (Golden Haired Hou, 2016-12-05)
• Architecture

– First version of Exakat for docker (beta)

– Added a waiting loop in cleandb

– Docs include a list of new analysis per version

• Report
– Added 2 first inventories, Appinfo() in Ambassador

– Favorites now reports global/$GLOBALS

– Restore composer.lock report

– Upgraded uselessReturn for the final return.

• Analysis
– New analysis for Newt, Nsapi,

– New analysis : __ in methods names

– New analysis : Too many local variables

– New analysis : Avoid array_push()

– Upgraded ext/apache coverage

Version 0.9.1 (Sai Tai Sui, 2016-11-28)
• Architecture

– Docker supported in exakat/config.ini for PHP binaries.

– Added exakatSince in analysis documentation

– Added some missing tokens in anonymize command

• Report
– Added several new analysis for PHP 7.1

• Analysis
– new analysis : find methods that could return Void

122 Chapter 2. Release Note

Exakat Documentation, Release 1

– new analysis : find malformed octal sequence in strings

– new analysis : spot rethrown exception

– new analysis : reach the last element

– new analysis : find undefined Zend Framework classes (2.0 to 3.0)

– Upgraded analysis : 1706 / 1714 test pass (99.5% pass).

• Tokenizer
– Fixed handling references (some were missing)

– Fixed handling of ellipsis (some were missing)

Version 0.9.0 (Python Demon, 2016-11-21)
• Architecture

– Project now include ‘Preference’ analysis

– Dump is now incremental (-u option), and doesn’t need to be run in paralell

– Added new hashAnalysis table, to handle generic results from analysis.

– Added project name in the graph.

– New command ‘status’ to report the current status of exakat

• Report
– Ambassador includes ‘Preferences’ section and new menu system

– Upgraded progressbar to display project processing

• Analysis
– New analysis : Early Bail Out (with if/then)

– New analysis : PHP 7.1 backward incompatibilities with microseconds

– New analysis : Wordpress : recommend using WP api, not PHP.

– Upgraded ‘Constant condition’ to include do..while()

– Upgraded ‘Useless Abstract’ to include methodless classes

– Upgraded analysis : 1687 / 1697 test pass (99% pass).

• Tokenizer
– Added ‘Array’ to list of determinist functions (more constants are spotted)

– Fixed ‘Name’ for Array Short Syntax.

– Fixed variadic support

Version 0.8.9 (Yellow Brows Great King, 2016-11-14)
• Architecture

– Fixed and document -tgz and -zip option of init

– Removed progress folder

– Made MagicNumber a parallel task in Project.

– Turned some die into assertion()

– .phar doesn’t report any PHP errors.

123

Exakat Documentation, Release 1

– Checked compilation with PHP 5.3->7.2

• Report
– Removed Faceted report

– Added Bugfixes for PHP 7.0.13, 5.6.28 and PHP 7.2

– Added ‘One variable string’ to Radwell report

• Analysis
– New analysis : Object Calisthenics #1, #4

– New analysis : check that properties are all set at constructor time.

– New analysis : spot useless checks

– Updated UndefinedParentMP to take PHP ext classes into account

– Upgraded ‘array_merge in loops’ with file_put_contents

– Upgraded ‘useless parenthesis’ with math operations

– Upgraded analysis : 1666 / 1682 test pass (99% pass).

– Added debug Query method to analysis

• Tokenizer
– Fixed Files to compile first, then count tokens

– Find Ext Lib handle UT classes better

– Added limit to ‘code’ before loading into database. There is a 2M limit.

– Fixed edge case with nested foreach()

– Fixed segmentation fault when getting tokens from a script with wrong encoding

Version 0.8.8 (Apricot Immortal, 2016-11-07)
• Architecture

– Added concurency test to avoid running several instance at the same time

– Report error when it happens with git clone

– Added UT classes to external libraries

– Dump is now hidden until finished.

– Better detection of java and composer (Thanks Julien)

• Report
– New report : Radwell

– New report : PhpConfiguration helping with configure and php.ini

– Ambassador : Fixed dashboard values

• Analysis
– New analysis : time() vs strtotime(‘now’)

– New analysis : useless casting

– New analysis : No Isset() with Empty()

– New analysis : don’t echo errors

124 Chapter 2. Release Note

Exakat Documentation, Release 1

– New analysis : ext/rar

– New analysis : use Class::class when possible

– Added array_key_exists() to slow functions list.

– Upgraded UpperCaseKeywords to handle partial uppercase

– Added reported directives for ext/filter

– Upgraded ‘Variables used once’ to exclude $this and arguments

– Upgraded Unreachable Code with break/continue;

– Multiple Identical Keys now handles null, boolean, real.

– Upgraded analysis : 1652 / 1668 test pass (99% pass).

• Tokenizer
– Now spots true, false, null as Boolean and Null

– Removed ‘xargs too many arguments’ error on Linux

Version 0.8.7 (Naked Demon, 2016-10-31)
• Architecture

– Upgraded Boolean and Integer to report results without storing them in graph

• Analysis
– New analysis : modernizable empty() calls

– New analysis : recommend Positive conditions

– New analysis : drop else after return

– Upgraded analysis : unreacheable code handles if/then with returns.

– Added tests for Boolean and Null

– More not Hashes dict.

– Upgraded analysis : 1637 / 1650 test pass (99% pass).

• Tokenizer
– Fixed line number of <?=

– Fixed token on arguments

Version 0.8.6 (Fuyun Sou, 2016-10-24)
• Architecture

– New command to ping a queue

– More documentation

• Report
– Ambassador report sped up multiple times

– Text, Json and XML all report only analysis (not the dependencies)

• Analysis
– New analysis : suggest ternary instead of Ifthen

– New analysis : check for returned value usage

125

Exakat Documentation, Release 1

– Added support for PHP 7.0.12 and 5.6.27

– Added more bugs fixing from extensions

– Fixed analysis for Zend Framework 1

– Ignore $this in variable used once

– Fixed report with unlimited arguments functions

– Overwritten literals : Ignore assignations in for()

– Upgraded old PHP 5.* analysis to Gremlin 3

– Upgraded analysis : 1639 / 1645 test pass (99% pass).

• Tokenizer
– Fixed precedence between require and .

– Better fullcode for <?=

Version 0.8.5 (Naked Demon, 2016-10-17)
• Architecture

– Moved all classes under Exakat folder for clean hierarchy

• Report
– Ambassador : restored line number in display

• Analysis
– New analysis, check for substr() comparisons with literals

– New analysis, suggest boolean cast, instead of Ternary.

– New analysis, spot 3 levels of if/then

– Upgraded ‘hardcoded password’, for kadm5 and hash_* functions

– Upgraded ‘external libs’, with Zend Framework

– Upgraded analysis : 1625 / 1638 test pass (99% pass).

Version 0.8.4 (Lingkongzi, 2016-10-10)
• Architecture

– Moved Tasks into ExkatTasks

– Fixed findExternalLibs

• Report
– Ambassador report got good annex, fixed settings and faceted search

– Omit clearPHP if not present in docs

• Analysis
– New analysis : detect multiple identical traits/interface in CIT

– New analysis : suggest creating aliases to reduce code

– New analysis : spot aliases that may be reused again

– New analysis : hidden use, that are not at the beginning of the code

– Upgraded analysis : 1607 / 1618 test pass (99% pass).

126 Chapter 2. Release Note

Exakat Documentation, Release 1

– More documentations to many analysis

– HasMagicProperty report all magic methods

– Upgraded ‘Useless Parenthesis’ with more situations

– Upgraded ‘Unchecked resources’ with 2 more situations

– Fixed several analysis when using Boolean and Null as a class

– Fixed analysisIsNot with arrays

– Removed include-like from undefined functions

– Arrays/AmbiguousKeys : Extended to arrays calls

• Tokenizer
– Fixed edge case with return ?>

– Fixed path for reporting

Version 0.8.3 (Guzhi Gong, 2016-10-03)
• Architecture

– Created temp folder .exakat in projects_dir

– Removed mentions of float, only using Real

– Moved Config to ExakatConfig

– More examples in docs

• Report
– Added settings and files to Ambassador

• Analysis
– New analysis for dependant Traits

– Added new Theme ‘Cakephp’ with 6 analysis for migration

– New values for Not-a-hash

– Unresolved Catch now takes Throwable into account

• Tokenizer
– Fixed edge case where return is used inside if/then without {} nor value.

– Fixed ‘code’ and ‘token’ for ?: and ()

Version 0.8.2 (Jinjie Shiba Gong, 2016-09-26)
• Architecture

– More examples in docs

– Fixed ‘file’ in results

• Report
– Added more media for Ambassador

• Analysis
– New analysis for count/strlen compared to 0

– Upgraded analysis : 1563 / 1579 test pass (99% pass).

127

Exakat Documentation, Release 1

– Backported all 4 Wordpress analysis (wpdb, nonce usage)

– Added new Wordpress analysis : variable escaping in templates

• Tokenizer
– Fixed <?= so it is handled like echo

Version 0.8.1 (Babo’erben, 2016-09-19)
• Architecture

– Added main Try/Catch

• Report
– Added ‘Ambassador’ report.

• Analysis
– Upgraded analysis : 1540 / 1561 test pass (99% pass).

– More documentation (examples, glossary)

– Added a list of stopwords for No Hardcoded Hash

– Upgraded analysis ‘No Hardcoded Path’ with protocols and glob with wildcards

– Upgraded analysis ‘No Hardcoded Hash’ with stopwords

– Added new Analysis for portability : spot common Linux files

– Added new Analysis : use system temp dir, not hardcoded one

– New analysis that spot unused protected methods

– Added Time-to-fix and severity to all analysis

• Tokenizer
– Fixed edge case with if/then and try/catch

– Synchronized constants in Tokens/Consts*.php

– Added support for PHP 7.2

Version 0.8.0 (Benbo’erba, 2016-09-12)
• Architecture

– More examples in the docs

– Better find root in export

• Report
– Prepared code for new report style

• Analysis
– New analysis : no throw in __destruct

– New analysis : spot empty blocks in control structures

– Update : Check parse_str and mb_parse_str()

– Upgraded analysis : 1524 / 1540 test pass (99% pass).

• Tokenizer
– Fixed representation of [] and [index] with static properties

128 Chapter 2. Release Note

Exakat Documentation, Release 1

Version 0.7.10 (Nine Headed Bug, 2016-09-05)

• Architecture
– Added optional dependency to mbstring in Doctor

–
• Analysis

– Added analysis for PHP 7.1 features

– Upgraded analysis : 1377 / 1510 test pass (91% pass).

• Tokenizer
– Removed parasit ‘void’ added in sequences.

– Raised export max depth to 15.

– Fixed FQN for new without parenthesis

– Fixed support for PHP 5.5/5.6.

– Added support for iterable

– Checked support for extensions and ignore dirs

Version 0.7.9 (Wansheng Princess, 2016-08-29)
• Architecture

– Added several features at Loading time : mark global variables in $GLOBALS, fallback FQN in func-
tions, link constant to definitions.

• Analysis
– Added analysis for impossible comparisons (count($a) < or >= 0)

– Added analysis for PHP 7.1 : removed directives, added functions

– Upgraded analysis : 1485 / 1522 test pass (97.5% pass).

• Tokenizer
– Fixed edge case with <?= $v;

– Fixed priorities between include and .

– Better support of trait in classes

Version 0.7.8 (Wansheng Dragon King, 2016-08-22)
• Architecture

– Prepared databases for PHP 7.2

• Analysis
– Reports that preg_match results are not checked

– Report List short syntax usage.

– Upgraded analysis : 1224 / 1493 test pass.

• Tokenizer
–

Version 0.7.7 (Water Repelling Golden Crystal Beast, 2016-08-17)

129

Exakat Documentation, Release 1

• Analysis
– Upgraded Bug database to handle PHP 7.0.10, 5.6.24 and 5.5.38

Version 0.7.5 (Jade Faced Princess, 2016-07-19)
• Architecture

– Added ‘anonymize’ command, that anonymize files and projects

• Analysis
– new analysis : recommend preg_replace_callback_array() when there are several call to

preg_replace_callback_array()

– Upgraded analysis : 1103 / 1464 test pass.

• Tokenizer
– Lots of fixes for stability : tested on 28M tokens

Version 0.7.4 (Great Sage Who Pacifies Heaven, 2016-07-12)
• Architecture

– Entirely rewrote the ‘Tokenizer’ part

– Upgraded database schema

• Analysis
– Upgraded analysis : 1027 / 1461 test pass.

• Tokenizer
– Entirely rewrote the ‘Tokenizer’ part

– 1851 UT pass correctly (extra 51)

Version 0.6.7 (Red boy, 2016-05-30)
• Report

– Added List With Keys in Appinfo()

– Added by-reference functions mention

– Now reporting good visibility/static for __callstatic

– Added bug info for PHP 7.0.7, 5.5.36, 5.6.21

• Analysis
– New : recommend instanceof over is_object()

– Fixed several ignored limitations, due to case : $phpversion

• Tokenizer
– Fixed ‘originclass’ in namespaced use

Version 0.6.6 (Princess Iron Fan, 2016-05-23)
• Report

– New report, suggest disable_functions directive value.

– Added support for memcached directives

• Analysis

130 Chapter 2. Release Note

Exakat Documentation, Release 1

– New analysis : spot throw without new

– New analysis : suggest adding 2nd parameter to unserialize in PHP 7.0+

– New analysis : spot successive if/then with the same condition

– Added support for zendoptimizer and suhosin extensions

– PHP7 indirect expression : added support for {} in properties

• Tokenizer
– Raised cycle count, to speed up building AST for large projects

Version 0.6.5 (Great Sage Who Pacifies Heaven, 2016-05-16)
• Analysis

– New analysis : spot globals that may be turned into property

– New analysis : check that ZF1 classes are well located

– Upgraded ‘dangling foreach reference’ to support key=>value

– Better support for PHP 7 indirect expression

– More directives for xdebug

– Eval Without Try is PHP 7 only

– No Choice analysis is now case insensitive

• Tokenizer
– Added support for keys in list() (PHP 7.1)

– Added support for constant visibility (PHP 7.2)

– Added support for Multi catch : catch(A|B $e) (PHP 7.1)

– Fixed bug with + and instanceof

– Fixed precedence between :: and ??

Version 0.6.4 (Bull Demon King, 2016-05-09)
• Architecture

– Externalized the list of recognized libraries to Json

– Added ‘Wordpress’ and ‘Coding convention’ as Recipes

• Report
– Initial report for Zend Framework. Still prototyping.

• Analysis
– Accelerated analysis for Implicit GLobals variables

– New analyze : Indirect Injections (Security)

– New analyze : Should Use Coalesce (code upgrade)

– New analyze : Suggest dirname(__FILE__) => __DIR__

– Added ‘str_rot13’ as unsafe ‘crypto’

– Properties without default can’t be redefined

– Added Yield and Yield From as structures without parenthesis needs

131

Exakat Documentation, Release 1

– Double Assignation, unless 2nd call is a functioncall (less false positives)

Version 0.6.3 (Jade Faced Princess, 2016-05-02)
• Architecture

– Removed several useless pieces of code (self analysis)

– Added documentation for Wordpress Recipes

– Lengthened Cycle for tokenizer

• Report
– Added bugfixes for PHP 7.0.6, 5.6.21, 5.5.35.

– Now reporting token counts per files

• Analysis
– New analysis : Spot variable that holds $_GET, $_POST, $_REQUEST or $_COOKIE values (internal)

– New analysis : Report variables that are overwritten by themselves

– New analysis : Report useless switch (empty, 1 case only)

– Upgraded NoChoice to handle larger sequences

– Upgraded Useless Global to handle global $x / $GLOBALS[‘x’] situations

– New analysis : Wordpress Recipe : Unverified Nonce, Best Usage for $wpdb

– New analysis : Void for PHP 7.1

• Tokenizer
– Fixed but with Typehint

– Added phppowerpoint class in external libraries

Version 0.6.2 (Long Armed Ape Monkey, 2016-04-25)
• Architecture

– Fixed phar detection (based on ext/phar)

– Cleaned code with myself

• Report
– New report format : clustergrammer

• Analysis
– New analysis : same conditions in If / Then

– New analysis : spot dead code in catch expressions

– Static loops now exclude methods usage

– Indirect variable expression are stricter

– preg_* Option e has better support for delimiters

– Upgraded Direct Injection in case of concatenation

– Detect Ellipsis when counting arguments

– Could use short assignation : avoid $a += $a + 3;

• Tokenizer

132 Chapter 2. Release Note

Exakat Documentation, Release 1

– Sped up Typehint detection

– No indexing for T_STRING in properties

– Reduced errors from token_get_all()

Version 0.6.1 (Red Bottomed Horse Monkey, 2016-04-18)
• Architecture

– Prepared to support PHP 7.1

– Fixed bug in user / passwords when initing the project

– Better support for ::class when searching for libraries

• Analysis
– UselessParenthesis : spot nested parenthesis

– Spot exceptions that are thrown but uncaught by the current code

– Support for ext/lua,

– New : Check catch order in try/catch

– Better identification of Composer classes, based on composer.json

– Now spot interfaces in use declarations (less undefined interfaces)

• Tokenizer
– Added support for PHP 7.1

– key => value in list() calls

– visibility for constants in Classes and Interfaces

– Accelerated up Typehint support

Version 0.6.0 (Intelligent Stone Monkey, 2016-04-11)
• Architecture

– Fixed a bug in Find external libraries

– Applied fixed based on new analysis audit

– Fixed a bug that prevented results to be prepared for report (Thanks Philippe G.)

• Report
– Now reports reason for excluding a file from analysis

• Analysis
– New analysis : Logical Mistake (first version),

– New analysis : Iffectations (code restoration)

– New analysis : Common alternatives

– New analysis : No Choice (No alternatives)

– New analysis : Random_* Without Try (security risk)

– New analysis : Unknown PCRE options

– New analysis : Identical conditions

– New analysis : Hardcoded hashes

133

Exakat Documentation, Release 1

– Upgrade List with appends with variable name

– Upgrade /e option detection

– Fixed detection of unused use, with long namespaces.

– Added finfo to ext/finfo

– Finds exceptions that are reserved for later throwing

– Exclude anonymous classes from Already Defined Interface

• Tokenizer
– Extended cycle number to speed up tokenizer.

– Better escaping of file names

Version 0.5.9 (Six Eared Macaque, 2016-04-04)
• Architecture

– One progressbar per Recipe during project analysis

– report’s documentation

– Upgraded ‘External Lib’ to ignore Composer folders.

– Fixed a bug about interpreting tokens

– Dump collects classes, interfaces, traits definitions

– Now storing project name in database for future use

– Removed PHP configuration modifications (error_reporting, display_errors)

• Report
– Added ‘Uml’ report : hierarchy report

– Now reports Pear Usage

– Upgraded Bugfix database for 7.0.5, 5.6.20 and 5.5.34

– Report Yield (from) usage

– New external configuration files : bazar, github, docker, openshift

• Analysis
– Added detection for undefined classes in ZF (1.8 to 1.12)

– New : report undefined Traits

– Added support for parent/grandparent when checking argument numbers

– Added support for V8js

• Tokenizer
– Fixed bug in fullnspath for use within trait or class

– It is possible to reach a property on an array append

– Fixed AST between PHP 5 and 7 for globals

– Simplified ++ analysis

Version 0.5.8 (Sun Deity of Mao, 2016-03-28)
• Architecture

134 Chapter 2. Release Note

Exakat Documentation, Release 1

– Moved to self::, instead of static::.

– First UT for command line

– Sped up phploc. Prepare code for finite states, in Tasks.

– Prepare for Gremlin3 (moved gremlin calls to class)

– Reduced shell_exec usage

• Report
– Fixed display bugs in Devoops report

– Removed double analysis

– ‘Wrong number of arguments’ now supports constructors

• Analysis
– Upgraded ‘No Hardcoded IP’ to handle constants, spot domains

– Added support for TokyoTyrant

– New analysis : spot simple regex, and suggest strpos

– Excluded “$a[b]” from undefined constants

• Tokenizer
– Fixed bug with nested call to echo.

– Fixed bug where concatenation ends on a ‘AS’ keyword

– Added support of Constants in Foreach

– Fixed multiple bugs in Grouped Use

– Support for function as ‘class’ in static calls

– Comparison accepts powers

– Added support for empty array short syntax in sequence

– Support constant with visibility

– Parenthesis may be the base for Arrays

Version 0.5.7 (Scorpion Demon, 2016-03-21)
• Architecture

– Added support for folders in UT, for tests that requires several files

– Improved compatibility with PHPunit

– Moving gremlin_query() to Gremlin2 class

– Doctor also reports for phar

– Improved adaptation to PHP and Exakt in server mode

– Autoload shouldn’t die

– Fixed case when calling Phpexec

– Upgraded status presentation in server mode

• Report
– More details for Global Variable list

135

Exakat Documentation, Release 1

• Analysis
– Now spotting class when it is inside a string

– Check for $this outside a trait/class

– Check for ternary/concatenation precedence

– Spot classes that attempt to extend final

– Spot set_exception_handler() that may need rework

– Refined array_merge analysis, in case of nested loops

• Tokenizer
– Yield [from] may be inside an array

– Refactored for/foreach tokens

– Added support for a ‘Project’ node

Version 0.5.6 (Ruler of Women’s Country, 2016-03-14)
• Architecture

– Fixed some backward compatibility with PHP 5.4

– Started revamping ‘Status’ command

– Centralized all tokenizations to PhpExec class

– Removed usage of __DIR__ and __FILE__

• Analysis
– Spot usage of empty() that can’t work on PHP 5.4

– Suggest using random_int instead of rand

– Upgraded ‘No Array_merge in loops’ with array_merge_recursive

– Added support for scalar type hint in Undefined Classes

– New analysis : Better rand()

• Tokenizer
– Instanceof has lower precedence than comparison

Version 0.5.5 (Immortal Ruyi, 2016-03-07)
• Architecture

– Added default values for all neo4j_* configs

• Report
– Added support for bugfixes in 7.0.4, 5.6.19 and 5.5.33

– Added support for bugfixes in 7.1.0-dev

• Analysis
– Added support for Typehint in Undeclared Classes

– Extended ‘Multiple Classes in One File’ to interfaces and traits

– Added analysis for truthy and falsy

– Spot interfaces implemented by parents (Thanks PHP Inspect)

136 Chapter 2. Release Note

Exakat Documentation, Release 1

– Report usage for unsafe Curl options

• Tokenizer
– Fixed emptyString inside a Heredoc

– Fixed bug where Sign has lower priority than Power

Version 0.5.4 (Nezha, 2016-02-29)
• Architecture

– Removed some shell_exec() to help with portability

– Clean command now rebuilds an empty datastore

– Check the availability of php binaries before using

– Produce report in a hidden folder, then push it

• Report
– Report the list of bug fixes that apply to code

• Analysis
– Help using preg_match_all options

• Tokenizer
– Fixed a bug with reference and instanceof

Version 0.5.3 (Li Jing, 2016-02-22)
• Architecture

– More UT

– Supports symlinks for neo4j’s folder

– Supports symlinks for ‘code’ folder in projects

– Added upgrade command to check for exakat’s available versions and upgrade

• Analysis
– Spot CLI scripts

– Undefined Interfaces avoids self, parent, static

– Fixed bug in spotting undefined Interface

– Variable Used Once in a method are not arguments

– Added support for all structures in Double Assignation

Version 0.5.2 (Single Horned Rhinoceros King, 2016-02-15)
• Analysis

– Fixed functioncall detection with ‘empty’

– Refined ‘Buried assignation’ analysis

– Fixed a bug when using definitions (class, trait, interface, functions. . .)

– Better support for case-insensitive constants

–
• Tokenizer

137

Exakat Documentation, Release 1

– Fixed bug in use statement

– Now spots PHP code in files without extension

– Upgraded support for grouped Use statement

– namespace may be a valid nsname part

– Fixed bracket reports in do. . .while

Version 0.5.1 (King of Spiritual Touch, 2016-02-08)
• Architecture

– Added test in UT to skip incompilable sources

– Stabilized tokenizer’s UT (partial)

• Report
– HTML protection in Devoops format

– No display of negative stats

– Added support for directives : wincache, xcache, apc, opcache

– Added support for eaccelerator and openssl

• Analysis
– New analysis : Spot unknown PHP directive names

– Fixed Constants/MultipleDefinedConstants

– Better detection of functioncalls (with List)

– Better spotting of ini_set arguments

– Unreachable code now finds die and exit

– ObjectReference won’t report references on scalar types

– Revamped ‘pregOptionE’ analysis

– Cleaned code with too many arguments

– Removed useless print

– Better report of eval() usage

– Revamped ‘Dynamic code’ report

– Fixed bug in Case/Default that are empty

– Avoided sequences of sequences in Case/Default

– Fixed Detection of classes’ usage with extension

• Tokenizer
– Fixed bracket detection on While and DoWhile

– Detect void in DoWhile

– Removed useless T_DIE token

– Fixed fullcode processing for anonymous classes

Version 0.5.0 (Immortal of Antelope Power, 2016-02-01)
• Architecture

138 Chapter 2. Release Note

Exakat Documentation, Release 1

– Added support for HTTP API, through ‘server’ command.

• Analysis
– Fopen modes checked

– Redefined default, in class’s properties

• Tokenizer
– Fixed situation where echo and print used parenthesis (they don’t)

– Fixed rare but with instanceof and concatenation

– Fixed support of integers in Gremlin

– Fixed bug in addslashes and and $ protection order

– Made Assignations more robust (no un-processed tokens)

– Reduced the number of shell_exec usage => speed up

– Finished support for relaxed keyword support in classes (PHP 7)

Version 0.4.6 (Immortal of Elk Power, 2016-01-25)
• Architecture

– New installation script with Vagrant and Ansible (Thanks Alexis!)

– Updated documentation

– Added a command to remove a project

• Report
– Devoops reports has case-insensitive menu sort

• Analysis
– Spot redefined properties, classes and methods.

– Spot properties that may be turned private

– Fixed special case in Wrong Number Of Arguments

– Fixed ‘OnePage’ analysis

• Tokenizer
– Finished support for relaxed keywords in classes

– Sped up tokenizer by keeping counts of tokens in datastore

– Fixed detection of CakePHP

– Fixed special case with Labels

– Fixed rare case with die() within ternary operator

Version 0.4.5 (Immortal of Tiger Power, 2016-01-18)
• Architecture

– Upgraded documentation

– Default command is ‘help’

• Report
– Better version for FacetedJson report

139

Exakat Documentation, Release 1

• Analysis
– New analysis that spots wrong type of argument in PHP internal functions

– Fixed Isset With Constant for PHP 7

– Fixed a bug that limited query size during analysis (good for bigger projects)

– Include variadic (. . .) to Variable Argument Number

• Tokenizer
– Fixed a bug that blocked tokenizer when a analyzed script generated parse errors.

– Added support for bazar, svn.

– Fixed a bug in Nsnames at Loading time.

Version 0.4.4 (Crown Prince Mo’ang, 2016-01-11)
• Architecture

– Reviewed OnePage analysis

– Dump as now an option to select Recipes

– Dump forces line to be integer

– Added a task to update a project’s code (git only ATM)

• Report
– Better check when opening database for report (more to come)

– FacetedJson (and Json) report ignore non-unicode lines

– Added ‘search’ box to facetedJson

• Analysis
– Switch To Switch suggestions

– Unused arguments patch for arguments used in methods

– Unused properties doesn’t mistake function static variable

• Tokenizer
– All Nsnames are now build at Loading time

– Constants may be calld ‘const’

– More relaxed syntax for methods (exit, include, eval. . .)

– Foreach may use coalesce

– Fixed an edge case with Closures in functioncall

Version 0.4.3 (Tuolong, 2015-01-04)
• Architecture

– Copyright year bump

– Doctor reports memory_limit and php version consistency

– Switched to rmDirRecursive

• Report
– Removed old style reporting system

140 Chapter 2. Release Note

Exakat Documentation, Release 1

• Analysis
– Fixed fileupload and filesystem directives reports

– Added report of Environment variable usage

– Added iconv_set_encoding to the list of directive usage

– Extension analyzes now takes into account namespaces and traits

– Analysiss all have severity and time to fix

• Tokenizer
–

Version 0.4.2 (Red Boy, 2015-12-22)
• Architecture

– Published documentation on http://exakat.readthedocs.org

– First version of the faceted report (-format Faceted)

• Report
– First version of the faceted report (-format Faceted)

– Fixed Dump that actually finishes after some time

• Analysis
– Spot unused arguments

– Fixed notInInterface() filter

– Upgraded HtmlEntitiesCall

Version 0.4.1 (Azure Lion, 2015-12-14)
• Architecture

– Rebuild the report system, for speed and versatility.

• Report
– Available format : JSON, Sqlite, XML, Text and HTML (Devoops).

– Rules are now part of the documentation.

• Analysis
– Upgraded ‘Buried assignations’

– Locally Unused also spots properties without visibility (but with definition)

– Could be class constant, if the property is used at least once

– Better detection of files that are Definitions only (fix at Namespace calls)

– ++ is now correctly reported as isRead and isWritten in Arguments

– Closure’s use($x) are now reported in both context (calling and called)

– Removed usage of ‘back’ method, that is blocking at high token counts

• Tokenizer
– Fixed support for {} and {$ } inside strings

– Fixed bug with Typehint, that prevented compilation

141

http://exakat.readthedocs.org

Exakat Documentation, Release 1

– Fixed several (rare) edge cases with Sign and Staticproperties.

– Fixed detection of closing tags

Version 0.4.0 (Lion Lynx Demon, 2015-12-07)
• Architecture

– Made PHP 7.0 the default (moved to 0.4.0)

– Ran unit tests on PHPunit 5.1

– Added a background tasks to build report. Will allow for progressive report.

• Report
– Rewrote the report from scratch. Should be finished next iteration.

– New report is working for XML and Text report.

• Analysis
– Added support for ext/pecl_http

– Added several classic folders as ignored by default (change this in config.ini)

– Create a check for functioncall (and not methods)

– Spots join(‘’, file())

– Safely ignoring some dynamic calls in undefined functions (Thanks Marc Delisle)

– Removed ArrayAppend from double assignation

• Tokenizer
– Fixed a bug when class was auto-referenced.

– Fixed detecting Static properties when they are also arrays.

– Fixed fatal errors for mal-formed octals

Version 0.3.12 (Nine Tailed Vixen, 2015-11-30)

• Architecture
– ProgressBar is now displayed during Analyze phase.

• Report
– Report list of error messages used in the library

• Analysis
– Omit eval with hardcoded strings

– Exclude some index from _SERVER from the report (they are safe)

– Exclude php://* files as hard coded path

– Report usage of timestamp to calculate duration

– Spots unused traits

– Fixed support for big integers

• Tokenizer
– First support for relaxed keywords in classes. More to come.

– Checked UT on PHP 7 (Soon to become default version)

142 Chapter 2. Release Note

Exakat Documentation, Release 1

– Fixed version detection in Tokenizer

– Fixed fullnspath in Use expression;

Version 0.3.11 (Hu A’qi, 2015-11-16)

• Architecture
– Report external services files that may be in the repository

• Report
– Report nested dirname calls (may be changed in PHP 7)

• Analysis
– Better spotting of static loops

– Don’t confuse $globals and $GLOBALS

• Tokenizer
– Rewrote support for As in classes.

– Fixed arguments that were indexed as Void

– Trimmed code

Version 0.3.10 (Silver Horned King, 2015-11-09)

• Architecture
– Centralized call to cypher.

• Report
– Sped up several analyzes

• Analysis
– Fixed naming bug with reflexion

– Support class name in arrays, short syntax

– Report Relay Functions

– More PHP 7 incompatibilities reports

• Tokenizer
– Support for 7.1 compilation (dev only)

– Added cakephp to external libraries

– Fixed parsing bug with static (as property definition)

– Fixed ‘count’ in sequences from Function

– Rewrote Argument detection (when there is no parenthesis)

Version 0.3.9 (Golden Horned King, 2015-11-02 up)

• Architecture
– Cleaned code with Exakat

• Analysis
– Refined report about double assignation

– Fixed argument counting in Function Definition

143

Exakat Documentation, Release 1

– Better support of array in Locally Used Properties

– Updated Composer database

• Tokenizer
– Fixed a bug that ignored Blocks

– Fixed a rare bug with echo and the following arguments

Version 0.3.8 (Baihuaxiu, 2015-10-26)
• Architecture

– Cleaned too many display (they go to log now), leaving commandline empty (or -v)

– A lot more PHP 7 incompatibilities spotted

• Report
– Added the list of global variables in the projects (if any)

– Fixed reports for PHP 5.2 (they were ignored)

• Analysis
– Better handling of composer in unresolved classes

– Spot setlocale with string (PHP 7)

– Spot string unpacking (PHP 7)

– Upgraded static method call, to avoid classes of the same family

– Report eval without try/catch

– Report preg_replace with /e

– Fixed report for empty list()

– Spot hexadecimal in strings

– Report usort (and co) as incompatibilities between PHP 7 and 5

• Tokenizer
– Fixed edge case with Sign and namespaced function

– Added xajax, adodb and gacl as common library

– Fixed arguments in short array syntax

– Fixed case where [3] was spotted inside a string

Version 0.3.7 (Yellow Robe Demon, 2015-10-19)
• Architecture

– Added and reviewed many UT. More stability.

• Report
– Fixed the report of the actual version of PHP being used.

– Non-run analysis are not marked with a stethoscope

– Report now report closures and not the containing method

– Removed some dashboard that would generate empty links

• Analysis

144 Chapter 2. Release Note

Exakat Documentation, Release 1

– Better spot of blocks inside Alternative syntax

– Speed up method spotting

– Fixed properties which were mistaken with deep definitions

• Tokenizer
– Fixed fullcode for Typehint

– Removed Ppp and moved it to Visibility

Version 0.3.6 (White Bone Demon, 2015-10-12)
• Architecture

– Large speed up at Parsing stage, for large projects

– Added git informations in Doctor

• Tokenizer
– Changed processing for Arguments.

– Support for more PHP 7 features, including Use Grouping,

– Fixed support for ~

– Simplified ::class handling

Version 0.3.5 (Mingyue, 2015-10-06)
• Architecture

– Reported usage of array constants, improving backward compatibility

– Checked running on PHP 7

• Report
– Added Definition annex

– Fixed ‘version incompatible’ report that was mistaken with ‘no result’

– List all directives being modified in the code

– List more directives that should be set for production.

• Analysis
– Reworked the Themes about compatibility.

– Added many tests for PHP 7.0 compatibility

– Sped up UsedMethod analysis

– Added support for PHP 7 feature : Unicode Escape Sequences, New functions/classes/interfaces, Re-
moved Functions,

• Tokenizer
– Changed processing for Empty PHP code

– Support Variable Indirection for both PHP 5 and 7 (depends on exec version)

– Avoid ignoring all code when finding External Libraries

– Fixed edge cases with declare() when it is conditional.

– Support for PHP 7’s f()()()

145

Exakat Documentation, Release 1

Version 0.3.4 (Qingfeng, 2015-09-28 up)

• Architecture
– Added token_limit configuration to avoid running too large project (default is 1 000 000)

– Several new tools for internal consistency check.

– Removed support for neo-contrib’s gremlin plugin

• Report
– Report libraries that were found and ignored

• Analysis
– Sped up queries that required previous analysis or multiples atoms

– Spot global keywords inside loops (perf)

– Better spotting of Composer classes

– Report double assignations

• Tokenizer
– Added support for Anonymous classes (PHP 7)

– Fixed namespace manipulations (They weren’t lower case)

– Mark constants as fail back globals or local to the namespace

– Support Null Coalesce operator (PHP 7)

– Fixed rare case for empty strings and noDelimiter

Version 0.3.3 (Immortal Zhenyuan, 2015-09-21)
• Architecture

– Removed some shell stderr that leaked to the main script

• Report
– Added the list of used analysis

– favicon is now used in the report (Devoops)

– Fixed count report for Else

– Fixed directive reports for trader, bcmath and ldap.

• Analysis
– Rebuild the composer database

– Fixed htmlentities analyze

– Spot usage of ‘substr($s, $p, +/- 1)’ and recommend ‘$s[$p]’

• Tokenizer
– Fixed Multiplication with instantiation

Version 0.3.2 (Tiger Vanguard, 2015-09-14)
• Report

– Added link back from analysis to its themes.

• Analysis

146 Chapter 2. Release Note

Exakat Documentation, Release 1

– Useless Returns are now Trait compatible

– Optimized Composer validation

– Removed IsKnownVendor analyze (replaced by Composer)

– Spot inconsistent concatenations (“$a b”.$c)

• Tokenizer
– Fixed situation where forgotten white spaces didn’t have a file

– Removed DELETE and S_STRING index

– Fixed compatibility with Debian (shell commands)

– Added UT for and / && precedence versus =

– Fixed identification of empty instructions (Functions / Closure have different behaviors)

Version 0.3.1 (Yellow Wind Demon, 2015-09-03)
• Architecture

– Removed usage of Everyman dependencies

– Added support for Neo4j Authentication

– Added a JobQueue

– Cleaned code with exakat itself

• Report
– Added Dump to SQLITE format for custom manipulations of the results

– Added new collection of rules for Calesthenics (dev)

– Updated composer database

– Now reporting found Composer.

• Analysis
– Fixed Compilation spotting

• Tokenizer
– Fixed an edge case with Sign, when used in a concatenation

Version 0.3.0 (Lingxuzi, 2015-Aug-25)

• Architecture
– Moved to Thinkaurelius’s gremlin plug-in, Neo4j 2.2.4 and Java 8.

• Report
– Added a view by File

– Added sorting for results (by file and by analyze)

• Analysis
– Spot functions whose results should be checked before they are used

– Spot breaks/continue out of a loop

– Exports all the results in a dump.sqlite file

• Tokenizer

147

Exakat Documentation, Release 1

– Fixed a minor bug with ::class (messed up the {} counts)

– removed dependency to Everyman’s Neo4j classes.

– Added a step that removes big and identifiable libraries in PHP (such as tcpdf, jpgraph, etc..)

Version 0.2.5 (Scholar in a White Robe, 2015-Aug-17)

• Report
– List the files that are ignored in the annex

• Analysis
– Updated Knowledge Database for memcache, aliases, zlib, standard

– Added more directives to Review

– Added support for xhprof

• Tokenizer
– Fixed bug with Else (Not-alternative)

– Fixed Sequence creation with If-Then

– Yield may be assigned

– Removed one Tokenizer’s operation (filterOut2)

– Fixed priorities with Concatenation, Multiplication, Additions

– Process Echo and Print separately

– Automatically removes common bundled libraries to reduce app size

Version 0.2.4 (Black Wind Demon, 2015-06-22)
• Analysis

– Rebuild the composer database

– Lots of new extensions supported : ev, libevent, event, php-ast, wikidiff2, proctitle, inotify, ibase,
amqp, geoip, output buffering,

– Report errors when non-variables are returned by reference

– Marked more analyzes for PHP 7

– Fixed Unpreprocess structures with split

– Upgraded spotting for useless parenthesis

– Added a check ++$i vs $i++;

– Exclude abstract methods from Variables Used Once

– Added new directives

– Also check for ASP Tags

• Tokenizer
– Fixed the fullpath for functions when they are not defined in the code

– Upgraded support for Return Type (PHP 7.0+)

– error_reporting with -1 is OK

– Fixed a precedence problem with & and &&

148 Chapter 2. Release Note

Exakat Documentation, Release 1

– Refactored Ifthen token to support return type

– Added a kill command when cleaning Database

Version 0.2.3 (Techu Shi, 2015-06-22)
• Analysis

– Report usage of Return Typehint, and Scalar Typehint

– Report usage of classes that used to return null on new

– Report useless abstract classes

• Tokenizer
– Upgraded ‘init’ command, to handle various VCS

– Added support for Return Typehint

Version 0.2.2 (Xiong Shangjun, 2015-06-16)
• Analysis

– Now spots short assignations

– More UselessInstructions spotted

– Ignore Unset as modified values in loops

• Tokenizer
– Added support for PHP7 new tokens (T_SPACESHIP, T_COALESCE, T_YIELD_FROM)

– Split loading into more .csv files for lighter and more robust queries

– Better support for arrays [1,2,3] as functioncall (just like array())

– Process tokens by batches of 800

– Clean vertex at each queries, not Sequence

Version 0.2.1 (General Yin, 2015-06-02)
• Analysis

– sizeOf may have 2 arguments

– 2 clearPHP link added in documentation

• Tokenizer
– Fixed bug with Bitshift and Addition

– Fixed bug with Sequence when merging sequences

– Fixed bug with String and Addition

– Fixed Visibility in Use instruction

– Foreach accepts Constants as Source

– Fixed special case for nested IfThen

Version 0.2.0 (Demon of Confusion, 2015-05-15)
• First version

149

Exakat Documentation, Release 1

150 Chapter 2. Release Note

CHAPTER

THREE

STANDARD INSTALLATION

Here are 2 tutorials to run Exakat on your code. You may install exakat with the projects folder, and centralize multiple
audits in one place, or run exakat in-code, right from the source code. You may also run exakat on a host machine (aka,
bare-metal), or as a docker container.

• Bare metal install

• with projects folder

• within the code

All tutorials follow the same steps :

• Project initialisation

• Audit run

• Reports access

3.1 Standard install, with projects folder

3.1.1 Installation

Refer to the Installation section in the ADMINISTRATOR GUIDE to install Exakat.

3.1.2 Initialization

First, fetch the code to be audited. This has to be done once. Later, the code may be updated.

php exakat.phar init -p sculpin -R https://github.com/sculpin/sculpin

This command inits the project in the ‘projects’ folder, with the name ‘sculpin’, then clone the code with the provided
repository. By default, the cloning is done by git.

Exakat requires a copy of the code to run an audit. When accessing via VCS, such as git, mercurial, svn, etc., read-only
access is sufficient and recommended. Exakat doesn’t write anything in the code, nor stage, commit or push.

More information on options in the _Commands.

151

Exakat Documentation, Release 1

3.1.3 Execution

After initialization, you may run an audit :

php exakat.phar project -p sculpin

This command runs the whole auditing cycle : code loading, code audits and report building. It is ready to work with
the initial configuration. The configuration may be adapted later.

Once the run is finished, the reports are place in the folder projects/sculpin/. For example, a HTML version is available
in projects/sculpin/report/index.html. Simply open the ‘projects/sculpin/report/index.html’ file in a browser.

3.1.4 More reports

Once the ‘project’ command has been fully run, you may run the ‘report’ command to create different reports. Usually,
‘Diplomat’ has the most complete report, and other focused reports are available.

It is possible to create the remaining reports, once an audit has been finished. Here is an example of a Uml report.

php exakat.phar report -p sculpin -format Uml -file uml

This export the current project in UML format. The file is called ‘uml.dot’ : dot is added by exakat, as the report has
to be opened by graphviz compatible software.

The full list of available reports are in the Reports section.

Once it is finished, the reports are in the folder projects/sculpin/ under different names.

3.1.5 New run

After adding some modifications in the code, commit them in the repository. Then, run :

php exakat.phar update -p sculpin
php exakat.phar project -p sculpin

This command updates the repository to the last modification, then runs the whole audit again. If the code is not using a
VCS repository, then the update command has no effect on the code. You should update the code manually, by replacing
it with a newer version.

Once the audit is finished, the reports are in the same folders as previously : projects/sculpin/report (HTML version).

The reports replace any previous report. To keep a report of a previous version, move it away from the current location,
or give it another name.

3.2 Bare metal install, within the code

This tutorial runs exakat from the source code repository.

152 Chapter 3. Standard installation

http://www.graphviz.org/

Exakat Documentation, Release 1

3.2.1 Installation

Refer to the Installation section in the ADMINISTRATOR GUIDE to install Exakat.

3.2.2 Initialization

Go to the directory that contains the source code.

Create a configuration file called .exakat.yml, with the following content :

project: "name"

This is the minimum configuration for that file. It is sufficient for this tutorial, and we will produce more reports later.
You will read more about _Configuration in the dedicated section.

3.2.3 Execution

After creating the configuration file above, an audit may be run :

exakat project

This command runs the whole cycle : code loading, code audits and report building. It works without initial configu-
ration.

Once it is finished, the reports are in the current folder. Simply open the ‘report/index.html’ file in a browser.

3.2.4 More reports

When running exakat inside code, audits must be configured before the run of the audit.

Edit the .exakat.yml file, and update the file with the following lines :

project: "name"
project_reports:
- Uml
- Plantuml
- Ambassador

Then, run the audit as explained in the previous section.

This configuration produces 3 reports : “Ambassador”, which is the default report, “Uml”, available in the ‘uml.dot’
file, and “Plantuml”, that may be opened with plantuml.

The full list of available reports are in the ‘Command’ section.

3.2. Bare metal install, within the code 153

http://plantuml.com/

Exakat Documentation, Release 1

3.2.5 New run

After some modifications in the code, run again exakat with the same command than the first time. Since the audit is
run within the code source, no update operation is needed.

Check the config.ini file before running the audit, to check if all the reports you want are configured.

exakat project

154 Chapter 3. Standard installation

CHAPTER

FOUR

DOCKER INSTALLATION

Here are 2 tutorials to run Exakat on your code. You may install exakat with the projects folder, and centralize your
audits in one place, or run exakat in-code, right from the source code. You may also run exakat with a bare-metal
installation, or as a docker container.

• Docker container

• with projects folder

• within the code

All four tutorials offer the same steps : + Project initialisation + Audit run + Reports access

4.1 Docker container, with projects folder

This tutorial runs exakat audits, when source code are organized in the projects folder. Any folder will do, since exakat
is now hosted in the docker image.

4.1.1 Initialization

Go to the directory that contains the ‘projects’ folder.

Init the project with the following command :

docker run -it --rm -v /Users/famille/Desktop/analyzeG3/projects:/usr/src/exakat/
→˓projects exakat/exakat:latest exakat init -p sculpin -R https://github.com/sculpin/
→˓sculpin -git

This will create a ‘projects/sculpin’ folder, with various documents and folder. The most important folder being ‘code’,
where the code of the project is fetched, an cached. See _Commands for more details about the init command.

4.1.2 Execution

After creating the project, an audit may be run from the same directory:

docker run -it --rm -v /Users/famille/Desktop/analyzeG3/projects:/usr/src/exakat/
→˓projects exakat/exakat:dev exakat project -p sculpin

This command runs the whole cycle : code loading, code audits and report building.

Once it is finished, the report is available in the projects/sculpin/report/ folder. Open
projects/sculpin/report/index.htmll with a browser.

155

Exakat Documentation, Release 1

4.1.3 More reports

When running exakat with the projects folder, reports may be configured before the run of the audit, in the config.ini
file, or in command line, or extracted after the run.

After a first audit, use the report command. Here is an example with the Uml report.

docker run -it --rm -v /Users/famille/Desktop/analyzeG3/projects:/usr/src/exakat/
→˓projects exakat/exakat:dev exakat report -p sculpin -format Uml

Reports may only be build if the analysis they depend on, were already processed.

In command line, use the -format option, multiple times if necessary.

docker run -it --rm -v /Users/famille/Desktop/analyzeG3/projects:/usr/src/exakat/
→˓projects exakat/exakat:dev exakat project -p sculpin -format Uml

In config.ini, edit the projects/sculpin/report/config.ini file, and add the following lines :

project_reports[] = 'Uml';
project_reports[] = 'Plantuml';
project_reports[] = 'Ambassador';

Then, run the audit as explained in the previous section.

The full list of available reports are in the _Reports section.

4.1.4 New run

After adding some modifications to the code and committing them, you need to update the code before running it again
: otherwise, it will run on the previous version of the code.

docker run -it --rm -v /Users/famille/Desktop/analyzeG3/projects:/usr/src/exakat/
→˓projects exakat/exakat:dev exakat update -p sculpin
docker run -it --rm -v /Users/famille/Desktop/analyzeG3/projects:/usr/src/exakat/
→˓projects exakat/exakat:dev exakat project -p sculpin

4.2 Docker container, within the code folder

This tutorial runs exakat audits from the source code repository, with a docker container.

4.2.1 Installation

Refer to the _Installation section to install Exakat on docker.

156 Chapter 4. Docker installation

Exakat Documentation, Release 1

4.2.2 Initialization

Go to the directory that contains the source code.

Create a configuration file called .exakat.yml, with the following content :

project: "name"

This is the minimum configuration for that file. You may read more about _Configuration in the dedicated section.

4.2.3 Execution

After creating the configuration file, an audit may be run from the same directory:

docker run -it --rm -v $(`pwd`):/src exakat/exakat:latest exakat project

This command runs the whole cycle : code loading, code audits and report building. It works without initial configu-
ration.

Once it is finished, the report is displayed on the standard output (aka, the screen).

4.2.4 More reports

When running exakat inside code, reports must be configured before the run of the audit : they will be build immediately.

Edit the .exakat.yml file, and add the following lines :

project: "name"
project_reports:
- Uml
- Plantuml
- Ambassador

Then, run the audit as explained in the previous section.

This configuration produces 3 reports : “Ambassador”, which is the default report, “Uml”, available in the ‘uml.dot’
file, and “Plantuml”, that may be opened with plantuml.

The full list of available reports are in the _Reports section.

4.2.5 New run

After adding some modifications to the code, run again exakat with the same command than the first time. Since the
audit is run within the code source, no explicit update operation is needed.

Check the .exakat.yml file before running the audit, to check if all the reports you want are configured.

docker run -it --rm -w /src -v $(pwd):/src --entrypoint "/usr/src/exakat/exakat.phar"␣
→˓exakat/exakat:latest project

4.2. Docker container, within the code folder 157

http://plantuml.com/

Exakat Documentation, Release 1

158 Chapter 4. Docker installation

CHAPTER

FIVE

TUTORIALS

• First audit with Exakat

• First audit with Exakat (Docker)

• First audit within the code

• First audit within the code (Docker)

• Prepare for PHP migration with Exakat []=>

• Installing Exakat to monitor several projects []=>

5.1 First audit with Exakat

In this tutorial, we’ll use an open source project called ‘sculpin’ as a guinea pig. You can replace it with any accessible
source code of yours. The name of the project is also ‘sculpin’, though this is both self-descriptive and arbitrary.

5.1.1 Init a project

php exakat.phar doctor
php exakat.phar init -p sculpin -R https://github.com/sculpin/sculpin.git

After this step, there is a folder ‘sculpin’ inside the ‘projects’ folder. The files will be stored there.

5.1.2 Run exakat

php exakat.phar project -p sculpin -v

This command runs the default configuration over the requested code source. After displaying the different steps, it
provides a first report: Diplomat.

Open the report, with a web browser: it is located in projects/sculpin/diplomat.

Congratulations, this is your first audit.

159

https://www.exakat.io/prepare-for-php-migration-with-exakat/
https://www.exakat.io/installing-exakat-to-monitor-several-projects/

Exakat Documentation, Release 1

5.2 First audit with Exakat (Docker)

In this tutorial, we’ll use an open source project called ‘sculpin’ as a guinea pig. You can replace it with any accessible
source code of yours. The name of the project is also ‘sculpin’, though this is both self-descriptive and arbitrary.

5.2.1 Init a project

docker run -it -v $(pwd)/projects:/usr/src/exakat/projects --rm --name my-exakat exakat/
→˓exakat exakat init -p sculpin -R https://github.com/sculpin/sculpin.git

After this step, there is a folder ‘sculpin’ inside the ‘projects’ folder. The files will be stored there.

docker run -it -v /home/my-user/.ssh:/home/exakat/ssh -v $(pwd)/projects:/usr/src/exakat/
→˓projects --rm --name my-exakat exakat/exakat exakat project -p sculpin -v

5.2.2 Run exakat

docker run -it -v $(pwd)/projects:/usr/src/exakat/projects --rm --name my-exakat exakat/
→˓exakat exakat project -p sculpin -v

This command runs the default configuration over the requested code source. After displaying the different steps, it
provides a first report: Diplomat.

Open the report, with a web browser: it is located in projects/sculpin/diplomat.

Congratulations, this is your first audit.

5.3 First audit within the code (Local)

This tutorial show how to run exakat within the code source itself, instead of running it with a separate folder. This is
adapted to reports that are displayed directly in the terminal.

As a pre requisite, you should have installed Exakat on your system, and, in a different folder, hold some source code
that needs to be audited.

5.3.1 Init the project

Exakat recognizes the code as an auditable source code when it can find a .exakat.ini or .exakat.yaml file in the
source. YAML has priority when both are present.

The .exakat.yaml file :

project = "exakat";
project_reports[] = "Text";

The .exakat.yaml file :

160 Chapter 5. Tutorials

Exakat Documentation, Release 1

5.4 ::

project: exakat project_reports:

• Text

In case both files are found, the .INI file has precedence.

5.4.1 Run exakat

php /path/to/installation/exakat.phar project -v

This command runs the default configuration over the code source. It displays immediately the audit as a Text file,
directly in the terminal.

5.5 First audit within the code (Docker)

In this tutorial, we show how to run exakat within the code source itself, instead of running it with a separate folder.
We’ll use a Docker installation for that.

As a pre requisite, you should have pulled the exakat/exakat:latest on your docker installation; and, in a different folder,
hold some source code that needs to be audited.

5.5.1 Init the project

Exakat recognizes the code as an auditable source code when it can find a .exakat.ini or .exakat.yaml file in the
source. YAML file has priority when both are present.

The .exakat.yaml file :

project = "exakat";
project_reports[] = "Text";

The .exakat.yaml file :

5.6 ::

project: exakat project_reports:

• Text

In case both files are found, the .INI file has precedence.

5.4. :: 161

Exakat Documentation, Release 1

5.6.1 Run exakat

docker run -it -v $(pwd):/src --rm --name my-exakat exakat/exakat exakat project

This command runs the default configuration over the code source. The report is displayed immediately in the terminal.

Congratulations, this is your first audit.

162 Chapter 5. Tutorials

CHAPTER

SIX

OVERVIEW

6.1 Summary

• 1650 analyzers

• `Compatible with PHP 5.2 to 8.4`_
• `Migration guide from 5.2 to 8.4`_
• Modernize your code

• Detect code smells or bugs that impact the code

• appinfo(): the list of PHP features

• List of significant PHP directives

• Framework and application support

• Hierarchy Diagrams

• Code visualizations

6.2 1650 analyzers

There are currently 1650 different analyzers that check the PHP code to report code smells. Analyzers are inspired by
PHP manual, migration documents, community good practices, computer science or simple logic.

Some of them track rare occurrences, and some are frequent. Some track careless mistakes and some are highly complex
situations. In any case, exakat has your back, and will warn you.

163

Exakat Documentation, Release 1

6.3 Compatible with PHP 5.2 to 8.2

The Exakat engine audits code with PHP versions that range from PHP 5.2 to PHP 8.3-dev.

The Exakat engine itself runs on PHP 7.x+ and is regularly checked on those versions. It is possible to run Exakat on
7.2 and audit a code with PHP 5.6.

6.4 Migration guidew from 5.2 to 8.2

Every middle version of PHP comes with its migration guide from the manual, and from community’s feedback. In-
compatibilities are included as analyzers in Exakat, and report everything they can find that may prevent you from
moving to the newer version.

Although they won’t catch it all, they do reduce the amount of unexpected surprises by a lot.

164 Chapter 6. Overview

Exakat Documentation, Release 1

6.5 Modernize your code

Migrations are too often considered over when incompatibilities are removed. In fact, the best is still to come : using
the new features. Or, using the new features from previous versions, that were forgotten. Exakat dedicates a whole
category of suggestions to modern PHP features that should be used now.

6.5. Modernize your code 165

Exakat Documentation, Release 1

6.6 Detect code smells or bugs that impact the code

Every minor version of PHP comes with bug fixes and modifications at the function level. Some special situations are
better handled, and that may have impact in your code. Every modified function, class, trait or interface that is also
found in your code is reported here, giving a good overview of the impact of every minor version.

Safe bet : keep up to date!

166 Chapter 6. Overview

Exakat Documentation, Release 1

6.7 appinfo(): the list of PHP features

Do you know the PHP features that your application rely upon ? Recursivité, reflexion, backticks or anonymous classes
? Exakat collect all those features, and sum them up in one nice table, so you know all of it.

6.7. appinfo(): the list of PHP features 167

Exakat Documentation, Release 1

6.8 List of significant PHP directives

Exakat recommends which PHP directives to check while preparing your code for production. If ‘memory_limit’ is an
ever green, may be ‘post_max_size’ (linked to file_upload), or assertions shouldn’t be forgotten. Based on feature and
extension usage, it also list the most important directives, and leads you to the full manual list, in case you want to fine
tune it to the max. Use it as a reminder.

168 Chapter 6. Overview

Exakat Documentation, Release 1

6.9 Framework and application support

Exakat provides support for framework and application specific rules. Supported frameworks includes Cakephp,
Codeigniter, Drupal, Laravel, Melis, Slim, Symfony, Wordpress and Zend Framework

6.10 Hierarchy Diagrams

Exakat documents the code automatically with several diagrams, such as : * UML class diagramm, based on inheritance
(classes), usage (traits) and implementations (interfaces), grouped by namespaces. * The Exceptions tree * The traits
tree and the trait matrix

6.9. Framework and application support 169

Exakat Documentation, Release 1

6.11 Code visualizations

Exakat documents the code automatically with several diagrams, such as : a full UML class diagramm, based on
inheritance (classes), usage (traits) and implementations (interfaces), grouped by namespaces.

170 Chapter 6. Overview

CHAPTER

SEVEN

PHP VERSION

7.1 Compatible with PHP 5.2 to 8.0-dev

The Exakat engine audits code with PHP versions that range from PHP 5.2 to PHP 8.0-dev.

The Exakat engine itself runs on PHP 7.x+ and is regularly checked on those versions. It is possible to run Exakat on
7.2 and audit a code with PHP 5.6.

171

Exakat Documentation, Release 1

172 Chapter 7. PHP Version

CHAPTER

EIGHT

LIBRARY & FRAMEWORK SUPPORT

8.1 Summary

• Supported Rulesets

• Supported Reports

• Supported PHP Extensions

• Applications

• Recognized Libraries

• New analyzers

• External services

• PHP Error messages

• Exakat Changelog

8.2 External Library Support

Libraries that are popular, large and often included in repositories are identified early in the analysis process, and
ignored. This prevents Exakat to analysis some code foreign to the current repository : it prevents false positives from
this code, and make the analysis much lighter. The whole process is entirely automatic.

Those libraries, or even some of the, may be included again in the analysis by commenting the ignored_dir[] line, in
the projects/<project>/config.ini file.

• ADOdb

• atoum

• BBQ

• CakePHP

• CI xmlRPC

• CPDF

• Codeception

• DomPDF

• FPDF

• phpGACL

173

https://adodb.org/dokuwiki/doku.php/
http://atoum.org/
https://github.com/eventio/bbq
https://cakephp.org/
http://apigen.juzna.cz/doc/ci-bonfire/Bonfire/class-CI_Xmlrpc.html
https://pear.php.net/reference/PhpDocumentor-latest/li_Cpdf.html
https://codeception.com/
https://github.com/dompdf/dompdf
http://www.fpdf.org/
http://phpgacl.sourceforge.net/

Exakat Documentation, Release 1

• gettext Reader

• jpGraph

• HTML2PDF

• HTML Purifier

• http_class

• IDNA convert

• lessc

• magpieRSS

• MarkDown Parser

• Markdown

• mpdf

• oauthToken

• passwordHash

• pChart

• pclZip

• Propel

• phpExecl

• phpMailer

• PHPSpec

• PHPUnit

• qrCode

• Services_JSON

• sfYaml

• SimplePie

• SimpleTest

• swift

• Smarty

• Symfony Unit Test

• tcpdf

• text_diff

• text highlighter

• tfpdf

• Typo3TestingFramework

• UTF8

• Xajax

• Yii

174 Chapter 8. Library & Framework Support

http://pivotx.net/dev/docs/trunk/External/PHP-gettext/gettext_reader.html
http://jpgraph.net/
http://sourceforge.net/projects/phphtml2pdf/
http://htmlpurifier.org/
https://github.com/phpWhois/idna-convert
http://leafo.net/lessphp/
http://magpierss.sourceforge.net/
http://processwire.com/apigen/class-Markdown_Parser.html
https://github.com/michelf/php-markdown
http://www.mpdf1.com/mpdf/index.php
http://www.pchart.net/
http://www.phpconcept.net/pclzip/
http://propelorm.org/
https://phpexcel.codeplex.com/
https://github.com/PHPMailer/PHPMailer
http://www.phpspec.net/en/latest/
https://www.phpunit.de/
http://phpqrcode.sourceforge.net/
https://pear.php.net/package/Services_JSON
https://github.com/fabpot-graveyard/yaml/blob/master/lib/sfYaml.php
http://simplepie.org/
https://github.com/simpletest/simpletest
http://swiftmailer.org/
http://www.smarty.net/
https://symfony.com/doc/current/testing.html
http://www.tcpdf.org/
https://pear.php.net/package/Text_Diff
https://pear.php.net/package/Text_Highlighter/
http://www.fpdf.org/en/script/script92.php
https://github.com/TYPO3/testing-framework
https://github.com/Xajax/Xajax
http://www.yiiframework.com/

Exakat Documentation, Release 1

• Zend Framework

8.3 External Services Support

List of external services whose configuration files has been commited in the code.

• ahoy - ahoy.yml, .ahoy.l3d.yml

• Apache - .htaccess, htaccess.txt

• Apple - .DS_Store

• appveyor - appveyor.yml, .appveyor.yml

• ant - build.xml

• ansistrano - .ansistrano

• apigen - apigen.yml, apigen.neon

• arcunit - .arcunit

• artisan - artisan

• atoum - .bootstrap.atoum.php, .atoum.php, .atoum.bootstrap.php

• arcanist - .arclint, .arcconfig

• asp.net - web.config

• bazaar - .bzr

• babeljs - .babel.rc, .babel.js, .babelrc, babel.config.js

• behat - behat.yml.dist, behat.yml

• bitbucket - bitbucket-pipelines.yml, bitbucket-pipelines.yml.template, bitbucket_packagist_scripts.json

• box2 - box.json, box.json.dist

• bower - bower.json, .bowerrc

• browserslist - .browserslistrc

• captainhook - captainhook.json

• circleCI - circle.yml, .circleci

• codacy - .codacy.json

• codeception - codeception.yml, codeception.dist.yml

• codecov - .codecov.yml, codecov.yml

• codeclimate - .codeclimate.yml

• composer require checker - composer-require-checker.json

• composer - composer.json, composer.lock, vendor, composer.phar

• couscous - couscous.yml

• Code Sniffer - .php_cs, .php_cs.dist, .phpcs.xml, php_cs.dist, phpcs.xml, phpcs.xml.dist, ruleset.xml, .ph-
pcs.xml.dist

• coveralls - .coveralls.yml

• crowdin - crowdin.yml

8.3. External Services Support 175

http://framework.zend.com/
https://github.com/ahoy-cli
http://www.apache.org/
http://www.apple.com/
http://www.appveyor.com/
https://ant.apache.org/
https://ansistrano.com/
http://apigen.github.io/ApiGen/
https://www.archunit.org/
http://laravel.com/docs/5.1/artisan
http://atoum.org/
https://secure.phabricator.com/book/phabricator/article/arcanist_lint/
https://dotnet.microsoft.com/en-us/apps/aspnet
https://bazaar.canonical.com/en/
https://babeljs.io/
http://docs.behat.org/en/v2.5/
https://bitbucket.org/product
https://github.com/box-project/box2
http://bower.io/
https://github.com/browserslist/browserslist
https://github.com/captainhookphp/captainhook
https://circleci.com/
http://www.codacy.com/
https://codeception.com/
https://codecov.io/
http://www.codeclimate.com/
https://github.com/maglnet/ComposerRequireChecker
https://getcomposer.org/
http://couscous.io/
https://github.com/PHPCSStandards/PHP_CodeSniffer
https://coveralls.io/
https://crowdin.com/

Exakat Documentation, Release 1

• cvs - CVS

• cypress - cypress.config.js, cypress.config.ts

• deptrack - deptrac.yaml

• direnv - .envrc

• docheader - .docheader

• docker - .dockerignore, .docker, docker-compose.yml, docker-compose.yaml, Dockerfile, .env.docker

• dotenv - .env.dist, .env, .env.example

• doxygen - Doxyfile

• docblox - docblox.dist.xml

• drone - .dockerignore, .docker

• drupalci - drupalci.yml

• drush - drush.services.yml

• editorconfig - .editorconfig

• eslint - .eslintrc, .eslintignore, eslintrc.js, .eslintrc.js, .eslintrc.json

• Exakat - .exakat.yaml, .exakat.yml, .exakat.ini

• favicon - favicon.ico

• Flakes - flake.lock, flake.nix

• flintci - .flintci.yml

• garden - garden.yaml

• gherkin - .gherkin-lintrc

• git - .git, .gitignore, .gitattributes, .gitmodules, .mailmap, .githooks, .git-hooks

• gitbook - .gitbook.yaml

• gitpod - .gitpod.yml, gitpod.code-workspace, .gitpod.dockerfile, .gitpod.Dockerfile

• github - .github

• gitlab - .gitlab-ci.yml

• gulp - gulpfile.js, gulpfile.babel.js

• grumphp - grumphp.yml.dist, grumphp.yml, grumphp.dist.yml

• gush - .gush.yml

• gruntjs - Gruntfile.js, gruntfile.js

• humbug - humbug.json.dist, humbug.json

• infection - infection.yml, .infection.yml, infection.json.dist, infection.json

• insight - .sensiolabs.yml, .symfony.insight.yaml

• jekyll - _config.yml, _config.toml

• jest - jest.config.js

• jetbrains - .idea

• jshint - .jshintrc, .jshintignore

176 Chapter 8. Library & Framework Support

https://www.nongnu.org/cvs/
https://www.cypress.io/
https://github.com/qossmic/deptrac
https://direnv.net/
https://github.com/malukenho/docheader
http://www.docker.com/
https://github.com/symfony/dotenv
https://www.doxygen.nl/index.html
https://github.com/dzuelke/Docblox.git
http://docs.drone.io/
https://www.drupal.org/project/drupalci
https://www.drupal.org/project/drush
https://editorconfig.org/
http://eslint.org/
https://www.exakat.io/
https://en.wikipedia.org/wiki/Favicon
https://nixos.wiki/wiki/Flakes
https://flintci.io/
https://garden.io/
https://cucumber.io/docs/gherkin/
https://git-scm.com/
https://www.gitbook.com/
https://www.gitpod.io/
https://www.github.com/
https://www.gitlab.com/
http://gulpjs.com/
https://github.com/phpro/grumphp
https://github.com/gushphp/gush
https://gruntjs.com/
https://github.com/humbug/box.git
https://infection.github.io/
https://insight.sensiolabs.com/
https://jekyllrb.com/
https://jestjs.io/
https://www.jetbrains.com/phpstorm/
http://jshint.com/

Exakat Documentation, Release 1

• Laravel Mix - mix-manifest.json

• karma - ./karma.conf.js, ./karma.conf.coffee, ./karma.conf.ts, karma.conf.js

• lando - .lando.yml

• lerna - lerna.json

• mercurial - .hg, .hgtags, .hgignore, .hgeol

• Makefile - Makefile

• mkdocs - mkdocs.yml

• npm - package.json, .npmignore, .npmrc, package-lock.json

• nvm - .nvmrc

• openshift - .openshift

• pdepend - pdepend.xml, pdepend.xml.dist

• phan - .phan

• pharcc - .pharcc.yml

• phalcon - .phalcon

• phpbench - phpbench.json, phpbench.json.dist

• phpci - phpci.yml

• php-cs-fixer - .php-cs-fixer.php, .php-cs-fixer.dist.php

• Phpdocumentor - .phpdoc.xml, phpdoc.dist.xml, phpdoc.xml.dist

• phpdox - phpdox.xml.dist, phpdox.xml

• phive - phive.xml

• pint - pint.json

• phanalist - phanalist.yaml

• phinx - phinx.yml

• phpformatter - .formatter.yml

• phplint - .phplint.yml

• phpmetrics - .phpmetrics.yml.dist

• phpsa - .phpsa.yml

• phpspec - phpspec.yml, .phpspec, phpspec.yml.dist

• phpstan - phpstan.neon, .phpstan.neon, phpstan.neon.dist, phpstan-baseline.neon, phpstan.tests.neon.dist, php-
stan.dist.neon

• phpswitch - .phpswitch.yml

• PHPMD - phpmd.xml, phpmd.xml.dist, phpmd_ruleset.xml

• PHPstorm - .phpstorm.meta.php

• PHPUnit - phpunit.xml.dist, phpunit.xml, phpunit.xml.legacy, phpunit.dist.xml, phpunit-unit.xml

• postcss - postcss.config.js

• prettier - .prettierrc, .prettierignore, .prettierrc.json, .prettierrc.js

8.3. External Services Support 177

https://laravel-mix.com/docs/6.0/versioning
https://karma-runner.github.io/latest/index.html
https://lando.dev/
https://lerna.js.org/
https://www.mercurial-scm.org/
https://www.gnu.org/software/make/manual/make.html
http://www.mkdocs.org
https://www.npmjs.com/
https://github.com/nvm-sh/nvm
https://www.openshift.com/
https://github.com/pdepend/pdepend
https://github.com/etsy/phan
https://github.com/cbednarski/pharcc
https://phalconphp.com/
https://github.com/phpbench/phpbench
https://www.phptesting.org/
https://github.com/PHP-CS-Fixer/PHP-CS-Fixer
https://www.phpdoc.org/
https://github.com/theseer/phpdox
https://phar.io/
https://laravel.com/docs/10.x/pint
https://github.com/denzyldick/phanalist?tab=readme-ov-file
https://phinx.org/
https://github.com/mmoreram/php-formatter
https://github.com/overtrue/phplint
http://www.phpmetrics.org/
https://github.com/ovr/phpsa
http://www.phpspec.net/en/latest/
https://github.com/phpstan
https://github.com/jubianchi/phpswitch
https://phpmd.org/
https://www.jetbrains.com/phpstorm/
https://www.phpunit.de/
https://github.com/postcss/postcss
https://prettier.io/

Exakat Documentation, Release 1

• psalm - psalm.xml, psalm-baseline.xml, psalm.xml.dist

• puppet - .puppet

• qodana - qodana.yaml

• readthedocs - .readthedocs.yml, .readthedocs.yaml

• renovate - renovate.json

• rmt - .rmt.yml

• robo - RoboFile.php, robo.yml.dist

• sass-lint - .sass-link.yml

• scrutinizer - .scrutinizer.yml

• semantic versioning - .semver

• shifter - .shifter.json

• Sonar - sonar-project.properties

• Snyk - .snyk

• SPIP - paquet.xml

• stickler - .stickler.yml

• storyplayer - storyplayer.json.dist

• styleci - .styleci.yml

• stylelint - .stylelintrc, .stylelintignore, .stylelintrc.json, stylelint.config.js

• sublimelinter - .csslintrc

• supervisor - supervisor.conf

• symfony - symfony.lock

• svn - svn.revision, .svn, .svnignore

• tailwind - tailwind.config.js, tailwind.js

• transifex - .tx

• typescript - tsconfig.json

• Robots.txt - robots.txt

• travis - .travis.yml, .env.travis, .travis, .travis.php.ini, .travis.coverage.sh, .travis.ini, travis.php.ini,
.travis.install.sh

• varci - .varci, .varci.yml

• Vagrant - Vagrantfile

• vite - vite.config.js

• visualstudio - .vscode

• vue - vue.config.js

• webpack - webpack.mix.js, webpack.config.js, webpack.ssr.mix.js

• yarn - yarn.lock, .yarnclean

• yamllint - .yamllint.yaml

178 Chapter 8. Library & Framework Support

https://getpsalm.org/
https://puppet.com/
https://www.jetbrains.com/qodana/
https://about.readthedocs.com/
https://www.renovatebot.com/
https://github.com/liip/RMT
https://robo.li/
https://github.com/sasstools/sass-lint
https://scrutinizer-ci.com/
http://semver.org/
https://getshifter.io/
https://www.sonarsource.com/
https://snyk.io/
https://www.spip.net/
https://stickler-ci.com/docs
https://datasift.github.io/storyplayer/
https://styleci.io/
https://stylelint.io/
http://www.sublimelinter.com/en/latest/
http://supervisord.org/
https://symfony.com/
https://subversion.apache.org/
https://tailwindcss.com/
https://www.transifex.com/
https://www.typescriptlang.org/
http://www.robotstxt.org/
https://travis-ci.org/
https://var.ci/
https://www.vagrantup.com/
https://vitejs.dev/
https://code.visualstudio.com/
https://vuejs.org/
https://webpack.js.org/
https://yarnpkg.com/lang/en/
https://github.com/adrienverge/yamllint

Exakat Documentation, Release 1

• Zend_Tool - zfproject.xml

8.4 Supported PHP Extensions

PHP extensions are used to check for structures usage (classes, interfaces, etc.), to identify dependencies and directives.

PHP extensions are described with the list of structures they define : functions, classes, constants, traits, variables,
interfaces, namespaces, and directives.

• ext/amqp

• ext/apache

• ext/apc

• ext/apcu

• ext/array

• ext/php-ast

• ext/bcmath

• ext/bzip2

• ext/calendar

• ext/cmark

• ext/com

• ext/crypto

• ext/CSV

• ext/ctype

• ext/curl

• ext/date

• ext/db2

• ext/dba

• ext/decimal

• ext/dio

• ext/dom

• ext/ds

• ext/eaccelerator

• ext/eio

• ext/enchant

• ext/ev

• ext/event

• Excimer

• ext/exif

• ext/expect

8.4. Supported PHP Extensions 179

https://framework.zend.com/
https://github.com/alanxz/rabbitmq-c
http://docs.php.net/manual/en/book.ds.php
http://software.schmorp.de/pkg/libeio.html
https://www.php.net/manual/en/book.enchant.php

Exakat Documentation, Release 1

• ext/fam

• ext/fann

• ext/ffi

• ext/file

• ext/fileinfo

• ext/filter

• ext/fpm

• ext/ftp

• ext/gd

• ext/gearman

• ext/gender

• ext/geoip

• Geospatial

• ext/gettext

• ext/gmagick

• ext/gmp

• ext/gnupgp

• ext/grpc

• ext/hash

• ext/hrtime

• ext/pecl_http

• ext/ibase

• Ice framework

• ext/iconv

• ext/igbinary

• ext/imagick

• ext/imap

• ext/info

• ext/inotify

• ext/intl

• ext/json

• ext/judy

• ext/ldap

• ext/leveldb

• ext/libsodium

• ext/libxml

180 Chapter 8. Library & Framework Support

http://oss.sgi.com/projects/fam/
http://www.faqs.org/rfcs/rfc959
http://site.icu-project.org/
http://www.faqs.org/rfcs/rfc7159
http://judy.sourceforge.net/

Exakat Documentation, Release 1

• ext/lua

• ext/lzf

• ext/mail

• ext/mailparse

• ext/math

• ext/mbstring

• ext/mcrypt

• ext/memcache

• ext/memcached

• ext/mongo

• ext/mongodb

• ext/msgpack

• ext/mssql

• ext/mysql

• ext/mysqli

• ext/ncurses

• ext/newt

• ext/nsapi

• ext/ob

• ext/oci8

• ext/odbc

• ext/opcache

• ext/opencensus

• ext/openssl

• ext/parle

• ext/password

• ext/pcntl

• ext/pcov

• ext/pcre

• ext/pdo

• ext/pgsql

• ext/phalcon

• ext/phar

• ext/pkcs11

• ext/posix

• ext/protobuf

8.4. Supported PHP Extensions 181

http://www.faqs.org/rfcs/rfc822.html
https://www.php.net/mongo
https://github.com/mongodb/mongo-c-driver
https://docs.phalconphp.com/en/latest/reference/tutorial.html

Exakat Documentation, Release 1

• ext/pspell

• ext/psr

• Random extension

• ext/rar

• ext/rdkafka

• ext/readline

• ext/redis

• ext/reflection

• ext/scrypt

• ext/sdl

• ext/seaslog

• ext/sem

• ext/session

• ext/shmop

• ext/simplexml

• ext/snmp

• ext/soap

• ext/sockets

• ext/sphinx

• ext/spl

• ext/spx

• ext/sqlite

• ext/sqlite3

• ext/sqlsrv

• ext/ssh2

• ext/standard

• ext/stats

• Stomp

• String

• ext/suhosin

• ext/svm

• Swoole

• Extensions/Exttaint

• ext/teds

• ext/tidy

• ext/tokenizer

182 Chapter 8. Library & Framework Support

https://www.php-fig.org/psr/psr-3
https://people.sc.fsu.edu/~jburkardt/c_src/cdflib/cdflib.html

Exakat Documentation, Release 1

• ext/tokyotyrant

• ext/trader

• ext/uopz

• ext/uuid

• ext/v8js

• ext/varnish

• ext/vips

• ext/wasm

• ext/wddx

• ext/weakref

• ext/xattr

• ext/xdebug

• ext/xdiff

• ext/xhprof

• ext/xml

• ext/xmlreader

• ext/xmlrpc

• ext/xmlwriter

• ext/xsl

• ext/xxtea

• ext/yaml

• Extensions yar

• ext/zend_monitor

• ext/zip

• ext/zlib

• ext/0mq

• ext/zookeeper

8.4. Supported PHP Extensions 183

https://bugs.chromium.org/p/v8/issues/list
http://www.yaml.org/

Exakat Documentation, Release 1

184 Chapter 8. Library & Framework Support

CHAPTER

NINE

CONFIGURATION

9.1 Summary

• Common Behavior

• Project Configuration

• In-code Configuration

• Commandline Configuration

• Specific analysis configurations

9.2 Common Behavior

9.2.1 General Philosophy

Exakat tries to avoid configuration as much as possible, so as to focus on working out of the box, rather than spend
time on pre-requisite.

As such, it probably does more work, but that may be dismissed later, at reading time.

More configuration options appear with the evolution of the engine.

9.2.2 Precedence

The exakat engine read directives from six places, with the following precedence :

1. The command line options

2. The .exakat.ini or .exakat.yaml file at the root of the code

3. The environment variables

4. The config.ini file in the project directory

5. The exakat.ini file in the config directory

6. The default values in the code

The precedence of the directives is the same as the list above : command line options always have highest priority,
config.ini files are in second, when command line are not available, and finally, the default values are read in the code.

Some of the directives are only available in the config.ini files, or at the engine level.

185

Exakat Documentation, Release 1

9.2.3 Common Options

All options are the same, whatever the command provided to exakat. -f always means files, and -q always means quick.

Any option that a command doesn’t understand is ignored.

Any option that is not recognized is ignored and reported (with visibility).

9.2.4 Option placements

This table show in which file the directive may be placed to be used. ‘exakat’ is the config/exakat.ini file, ‘project’ is
the projects/–name–/config.ini file, and ‘in-code’ is the .exakat.yaml/ini file, directly in the code.

name exakat project in-code rule
phpversion X X X
ignore_dirs X X X X
include_dirs X X X X
ignore_rules X X X
file_extensions X X X X
project_name X X X
project_description X X X
project_url X
project_vcs X
project_reports X X
project_rulesets X X
project_vcs X
project_packagist X
project_cobblers X X X
rulesets X

9.2.5 Option availability

This table shows which operation (audit, cobbler) is parametered by which directive.

name project / analyze cobble
phpversion X X
ignore_dirs X X
include_dirs X X
ignore_rules X X
file_extensions X X
project_reports X
project_rulesets X
project_vcs X
project_cobblers X

186 Chapter 9. Configuration

Exakat Documentation, Release 1

9.3 Project Configuration

Project configuration are were the project specific configuration are stored. For example, the project name, the ignored
directories or its external libraries are kept. Configurations only affect one project and not the others.

Project configuration file are called ‘config.ini’. They are located, one per project, in the ‘projects/<project
name>/config.ini’ file.

9.3.1 Available Options

Here are the currently available options in Exakat’s project configuration file : projects/<project name>/config.ini

phpversion

PHP Version with which to run the code analysis.

It may be one of : 8.2, 8.1, 8.0, 7.4, 7.3, 7.2, 7.1, 7.0, 5.6, 5.5, 5.4, 5.3, 5.2. Default is 8.0 or the CLI version used to
init the project. 8.2 is currently the development version. 5.* versions are available, but are less tested. phpversion it
is a string.

include_dirs

This is the list of files and dir to include in the project’s directory. It is chrooted in the project’s folder. Values provided
with a starting / are used as a path prefix.

Values without / are used as a substring, anywhere in the path. include_dirs are added AFTER ignore_dirs, so as to
partially ignore a folder, such as the vendor folder from composer. include_dirs is an array of string.

ignore_dirs

This is the list of files and dir to ignore in the project’s directory. It is chrooted in the project’s folder. Values provided
with a starting / are used as a path prefix. Values without / are used as a substring, anywhere in the path.

ignore_dirs is an array of string.

file_extensions

This is the list of file extensions that is considered as PHP scripts. All others are ignored. All files bearing those
extensions are subject to check, though they are scanned first for PHP tags before being analyzed. The extensions are
comma separated, without dot.

The default are : php, php3, inc, tpl, phtml, tmpl, phps, ctp file_extensions may be a comma-separated list of values as
a string, or an array.

9.3. Project Configuration 187

Exakat Documentation, Release 1

project_name

This is the project name, as it appears at the top left in the Ambassador report.

project_url

This is the repository URL for the project. It is used to get the source for the project.

project_vcs

This is the VCS used to fetch the project source.

project_description

This is the description of the project.

project_packagist

This is the packagist name for the code, when the code is fetched with composer.

9.4 In-code Configuration

In-code configuration is a configuration file that sits at the root of the code. When exakat finds it, it uses it for in-code
auditing.

• The file is .exakat.ini, and is a valid INI file. It has priority over the YAML version.

• The file is .exakat.yaml, and is a valid YAML file. .exakat.yml is also valid, but not recommended.

In case those files are not found, or valid, Exakat reverts to default values.

Unrecognized values are ignored.

9.4.1 Exakat in-code YAML example

project: exakat
project_name: exakat
project_rulesets:
- my_ruleset
- Security
project_report:
- Diplomat
file_extensions: php,php3,phtml
include_dirs:
- /

ignore_dirs:
- /tests
- /vendor
- /docs

(continues on next page)

188 Chapter 9. Configuration

Exakat Documentation, Release 1

(continued from previous page)

- /media
ignore_rules:
- Structures/AddZero

rulesets:
my_ruleset:

- Structures/AddZero
- Structures/MultiplyByOne

9.4.2 Exakat in-code INI example

project= exakat
project_name= exakat
project_rulesets[] = my_ruleset
project_rulesets[] = Security
project_report[] = Diplomat
file_extensions= php,php3,phtml
include_dirs[] = /
ignore_dirs[] = /tests
ignore_dirs[] = /vendor
ignore_dirs[] = /docs
ignore_dirs[] = /media
ignore_rules[] = Structures/AddZero

9.4.3 Exakat in-code skeleton

Copy-paste this YAML code into a file called .exakat.yaml, located at the root of your repository.

project: <project identifier>
project_name: "<project_name>"
project_rulesets:
- Analyze

file_extensions: php,php3,phtml
project_report:
- <list of reports to build>
- Ambassador

include_dirs:
- /

ignore_rules:
-

exclude_rules:
-

ignore_dirs:
- /tests
- /vendor
- /docs
- /media

Structures/AddZero:
php_extensions:
- php

(continues on next page)

9.4. In-code Configuration 189

Exakat Documentation, Release 1

(continued from previous page)

- php3
namespaces:
- \\ns

9.4.4 Exakat in project’s config.ini file

Copy-paste this YAML code into a file called .exakat.yaml, located at the root of your repository.

This configuration is for the Structures/AddZero rule. It ignores directories at the root, starting with a c; it applies the
rule only to files with tpl, php, php3 extensions and the namespaces \ns and \ns2.

[Structures/AddZero]
ignore_dirs = "/c";
file_extensions = "tpl,php,php3";
namespaces[] = "\\ns,"
namespaces[] = "\\ns2,"

9.4.5 Available Options

Here are the currently available options in Exakat’s project configuration file : projects/–project name–/config.ini.

When a value is ignored, it will be filled with the default value of the project, or the server. When defined, they replace
those default values.

include_dirs

This is the list of files and dir to include in the project’s directory. It is chrooted in the project’s folder. Values provided
with a starting / are used as a path prefix.

Values without / are used as a substring, anywhere in the path. include_dirs are added AFTER ignore_dirs, so as to
partially ignore a folder, such as the vendor folder from composer.

This an array of strings, which are dirnames or filenames.

ignore_dirs

This is the list of files and dir to ignore in the project’s directory. It is chrooted in the project’s folder. Values provided
with a starting / are used as a path prefix. Values without / are used as a substring, anywhere in the path.

This an array of strings, which are dirnames or filenames.

190 Chapter 9. Configuration

Exakat Documentation, Release 1

ignore_rules

The rules mentioned in this list are ignored when running the audit. Rules are ignored after loading the rulesets con-
figuration : as such, it is possible to ignore rules inside a ruleset, without ignoring the whole ruleset.

The rules in this list are Exakat’s short name : ignore_rules[] = “Structures/AddZero”

This an array of strings, which are all rules names

include_rules

There is no include_rules directive. Create a custom Ruleset, and include it with project_rulesets (see below).

This an array of strings, which are all rules names.

file_extensions

This is the list of file extensions that is considered as PHP scripts. All others are ignored. All files bearing those
extensions are subject to check, though they are scanned first for PHP tags before being analyzed. The extensions are
comma separated, without dot.

This an array of strings, which are all extension names, without the ‘.’ dot.

project_name

This is the project name, as it appears at the top left in the Ambassador report.

This is a string.

project_url

This is the repository URL for the project. It is used to get the source for the project.

project_vcs

This is the VCS used to fetch the project source.

This is a string.

project_description

This is the description of the project.

This is free text, used in reports.

9.4. In-code Configuration 191

Exakat Documentation, Release 1

project_description

This is the description of the project.

This is free text, used in reports.

project_packagist

This is the packagist name for the code, when the code is fetched with composer.

This is a single string.

project_rulesets

This is the list of default rules to run for this project.

This an array of strings, which are ruleset names.

project_reports

This is the list of default reports to run for this project.

This an array of strings, which are all reports names

rulesets

This is a list of custom ruleset, along with the ruleset names.

This directive is only available with YAML format.

This an array of hashes. The keys of the hashes are the custom rulsets, and their value is an array of rule short names.

9.5 Rule-level Configuration

There are configuration which are available for each rule. They are common and always available.

9.5.1 namespaces

The namespaces where this rule applies. Only results within the listed namespaces will be reported. All others are
omitted.

By défault, all namespaces are used.

Namespaces may be specified similarly to file paths : \ns, with the leading backslash, for absolute namespaces : then,
they are treated as prefixes. ns, without the leading backslash, for relative namespaces : then, they are treated as any
part of the namespace. It is possible to use * and ?, like for path in a file systems.

192 Chapter 9. Configuration

Exakat Documentation, Release 1

9.5.2 ignore_dirs

The folders where this rule applies. Only results within the listed folders will be reported. All others are omitted, unless
added with include_dirs.

By défault, all folders are used.

folders may be specified similarly to file paths : /ns, with the leading backslash, for absolute path : then, they are treated
as prefixes. ns, without the leading backslash, for relative folders : then, they are treated as any part of the path. It is
possible to use * and ?, like for path in a file systems.

9.5.3 include_dirs

The folders where this rule applies. Only results within the listed folders will be reported. All others are omitted, unless
added with include_dirs.

By défault, all folders are used.

folders may be specified similarly to file paths : /ns, with the leading backslash, for absolute path : then, they are treated
as prefixes. ns, without the leading backslash, for relative folders : then, they are treated as any part of the path. It is
possible to use * and ?, like for path in a file systems.

9.5.4 file_extensions

The file’s extensions where this rule applies. Only files with the listed extensions will be reported.

By default, all the configured extensions are used.

Note that this filter is applied after the file_extensions configuration is used to select the audited files in the repository.
So, this directive shall, at worse, only use extensions that are already applied.

9.5.5 Configuration in .yaml file

Copy-paste this YAML code into a file called .exakat.yaml, located at the root of your repository.

file_extensions: php,php3,phtml
project: <project short name>
project_name: <project name, as displayed in reports>
project_rulesets:
- <list of rulesets to apply>
- Analysis
file_extensions: php,php3,phtml
project_report:
- <list of reports to build>
- Ambassador
include_dirs:
- /

ignore_rules:
-

exclude_rules:
-

ignore_dirs:
- /tests
- /vendor

(continues on next page)

9.5. Rule-level Configuration 193

Exakat Documentation, Release 1

(continued from previous page)

- /docs
- /media

9.6 Commandline Configuration

Commandline configurations are detailled with each command, in the _Commands section.

9.7 Specific analysis configurations

Some analyzer may be configured individually. Those parameters are then specific to one analyzer, and it only affects
their behavior.

Analyzers may be configured in the project/*/config.ini; they may also be configured globally in the config/exakat.ini
file.

@ Operator

• authorizedFunctions : noscream_functions.json

– Functions that are authorized to sports a @.

Abstract Away

• abstractableCalls :

– Functions that shouldn’t be called directly, unless in a method.

• abstractableClasses :

– Classes that shouldn’t be instantiated directly, unless in a method.

Abstract Class Constants

• minimum : 2

– Minimal number of constant found in children to report this as a potential abstract class.

Array() / [] Consistence

• array_ratio : 10

– Percentage of arrays in one of the syntaxes, to trigger the other syntax as a violation.

Cancel Common Method

• cancelThreshold : 75

– Minimal number of cancelled methods to suggest the cancellation of the parent.

Collect Vendor Structures

• pdffList : []

– List of vendors, their version and related PDFF. {‘vendor’:[‘wordpress.5.9.pdff’,’wordpress.5.8.pdff’]}

Could Be A Constant

• minOccurences : 1

– Minimal number of occurrences of the literal.

194 Chapter 9. Configuration

Exakat Documentation, Release 1

• skipString : ,.php

– List of omitted string values. For example, the empty string.

• skipInteger : 1,-0,-1

– List of omitted integer values. By default, 0, 1 and -1.

Could Be Enumeration

• minElements : 2

– Minimal number of elements to consider that a property may be an enumeration.

Could Be Parent Method

• minChildren : 4

– Minimal number of children using this method.

Could Make A Function

• centralizeThreshold : 8

– Minimal number of calls of the function with one common argument.

Could Use Existing Constant

• omittedValues :

– Comma-separated list of values that have to be ignored with this analysis. They replace the default
values of 0 and 1.

Custom Class Usage

• forbiddenClasses :

– List of classes to be avoided

Duplicate Literal

• minDuplicate : 15

– Minimal number of duplication before the literal is reported.

• ignoreList : 0,1,2,10

– Common values that have to be ignored. Comma separated list.

Fossilized Method

• fossilizationThreshold : 6

– Minimal number of overwriting methods to consider a method difficult to update.

Hardcoded Passwords

• passwordsKeys : password_keys.json

– List of array index and property names that shall be checked for potential secret key storages.

Immutable Signature

• maxOverwrite : 8

– Minimal number of method overwrite to consider that any refactor on the method signature is now
hard.

Injectable Version

• injectableVersion : injectableversion

9.7. Specific analysis configurations 195

Exakat Documentation, Release 1

– The FQN for the InjectableVersion attribute. By default, it is in the global space

• checkInjectableVersion : checkinjectableversion

– The FQN for the CheckInjectableVersion attribute. By default, it is in the global space

Keep Files Access Restricted

• filePrivileges : 0777

– List of forbidden file modes (comma separated). This should be a decimal value : 511 instead of 777.
The values will not be converted from octal to decimal.

Large Try Block

• tryBlockMaxSize : 5

– Maximal number of expressions in the try block.

Long Arguments

• codeTooLong : 100

– Minimum size of a functioncall or a methodcall to be considered too long.

Long Preparation For Throw

• preparationLineCount : 8

– Minimal number of lines before the throw.

Make Magic Concrete

• magicMemberUsage : 1

– Minimal number of magic member usage across the code, to trigger a concrete property.

Max Level Of Nesting

• maxLevel : 4

– Maximum level of nesting for control flow structures in one scope.

Memoize MagicCall

• minMagicCallsToGet : 2

– Minimal number of calls of a magic property to make it worth locally caching.

Method Usage

• searchFor :

– Method to report in the codes : use static syntax to describe them : a::foo(); abc::goo().

Missing Include

• constant_or_variable_name : 100

– Literal value to be used when including files. For example, by configuring
‘Files_MissingInclude[HOME_DIR] = /tmp/myDir/;’, then ‘include HOME_DIR . my_class.php;
will be actually be used as ‘/tmp/myDir/my_class.php’. Constants must be configured with their
correct case. Variable must be configured with their initial ‘$’. Configure any number of variable and
constant names.

Multiline Expressions

• min : 2

– Minimal number of lines in an expression to report.

196 Chapter 9. Configuration

Exakat Documentation, Release 1

Multiple Index Definition

• arrayMaxSize : 15000

– Maximal size of arrays to be analyzed. This will speed up analysis, and leave the largest arrays un-
touched.

Nested Ifthen

• nestedIfthen : 3

– Maximal number of acceptable nesting of if-then structures

Nested Ternary

• minNestedTernary : 2

– Minimal number of nested ternary to report.

New On Functioncall Or Identifier

• threshold : 10

– Maximal percentage for a syntax to be considered to be fixed.

PHP Keywords As Names

• reservedNames :

– Other reserved names : all in a string, comma separated.

• allowedNames :

– PHP reserved names that can be used in the code. All in a string, comma separated.

Prefix And Suffixes With Typehint

• prefixedType : prefixedType[‘is’] = ‘bool’;

prefixedType[‘has’] = ‘bool’; prefixedType[‘set’] = ‘void’; prefixedType[‘list’] = ‘array’;

• List of prefixes and their expected returntype

• suffixedType : prefixedType[‘list’] = ‘bool’;

prefixedType[‘int’] = ‘int’; prefixedType[‘string’] = ‘string’; prefixedType[‘name’] = ‘string’; prefixed-
Type[‘description’] = ‘string’; prefixedType[‘id’] = ‘int’; prefixedType[‘uuid’] = ‘Uuid’;

• List of suffixes and their expected returntype

Randomly Sorted Arrays

• maxSize : 5

– Maximal size of arrays to survey.

Should Use Prepared Statement

• queryMethod : query_methods.json

– Methods that call a query.

Too Complex Expression

• complexExpressionThreshold : 30

– Minimal number of operators in one expression to report.

Too Long A Block

• longBlock : 200

9.7. Specific analysis configurations 197

Exakat Documentation, Release 1

– Size of a block for it to be too long. A block is commanded by a for, foreach, while, do. . .while, if/then
else structure.

Too Many Array Dimensions

• maxDimensions : 3

– Number of valid dimensions in an array.

Too Many Children

• childrenClassCount : 15

– Threshold for too many children classes for one class.

Too Many Dereferencing

• tooManyDereferencing : 7

– Maximum number of dereferencing.

Too Many Finds

• minimumFinds : 5

– Minimal number of prefixed methods to report.

• findPrefix : find

– list of prefix to use when detecting the ‘find’. Comma-separated list, case insensitive.

• findSuffix :

– list of fix to use when detecting the ‘find’. Comma-separated list, case insensitive.

Too Many Injections

• injectionsCount : 5

– Threshold for too many injected parameters for one class.

Too Many Local Variables

• tooManyLocalVariableThreshold : 15

– Minimal number of variables in one function or method to report.

Too Many Native Calls

• nativeCallCounts : 3

– Number of native calls found inside another call.

Too Many Parameters

• parametersCount : 8

– Minimal number of parameters to report.

Too Many Stringed Elseif

• maxIf : 5

– Maximum number of allowed stringed if-then-elseif structure.

Too Much Indented

• indentationAverage : 1

– Minimal average of indentation in a method to report. Default is 1.0, which means that the method is
on average at one level of indentation or more.

198 Chapter 9. Configuration

Exakat Documentation, Release 1

• minimumSize : 3

– Minimal number of expressions in a method to apply this analysis.

Used Once Trait

• timeUsed : 2

– Maximal number of trait usage, before the trait is considered enough used.

Useless Argument

• maxUsageCount : 30

– Maximum count of function usage. Use this to limit the amount of processed arguments.

Variables With Long Names

• variableLength : 20

– Minimum size of a long variable name, including the initial $.

Wrong Locale

• otherLocales :

– Other accepted locales, comma separated

• maxPositions : 3

– Number of argument in setLocale() to be tried.

9.8 Check Install

Once the prerequisite are installed, it is advised to run to check if all is found :

php exakat.phar doctor

After this run, you may edit ‘config/config.ini’ to change some of the default values. Most of the time, the default
values will be OK for a quick start.

9.8. Check Install 199

Exakat Documentation, Release 1

200 Chapter 9. Configuration

CHAPTER

TEN

SCOPING ANALYSIS

10.1 Summary

• scoping files

• scoping rules

• scoping reports

10.2 Scoping files

ignore_dirs and include_dirs are the option used to select files within a folder. Here are some tips to choose

• From the full list of files, ignore_dirs[] is applied, then include_dirs is applied. The remaining list is processed.

• ignore one file : ignore_dirs[] = “/path/to/file.php”

• ignore one dir : ignore_dirs[] = “/path/to/dir/”

• ignore siblings but include one dir : ignore_dirs[] = “/path/to/parent/”; include_dirs[] = “/path/to/parent/dir/”

• ignore every name containing ‘test’ : ignore_dirs[] = “test”;

• only include one dir (and exclude the rest): include_dirs[] = “/path/to/dir/”;

• omitting include_dirs defaults to “include_dirs[] = “”

• omitting ignore_dirs defaults to “ignore_dirs[] = “”

• including or ignoring files multiple times only has effect once

include_dirs has priority over the config.cache configuration file. If a folder has been marked for exclusion in the
config.cache file, it may be forced to be included by configuring its value with include_dirs in the config.ini file.

10.3 Scoping rules

to be completed

201

Exakat Documentation, Release 1

10.4 Scoping reports

Exakat builds a list of analysis to run, based on two directives : project_reports and projects_themes. Both are list of
rulesets. Unknown rulesets are omitted.

project_reports makes sure you can extract those reports, while projects_themes allow you to build reports a la carte
later, and avoid running the whole audit again.

10.4.1 Required rulesets

First, analysis are very numerous, and it is very tedious to sort them by hand. Exakat only handles ‘themes’ which are
groups of analysis. There are several list of rulesets available by default, and it is possible to customize those lists.

When using the projects_themes directive, you can configure which rulesets must be processed by exakat, each time a
‘project’ command is run. Those rulesets are always run.

10.4.2 Report-needed rulesets

Reports are build based on results found during the auditing phase. Some reports, like ‘Ambassador’ or ‘Drillinstructor’
needs the results of specific rulesets. Others, like ‘Text’ or ‘Json’ build reports at the last moment.

As such, exakat uses the project_reports directive to collect the list of necessary rulesets, and add them to the
projects_themes results.

10.4.3 Late reports

It is possible de extract a report, even if the configuration has not been explicitly set for it.

For example, it is possible to build the Owasp report after telling exakat to build a ‘Ambassador’ report, as Ambassador
includes all the analysis needed for Owasp. On the other hand, the contrary is not true : one can’t get the Ambassador
report after running exakat for the Owasp report, as Owasp only covers the security rulesets, and Ambassador requires
other rulesets.

10.4.4 Recommendations

• The ‘Ambassador’ report has all the classic rulesets, it’s the most comprehensive choice.

• To collect everything possible, use the ruleset ‘All’. It’s also the longest-running ruleset of all.

• To get one report, simply configure project_report with that report.

• You may configure several rulesets, like ‘Security’, ‘Suggestions’, ‘CompatibilityPHP73’, and later extract inde-
pendant results with the ‘Text’ or ‘Json’ format.

• If you just want one compulsory report and two optional reports (total of three), simply configure all of them with
project_report. It’s better to produce extra reports, than run again a whole audit to collect missing informations.

• It is possible to configure customized rulesets, and use them in project_rulesets

• Excluding one analyzer is not supported. Use custom rulesets to build a new one instead.

202 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

10.4.5 Example

project_reports[] = 'Drillinstructor';
project_reports[] = 'Owasp';

project_themes[] = 'Security';
project_themes[] = 'Suggestions';

With that configuration, the Drillinstructor and the Owasp report are created automatically when running ‘project’. Use
the following command to get the specific rulesets ;

php exakat.phar report -p <project> -format Text -T Security -v

10.5 Predefined config files

45 rulesets detailled here :

10.5.1 All

All for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[All]
analyzer[] = "Arrays/AmbiguousKeys";
analyzer[] = "Arrays/AppendAndAssignArrays";
analyzer[] = "Arrays/ArrayBracketConsistence";
analyzer[] = "Arrays/ArrayNSUsage";
analyzer[] = "Arrays/Arrayindex";
analyzer[] = "Arrays/EmptyFinal";
analyzer[] = "Arrays/EmptySlots";
analyzer[] = "Arrays/FloatConversionAsIndex";
analyzer[] = "Arrays/GettingLastElement";
analyzer[] = "Arrays/MassCreation";
analyzer[] = "Arrays/MistakenConcatenation";
analyzer[] = "Arrays/MixedKeys";
analyzer[] = "Arrays/Multidimensional";
analyzer[] = "Arrays/MultipleIdenticalKeys";
analyzer[] = "Arrays/NegativeStart";
analyzer[] = "Arrays/NoSpreadForHash";
analyzer[] = "Arrays/NonConstantArray";
analyzer[] = "Arrays/NullBoolean";
analyzer[] = "Arrays/Phparrayindex";
analyzer[] = "Arrays/RandomlySortedLiterals";
analyzer[] = "Arrays/ShouldPreprocess";
analyzer[] = "Arrays/SliceFirst";
analyzer[] = "Arrays/StringInitialization";
analyzer[] = "Arrays/TooManyDimensions";
analyzer[] = "Arrays/WeakType";
analyzer[] = "Arrays/WeirdIndex";

(continues on next page)

10.5. Predefined config files 203

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Arrays/WithCallback";
analyzer[] = "Attributes/Deprecated";
analyzer[] = "Attributes/Friend";
analyzer[] = "Attributes/InjectableVersion";
analyzer[] = "Attributes/MissingAttributeAttribute";
analyzer[] = "Attributes/ModifyImmutable";
analyzer[] = "Attributes/NestedAttributes";
analyzer[] = "Attributes/NoNamedArguments";
analyzer[] = "Attributes/Override";
analyzer[] = "Attributes/PhpNativeAttributes";
analyzer[] = "Attributes/UsingDeprecated";
analyzer[] = "Classes/AbstractConstants";
analyzer[] = "Classes/AbstractOrImplements";
analyzer[] = "Classes/AbstractStatic";
analyzer[] = "Classes/Abstractclass";
analyzer[] = "Classes/Abstractmethods";
analyzer[] = "Classes/AccessPrivate";
analyzer[] = "Classes/AccessProtected";
analyzer[] = "Classes/AmbiguousStatic";
analyzer[] = "Classes/AmbiguousVisibilities";
analyzer[] = "Classes/Anonymous";
analyzer[] = "Classes/AvoidOptionArrays";
analyzer[] = "Classes/AvoidOptionalProperties";
analyzer[] = "Classes/AvoidUsing";
analyzer[] = "Classes/CancelCommonMethod";
analyzer[] = "Classes/CannotBeReadonly";
analyzer[] = "Classes/CantExtendFinal";
analyzer[] = "Classes/CantInheritAbstractMethod";
analyzer[] = "Classes/CantInstantiateClass";
analyzer[] = "Classes/CantInstantiateNonClass";
analyzer[] = "Classes/CantOverwriteFinalConstant";
analyzer[] = "Classes/CantOverwriteFinalMethod";
analyzer[] = "Classes/CheckAfterNullSafeOperator";
analyzer[] = "Classes/CheckOnCallUsage";
analyzer[] = "Classes/ChecksPropertyExistence";
analyzer[] = "Classes/ChildRemoveTypehint";
analyzer[] = "Classes/CitSameName";
analyzer[] = "Classes/ClassAliasUsage";
analyzer[] = "Classes/ClassInvasion";
analyzer[] = "Classes/ClassOverreach";
analyzer[] = "Classes/ClassUsage";
analyzer[] = "Classes/Classnames";
analyzer[] = "Classes/CloneWithNonObject";
analyzer[] = "Classes/CloningUsage";
analyzer[] = "Classes/ConstVisibilityUsage";
analyzer[] = "Classes/ConstantClass";
analyzer[] = "Classes/ConstantDefinition";
analyzer[] = "Classes/ConstantUsedBelow";
analyzer[] = "Classes/Constructor";
analyzer[] = "Classes/CouldBeAbstractClass";
analyzer[] = "Classes/CouldBeAbstractMethod";
analyzer[] = "Classes/CouldBeClassConstant";

(continues on next page)

204 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Classes/CouldBeFinal";
analyzer[] = "Classes/CouldBeIterable";
analyzer[] = "Classes/CouldBeParentMethod";
analyzer[] = "Classes/CouldBePrivate";
analyzer[] = "Classes/CouldBePrivateConstante";
analyzer[] = "Classes/CouldBePrivateMethod";
analyzer[] = "Classes/CouldBeProtectedConstant";
analyzer[] = "Classes/CouldBeProtectedMethod";
analyzer[] = "Classes/CouldBeProtectedProperty";
analyzer[] = "Classes/CouldBeReadonly";
analyzer[] = "Classes/CouldBeReadonlyProperty";
analyzer[] = "Classes/CouldBeStatic";
analyzer[] = "Classes/CouldBeStringable";
analyzer[] = "Classes/CouldInjectParam";
analyzer[] = "Classes/CouldSetPropertyDefault";
analyzer[] = "Classes/CouldUseClassOperator";
analyzer[] = "Classes/CyclicReferences";
analyzer[] = "Classes/DefinedConstants";
analyzer[] = "Classes/DefinedParentMP";
analyzer[] = "Classes/DefinedProperty";
analyzer[] = "Classes/DefinedStaticMP";
analyzer[] = "Classes/DemeterLaw";
analyzer[] = "Classes/DependantAbstractClass";
analyzer[] = "Classes/DifferentArgumentCounts";
analyzer[] = "Classes/DirectCallToMagicMethod";
analyzer[] = "Classes/DisconnectedClasses";
analyzer[] = "Classes/DontSendThisInConstructor";
analyzer[] = "Classes/DontUnsetProperties";
analyzer[] = "Classes/DynamicClass";
analyzer[] = "Classes/DynamicConstantCall";
analyzer[] = "Classes/DynamicMethodCall";
analyzer[] = "Classes/DynamicNew";
analyzer[] = "Classes/DynamicPropertyCall";
analyzer[] = "Classes/DynamicSelfCalls";
analyzer[] = "Classes/EmptyClass";
analyzer[] = "Classes/ExportProperty";
analyzer[] = "Classes/ExtendsStdclass";
analyzer[] = "Classes/FinalByOcramius";
analyzer[] = "Classes/FinalPrivate";
analyzer[] = "Classes/Finalclass";
analyzer[] = "Classes/Finalmethod";
analyzer[] = "Classes/FossilizedMethod";
analyzer[] = "Classes/HasFluentInterface";
analyzer[] = "Classes/HasMagicProperty";
analyzer[] = "Classes/HiddenNullable";
analyzer[] = "Classes/IdenticalMethods";
analyzer[] = "Classes/ImmutableSignature";
analyzer[] = "Classes/ImplementIsForInterface";
analyzer[] = "Classes/ImplementedMethodsArePublic";
analyzer[] = "Classes/IncompatibleConstructor";
analyzer[] = "Classes/IncompatibleSignature";
analyzer[] = "Classes/IncompatibleSignature74";

(continues on next page)

10.5. Predefined config files 205

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Classes/InheritedPropertyMustMatch";
analyzer[] = "Classes/InstantiatingAbstractClass";
analyzer[] = "Classes/InsufficientPropertyTypehint";
analyzer[] = "Classes/IntegerAsProperty";
analyzer[] = "Classes/IsExtClass";
analyzer[] = "Classes/IsInterfaceMethod";
analyzer[] = "Classes/IsNotFamily";
analyzer[] = "Classes/IsUpperFamily";
analyzer[] = "Classes/IsaMagicProperty";
analyzer[] = "Classes/LocallyUnusedProperty";
analyzer[] = "Classes/LocallyUsedProperty";
analyzer[] = "Classes/LoweredAccessLevel";
analyzer[] = "Classes/MagicMethod";
analyzer[] = "Classes/MagicMethodReturntypes";
analyzer[] = "Classes/MagicProperties";
analyzer[] = "Classes/MakeDefault";
analyzer[] = "Classes/MakeGlobalAProperty";
analyzer[] = "Classes/MakeMagicConcrete";
analyzer[] = "Classes/MethodIsOverwritten";
analyzer[] = "Classes/MethodPropertyConfusion";
analyzer[] = "Classes/MethodSignatureMustBeCompatible";
analyzer[] = "Classes/MethodUsedBelow";
analyzer[] = "Classes/MismatchProperties";
analyzer[] = "Classes/MissingAbstractMethod";
analyzer[] = "Classes/MissingVisibility";
analyzer[] = "Classes/MultipleClassesInFile";
analyzer[] = "Classes/MultipleDeclarations";
analyzer[] = "Classes/MultiplePropertyDeclaration";
analyzer[] = "Classes/MultiplePropertyDeclarationOnOneLine";
analyzer[] = "Classes/MultipleTraitOrInterface";
analyzer[] = "Classes/MutualExtension";
analyzer[] = "Classes/NewDynamicConstantSyntax";
analyzer[] = "Classes/NewOnFunctioncallOrIdentifier";
analyzer[] = "Classes/NewThenCall";
analyzer[] = "Classes/NoMagicWithArray";
analyzer[] = "Classes/NoNullWithNullSafeOperator";
analyzer[] = "Classes/NoPSSOutsideClass";
analyzer[] = "Classes/NoParent";
analyzer[] = "Classes/NoPublicAccess";
analyzer[] = "Classes/NoReadonlyAssignationInGlobal";
analyzer[] = "Classes/NoSelfReferencingConstant";
analyzer[] = "Classes/NonNullableSetters";
analyzer[] = "Classes/NonPpp";
analyzer[] = "Classes/NonStaticMethodsCalledStatic";
analyzer[] = "Classes/NormalMethods";
analyzer[] = "Classes/NullOnNew";
analyzer[] = "Classes/OldStyleConstructor";
analyzer[] = "Classes/OldStyleVar";
analyzer[] = "Classes/OneObjectOperatorPerLine";
analyzer[] = "Classes/OnlyStaticMethods";
analyzer[] = "Classes/OrderOfDeclaration";
analyzer[] = "Classes/OverwrittenConst";

(continues on next page)

206 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Classes/PPPDeclarationStyle";
analyzer[] = "Classes/ParentFirst";
analyzer[] = "Classes/ParentIsNotStatic";
analyzer[] = "Classes/PromotedProperties";
analyzer[] = "Classes/PropertyCouldBeLocal";
analyzer[] = "Classes/PropertyDefinition";
analyzer[] = "Classes/PropertyInvasion";
analyzer[] = "Classes/PropertyMethodSameName";
analyzer[] = "Classes/PropertyNeverUsed";
analyzer[] = "Classes/PropertyUsedAbove";
analyzer[] = "Classes/PropertyUsedBelow";
analyzer[] = "Classes/PropertyUsedInOneMethodOnly";
analyzer[] = "Classes/PropertyUsedInternally";
analyzer[] = "Classes/PssWithoutClass";
analyzer[] = "Classes/RaisedAccessLevel";
analyzer[] = "Classes/ReadonlyUsage";
analyzer[] = "Classes/RedefinedConstants";
analyzer[] = "Classes/RedefinedDefault";
analyzer[] = "Classes/RedefinedMethods";
analyzer[] = "Classes/RedefinedPrivateProperty";
analyzer[] = "Classes/RedefinedProperty";
analyzer[] = "Classes/RewroteFinalClassConstant";
analyzer[] = "Classes/SameNameAsFile";
analyzer[] = "Classes/ScalarOrObjectProperty";
analyzer[] = "Classes/ShouldDeepClone";
analyzer[] = "Classes/ShouldHaveDestructor";
analyzer[] = "Classes/ShouldUseSelf";
analyzer[] = "Classes/ShouldUseThis";
analyzer[] = "Classes/StaticCannotCallNonStatic";
analyzer[] = "Classes/StaticContainsThis";
analyzer[] = "Classes/StaticMethods";
analyzer[] = "Classes/StaticMethodsCalledFromObject";
analyzer[] = "Classes/StaticProperties";
analyzer[] = "Classes/StrangeName";
analyzer[] = "Classes/SwappedArguments";
analyzer[] = "Classes/TestClass";
analyzer[] = "Classes/ThisIsForClasses";
analyzer[] = "Classes/ThisIsNotAnArray";
analyzer[] = "Classes/ThisIsNotForStatic";
analyzer[] = "Classes/ThrowInDestruct";
analyzer[] = "Classes/TooManyChildren";
analyzer[] = "Classes/TooManyDereferencing";
analyzer[] = "Classes/TooManyFinds";
analyzer[] = "Classes/TooManyInjections";
analyzer[] = "Classes/TypedClassConstants";
analyzer[] = "Classes/TypehintCyclicDependencies";
analyzer[] = "Classes/UndeclaredStaticProperty";
analyzer[] = "Classes/UndefinedClasses";
analyzer[] = "Classes/UndefinedConstants";
analyzer[] = "Classes/UndefinedMethod";
analyzer[] = "Classes/UndefinedParentMP";
analyzer[] = "Classes/UndefinedProperty";

(continues on next page)

10.5. Predefined config files 207

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Classes/UndefinedStaticMP";
analyzer[] = "Classes/UndefinedStaticclass";
analyzer[] = "Classes/UnfinishedObject";
analyzer[] = "Classes/UninitedProperty";
analyzer[] = "Classes/UnitializedProperties";
analyzer[] = "Classes/UnreachableConstant";
analyzer[] = "Classes/UnreachableMethod";
analyzer[] = "Classes/UnresolvedCatch";
analyzer[] = "Classes/UnresolvedClasses";
analyzer[] = "Classes/UnresolvedInstanceof";
analyzer[] = "Classes/UntypedNoDefaultProperties";
analyzer[] = "Classes/UnusedClass";
analyzer[] = "Classes/UnusedConstant";
analyzer[] = "Classes/UnusedMethods";
analyzer[] = "Classes/UnusedPrivateMethod";
analyzer[] = "Classes/UnusedPrivateProperty";
analyzer[] = "Classes/UnusedProtectedMethods";
analyzer[] = "Classes/UnusedPublicMethod";
analyzer[] = "Classes/UseClassOperator";
analyzer[] = "Classes/UseInstanceof";
analyzer[] = "Classes/UseThis";
analyzer[] = "Classes/UsedClass";
analyzer[] = "Classes/UsedMethods";
analyzer[] = "Classes/UsedOnceProperty";
analyzer[] = "Classes/UsedPrivateMethod";
analyzer[] = "Classes/UsedPrivateProperty";
analyzer[] = "Classes/UsedProtectedMethod";
analyzer[] = "Classes/UselessAbstract";
analyzer[] = "Classes/UselessAssignationOfPromotedProperty";
analyzer[] = "Classes/UselessConstantOverwrite";
analyzer[] = "Classes/UselessConstructor";
analyzer[] = "Classes/UselessFinal";
analyzer[] = "Classes/UselessMethod";
analyzer[] = "Classes/UselessNullSafeOperator";
analyzer[] = "Classes/UselessTypehint";
analyzer[] = "Classes/UsingThisOutsideAClass";
analyzer[] = "Classes/VariableClasses";
analyzer[] = "Classes/WeakType";
analyzer[] = "Classes/WrongCase";
analyzer[] = "Classes/WrongName";
analyzer[] = "Classes/WrongTypedPropertyInit";
analyzer[] = "Classes/toStringPss";
analyzer[] = "Common/InterfaceUsage";
analyzer[] = "Complete/CreateCompactVariables";
analyzer[] = "Complete/CreateDefaultValues";
analyzer[] = "Complete/CreateForeachDefault";
analyzer[] = "Complete/CreateMagicMethod";
analyzer[] = "Complete/CreateMagicProperty";
analyzer[] = "Complete/EnumCaseValues";
analyzer[] = "Complete/ExtendedTypehints";
analyzer[] = "Complete/FollowClosureDefinition";
analyzer[] = "Complete/GlobalDefinitions";

(continues on next page)

208 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Complete/IsExtStructure";
analyzer[] = "Complete/IsPhpStructure";
analyzer[] = "Complete/IsStubStructure";
analyzer[] = "Complete/MakeAllStatics";
analyzer[] = "Complete/MakeClassConstantDefinition";
analyzer[] = "Complete/MakeClassMethodDefinition";
analyzer[] = "Complete/MakeFunctioncallWithReference";
analyzer[] = "Complete/OverwrittenConstants";
analyzer[] = "Complete/OverwrittenMethods";
analyzer[] = "Complete/OverwrittenProperties";
analyzer[] = "Complete/PhpExtStubPropertyMethod";
analyzer[] = "Complete/PhpNativeReference";
analyzer[] = "Complete/PropagateConstants";
analyzer[] = "Complete/ReturnTypehint";
analyzer[] = "Complete/SetArrayClassDefinition";
analyzer[] = "Complete/SetClassAliasDefinition";
analyzer[] = "Complete/SetClassMethodRemoteDefinition";
analyzer[] = "Complete/SetClassPropertyDefinitionWithTypehint";
analyzer[] = "Complete/SetClassRemoteDefinitionWithGlobal";
analyzer[] = "Complete/SetClassRemoteDefinitionWithInjection";
analyzer[] = "Complete/SetClassRemoteDefinitionWithLocalNew";
analyzer[] = "Complete/SetClassRemoteDefinitionWithParenthesis";
analyzer[] = "Complete/SetClassRemoteDefinitionWithReturnTypehint";
analyzer[] = "Complete/SetClassRemoteDefinitionWithTypehint";
analyzer[] = "Complete/SetCloneLink";
analyzer[] = "Complete/SetMethodFnp";
analyzer[] = "Complete/SetParentDefinition";
analyzer[] = "Complete/SolveTraitConstants";
analyzer[] = "Complete/SolveTraitMethods";
analyzer[] = "Complete/Superglobals";
analyzer[] = "Complete/VariableTypehint";
analyzer[] = "Composer/Autoload";
analyzer[] = "Composer/UseComposer";
analyzer[] = "Composer/UseComposerLock";
analyzer[] = "Constants/BadConstantnames";
analyzer[] = "Constants/CaseInsensitiveConstants";
analyzer[] = "Constants/ConditionedConstants";
analyzer[] = "Constants/ConstDefinePreference";
analyzer[] = "Constants/ConstRecommended";
analyzer[] = "Constants/ConstantStrangeNames";
analyzer[] = "Constants/ConstantUsage";
analyzer[] = "Constants/ConstantUsedOnce";
analyzer[] = "Constants/Constantnames";
analyzer[] = "Constants/CouldBeConstant";
analyzer[] = "Constants/CouldUseConstant";
analyzer[] = "Constants/CreatedOutsideItsNamespace";
analyzer[] = "Constants/CustomConstantUsage";
analyzer[] = "Constants/DefineInsensitivePreference";
analyzer[] = "Constants/DynamicCreation";
analyzer[] = "Constants/InconsistantCase";
analyzer[] = "Constants/InvalidName";
analyzer[] = "Constants/IsExtConstant";

(continues on next page)

10.5. Predefined config files 209

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Constants/IsGlobalConstant";
analyzer[] = "Constants/IsPhpConstant";
analyzer[] = "Constants/MagicConstantUsage";
analyzer[] = "Constants/MultipleConstantDefinition";
analyzer[] = "Constants/PhpConstantUsage";
analyzer[] = "Constants/RelayConstant";
analyzer[] = "Constants/StrangeName";
analyzer[] = "Constants/UndefinedConstants";
analyzer[] = "Constants/UnusedConstants";
analyzer[] = "Constants/VariableConstant";
analyzer[] = "Custom/MethodUsage";
analyzer[] = "Dump/ArgumentCountsPerCalls";
analyzer[] = "Dump/CallOrder";
analyzer[] = "Dump/ClassInjectionCount";
analyzer[] = "Dump/CollectAtomCounts";
analyzer[] = "Dump/CollectBlockSize";
analyzer[] = "Dump/CollectCalls";
analyzer[] = "Dump/CollectCatch";
analyzer[] = "Dump/CollectClassChanges";
analyzer[] = "Dump/CollectClassChildren";
analyzer[] = "Dump/CollectClassConstantCounts";
analyzer[] = "Dump/CollectClassDepth";
analyzer[] = "Dump/CollectClassInterfaceCounts";
analyzer[] = "Dump/CollectClassTraitsCounts";
analyzer[] = "Dump/CollectClassesDependencies";
analyzer[] = "Dump/CollectDefinitionsStats";
analyzer[] = "Dump/CollectDependencyExtension";
analyzer[] = "Dump/CollectFilesDependencies";
analyzer[] = "Dump/CollectForeachFavorite";
analyzer[] = "Dump/CollectGlobalVariables";
analyzer[] = "Dump/CollectGraphTriplets";
analyzer[] = "Dump/CollectLiterals";
analyzer[] = "Dump/CollectLocalVariableCounts";
analyzer[] = "Dump/CollectMbstringEncodings";
analyzer[] = "Dump/CollectMethodCounts";
analyzer[] = "Dump/CollectMethodsThrowingExceptions";
analyzer[] = "Dump/CollectNativeCallsPerExpressions";
analyzer[] = "Dump/CollectParameterCounts";
analyzer[] = "Dump/CollectParameterNames";
analyzer[] = "Dump/CollectPhpStructures";
analyzer[] = "Dump/CollectPropertyCounts";
analyzer[] = "Dump/CollectPropertyUsage";
analyzer[] = "Dump/CollectReadability";
analyzer[] = "Dump/CollectSetLocale";
analyzer[] = "Dump/CollectStructures";
analyzer[] = "Dump/CollectStubStructures";
analyzer[] = "Dump/CollectThrow";
analyzer[] = "Dump/CollectUseCounts";
analyzer[] = "Dump/CollectVariables";
analyzer[] = "Dump/CollectVendorStructures";
analyzer[] = "Dump/CollectsNames";
analyzer[] = "Dump/CombinedCalls";

(continues on next page)

210 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Dump/ConstantOrder";
analyzer[] = "Dump/CouldBeAConstant";
analyzer[] = "Dump/CyclomaticComplexity";
analyzer[] = "Dump/DereferencingLevels";
analyzer[] = "Dump/DumpComparedLiterals";
analyzer[] = "Dump/EnvironnementVariables";
analyzer[] = "Dump/FossilizedMethods";
analyzer[] = "Dump/Inclusions";
analyzer[] = "Dump/IndentationLevels";
analyzer[] = "Dump/NewOrder";
analyzer[] = "Dump/ParameterArgumentsLinks";
analyzer[] = "Dump/PublicReach";
analyzer[] = "Dump/TypehintingStats";
analyzer[] = "Dump/Typehintorder";
analyzer[] = "Enums/CouldBeEnum";
analyzer[] = "Enums/NoMagicMethod";
analyzer[] = "Enums/UndefinedEnumcase";
analyzer[] = "Enums/UnusedEnumCase";
analyzer[] = "Exceptions/AlreadyCaught";
analyzer[] = "Exceptions/CantThrow";
analyzer[] = "Exceptions/CatchE";
analyzer[] = "Exceptions/CatchUndefinedVariable";
analyzer[] = "Exceptions/CaughtButNotThrown";
analyzer[] = "Exceptions/CaughtExceptions";
analyzer[] = "Exceptions/ConvertedExceptions";
analyzer[] = "Exceptions/CouldDropVariable";
analyzer[] = "Exceptions/CouldUseTry";
analyzer[] = "Exceptions/DefinedExceptions";
analyzer[] = "Exceptions/ForgottenThrown";
analyzer[] = "Exceptions/IsPhpException";
analyzer[] = "Exceptions/LargeTryBlock";
analyzer[] = "Exceptions/LongPreparation";
analyzer[] = "Exceptions/MultipleCatch";
analyzer[] = "Exceptions/OverwriteException";
analyzer[] = "Exceptions/PossibleTypeError";
analyzer[] = "Exceptions/Rethrown";
analyzer[] = "Exceptions/SetChainingException";
analyzer[] = "Exceptions/ThrowFunctioncall";
analyzer[] = "Exceptions/ThrowRawExceptions";
analyzer[] = "Exceptions/ThrownExceptions";
analyzer[] = "Exceptions/TryNoCatch";
analyzer[] = "Exceptions/UncaughtExceptions";
analyzer[] = "Exceptions/Unthrown";
analyzer[] = "Exceptions/UnusedExceptionVariable";
analyzer[] = "Exceptions/UselessCatch";
analyzer[] = "Exceptions/UselessTry";
analyzer[] = "Extensions/Extamqp";
analyzer[] = "Extensions/Extapache";
analyzer[] = "Extensions/Extapc";
analyzer[] = "Extensions/Extapcu";
analyzer[] = "Extensions/Extarray";
analyzer[] = "Extensions/Extast";

(continues on next page)

10.5. Predefined config files 211

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Extensions/Extbcmath";
analyzer[] = "Extensions/Extbzip2";
analyzer[] = "Extensions/Extcalendar";
analyzer[] = "Extensions/Extcmark";
analyzer[] = "Extensions/Extcom";
analyzer[] = "Extensions/Extcrypto";
analyzer[] = "Extensions/Extcsv";
analyzer[] = "Extensions/Extctype";
analyzer[] = "Extensions/Extcurl";
analyzer[] = "Extensions/Extdate";
analyzer[] = "Extensions/Extdb2";
analyzer[] = "Extensions/Extdba";
analyzer[] = "Extensions/Extdecimal";
analyzer[] = "Extensions/Extdio";
analyzer[] = "Extensions/Extdom";
analyzer[] = "Extensions/Extds";
analyzer[] = "Extensions/Exteaccelerator";
analyzer[] = "Extensions/Exteio";
analyzer[] = "Extensions/Extenchant";
analyzer[] = "Extensions/Extev";
analyzer[] = "Extensions/Extevent";
analyzer[] = "Extensions/Extexcimer";
analyzer[] = "Extensions/Extexif";
analyzer[] = "Extensions/Extexpect";
analyzer[] = "Extensions/Extfam";
analyzer[] = "Extensions/Extfann";
analyzer[] = "Extensions/Extffi";
analyzer[] = "Extensions/Extfile";
analyzer[] = "Extensions/Extfileinfo";
analyzer[] = "Extensions/Extfilter";
analyzer[] = "Extensions/Extfpm";
analyzer[] = "Extensions/Extftp";
analyzer[] = "Extensions/Extgd";
analyzer[] = "Extensions/Extgearman";
analyzer[] = "Extensions/Extgender";
analyzer[] = "Extensions/Extgeoip";
analyzer[] = "Extensions/Extgeospatial";
analyzer[] = "Extensions/Extgettext";
analyzer[] = "Extensions/Extgmagick";
analyzer[] = "Extensions/Extgmp";
analyzer[] = "Extensions/Extgnupg";
analyzer[] = "Extensions/Extgrpc";
analyzer[] = "Extensions/Exthash";
analyzer[] = "Extensions/Exthrtime";
analyzer[] = "Extensions/Exthttp";
analyzer[] = "Extensions/Extibase";
analyzer[] = "Extensions/Extice";
analyzer[] = "Extensions/Exticonv";
analyzer[] = "Extensions/Extigbinary";
analyzer[] = "Extensions/Extimagick";
analyzer[] = "Extensions/Extimap";
analyzer[] = "Extensions/Extinfo";

(continues on next page)

212 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Extensions/Extinotify";
analyzer[] = "Extensions/Extintl";
analyzer[] = "Extensions/Extjson";
analyzer[] = "Extensions/Extjudy";
analyzer[] = "Extensions/Extldap";
analyzer[] = "Extensions/Extleveldb";
analyzer[] = "Extensions/Extlibsodium";
analyzer[] = "Extensions/Extlibxml";
analyzer[] = "Extensions/Extlua";
analyzer[] = "Extensions/Extlzf";
analyzer[] = "Extensions/Extmail";
analyzer[] = "Extensions/Extmailparse";
analyzer[] = "Extensions/Extmath";
analyzer[] = "Extensions/Extmbstring";
analyzer[] = "Extensions/Extmcrypt";
analyzer[] = "Extensions/Extmemcache";
analyzer[] = "Extensions/Extmemcached";
analyzer[] = "Extensions/Extmongo";
analyzer[] = "Extensions/Extmongodb";
analyzer[] = "Extensions/Extmsgpack";
analyzer[] = "Extensions/Extmssql";
analyzer[] = "Extensions/Extmysql";
analyzer[] = "Extensions/Extmysqli";
analyzer[] = "Extensions/Extncurses";
analyzer[] = "Extensions/Extnewt";
analyzer[] = "Extensions/Extnsapi";
analyzer[] = "Extensions/Extob";
analyzer[] = "Extensions/Extoci8";
analyzer[] = "Extensions/Extodbc";
analyzer[] = "Extensions/Extopcache";
analyzer[] = "Extensions/Extopencensus";
analyzer[] = "Extensions/Extopenssl";
analyzer[] = "Extensions/Extparle";
analyzer[] = "Extensions/Extpassword";
analyzer[] = "Extensions/Extpcntl";
analyzer[] = "Extensions/Extpcov";
analyzer[] = "Extensions/Extpcre";
analyzer[] = "Extensions/Extpdo";
analyzer[] = "Extensions/Extpgsql";
analyzer[] = "Extensions/Extphalcon";
analyzer[] = "Extensions/Extphar";
analyzer[] = "Extensions/Extpkcs11";
analyzer[] = "Extensions/Extposix";
analyzer[] = "Extensions/Extprotobuf";
analyzer[] = "Extensions/Extpspell";
analyzer[] = "Extensions/Extpsr";
analyzer[] = "Extensions/Extrandom";
analyzer[] = "Extensions/Extrar";
analyzer[] = "Extensions/Extrdkafka";
analyzer[] = "Extensions/Extreadline";
analyzer[] = "Extensions/Extredis";
analyzer[] = "Extensions/Extreflection";

(continues on next page)

10.5. Predefined config files 213

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Extensions/Extscrypt";
analyzer[] = "Extensions/Extsdl";
analyzer[] = "Extensions/Extseaslog";
analyzer[] = "Extensions/Extsem";
analyzer[] = "Extensions/Extsession";
analyzer[] = "Extensions/Extshmop";
analyzer[] = "Extensions/Extsimplexml";
analyzer[] = "Extensions/Extsnmp";
analyzer[] = "Extensions/Extsoap";
analyzer[] = "Extensions/Extsockets";
analyzer[] = "Extensions/Extsphinx";
analyzer[] = "Extensions/Extspl";
analyzer[] = "Extensions/Extspx";
analyzer[] = "Extensions/Extsqlite";
analyzer[] = "Extensions/Extsqlite3";
analyzer[] = "Extensions/Extsqlsrv";
analyzer[] = "Extensions/Extssh2";
analyzer[] = "Extensions/Extstandard";
analyzer[] = "Extensions/Extstats";
analyzer[] = "Extensions/Extstomp";
analyzer[] = "Extensions/Extstring";
analyzer[] = "Extensions/Extsuhosin";
analyzer[] = "Extensions/Extsvm";
analyzer[] = "Extensions/Extswoole";
analyzer[] = "Extensions/Exttaint";
analyzer[] = "Extensions/Extteds";
analyzer[] = "Extensions/Exttidy";
analyzer[] = "Extensions/Exttokenizer";
analyzer[] = "Extensions/Exttokyotyrant";
analyzer[] = "Extensions/Exttrader";
analyzer[] = "Extensions/Extuopz";
analyzer[] = "Extensions/Extuuid";
analyzer[] = "Extensions/Extv8js";
analyzer[] = "Extensions/Extvarnish";
analyzer[] = "Extensions/Extvips";
analyzer[] = "Extensions/Extwasm";
analyzer[] = "Extensions/Extwddx";
analyzer[] = "Extensions/Extweakref";
analyzer[] = "Extensions/Extxattr";
analyzer[] = "Extensions/Extxdebug";
analyzer[] = "Extensions/Extxdiff";
analyzer[] = "Extensions/Extxhprof";
analyzer[] = "Extensions/Extxml";
analyzer[] = "Extensions/Extxmlreader";
analyzer[] = "Extensions/Extxmlrpc";
analyzer[] = "Extensions/Extxmlwriter";
analyzer[] = "Extensions/Extxsl";
analyzer[] = "Extensions/Extxxtea";
analyzer[] = "Extensions/Extyaml";
analyzer[] = "Extensions/Extyar";
analyzer[] = "Extensions/Extzendmonitor";
analyzer[] = "Extensions/Extzip";

(continues on next page)

214 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Extensions/Extzlib";
analyzer[] = "Extensions/Extzmq";
analyzer[] = "Extensions/Extzookeeper";
analyzer[] = "Files/DefinitionsOnly";
analyzer[] = "Files/GlobalCodeOnly";
analyzer[] = "Files/InclusionWrongCase";
analyzer[] = "Files/IsCliScript";
analyzer[] = "Files/IsComponent";
analyzer[] = "Files/MissingInclude";
analyzer[] = "Files/NotDefinitionsOnly";
analyzer[] = "Files/Services";
analyzer[] = "Functions/AddDefaultValue";
analyzer[] = "Functions/AliasesUsage";
analyzer[] = "Functions/AvoidBooleanArgument";
analyzer[] = "Functions/BadTypehintRelay";
analyzer[] = "Functions/CallbackNeedsReturn";
analyzer[] = "Functions/CanCallGenerator";
analyzer[] = "Functions/CancelledParameter";
analyzer[] = "Functions/CannotUseStaticForClosure";
analyzer[] = "Functions/CantUse";
analyzer[] = "Functions/Closure2String";
analyzer[] = "Functions/Closures";
analyzer[] = "Functions/ConditionedFunctions";
analyzer[] = "Functions/CouldBeCallable";
analyzer[] = "Functions/CouldBeStaticClosure";
analyzer[] = "Functions/CouldCentralize";
analyzer[] = "Functions/CouldTypeWithArray";
analyzer[] = "Functions/CouldTypeWithBool";
analyzer[] = "Functions/CouldTypeWithInt";
analyzer[] = "Functions/CouldTypeWithIterable";
analyzer[] = "Functions/CouldTypeWithString";
analyzer[] = "Functions/CouldTypehint";
analyzer[] = "Functions/DeepDefinitions";
analyzer[] = "Functions/DeprecatedCallable";
analyzer[] = "Functions/DontUseVoid";
analyzer[] = "Functions/DuplicateNamedParameter";
analyzer[] = "Functions/DynamicCode";
analyzer[] = "Functions/Dynamiccall";
analyzer[] = "Functions/EmptyFunction";
analyzer[] = "Functions/ExceedingTypehint";
analyzer[] = "Functions/FallbackFunction";
analyzer[] = "Functions/FnArgumentVariableConfusion";
analyzer[] = "Functions/FunctionCalledWithOtherCase";
analyzer[] = "Functions/Functionnames";
analyzer[] = "Functions/FunctionsUsingReference";
analyzer[] = "Functions/GeneratorCannotReturn";
analyzer[] = "Functions/HardcodedPasswords";
analyzer[] = "Functions/HasFluentInterface";
analyzer[] = "Functions/HasNotFluentInterface";
analyzer[] = "Functions/Identity";
analyzer[] = "Functions/InsufficientTypehint";
analyzer[] = "Functions/IsExtFunction";

(continues on next page)

10.5. Predefined config files 215

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Functions/IsGenerator";
analyzer[] = "Functions/IsGlobal";
analyzer[] = "Functions/KillsApp";
analyzer[] = "Functions/LoopCalling";
analyzer[] = "Functions/MethodIsNotAnIf";
analyzer[] = "Functions/MismatchParameterAndType";
analyzer[] = "Functions/MismatchParameterName";
analyzer[] = "Functions/MismatchTypeAndDefault";
analyzer[] = "Functions/MismatchedDefaultArguments";
analyzer[] = "Functions/MismatchedTypehint";
analyzer[] = "Functions/MissingTypehint";
analyzer[] = "Functions/ModifyTypedParameter";
analyzer[] = "Functions/MultipleDeclarations";
analyzer[] = "Functions/MultipleIdenticalClosure";
analyzer[] = "Functions/MultipleReturn";
analyzer[] = "Functions/MultipleSameArguments";
analyzer[] = "Functions/MustReturn";
analyzer[] = "Functions/NeverUsedParameter";
analyzer[] = "Functions/NoBooleanAsDefault";
analyzer[] = "Functions/NoClassAsTypehint";
analyzer[] = "Functions/NoDefaultForReference";
analyzer[] = "Functions/NoLiteralForReference";
analyzer[] = "Functions/NoReferencedVoid";
analyzer[] = "Functions/NoReturnUsed";
analyzer[] = "Functions/NullTypeFavorite";
analyzer[] = "Functions/NullableWithConstant";
analyzer[] = "Functions/NullableWithoutCheck";
analyzer[] = "Functions/OneLetterFunctions";
analyzer[] = "Functions/OnlyVariableForReference";
analyzer[] = "Functions/OnlyVariablePassedByReference";
analyzer[] = "Functions/OptionalParameter";
analyzer[] = "Functions/ParameterHiding";
analyzer[] = "Functions/PrefixToType";
analyzer[] = "Functions/RealFunctions";
analyzer[] = "Functions/Recursive";
analyzer[] = "Functions/RedeclaredPhpFunction";
analyzer[] = "Functions/RelayFunction";
analyzer[] = "Functions/RetypedReference";
analyzer[] = "Functions/SemanticTyping";
analyzer[] = "Functions/ShouldBeTypehinted";
analyzer[] = "Functions/ShouldUseConstants";
analyzer[] = "Functions/ShouldYieldWithKey";
analyzer[] = "Functions/TooManyLocalVariables";
analyzer[] = "Functions/TooManyParameters";
analyzer[] = "Functions/TooMuchIndented";
analyzer[] = "Functions/TypeDodging";
analyzer[] = "Functions/TypehintMustBeReturned";
analyzer[] = "Functions/TypehintedReferences";
analyzer[] = "Functions/Typehints";
analyzer[] = "Functions/UnbindingClosures";
analyzer[] = "Functions/UndefinedFunctions";
analyzer[] = "Functions/UnknownParameterName";

(continues on next page)

216 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Functions/UnsetOnArguments";
analyzer[] = "Functions/UnusedArguments";
analyzer[] = "Functions/UnusedFunctions";
analyzer[] = "Functions/UnusedInheritedVariable";
analyzer[] = "Functions/UnusedReturnedValue";
analyzer[] = "Functions/UseArrowFunctions";
analyzer[] = "Functions/UseConstantAsArguments";
analyzer[] = "Functions/UseConstantsAsReturns";
analyzer[] = "Functions/UsedFunctions";
analyzer[] = "Functions/UselessArgument";
analyzer[] = "Functions/UselessDefault";
analyzer[] = "Functions/UselessReferenceArgument";
analyzer[] = "Functions/UselessReturn";
analyzer[] = "Functions/UselessTypeCheck";
analyzer[] = "Functions/UsesDefaultArguments";
analyzer[] = "Functions/UsingDeprecated";
analyzer[] = "Functions/VariableArguments";
analyzer[] = "Functions/VariableParameterAmbiguityInArrowFunction";
analyzer[] = "Functions/VoidIsNotAReference";
analyzer[] = "Functions/WithoutReturn";
analyzer[] = "Functions/WrongArgumentNameWithPhpFunction";
analyzer[] = "Functions/WrongArgumentType";
analyzer[] = "Functions/WrongCase";
analyzer[] = "Functions/WrongNumberOfArguments";
analyzer[] = "Functions/WrongNumberOfArgumentsMethods";
analyzer[] = "Functions/WrongOptionalParameter";
analyzer[] = "Functions/WrongReturnedType";
analyzer[] = "Functions/WrongTypeWithCall";
analyzer[] = "Functions/WrongTypehintedName";
analyzer[] = "Functions/funcGetArgModified";
analyzer[] = "Interfaces/AlreadyParentsInterface";
analyzer[] = "Interfaces/AvoidSelfInInterface";
analyzer[] = "Interfaces/CantImplementTraversable";
analyzer[] = "Interfaces/CantOverloadConstants";
analyzer[] = "Interfaces/CouldUseInterface";
analyzer[] = "Interfaces/EmptyInterface";
analyzer[] = "Interfaces/InheritedClassConstantVisibility";
analyzer[] = "Interfaces/InterfaceMethod";
analyzer[] = "Interfaces/InterfaceUsage";
analyzer[] = "Interfaces/Interfacenames";
analyzer[] = "Interfaces/IsExtInterface";
analyzer[] = "Interfaces/IsNotImplemented";
analyzer[] = "Interfaces/NoConstructorInInterface";
analyzer[] = "Interfaces/NoGaranteeForPropertyConstant";
analyzer[] = "Interfaces/Php";
analyzer[] = "Interfaces/PossibleInterfaces";
analyzer[] = "Interfaces/RepeatedInterface";
analyzer[] = "Interfaces/UndefinedInterfaces";
analyzer[] = "Interfaces/UnusedInterfaces";
analyzer[] = "Interfaces/UsedInterfaces";
analyzer[] = "Interfaces/UselessInterfaces";
analyzer[] = "Namespaces/Alias";

(continues on next page)

10.5. Predefined config files 217

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Namespaces/AliasConfusion";
analyzer[] = "Namespaces/ConstantFullyQualified";
analyzer[] = "Namespaces/ConstantWithUseFavorite";
analyzer[] = "Namespaces/CouldUseAlias";
analyzer[] = "Namespaces/CouldUseMagicConstant";
analyzer[] = "Namespaces/EmptyNamespace";
analyzer[] = "Namespaces/GlobalImport";
analyzer[] = "Namespaces/HiddenUse";
analyzer[] = "Namespaces/MultipleAliasDefinitionPerFile";
analyzer[] = "Namespaces/MultipleAliasDefinitions";
analyzer[] = "Namespaces/NamespaceUsage";
analyzer[] = "Namespaces/Namespacesnames";
analyzer[] = "Namespaces/NoKeywordInNamespace";
analyzer[] = "Namespaces/OverloadExistingNames";
analyzer[] = "Namespaces/ShouldMakeAlias";
analyzer[] = "Namespaces/UnresolvedUse";
analyzer[] = "Namespaces/UnusedUse";
analyzer[] = "Namespaces/UseFunctionsConstants";
analyzer[] = "Namespaces/UseWithFullyQualifiedNS";
analyzer[] = "Namespaces/UsedUse";
analyzer[] = "Namespaces/WrongCase";
analyzer[] = "Patterns/AbstractAway";
analyzer[] = "Patterns/CourrierAntiPattern";
analyzer[] = "Patterns/DependencyInjection";
analyzer[] = "Patterns/Factory";
analyzer[] = "Patterns/GetterSetter";
analyzer[] = "Performances/ArrayKeyExistsSpeedup";
analyzer[] = "Performances/ArrayMergeInLoops";
analyzer[] = "Performances/Autoappend";
analyzer[] = "Performances/AvoidArrayPush";
analyzer[] = "Performances/CacheVariableOutsideLoop";
analyzer[] = "Performances/ClassOperator";
analyzer[] = "Performances/CountToAppend";
analyzer[] = "Performances/CsvInLoops";
analyzer[] = "Performances/DoInBase";
analyzer[] = "Performances/DoubleArrayFlip";
analyzer[] = "Performances/EllipsisMerge";
analyzer[] = "Performances/FetchOneRowFormat";
analyzer[] = "Performances/IssetWholeArray";
analyzer[] = "Performances/JoinFile";
analyzer[] = "Performances/LogicalToInArray";
analyzer[] = "Performances/MakeOneCall";
analyzer[] = "Performances/MbStringInLoop";
analyzer[] = "Performances/MemoizeMagicCall";
analyzer[] = "Performances/NoConcatInLoop";
analyzer[] = "Performances/NoGlob";
analyzer[] = "Performances/NotCountNull";
analyzer[] = "Performances/OptimizeExplode";
analyzer[] = "Performances/PHP7EncapsedStrings";
analyzer[] = "Performances/Php74ArrayKeyExists";
analyzer[] = "Performances/PreCalculateUse";
analyzer[] = "Performances/PrePostIncrement";

(continues on next page)

218 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Performances/RegexOnArrays";
analyzer[] = "Performances/RegexOnCollector";
analyzer[] = "Performances/ShouldCacheLocal";
analyzer[] = "Performances/SimpleSwitch";
analyzer[] = "Performances/SimplifyForeach";
analyzer[] = "Performances/SkipEmptyArray";
analyzer[] = "Performances/SlowFunctions";
analyzer[] = "Performances/StaticCallDontNeedObjects";
analyzer[] = "Performances/StaticCallWithSelf";
analyzer[] = "Performances/StrposTooMuch";
analyzer[] = "Performances/SubstrFirst";
analyzer[] = "Performances/SubstrInLoops";
analyzer[] = "Performances/TooManyExtractions";
analyzer[] = "Performances/UseArraySlice";
analyzer[] = "Performances/UseBlindVar";
analyzer[] = "Performances/timeVsstrtotime";
analyzer[] = "Php/AlternativeSyntax";
analyzer[] = "Php/Argon2Usage";
analyzer[] = "Php/ArrayKeyExistsWithObjects";
analyzer[] = "Php/AssertFunctionIsReserved";
analyzer[] = "Php/AssertionUsage";
analyzer[] = "Php/AssignAnd";
analyzer[] = "Php/Assumptions";
analyzer[] = "Php/AutoloadUsage";
analyzer[] = "Php/AvoidGetobjectVars";
analyzer[] = "Php/AvoidMbDectectEncoding";
analyzer[] = "Php/AvoidReal";
analyzer[] = "Php/AvoidSetErrorHandlerContextArg";
analyzer[] = "Php/BetterRand";
analyzer[] = "Php/CallingStaticTraitMethod";
analyzer[] = "Php/CantUseReturnValueInWriteContext";
analyzer[] = "Php/CaseForPSS";
analyzer[] = "Php/CastUnsetUsage";
analyzer[] = "Php/CastingUsage";
analyzer[] = "Php/ClassAliasSupportsInternalClasses";
analyzer[] = "Php/ClassConstWithArray";
analyzer[] = "Php/ClassFunctionConfusion";
analyzer[] = "Php/CloneConstant";
analyzer[] = "Php/CloseTags";
analyzer[] = "Php/CloseTagsConsistency";
analyzer[] = "Php/ClosureThisSupport";
analyzer[] = "Php/Coalesce";
analyzer[] = "Php/CoalesceEqual";
analyzer[] = "Php/CompactInexistant";
analyzer[] = "Php/ComparisonOnDifferentTypes";
analyzer[] = "Php/ConcatAndAddition";
analyzer[] = "Php/ConstWithArray";
analyzer[] = "Php/ConstantScalarExpression";
analyzer[] = "Php/CookiesVariables";
analyzer[] = "Php/CouldUseIsCountable";
analyzer[] = "Php/CouldUsePromotedProperties";
analyzer[] = "Php/Crc32MightBeNegative";

(continues on next page)

10.5. Predefined config files 219

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Php/CryptoUsage";
analyzer[] = "Php/DateFormats";
analyzer[] = "Php/DateTimeNotImmutable";
analyzer[] = "Php/DeclareEncoding";
analyzer[] = "Php/DeclareStrict";
analyzer[] = "Php/DeclareStrictType";
analyzer[] = "Php/DeclareTicks";
analyzer[] = "Php/DefineWithArray";
analyzer[] = "Php/DeprecateDollarCurly";
analyzer[] = "Php/Deprecated";
analyzer[] = "Php/DetectCurrentClass";
analyzer[] = "Php/DirectCallToClone";
analyzer[] = "Php/DirectiveName";
analyzer[] = "Php/DirectivesUsage";
analyzer[] = "Php/DlUsage";
analyzer[] = "Php/DontPolluteGlobalSpace";
analyzer[] = "Php/EchoTagUsage";
analyzer[] = "Php/EllipsisUsage";
analyzer[] = "Php/EmptyList";
analyzer[] = "Php/EnumUsage";
analyzer[] = "Php/ErrorLogUsage";
analyzer[] = "Php/ExitNoArg";
analyzer[] = "Php/ExponentUsage";
analyzer[] = "Php/FailingAnalysis";
analyzer[] = "Php/FalseToArray";
analyzer[] = "Php/FilesFullPath";
analyzer[] = "Php/FilterToAddSlashes";
analyzer[] = "Php/FinalConstant";
analyzer[] = "Php/FirstClassCallable";
analyzer[] = "Php/FlexibleHeredoc";
analyzer[] = "Php/FopenMode";
analyzer[] = "Php/ForeachDontChangePointer";
analyzer[] = "Php/ForeachObject";
analyzer[] = "Php/GlobalWithoutSimpleVariable";
analyzer[] = "Php/GlobalsVsGlobal";
analyzer[] = "Php/Gotonames";
analyzer[] = "Php/GroupUseDeclaration";
analyzer[] = "Php/GroupUseTrailingComma";
analyzer[] = "Php/Haltcompiler";
analyzer[] = "Php/HashAlgos";
analyzer[] = "Php/HashAlgos53";
analyzer[] = "Php/HashAlgos54";
analyzer[] = "Php/HashAlgos71";
analyzer[] = "Php/HashAlgos74";
analyzer[] = "Php/HashUsesObjects";
analyzer[] = "Php/IdnUts46";
analyzer[] = "Php/ImplodeOneArg";
analyzer[] = "Php/IncludeVariables";
analyzer[] = "Php/IncomingValues";
analyzer[] = "Php/IncomingVariables";
analyzer[] = "Php/Incompilable";
analyzer[] = "Php/IntegerSeparatorUsage";

(continues on next page)

220 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Php/InternalParameterType";
analyzer[] = "Php/IsAWithString";
analyzer[] = "Php/IsINF";
analyzer[] = "Php/IsNAN";
analyzer[] = "Php/IsnullVsEqualNull";
analyzer[] = "Php/IssetMultipleArgs";
analyzer[] = "Php/JsonSerializeReturnType";
analyzer[] = "Php/Labelnames";
analyzer[] = "Php/LetterCharsLogicalFavorite";
analyzer[] = "Php/ListShortSyntax";
analyzer[] = "Php/ListWithAppends";
analyzer[] = "Php/ListWithKeys";
analyzer[] = "Php/ListWithReference";
analyzer[] = "Php/LogicalInLetters";
analyzer[] = "Php/MethodCallOnNew";
analyzer[] = "Php/MiddleVersion";
analyzer[] = "Php/MissingMagicIsset";
analyzer[] = "Php/MissingSubpattern";
analyzer[] = "Php/MixedKeyword";
analyzer[] = "Php/MixedUsage";
analyzer[] = "Php/MultipleDeclareStrict";
analyzer[] = "Php/MustCallParentConstructor";
analyzer[] = "Php/NamedArgumentAndVariadic";
analyzer[] = "Php/NamedParameterUsage";
analyzer[] = "Php/NativeClassTypeCompatibility";
analyzer[] = "Php/NestedTernaryWithoutParenthesis";
analyzer[] = "Php/NeverKeyword";
analyzer[] = "Php/NeverTypehintUsage";
analyzer[] = "Php/NewExponent";
analyzer[] = "Php/NewInitializers";
analyzer[] = "Php/NoCastToInt";
analyzer[] = "Php/NoClassInGlobal";
analyzer[] = "Php/NoListWithString";
analyzer[] = "Php/NoMoreCurlyArrays";
analyzer[] = "Php/NoNullForNative";
analyzer[] = "Php/NoReferenceForStaticProperty";
analyzer[] = "Php/NoReferenceForTernary";
analyzer[] = "Php/NoReturnForGenerator";
analyzer[] = "Php/NoStringWithAppend";
analyzer[] = "Php/NoSubstrMinusOne";
analyzer[] = "Php/NotScalarType";
analyzer[] = "Php/OnlyVariablePassedByReference";
analyzer[] = "Php/OpensslEncryptAlgoChange";
analyzer[] = "Php/OveriddenFunction";
analyzer[] = "Php/PHP70scalartypehints";
analyzer[] = "Php/PHP71scalartypehints";
analyzer[] = "Php/PHP72scalartypehints";
analyzer[] = "Php/PHP73LastEmptyArgument";
analyzer[] = "Php/PHP80scalartypehints";
analyzer[] = "Php/PHP81scalartypehints";
analyzer[] = "Php/ParenthesisAsParameter";
analyzer[] = "Php/Password55";

(continues on next page)

10.5. Predefined config files 221

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Php/PathinfoReturns";
analyzer[] = "Php/PearUsage";
analyzer[] = "Php/Php54NewFunctions";
analyzer[] = "Php/Php54RemovedFunctions";
analyzer[] = "Php/Php55NewFunctions";
analyzer[] = "Php/Php55RemovedFunctions";
analyzer[] = "Php/Php56NewFunctions";
analyzer[] = "Php/Php70NewClasses";
analyzer[] = "Php/Php70NewFunctions";
analyzer[] = "Php/Php70NewInterfaces";
analyzer[] = "Php/Php70RemovedDirective";
analyzer[] = "Php/Php70RemovedFunctions";
analyzer[] = "Php/Php71NewClasses";
analyzer[] = "Php/Php71NewFunctions";
analyzer[] = "Php/Php71RemovedDirective";
analyzer[] = "Php/Php71microseconds";
analyzer[] = "Php/Php72Deprecation";
analyzer[] = "Php/Php72NewClasses";
analyzer[] = "Php/Php72NewConstants";
analyzer[] = "Php/Php72NewFunctions";
analyzer[] = "Php/Php72ObjectKeyword";
analyzer[] = "Php/Php72RemovedFunctions";
analyzer[] = "Php/Php73NewFunctions";
analyzer[] = "Php/Php73RemovedFunctions";
analyzer[] = "Php/Php74Deprecation";
analyzer[] = "Php/Php74NewClasses";
analyzer[] = "Php/Php74NewConstants";
analyzer[] = "Php/Php74NewDirective";
analyzer[] = "Php/Php74NewFunctions";
analyzer[] = "Php/Php74RemovedDirective";
analyzer[] = "Php/Php74RemovedFunctions";
analyzer[] = "Php/Php74ReservedKeyword";
analyzer[] = "Php/Php74mbstrrpos3rdArg";
analyzer[] = "Php/Php7RelaxedKeyword";
analyzer[] = "Php/Php80NamedParameterVariadic";
analyzer[] = "Php/Php80NewFunctions";
analyzer[] = "Php/Php80OnlyTypeHints";
analyzer[] = "Php/Php80RemovedConstant";
analyzer[] = "Php/Php80RemovedDirective";
analyzer[] = "Php/Php80RemovedFunctions";
analyzer[] = "Php/Php80RemovesResources";
analyzer[] = "Php/Php80UnionTypehint";
analyzer[] = "Php/Php80VariableSyntax";
analyzer[] = "Php/Php81IntersectionTypehint";
analyzer[] = "Php/Php81NewFunctions";
analyzer[] = "Php/Php81NewTypes";
analyzer[] = "Php/Php81RemovedConstant";
analyzer[] = "Php/Php81RemovedDirective";
analyzer[] = "Php/Php81RemovedFunctions";
analyzer[] = "Php/Php81RemovesResources";
analyzer[] = "Php/Php82NewFunctions";
analyzer[] = "Php/Php82NewTypes";

(continues on next page)

222 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Php/Php83NewClasses";
analyzer[] = "Php/Php83NewFunctions";
analyzer[] = "Php/PhpErrorMsgUsage";
analyzer[] = "Php/PlusPlusOnLetters";
analyzer[] = "Php/PregMatchAllFlag";
analyzer[] = "Php/Prints";
analyzer[] = "Php/RawPostDataUsage";
analyzer[] = "Php/ReadonlyPropertyChangedByCloning";
analyzer[] = "Php/ReflectionExportIsDeprecated";
analyzer[] = "Php/ReservedKeywords7";
analyzer[] = "Php/ReservedMatchKeyword";
analyzer[] = "Php/ReservedMethods";
analyzer[] = "Php/ReservedNames";
analyzer[] = "Php/RestrictGlobalUsage";
analyzer[] = "Php/ReturnTypehintUsage";
analyzer[] = "Php/ReturnWithParenthesis";
analyzer[] = "Php/SafePhpvars";
analyzer[] = "Php/ScalarAreNotArrays";
analyzer[] = "Php/ScalarTypehintUsage";
analyzer[] = "Php/SerializeMagic";
analyzer[] = "Php/SessionVariables";
analyzer[] = "Php/SetExceptionHandlerPHP7";
analyzer[] = "Php/SetHandlers";
analyzer[] = "Php/ShellFavorite";
analyzer[] = "Php/ShortOpenTagRequired";
analyzer[] = "Php/ShortTernary";
analyzer[] = "Php/ShouldPreprocess";
analyzer[] = "Php/ShouldUseArrayColumn";
analyzer[] = "Php/ShouldUseArrayFilter";
analyzer[] = "Php/ShouldUseCoalesce";
analyzer[] = "Php/ShouldUseFunction";
analyzer[] = "Php/SignatureTrailingComma";
analyzer[] = "Php/SpreadOperatorForArray";
analyzer[] = "Php/StaticVariableDefaultCanBeAnyExpression";
analyzer[] = "Php/StaticclassUsage";
analyzer[] = "Php/StringIntComparison";
analyzer[] = "Php/StrposWithIntegers";
analyzer[] = "Php/StrtrArguments";
analyzer[] = "Php/SuperGlobalUsage";
analyzer[] = "Php/ThrowUsage";
analyzer[] = "Php/ThrowWasAnExpression";
analyzer[] = "Php/TooManyNativeCalls";
analyzer[] = "Php/TrailingComma";
analyzer[] = "Php/TriggerErrorUsage";
analyzer[] = "Php/TryCatchUsage";
analyzer[] = "Php/TryMultipleCatch";
analyzer[] = "Php/TypedPropertyUsage";
analyzer[] = "Php/UnicodeEscapePartial";
analyzer[] = "Php/UnicodeEscapeSyntax";
analyzer[] = "Php/UnknownPcre2Option";
analyzer[] = "Php/UnpackingInsideArrays";
analyzer[] = "Php/UnsetOrCast";

(continues on next page)

10.5. Predefined config files 223

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Php/UpperCaseFunction";
analyzer[] = "Php/UpperCaseKeyword";
analyzer[] = "Php/UseAttributes";
analyzer[] = "Php/UseBrowscap";
analyzer[] = "Php/UseClassAlias";
analyzer[] = "Php/UseCli";
analyzer[] = "Php/UseContravariance";
analyzer[] = "Php/UseCookies";
analyzer[] = "Php/UseCovariance";
analyzer[] = "Php/UseDNF";
analyzer[] = "Php/UseDateTimeImmutable";
analyzer[] = "Php/UseEnumCaseInConstantExpression";
analyzer[] = "Php/UseGetDebugType";
analyzer[] = "Php/UseMatch";
analyzer[] = "Php/UseNullSafeOperator";
analyzer[] = "Php/UseNullableType";
analyzer[] = "Php/UseObjectApi";
analyzer[] = "Php/UsePathinfo";
analyzer[] = "Php/UsePathinfoArgs";
analyzer[] = "Php/UseSessionStartOptions";
analyzer[] = "Php/UseSetCookie";
analyzer[] = "Php/UseStdclass";
analyzer[] = "Php/UseStrContains";
analyzer[] = "Php/UseTrailingUseComma";
analyzer[] = "Php/UseWeb";
analyzer[] = "Php/UsesEnv";
analyzer[] = "Php/UsortSorting";
analyzer[] = "Php/Utf8EncodeDeprecated";
analyzer[] = "Php/VersionCompareOperator";
analyzer[] = "Php/WrongAttributeConfiguration";
analyzer[] = "Php/WrongTypeForNativeFunction";
analyzer[] = "Php/YieldFromUsage";
analyzer[] = "Php/YieldUsage";
analyzer[] = "Php/debugInfoUsage";
analyzer[] = "Php/oldAutoloadUsage";
analyzer[] = "Portability/FopenMode";
analyzer[] = "Portability/GlobBraceUsage";
analyzer[] = "Portability/IconvTranslit";
analyzer[] = "Portability/LinuxOnlyFiles";
analyzer[] = "Portability/WindowsOnlyConstants";
analyzer[] = "Project/IsLibrary";
analyzer[] = "Psr/Psr11Usage";
analyzer[] = "Psr/Psr13Usage";
analyzer[] = "Psr/Psr16Usage";
analyzer[] = "Psr/Psr3Usage";
analyzer[] = "Psr/Psr6Usage";
analyzer[] = "Psr/Psr7Usage";
analyzer[] = "Security/AnchorRegex";
analyzer[] = "Security/AvoidThoseCrypto";
analyzer[] = "Security/CantDisableClass";
analyzer[] = "Security/CantDisableFunction";
analyzer[] = "Security/CompareHash";

(continues on next page)

224 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Security/ConfigureExtract";
analyzer[] = "Security/CryptoKeyLength";
analyzer[] = "Security/CurlOptions";
analyzer[] = "Security/DirectInjection";
analyzer[] = "Security/DontEchoError";
analyzer[] = "Security/DynamicDl";
analyzer[] = "Security/EncodedLetters";
analyzer[] = "Security/FilterInputSource";
analyzer[] = "Security/FilterNotRaw";
analyzer[] = "Security/GPRAliases";
analyzer[] = "Security/IncompatibleTypesWithIncoming";
analyzer[] = "Security/IndirectInjection";
analyzer[] = "Security/IntegerConversion";
analyzer[] = "Security/KeepFilesRestricted";
analyzer[] = "Security/MinusOneOnError";
analyzer[] = "Security/MkdirDefault";
analyzer[] = "Security/MoveUploadedFile";
analyzer[] = "Security/NoEntIgnore";
analyzer[] = "Security/NoNetForXmlLoad";
analyzer[] = "Security/NoSleep";
analyzer[] = "Security/NoWeakSSLCrypto";
analyzer[] = "Security/RegisterGlobals";
analyzer[] = "Security/SafeHttpHeaders";
analyzer[] = "Security/SensitiveArgument";
analyzer[] = "Security/SessionCachedData";
analyzer[] = "Security/SessionLazyWrite";
analyzer[] = "Security/SetCookieArgs";
analyzer[] = "Security/ShouldUsePreparedStatement";
analyzer[] = "Security/ShouldUseSessionRegenerateId";
analyzer[] = "Security/Sqlite3RequiresSingleQuotes";
analyzer[] = "Security/SuperGlobalContagion";
analyzer[] = "Security/UnserializeSecondArg";
analyzer[] = "Security/UploadFilenameInjection";
analyzer[] = "Security/parseUrlWithoutParameters";
analyzer[] = "Structures/AddZero";
analyzer[] = "Structures/AlteringForeachWithoutReference";
analyzer[] = "Structures/AlternativeConsistenceByFile";
analyzer[] = "Structures/AlwaysFalse";
analyzer[] = "Structures/ArrayAccessOnLiteralArray";
analyzer[] = "Structures/ArrayAddition";
analyzer[] = "Structures/ArrayCountTripleEqual";
analyzer[] = "Structures/ArrayFillWithObjects";
analyzer[] = "Structures/ArrayMapPassesByValue";
analyzer[] = "Structures/ArrayMergeAndVariadic";
analyzer[] = "Structures/ArrayMergeArrayArray";
analyzer[] = "Structures/ArrayMergeWithEllipsis";
analyzer[] = "Structures/ArraySearchMultipleKeys";
analyzer[] = "Structures/AssigneAndCompare";
analyzer[] = "Structures/AssignedInOneBranch";
analyzer[] = "Structures/AutoUnsetForeach";
analyzer[] = "Structures/BailOutEarly";
analyzer[] = "Structures/BasenameSuffix";

(continues on next page)

10.5. Predefined config files 225

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/BlindVariableUsedBeyondLoop";
analyzer[] = "Structures/BooleanStrictComparison";
analyzer[] = "Structures/Bracketless";
analyzer[] = "Structures/Break0";
analyzer[] = "Structures/BreakNonInteger";
analyzer[] = "Structures/BreakOutsideLoop";
analyzer[] = "Structures/BuriedAssignation";
analyzer[] = "Structures/CalltimePassByReference";
analyzer[] = "Structures/CanCountNonCountable";
analyzer[] = "Structures/CannotUseAppendForReading";
analyzer[] = "Structures/CastFavorite";
analyzer[] = "Structures/CastToBoolean";
analyzer[] = "Structures/CastingTernary";
analyzer[] = "Structures/CatchShadowsVariable";
analyzer[] = "Structures/CheckAllTypes";
analyzer[] = "Structures/CheckDivision";
analyzer[] = "Structures/CheckJson";
analyzer[] = "Structures/CoalesceAndConcat";
analyzer[] = "Structures/CoalesceNullCoalesce";
analyzer[] = "Structures/CommonAlternatives";
analyzer[] = "Structures/ComparedButNotAssignedStrings";
analyzer[] = "Structures/ComparedComparison";
analyzer[] = "Structures/ComparisonFavorite";
analyzer[] = "Structures/ComplexExpression";
analyzer[] = "Structures/ConcatEmpty";
analyzer[] = "Structures/ConcatenationInterpolationFavorite";
analyzer[] = "Structures/ConditionalStructures";
analyzer[] = "Structures/ConstDefineFavorite";
analyzer[] = "Structures/ConstantComparisonConsistance";
analyzer[] = "Structures/ConstantConditions";
analyzer[] = "Structures/ConstantScalarExpression";
analyzer[] = "Structures/ContinueIsForLoop";
analyzer[] = "Structures/CouldBeArrayCombine";
analyzer[] = "Structures/CouldBeElse";
analyzer[] = "Structures/CouldBeSpaceship";
analyzer[] = "Structures/CouldBeStatic";
analyzer[] = "Structures/CouldBeTernary";
analyzer[] = "Structures/CouldCastToArray";
analyzer[] = "Structures/CouldUseArrayFillKeys";
analyzer[] = "Structures/CouldUseArraySum";
analyzer[] = "Structures/CouldUseArrayUnique";
analyzer[] = "Structures/CouldUseCompact";
analyzer[] = "Structures/CouldUseDir";
analyzer[] = "Structures/CouldUseMatch";
analyzer[] = "Structures/CouldUseNullableOperator";
analyzer[] = "Structures/CouldUseShortAssignation";
analyzer[] = "Structures/CouldUseStrContains";
analyzer[] = "Structures/CouldUseStrrepeat";
analyzer[] = "Structures/CouldUseYieldFrom";
analyzer[] = "Structures/CountIsNotNegative";
analyzer[] = "Structures/CryptWithoutSalt";
analyzer[] = "Structures/CurlVersionNow";

(continues on next page)

226 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/DanglingArrayReferences";
analyzer[] = "Structures/DateTimePreference";
analyzer[] = "Structures/DeclareStaticOnce";
analyzer[] = "Structures/DefaultThenDiscard";
analyzer[] = "Structures/DeprecatedMbEncoding";
analyzer[] = "Structures/DereferencingAS";
analyzer[] = "Structures/DieExitConsistance";
analyzer[] = "Structures/DifferencePreference";
analyzer[] = "Structures/DirThenSlash";
analyzer[] = "Structures/DirectlyUseFile";
analyzer[] = "Structures/DontAddSeconds";
analyzer[] = "Structures/DontBeTooManual";
analyzer[] = "Structures/DontChangeBlindKey";
analyzer[] = "Structures/DontCompareTypedBoolean";
analyzer[] = "Structures/DontLoopOnYield";
analyzer[] = "Structures/DontMixPlusPlus";
analyzer[] = "Structures/DontReadAndWriteInOneExpression";
analyzer[] = "Structures/DontReuseForeachSource";
analyzer[] = "Structures/DontUseTheTypeAsVariable";
analyzer[] = "Structures/DoubleAssignation";
analyzer[] = "Structures/DoubleChecks";
analyzer[] = "Structures/DoubleInstruction";
analyzer[] = "Structures/DoubleObjectAssignation";
analyzer[] = "Structures/DropElseAfterReturn";
analyzer[] = "Structures/DuplicateCalls";
analyzer[] = "Structures/DynamicCalls";
analyzer[] = "Structures/DynamicCode";
analyzer[] = "Structures/EchoPrintConsistance";
analyzer[] = "Structures/EchoWithConcat";
analyzer[] = "Structures/ElseIfElseif";
analyzer[] = "Structures/ElseUsage";
analyzer[] = "Structures/EmptyBlocks";
analyzer[] = "Structures/EmptyJsonError";
analyzer[] = "Structures/EmptyLines";
analyzer[] = "Structures/EmptyLoop";
analyzer[] = "Structures/EmptyTryCatch";
analyzer[] = "Structures/EmptyWithExpression";
analyzer[] = "Structures/ErrorMessages";
analyzer[] = "Structures/ErrorReportingWithInteger";
analyzer[] = "Structures/EvalUsage";
analyzer[] = "Structures/EvalWithoutTry";
analyzer[] = "Structures/ExitUsage";
analyzer[] = "Structures/FailingSubstrComparison";
analyzer[] = "Structures/Fallthrough";
analyzer[] = "Structures/FilePutContentsDataType";
analyzer[] = "Structures/FileUploadUsage";
analyzer[] = "Structures/FileUsage";
analyzer[] = "Structures/ForWithFunctioncall";
analyzer[] = "Structures/ForeachNeedReferencedSource";
analyzer[] = "Structures/ForeachReferenceIsNotModified";
analyzer[] = "Structures/ForeachSourceValue";
analyzer[] = "Structures/ForeachWithList";

(continues on next page)

10.5. Predefined config files 227

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/ForgottenWhiteSpace";
analyzer[] = "Structures/FunctionPreSubscripting";
analyzer[] = "Structures/FunctionSubscripting";
analyzer[] = "Structures/GetClassWithoutArg";
analyzer[] = "Structures/GlobalInGlobal";
analyzer[] = "Structures/GlobalOutsideLoop";
analyzer[] = "Structures/GlobalUsage";
analyzer[] = "Structures/GoToKeyDirectly";
analyzer[] = "Structures/GtOrLtFavorite";
analyzer[] = "Structures/HeredocDelimiterFavorite";
analyzer[] = "Structures/Htmlentitiescall";
analyzer[] = "Structures/HtmlentitiescallDefaultFlag";
analyzer[] = "Structures/IdenticalCase";
analyzer[] = "Structures/IdenticalConditions";
analyzer[] = "Structures/IdenticalConsecutive";
analyzer[] = "Structures/IdenticalElseif";
analyzer[] = "Structures/IdenticalOnBothSides";
analyzer[] = "Structures/IdenticalVariablesInForeach";
analyzer[] = "Structures/IfThenReturnFavorite";
analyzer[] = "Structures/IfWithSameConditions";
analyzer[] = "Structures/Iffectation";
analyzer[] = "Structures/ImplicitConversionToInt";
analyzer[] = "Structures/ImplicitGlobal";
analyzer[] = "Structures/ImpliedIf";
analyzer[] = "Structures/ImplodeArgsOrder";
analyzer[] = "Structures/IncludeUsage";
analyzer[] = "Structures/InconsistentConcatenation";
analyzer[] = "Structures/InconsistentElseif";
analyzer[] = "Structures/IndicesAreIntOrString";
analyzer[] = "Structures/InfiniteRecursion";
analyzer[] = "Structures/InitThenIf";
analyzer[] = "Structures/InvalidCast";
analyzer[] = "Structures/InvalidDateScanningFormat";
analyzer[] = "Structures/InvalidPackFormat";
analyzer[] = "Structures/InvalidRegex";
analyzer[] = "Structures/IsAVersusInstanceof";
analyzer[] = "Structures/IsZero";
analyzer[] = "Structures/IssetWithConstant";
analyzer[] = "Structures/JsonEncodeExceptions";
analyzer[] = "Structures/JsonWithOption";
analyzer[] = "Structures/ListOmissions";
analyzer[] = "Structures/LogicalMistakes";
analyzer[] = "Structures/LoneBlock";
analyzer[] = "Structures/LongArguments";
analyzer[] = "Structures/LongBlock";
analyzer[] = "Structures/MailUsage";
analyzer[] = "Structures/MaxLevelOfIdentation";
analyzer[] = "Structures/MbStringNonEncodings";
analyzer[] = "Structures/MbstringThirdArg";
analyzer[] = "Structures/MbstringUnknownEncoding";
analyzer[] = "Structures/McryptcreateivWithoutOption";
analyzer[] = "Structures/MergeIfThen";

(continues on next page)

228 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/MismatchedTernary";
analyzer[] = "Structures/MissingAssignation";
analyzer[] = "Structures/MissingCases";
analyzer[] = "Structures/MissingNew";
analyzer[] = "Structures/MissingParenthesis";
analyzer[] = "Structures/MisusedYield";
analyzer[] = "Structures/MixedConcatInterpolation";
analyzer[] = "Structures/ModernEmpty";
analyzer[] = "Structures/MultilineExpressions";
analyzer[] = "Structures/MultipleCatch";
analyzer[] = "Structures/MultipleDefinedCase";
analyzer[] = "Structures/MultipleSimilarCalls";
analyzer[] = "Structures/MultipleTypeCasesInSwitch";
analyzer[] = "Structures/MultipleTypeVariable";
analyzer[] = "Structures/MultipleUnset";
analyzer[] = "Structures/MultiplyByOne";
analyzer[] = "Structures/NamedRegex";
analyzer[] = "Structures/NegativePow";
analyzer[] = "Structures/NestedIfthen";
analyzer[] = "Structures/NestedLoops";
analyzer[] = "Structures/NestedMatch";
analyzer[] = "Structures/NestedTernary";
analyzer[] = "Structures/NeverNegative";
analyzer[] = "Structures/NewLineStyle";
analyzer[] = "Structures/NextMonthTrap";
analyzer[] = "Structures/NoAppendOnSource";
analyzer[] = "Structures/NoArrayUnique";
analyzer[] = "Structures/NoAssignationInFunction";
analyzer[] = "Structures/NoChangeIncomingVariables";
analyzer[] = "Structures/NoChoice";
analyzer[] = "Structures/NoDirectAccess";
analyzer[] = "Structures/NoDirectUsage";
analyzer[] = "Structures/NoEmptyRegex";
analyzer[] = "Structures/NoEmptyStringWithExplode";
analyzer[] = "Structures/NoGetClassNull";
analyzer[] = "Structures/NoHardcodedHash";
analyzer[] = "Structures/NoHardcodedIp";
analyzer[] = "Structures/NoHardcodedPath";
analyzer[] = "Structures/NoHardcodedPort";
analyzer[] = "Structures/NoIssetWithEmpty";
analyzer[] = "Structures/NoMaxOnEmptyArray";
analyzer[] = "Structures/NoNeedForElse";
analyzer[] = "Structures/NoNeedForTriple";
analyzer[] = "Structures/NoNeedGetClass";
analyzer[] = "Structures/NoNullForIndex";
analyzer[] = "Structures/NoObjectAsIndex";
analyzer[] = "Structures/NoParenthesisForLanguageConstruct";
analyzer[] = "Structures/NoReferenceOnLeft";
analyzer[] = "Structures/NoReturnInFinally";
analyzer[] = "Structures/NoSubstrOne";
analyzer[] = "Structures/NoValidCast";
analyzer[] = "Structures/NoVariableIsACondition";

(continues on next page)

10.5. Predefined config files 229

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/NonBreakableSpaceInNames";
analyzer[] = "Structures/NonIntStringAsIndex";
analyzer[] = "Structures/Noscream";
analyzer[] = "Structures/NotEqual";
analyzer[] = "Structures/NotNot";
analyzer[] = "Structures/NotOrNot";
analyzer[] = "Structures/ObjectReferences";
analyzer[] = "Structures/OnceUsage";
analyzer[] = "Structures/OneDotOrObjectOperatorPerLine";
analyzer[] = "Structures/OneExpressionBracketsConsistency";
analyzer[] = "Structures/OneIfIsSufficient";
analyzer[] = "Structures/OneLevelOfIndentation";
analyzer[] = "Structures/OneLineTwoInstructions";
analyzer[] = "Structures/OnlyFirstByte";
analyzer[] = "Structures/OnlyVariableReturnedByReference";
analyzer[] = "Structures/OpensslRandomPseudoByteSecondArg";
analyzer[] = "Structures/OrDie";
analyzer[] = "Structures/OverwrittenForeachVar";
analyzer[] = "Structures/PHP7Dirname";
analyzer[] = "Structures/PhpinfoUsage";
analyzer[] = "Structures/PlusEgalOne";
analyzer[] = "Structures/PossibleIncrement";
analyzer[] = "Structures/PossibleInfiniteLoop";
analyzer[] = "Structures/PrintAndDie";
analyzer[] = "Structures/PrintWithoutParenthesis";
analyzer[] = "Structures/PrintfArguments";
analyzer[] = "Structures/PropertyVariableConfusion";
analyzer[] = "Structures/QueriesInLoop";
analyzer[] = "Structures/RandomWithoutTry";
analyzer[] = "Structures/RecalledCondition";
analyzer[] = "Structures/RegexDelimiter";
analyzer[] = "Structures/RepeatedPrint";
analyzer[] = "Structures/RepeatedRegex";
analyzer[] = "Structures/ResourcesUsage";
analyzer[] = "Structures/ResultMayBeMissing";
analyzer[] = "Structures/ReturnTrueFalse";
analyzer[] = "Structures/ReturnVoid";
analyzer[] = "Structures/ReuseVariable";
analyzer[] = "Structures/SGVariablesConfusion";
analyzer[] = "Structures/SameConditions";
analyzer[] = "Structures/SequenceInFor";
analyzer[] = "Structures/SetAside";
analyzer[] = "Structures/SetlocaleNeedsConstants";
analyzer[] = "Structures/ShellUsage";
analyzer[] = "Structures/ShortOrCompleteComparison";
analyzer[] = "Structures/ShortTags";
analyzer[] = "Structures/ShouldChainException";
analyzer[] = "Structures/ShouldMakeTernary";
analyzer[] = "Structures/ShouldPreprocess";
analyzer[] = "Structures/ShouldUseExplodeArgs";
analyzer[] = "Structures/ShouldUseForeach";
analyzer[] = "Structures/ShouldUseMath";

(continues on next page)

230 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/ShouldUseOperator";
analyzer[] = "Structures/SimplePreg";
analyzer[] = "Structures/SprintfFormatCompilation";
analyzer[] = "Structures/StaticInclude";
analyzer[] = "Structures/StaticLoop";
analyzer[] = "Structures/StrictInArrayFavorite";
analyzer[] = "Structures/StringInterpolationFavorite";
analyzer[] = "Structures/StripTagsSkipsClosedTag";
analyzer[] = "Structures/StrposCompare";
analyzer[] = "Structures/StrposLessThanOne";
analyzer[] = "Structures/SubstrLastArg";
analyzer[] = "Structures/SubstrToTrim";
analyzer[] = "Structures/SuspiciousComparison";
analyzer[] = "Structures/SwitchToSwitch";
analyzer[] = "Structures/SwitchWithMultipleDefault";
analyzer[] = "Structures/SwitchWithoutDefault";
analyzer[] = "Structures/TernaryInConcat";
analyzer[] = "Structures/TestThenCast";
analyzer[] = "Structures/ThrowsAndAssign";
analyzer[] = "Structures/TimestampDifference";
analyzer[] = "Structures/TooManyChainedCalls";
analyzer[] = "Structures/TooManyElseif";
analyzer[] = "Structures/TryFinally";
analyzer[] = "Structures/UncheckedResources";
analyzer[] = "Structures/UnconditionLoopBreak";
analyzer[] = "Structures/UnknownPregOption";
analyzer[] = "Structures/Unpreprocessed";
analyzer[] = "Structures/UnreachableCode";
analyzer[] = "Structures/UnsetInForeach";
analyzer[] = "Structures/UnsupportedOperandTypes";
analyzer[] = "Structures/UnsupportedTypesWithOperators";
analyzer[] = "Structures/UnusedGlobal";
analyzer[] = "Structures/UnusedLabel";
analyzer[] = "Structures/UseArrayFunctions";
analyzer[] = "Structures/UseCaseValue";
analyzer[] = "Structures/UseConstant";
analyzer[] = "Structures/UseCountRecursive";
analyzer[] = "Structures/UseDebug";
analyzer[] = "Structures/UseFileAppend";
analyzer[] = "Structures/UseInstanceof";
analyzer[] = "Structures/UseListWithForeach";
analyzer[] = "Structures/UsePositiveCondition";
analyzer[] = "Structures/UseSameTypesForComparisons";
analyzer[] = "Structures/UseStrEndsWith";
analyzer[] = "Structures/UseStrStartsWith";
analyzer[] = "Structures/UseSystemTmp";
analyzer[] = "Structures/UseUrlQueryFunctions";
analyzer[] = "Structures/UseVariableInsideLoop";
analyzer[] = "Structures/UselessBrackets";
analyzer[] = "Structures/UselessCasting";
analyzer[] = "Structures/UselessCheck";
analyzer[] = "Structures/UselessCoalesce";

(continues on next page)

10.5. Predefined config files 231

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/UselessGlobal";
analyzer[] = "Structures/UselessInstruction";
analyzer[] = "Structures/UselessNullCoalesce";
analyzer[] = "Structures/UselessParenthesis";
analyzer[] = "Structures/UselessShortTernary";
analyzer[] = "Structures/UselessSwitch";
analyzer[] = "Structures/UselessTrailingComma";
analyzer[] = "Structures/UselessUnset";
analyzer[] = "Structures/VardumpUsage";
analyzer[] = "Structures/VariableGlobal";
analyzer[] = "Structures/VariableMayBeNonGlobal";
analyzer[] = "Structures/WhileListEach";
analyzer[] = "Structures/WrongLocale";
analyzer[] = "Structures/WrongPrecedenceInExpression";
analyzer[] = "Structures/WrongRange";
analyzer[] = "Structures/YodaComparison";
analyzer[] = "Structures/pregOptionE";
analyzer[] = "Structures/strOrMbFavorite";
analyzer[] = "Structures/toStringThrowsException";
analyzer[] = "Traits/AlreadyParentsTrait";
analyzer[] = "Traits/CannotCallTraitMethod";
analyzer[] = "Traits/ConstantsInTraits";
analyzer[] = "Traits/CouldUseTrait";
analyzer[] = "Traits/DependantTrait";
analyzer[] = "Traits/EmptyTrait";
analyzer[] = "Traits/FinalTraitsAreFinal";
analyzer[] = "Traits/IncompatibleProperty";
analyzer[] = "Traits/IsExtTrait";
analyzer[] = "Traits/LocallyUsedProperty";
analyzer[] = "Traits/MethodCollisionTraits";
analyzer[] = "Traits/MultipleUsage";
analyzer[] = "Traits/NoPrivateAbstract";
analyzer[] = "Traits/Php";
analyzer[] = "Traits/SelfUsingTrait";
analyzer[] = "Traits/SidelinedMethod";
analyzer[] = "Traits/TraitIsNotAType";
analyzer[] = "Traits/TraitMethod";
analyzer[] = "Traits/TraitNotFound";
analyzer[] = "Traits/TraitUsage";
analyzer[] = "Traits/Traitnames";
analyzer[] = "Traits/UndefinedInsteadof";
analyzer[] = "Traits/UndefinedTrait";
analyzer[] = "Traits/UnusedClassTrait";
analyzer[] = "Traits/UnusedTrait";
analyzer[] = "Traits/UsedOnceTrait";
analyzer[] = "Traits/UsedTrait";
analyzer[] = "Traits/UselessAlias";
analyzer[] = "Type/ArrayIndex";
analyzer[] = "Type/Binary";
analyzer[] = "Type/CharString";
analyzer[] = "Type/Continents";
analyzer[] = "Type/DuplicateLiteral";

(continues on next page)

232 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Type/Email";
analyzer[] = "Type/GPCIndex";
analyzer[] = "Type/Heredoc";
analyzer[] = "Type/Hexadecimal";
analyzer[] = "Type/HexadecimalString";
analyzer[] = "Type/HttpHeader";
analyzer[] = "Type/HttpStatus";
analyzer[] = "Type/IncomingDateFormat";
analyzer[] = "Type/Ip";
analyzer[] = "Type/MalformedOctal";
analyzer[] = "Type/Md5String";
analyzer[] = "Type/MimeType";
analyzer[] = "Type/NoRealComparison";
analyzer[] = "Type/Nowdoc";
analyzer[] = "Type/Octal";
analyzer[] = "Type/OctalInString";
analyzer[] = "Type/OneVariableStrings";
analyzer[] = "Type/OpensslCipher";
analyzer[] = "Type/Pack";
analyzer[] = "Type/Path";
analyzer[] = "Type/Pcre";
analyzer[] = "Type/Ports";
analyzer[] = "Type/Printf";
analyzer[] = "Type/Protocols";
analyzer[] = "Type/Regex";
analyzer[] = "Type/Sapi";
analyzer[] = "Type/Shellcommands";
analyzer[] = "Type/ShouldBeSingleQuote";
analyzer[] = "Type/ShouldTypecast";
analyzer[] = "Type/SilentlyCastInteger";
analyzer[] = "Type/SimilarIntegers";
analyzer[] = "Type/SpecialIntegers";
analyzer[] = "Type/Sql";
analyzer[] = "Type/StringHoldAVariable";
analyzer[] = "Type/StringInterpolation";
analyzer[] = "Type/StringWithStrangeSpace";
analyzer[] = "Type/UdpDomains";
analyzer[] = "Type/UnicodeBlock";
analyzer[] = "Type/Url";
analyzer[] = "Typehints/CouldBeArray";
analyzer[] = "Typehints/CouldBeBoolean";
analyzer[] = "Typehints/CouldBeCIT";
analyzer[] = "Typehints/CouldBeCallable";
analyzer[] = "Typehints/CouldBeFloat";
analyzer[] = "Typehints/CouldBeGenerator";
analyzer[] = "Typehints/CouldBeInt";
analyzer[] = "Typehints/CouldBeIterable";
analyzer[] = "Typehints/CouldBeNever";
analyzer[] = "Typehints/CouldBeNull";
analyzer[] = "Typehints/CouldBeParent";
analyzer[] = "Typehints/CouldBeResource";
analyzer[] = "Typehints/CouldBeSelf";

(continues on next page)

10.5. Predefined config files 233

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Typehints/CouldBeString";
analyzer[] = "Typehints/CouldBeVoid";
analyzer[] = "Typehints/CouldNotType";
analyzer[] = "Typehints/MissingReturntype";
analyzer[] = "Typehints/MissingTypehints";
analyzer[] = "Typehints/StandaloneTypeTFN";
analyzer[] = "Typehints/WrongTypeWithDefault";
analyzer[] = "Utils/Selector";
analyzer[] = "Variables/AmbiguousTypes";
analyzer[] = "Variables/AssignedTwiceOrMore";
analyzer[] = "Variables/Blind";
analyzer[] = "Variables/CloseNaming";
analyzer[] = "Variables/ComplexDynamicNames";
analyzer[] = "Variables/ConstantTypo";
analyzer[] = "Variables/Globals";
analyzer[] = "Variables/InconsistentUsage";
analyzer[] = "Variables/InheritedStaticVariable";
analyzer[] = "Variables/InterfaceArguments";
analyzer[] = "Variables/IsLocalConstant";
analyzer[] = "Variables/LocalGlobals";
analyzer[] = "Variables/LostReferences";
analyzer[] = "Variables/NoInitialS";
analyzer[] = "Variables/NoStaticVarInMethod";
analyzer[] = "Variables/NoVariableNeeded";
analyzer[] = "Variables/Overwriting";
analyzer[] = "Variables/OverwrittenLiterals";
analyzer[] = "Variables/Php5IndirectExpression";
analyzer[] = "Variables/Php7IndirectExpression";
analyzer[] = "Variables/RealVariables";
analyzer[] = "Variables/RecycledVariables";
analyzer[] = "Variables/RedeclaredStaticVariable";
analyzer[] = "Variables/References";
analyzer[] = "Variables/SelfTransform";
analyzer[] = "Variables/StaticVariableInNamespace";
analyzer[] = "Variables/StaticVariableInitialisation";
analyzer[] = "Variables/StaticVariables";
analyzer[] = "Variables/StrangeName";
analyzer[] = "Variables/UncommonEnvVar";
analyzer[] = "Variables/UndefinedConstantName";
analyzer[] = "Variables/UndefinedVariable";
analyzer[] = "Variables/UniqueUsage";
analyzer[] = "Variables/VariableLong";
analyzer[] = "Variables/VariableNonascii";
analyzer[] = "Variables/VariableOneLetter";
analyzer[] = "Variables/VariablePhp";
analyzer[] = "Variables/VariableUppercase";
analyzer[] = "Variables/VariableUsedOnce";
analyzer[] = "Variables/VariableUsedOnceByContext";
analyzer[] = "Variables/VariableVariables";
analyzer[] = "Variables/WrittenOnlyVariable";
analyzer[] = "Vendors/Codeigniter";
analyzer[] = "Vendors/Concrete5";

(continues on next page)

234 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Vendors/Drupal";
analyzer[] = "Vendors/Ez";
analyzer[] = "Vendors/Feast";
analyzer[] = "Vendors/Fuel";
analyzer[] = "Vendors/Joomla";
analyzer[] = "Vendors/Laravel";
analyzer[] = "Vendors/Phalcon";
analyzer[] = "Vendors/Sylius";
analyzer[] = "Vendors/Symfony";
analyzer[] = "Vendors/Typo3";
analyzer[] = "Vendors/Wordpress";
analyzer[] = "Vendors/Yii";

All for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'All':
- 'Arrays/AmbiguousKeys'
- 'Arrays/AppendAndAssignArrays'
- 'Arrays/ArrayBracketConsistence'
- 'Arrays/ArrayNSUsage'
- 'Arrays/Arrayindex'
- 'Arrays/EmptyFinal'
- 'Arrays/EmptySlots'
- 'Arrays/FloatConversionAsIndex'
- 'Arrays/GettingLastElement'
- 'Arrays/MassCreation'
- 'Arrays/MistakenConcatenation'
- 'Arrays/MixedKeys'
- 'Arrays/Multidimensional'
- 'Arrays/MultipleIdenticalKeys'
- 'Arrays/NegativeStart'
- 'Arrays/NoSpreadForHash'
- 'Arrays/NonConstantArray'
- 'Arrays/NullBoolean'
- 'Arrays/Phparrayindex'
- 'Arrays/RandomlySortedLiterals'
- 'Arrays/ShouldPreprocess'
- 'Arrays/SliceFirst'
- 'Arrays/StringInitialization'
- 'Arrays/TooManyDimensions'
- 'Arrays/WeakType'
- 'Arrays/WeirdIndex'
- 'Arrays/WithCallback'
- 'Attributes/Deprecated'
- 'Attributes/Friend'
- 'Attributes/InjectableVersion'
- 'Attributes/MissingAttributeAttribute'

(continues on next page)

10.5. Predefined config files 235

Exakat Documentation, Release 1

(continued from previous page)

- 'Attributes/ModifyImmutable'
- 'Attributes/NestedAttributes'
- 'Attributes/NoNamedArguments'
- 'Attributes/Override'
- 'Attributes/PhpNativeAttributes'
- 'Attributes/UsingDeprecated'
- 'Classes/AbstractConstants'
- 'Classes/AbstractOrImplements'
- 'Classes/AbstractStatic'
- 'Classes/Abstractclass'
- 'Classes/Abstractmethods'
- 'Classes/AccessPrivate'
- 'Classes/AccessProtected'
- 'Classes/AmbiguousStatic'
- 'Classes/AmbiguousVisibilities'
- 'Classes/Anonymous'
- 'Classes/AvoidOptionArrays'
- 'Classes/AvoidOptionalProperties'
- 'Classes/AvoidUsing'
- 'Classes/CancelCommonMethod'
- 'Classes/CannotBeReadonly'
- 'Classes/CantExtendFinal'
- 'Classes/CantInheritAbstractMethod'
- 'Classes/CantInstantiateClass'
- 'Classes/CantInstantiateNonClass'
- 'Classes/CantOverwriteFinalConstant'
- 'Classes/CantOverwriteFinalMethod'
- 'Classes/CheckAfterNullSafeOperator'
- 'Classes/CheckOnCallUsage'
- 'Classes/ChecksPropertyExistence'
- 'Classes/ChildRemoveTypehint'
- 'Classes/CitSameName'
- 'Classes/ClassAliasUsage'
- 'Classes/ClassInvasion'
- 'Classes/ClassOverreach'
- 'Classes/ClassUsage'
- 'Classes/Classnames'
- 'Classes/CloneWithNonObject'
- 'Classes/CloningUsage'
- 'Classes/ConstVisibilityUsage'
- 'Classes/ConstantClass'
- 'Classes/ConstantDefinition'
- 'Classes/ConstantUsedBelow'
- 'Classes/Constructor'
- 'Classes/CouldBeAbstractClass'
- 'Classes/CouldBeAbstractMethod'
- 'Classes/CouldBeClassConstant'
- 'Classes/CouldBeFinal'
- 'Classes/CouldBeIterable'
- 'Classes/CouldBeParentMethod'
- 'Classes/CouldBePrivate'
- 'Classes/CouldBePrivateConstante'

(continues on next page)

236 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Classes/CouldBePrivateMethod'
- 'Classes/CouldBeProtectedConstant'
- 'Classes/CouldBeProtectedMethod'
- 'Classes/CouldBeProtectedProperty'
- 'Classes/CouldBeReadonly'
- 'Classes/CouldBeReadonlyProperty'
- 'Classes/CouldBeStatic'
- 'Classes/CouldBeStringable'
- 'Classes/CouldInjectParam'
- 'Classes/CouldSetPropertyDefault'
- 'Classes/CouldUseClassOperator'
- 'Classes/CyclicReferences'
- 'Classes/DefinedConstants'
- 'Classes/DefinedParentMP'
- 'Classes/DefinedProperty'
- 'Classes/DefinedStaticMP'
- 'Classes/DemeterLaw'
- 'Classes/DependantAbstractClass'
- 'Classes/DifferentArgumentCounts'
- 'Classes/DirectCallToMagicMethod'
- 'Classes/DisconnectedClasses'
- 'Classes/DontSendThisInConstructor'
- 'Classes/DontUnsetProperties'
- 'Classes/DynamicClass'
- 'Classes/DynamicConstantCall'
- 'Classes/DynamicMethodCall'
- 'Classes/DynamicNew'
- 'Classes/DynamicPropertyCall'
- 'Classes/DynamicSelfCalls'
- 'Classes/EmptyClass'
- 'Classes/ExportProperty'
- 'Classes/ExtendsStdclass'
- 'Classes/FinalByOcramius'
- 'Classes/FinalPrivate'
- 'Classes/Finalclass'
- 'Classes/Finalmethod'
- 'Classes/FossilizedMethod'
- 'Classes/HasFluentInterface'
- 'Classes/HasMagicProperty'
- 'Classes/HiddenNullable'
- 'Classes/IdenticalMethods'
- 'Classes/ImmutableSignature'
- 'Classes/ImplementIsForInterface'
- 'Classes/ImplementedMethodsArePublic'
- 'Classes/IncompatibleConstructor'
- 'Classes/IncompatibleSignature'
- 'Classes/IncompatibleSignature74'
- 'Classes/InheritedPropertyMustMatch'
- 'Classes/InstantiatingAbstractClass'
- 'Classes/InsufficientPropertyTypehint'
- 'Classes/IntegerAsProperty'
- 'Classes/IsExtClass'

(continues on next page)

10.5. Predefined config files 237

Exakat Documentation, Release 1

(continued from previous page)

- 'Classes/IsInterfaceMethod'
- 'Classes/IsNotFamily'
- 'Classes/IsUpperFamily'
- 'Classes/IsaMagicProperty'
- 'Classes/LocallyUnusedProperty'
- 'Classes/LocallyUsedProperty'
- 'Classes/LoweredAccessLevel'
- 'Classes/MagicMethod'
- 'Classes/MagicMethodReturntypes'
- 'Classes/MagicProperties'
- 'Classes/MakeDefault'
- 'Classes/MakeGlobalAProperty'
- 'Classes/MakeMagicConcrete'
- 'Classes/MethodIsOverwritten'
- 'Classes/MethodPropertyConfusion'
- 'Classes/MethodSignatureMustBeCompatible'
- 'Classes/MethodUsedBelow'
- 'Classes/MismatchProperties'
- 'Classes/MissingAbstractMethod'
- 'Classes/MissingVisibility'
- 'Classes/MultipleClassesInFile'
- 'Classes/MultipleDeclarations'
- 'Classes/MultiplePropertyDeclaration'
- 'Classes/MultiplePropertyDeclarationOnOneLine'
- 'Classes/MultipleTraitOrInterface'
- 'Classes/MutualExtension'
- 'Classes/NewDynamicConstantSyntax'
- 'Classes/NewOnFunctioncallOrIdentifier'
- 'Classes/NewThenCall'
- 'Classes/NoMagicWithArray'
- 'Classes/NoNullWithNullSafeOperator'
- 'Classes/NoPSSOutsideClass'
- 'Classes/NoParent'
- 'Classes/NoPublicAccess'
- 'Classes/NoReadonlyAssignationInGlobal'
- 'Classes/NoSelfReferencingConstant'
- 'Classes/NonNullableSetters'
- 'Classes/NonPpp'
- 'Classes/NonStaticMethodsCalledStatic'
- 'Classes/NormalMethods'
- 'Classes/NullOnNew'
- 'Classes/OldStyleConstructor'
- 'Classes/OldStyleVar'
- 'Classes/OneObjectOperatorPerLine'
- 'Classes/OnlyStaticMethods'
- 'Classes/OrderOfDeclaration'
- 'Classes/OverwrittenConst'
- 'Classes/PPPDeclarationStyle'
- 'Classes/ParentFirst'
- 'Classes/ParentIsNotStatic'
- 'Classes/PromotedProperties'
- 'Classes/PropertyCouldBeLocal'

(continues on next page)

238 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Classes/PropertyDefinition'
- 'Classes/PropertyInvasion'
- 'Classes/PropertyMethodSameName'
- 'Classes/PropertyNeverUsed'
- 'Classes/PropertyUsedAbove'
- 'Classes/PropertyUsedBelow'
- 'Classes/PropertyUsedInOneMethodOnly'
- 'Classes/PropertyUsedInternally'
- 'Classes/PssWithoutClass'
- 'Classes/RaisedAccessLevel'
- 'Classes/ReadonlyUsage'
- 'Classes/RedefinedConstants'
- 'Classes/RedefinedDefault'
- 'Classes/RedefinedMethods'
- 'Classes/RedefinedPrivateProperty'
- 'Classes/RedefinedProperty'
- 'Classes/RewroteFinalClassConstant'
- 'Classes/SameNameAsFile'
- 'Classes/ScalarOrObjectProperty'
- 'Classes/ShouldDeepClone'
- 'Classes/ShouldHaveDestructor'
- 'Classes/ShouldUseSelf'
- 'Classes/ShouldUseThis'
- 'Classes/StaticCannotCallNonStatic'
- 'Classes/StaticContainsThis'
- 'Classes/StaticMethods'
- 'Classes/StaticMethodsCalledFromObject'
- 'Classes/StaticProperties'
- 'Classes/StrangeName'
- 'Classes/SwappedArguments'
- 'Classes/TestClass'
- 'Classes/ThisIsForClasses'
- 'Classes/ThisIsNotAnArray'
- 'Classes/ThisIsNotForStatic'
- 'Classes/ThrowInDestruct'
- 'Classes/TooManyChildren'
- 'Classes/TooManyDereferencing'
- 'Classes/TooManyFinds'
- 'Classes/TooManyInjections'
- 'Classes/TypedClassConstants'
- 'Classes/TypehintCyclicDependencies'
- 'Classes/UndeclaredStaticProperty'
- 'Classes/UndefinedClasses'
- 'Classes/UndefinedConstants'
- 'Classes/UndefinedMethod'
- 'Classes/UndefinedParentMP'
- 'Classes/UndefinedProperty'
- 'Classes/UndefinedStaticMP'
- 'Classes/UndefinedStaticclass'
- 'Classes/UnfinishedObject'
- 'Classes/UninitedProperty'
- 'Classes/UnitializedProperties'

(continues on next page)

10.5. Predefined config files 239

Exakat Documentation, Release 1

(continued from previous page)

- 'Classes/UnreachableConstant'
- 'Classes/UnreachableMethod'
- 'Classes/UnresolvedCatch'
- 'Classes/UnresolvedClasses'
- 'Classes/UnresolvedInstanceof'
- 'Classes/UntypedNoDefaultProperties'
- 'Classes/UnusedClass'
- 'Classes/UnusedConstant'
- 'Classes/UnusedMethods'
- 'Classes/UnusedPrivateMethod'
- 'Classes/UnusedPrivateProperty'
- 'Classes/UnusedProtectedMethods'
- 'Classes/UnusedPublicMethod'
- 'Classes/UseClassOperator'
- 'Classes/UseInstanceof'
- 'Classes/UseThis'
- 'Classes/UsedClass'
- 'Classes/UsedMethods'
- 'Classes/UsedOnceProperty'
- 'Classes/UsedPrivateMethod'
- 'Classes/UsedPrivateProperty'
- 'Classes/UsedProtectedMethod'
- 'Classes/UselessAbstract'
- 'Classes/UselessAssignationOfPromotedProperty'
- 'Classes/UselessConstantOverwrite'
- 'Classes/UselessConstructor'
- 'Classes/UselessFinal'
- 'Classes/UselessMethod'
- 'Classes/UselessNullSafeOperator'
- 'Classes/UselessTypehint'
- 'Classes/UsingThisOutsideAClass'
- 'Classes/VariableClasses'
- 'Classes/WeakType'
- 'Classes/WrongCase'
- 'Classes/WrongName'
- 'Classes/WrongTypedPropertyInit'
- 'Classes/toStringPss'
- 'Common/InterfaceUsage'
- 'Complete/CreateCompactVariables'
- 'Complete/CreateDefaultValues'
- 'Complete/CreateForeachDefault'
- 'Complete/CreateMagicMethod'
- 'Complete/CreateMagicProperty'
- 'Complete/EnumCaseValues'
- 'Complete/ExtendedTypehints'
- 'Complete/FollowClosureDefinition'
- 'Complete/GlobalDefinitions'
- 'Complete/IsExtStructure'
- 'Complete/IsPhpStructure'
- 'Complete/IsStubStructure'
- 'Complete/MakeAllStatics'
- 'Complete/MakeClassConstantDefinition'

(continues on next page)

240 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Complete/MakeClassMethodDefinition'
- 'Complete/MakeFunctioncallWithReference'
- 'Complete/OverwrittenConstants'
- 'Complete/OverwrittenMethods'
- 'Complete/OverwrittenProperties'
- 'Complete/PhpExtStubPropertyMethod'
- 'Complete/PhpNativeReference'
- 'Complete/PropagateConstants'
- 'Complete/ReturnTypehint'
- 'Complete/SetArrayClassDefinition'
- 'Complete/SetClassAliasDefinition'
- 'Complete/SetClassMethodRemoteDefinition'
- 'Complete/SetClassPropertyDefinitionWithTypehint'
- 'Complete/SetClassRemoteDefinitionWithGlobal'
- 'Complete/SetClassRemoteDefinitionWithInjection'
- 'Complete/SetClassRemoteDefinitionWithLocalNew'
- 'Complete/SetClassRemoteDefinitionWithParenthesis'
- 'Complete/SetClassRemoteDefinitionWithReturnTypehint'
- 'Complete/SetClassRemoteDefinitionWithTypehint'
- 'Complete/SetCloneLink'
- 'Complete/SetMethodFnp'
- 'Complete/SetParentDefinition'
- 'Complete/SolveTraitConstants'
- 'Complete/SolveTraitMethods'
- 'Complete/Superglobals'
- 'Complete/VariableTypehint'
- 'Composer/Autoload'
- 'Composer/UseComposer'
- 'Composer/UseComposerLock'
- 'Constants/BadConstantnames'
- 'Constants/CaseInsensitiveConstants'
- 'Constants/ConditionedConstants'
- 'Constants/ConstDefinePreference'
- 'Constants/ConstRecommended'
- 'Constants/ConstantStrangeNames'
- 'Constants/ConstantUsage'
- 'Constants/ConstantUsedOnce'
- 'Constants/Constantnames'
- 'Constants/CouldBeConstant'
- 'Constants/CouldUseConstant'
- 'Constants/CreatedOutsideItsNamespace'
- 'Constants/CustomConstantUsage'
- 'Constants/DefineInsensitivePreference'
- 'Constants/DynamicCreation'
- 'Constants/InconsistantCase'
- 'Constants/InvalidName'
- 'Constants/IsExtConstant'
- 'Constants/IsGlobalConstant'
- 'Constants/IsPhpConstant'
- 'Constants/MagicConstantUsage'
- 'Constants/MultipleConstantDefinition'
- 'Constants/PhpConstantUsage'

(continues on next page)

10.5. Predefined config files 241

Exakat Documentation, Release 1

(continued from previous page)

- 'Constants/RelayConstant'
- 'Constants/StrangeName'
- 'Constants/UndefinedConstants'
- 'Constants/UnusedConstants'
- 'Constants/VariableConstant'
- 'Custom/MethodUsage'
- 'Dump/ArgumentCountsPerCalls'
- 'Dump/CallOrder'
- 'Dump/ClassInjectionCount'
- 'Dump/CollectAtomCounts'
- 'Dump/CollectBlockSize'
- 'Dump/CollectCalls'
- 'Dump/CollectCatch'
- 'Dump/CollectClassChanges'
- 'Dump/CollectClassChildren'
- 'Dump/CollectClassConstantCounts'
- 'Dump/CollectClassDepth'
- 'Dump/CollectClassInterfaceCounts'
- 'Dump/CollectClassTraitsCounts'
- 'Dump/CollectClassesDependencies'
- 'Dump/CollectDefinitionsStats'
- 'Dump/CollectDependencyExtension'
- 'Dump/CollectFilesDependencies'
- 'Dump/CollectForeachFavorite'
- 'Dump/CollectGlobalVariables'
- 'Dump/CollectGraphTriplets'
- 'Dump/CollectLiterals'
- 'Dump/CollectLocalVariableCounts'
- 'Dump/CollectMbstringEncodings'
- 'Dump/CollectMethodCounts'
- 'Dump/CollectMethodsThrowingExceptions'
- 'Dump/CollectNativeCallsPerExpressions'
- 'Dump/CollectParameterCounts'
- 'Dump/CollectParameterNames'
- 'Dump/CollectPhpStructures'
- 'Dump/CollectPropertyCounts'
- 'Dump/CollectPropertyUsage'
- 'Dump/CollectReadability'
- 'Dump/CollectSetLocale'
- 'Dump/CollectStructures'
- 'Dump/CollectStubStructures'
- 'Dump/CollectThrow'
- 'Dump/CollectUseCounts'
- 'Dump/CollectVariables'
- 'Dump/CollectVendorStructures'
- 'Dump/CollectsNames'
- 'Dump/CombinedCalls'
- 'Dump/ConstantOrder'
- 'Dump/CouldBeAConstant'
- 'Dump/CyclomaticComplexity'
- 'Dump/DereferencingLevels'
- 'Dump/DumpComparedLiterals'

(continues on next page)

242 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Dump/EnvironnementVariables'
- 'Dump/FossilizedMethods'
- 'Dump/Inclusions'
- 'Dump/IndentationLevels'
- 'Dump/NewOrder'
- 'Dump/ParameterArgumentsLinks'
- 'Dump/PublicReach'
- 'Dump/TypehintingStats'
- 'Dump/Typehintorder'
- 'Enums/CouldBeEnum'
- 'Enums/NoMagicMethod'
- 'Enums/UndefinedEnumcase'
- 'Enums/UnusedEnumCase'
- 'Exceptions/AlreadyCaught'
- 'Exceptions/CantThrow'
- 'Exceptions/CatchE'
- 'Exceptions/CatchUndefinedVariable'
- 'Exceptions/CaughtButNotThrown'
- 'Exceptions/CaughtExceptions'
- 'Exceptions/ConvertedExceptions'
- 'Exceptions/CouldDropVariable'
- 'Exceptions/CouldUseTry'
- 'Exceptions/DefinedExceptions'
- 'Exceptions/ForgottenThrown'
- 'Exceptions/IsPhpException'
- 'Exceptions/LargeTryBlock'
- 'Exceptions/LongPreparation'
- 'Exceptions/MultipleCatch'
- 'Exceptions/OverwriteException'
- 'Exceptions/PossibleTypeError'
- 'Exceptions/Rethrown'
- 'Exceptions/SetChainingException'
- 'Exceptions/ThrowFunctioncall'
- 'Exceptions/ThrowRawExceptions'
- 'Exceptions/ThrownExceptions'
- 'Exceptions/TryNoCatch'
- 'Exceptions/UncaughtExceptions'
- 'Exceptions/Unthrown'
- 'Exceptions/UnusedExceptionVariable'
- 'Exceptions/UselessCatch'
- 'Exceptions/UselessTry'
- 'Extensions/Extamqp'
- 'Extensions/Extapache'
- 'Extensions/Extapc'
- 'Extensions/Extapcu'
- 'Extensions/Extarray'
- 'Extensions/Extast'
- 'Extensions/Extbcmath'
- 'Extensions/Extbzip2'
- 'Extensions/Extcalendar'
- 'Extensions/Extcmark'
- 'Extensions/Extcom'

(continues on next page)

10.5. Predefined config files 243

Exakat Documentation, Release 1

(continued from previous page)

- 'Extensions/Extcrypto'
- 'Extensions/Extcsv'
- 'Extensions/Extctype'
- 'Extensions/Extcurl'
- 'Extensions/Extdate'
- 'Extensions/Extdb2'
- 'Extensions/Extdba'
- 'Extensions/Extdecimal'
- 'Extensions/Extdio'
- 'Extensions/Extdom'
- 'Extensions/Extds'
- 'Extensions/Exteaccelerator'
- 'Extensions/Exteio'
- 'Extensions/Extenchant'
- 'Extensions/Extev'
- 'Extensions/Extevent'
- 'Extensions/Extexcimer'
- 'Extensions/Extexif'
- 'Extensions/Extexpect'
- 'Extensions/Extfam'
- 'Extensions/Extfann'
- 'Extensions/Extffi'
- 'Extensions/Extfile'
- 'Extensions/Extfileinfo'
- 'Extensions/Extfilter'
- 'Extensions/Extfpm'
- 'Extensions/Extftp'
- 'Extensions/Extgd'
- 'Extensions/Extgearman'
- 'Extensions/Extgender'
- 'Extensions/Extgeoip'
- 'Extensions/Extgeospatial'
- 'Extensions/Extgettext'
- 'Extensions/Extgmagick'
- 'Extensions/Extgmp'
- 'Extensions/Extgnupg'
- 'Extensions/Extgrpc'
- 'Extensions/Exthash'
- 'Extensions/Exthrtime'
- 'Extensions/Exthttp'
- 'Extensions/Extibase'
- 'Extensions/Extice'
- 'Extensions/Exticonv'
- 'Extensions/Extigbinary'
- 'Extensions/Extimagick'
- 'Extensions/Extimap'
- 'Extensions/Extinfo'
- 'Extensions/Extinotify'
- 'Extensions/Extintl'
- 'Extensions/Extjson'
- 'Extensions/Extjudy'
- 'Extensions/Extldap'

(continues on next page)

244 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Extensions/Extleveldb'
- 'Extensions/Extlibsodium'
- 'Extensions/Extlibxml'
- 'Extensions/Extlua'
- 'Extensions/Extlzf'
- 'Extensions/Extmail'
- 'Extensions/Extmailparse'
- 'Extensions/Extmath'
- 'Extensions/Extmbstring'
- 'Extensions/Extmcrypt'
- 'Extensions/Extmemcache'
- 'Extensions/Extmemcached'
- 'Extensions/Extmongo'
- 'Extensions/Extmongodb'
- 'Extensions/Extmsgpack'
- 'Extensions/Extmssql'
- 'Extensions/Extmysql'
- 'Extensions/Extmysqli'
- 'Extensions/Extncurses'
- 'Extensions/Extnewt'
- 'Extensions/Extnsapi'
- 'Extensions/Extob'
- 'Extensions/Extoci8'
- 'Extensions/Extodbc'
- 'Extensions/Extopcache'
- 'Extensions/Extopencensus'
- 'Extensions/Extopenssl'
- 'Extensions/Extparle'
- 'Extensions/Extpassword'
- 'Extensions/Extpcntl'
- 'Extensions/Extpcov'
- 'Extensions/Extpcre'
- 'Extensions/Extpdo'
- 'Extensions/Extpgsql'
- 'Extensions/Extphalcon'
- 'Extensions/Extphar'
- 'Extensions/Extpkcs11'
- 'Extensions/Extposix'
- 'Extensions/Extprotobuf'
- 'Extensions/Extpspell'
- 'Extensions/Extpsr'
- 'Extensions/Extrandom'
- 'Extensions/Extrar'
- 'Extensions/Extrdkafka'
- 'Extensions/Extreadline'
- 'Extensions/Extredis'
- 'Extensions/Extreflection'
- 'Extensions/Extscrypt'
- 'Extensions/Extsdl'
- 'Extensions/Extseaslog'
- 'Extensions/Extsem'
- 'Extensions/Extsession'

(continues on next page)

10.5. Predefined config files 245

Exakat Documentation, Release 1

(continued from previous page)

- 'Extensions/Extshmop'
- 'Extensions/Extsimplexml'
- 'Extensions/Extsnmp'
- 'Extensions/Extsoap'
- 'Extensions/Extsockets'
- 'Extensions/Extsphinx'
- 'Extensions/Extspl'
- 'Extensions/Extspx'
- 'Extensions/Extsqlite'
- 'Extensions/Extsqlite3'
- 'Extensions/Extsqlsrv'
- 'Extensions/Extssh2'
- 'Extensions/Extstandard'
- 'Extensions/Extstats'
- 'Extensions/Extstomp'
- 'Extensions/Extstring'
- 'Extensions/Extsuhosin'
- 'Extensions/Extsvm'
- 'Extensions/Extswoole'
- 'Extensions/Exttaint'
- 'Extensions/Extteds'
- 'Extensions/Exttidy'
- 'Extensions/Exttokenizer'
- 'Extensions/Exttokyotyrant'
- 'Extensions/Exttrader'
- 'Extensions/Extuopz'
- 'Extensions/Extuuid'
- 'Extensions/Extv8js'
- 'Extensions/Extvarnish'
- 'Extensions/Extvips'
- 'Extensions/Extwasm'
- 'Extensions/Extwddx'
- 'Extensions/Extweakref'
- 'Extensions/Extxattr'
- 'Extensions/Extxdebug'
- 'Extensions/Extxdiff'
- 'Extensions/Extxhprof'
- 'Extensions/Extxml'
- 'Extensions/Extxmlreader'
- 'Extensions/Extxmlrpc'
- 'Extensions/Extxmlwriter'
- 'Extensions/Extxsl'
- 'Extensions/Extxxtea'
- 'Extensions/Extyaml'
- 'Extensions/Extyar'
- 'Extensions/Extzendmonitor'
- 'Extensions/Extzip'
- 'Extensions/Extzlib'
- 'Extensions/Extzmq'
- 'Extensions/Extzookeeper'
- 'Files/DefinitionsOnly'
- 'Files/GlobalCodeOnly'

(continues on next page)

246 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Files/InclusionWrongCase'
- 'Files/IsCliScript'
- 'Files/IsComponent'
- 'Files/MissingInclude'
- 'Files/NotDefinitionsOnly'
- 'Files/Services'
- 'Functions/AddDefaultValue'
- 'Functions/AliasesUsage'
- 'Functions/AvoidBooleanArgument'
- 'Functions/BadTypehintRelay'
- 'Functions/CallbackNeedsReturn'
- 'Functions/CanCallGenerator'
- 'Functions/CancelledParameter'
- 'Functions/CannotUseStaticForClosure'
- 'Functions/CantUse'
- 'Functions/Closure2String'
- 'Functions/Closures'
- 'Functions/ConditionedFunctions'
- 'Functions/CouldBeCallable'
- 'Functions/CouldBeStaticClosure'
- 'Functions/CouldCentralize'
- 'Functions/CouldTypeWithArray'
- 'Functions/CouldTypeWithBool'
- 'Functions/CouldTypeWithInt'
- 'Functions/CouldTypeWithIterable'
- 'Functions/CouldTypeWithString'
- 'Functions/CouldTypehint'
- 'Functions/DeepDefinitions'
- 'Functions/DeprecatedCallable'
- 'Functions/DontUseVoid'
- 'Functions/DuplicateNamedParameter'
- 'Functions/DynamicCode'
- 'Functions/Dynamiccall'
- 'Functions/EmptyFunction'
- 'Functions/ExceedingTypehint'
- 'Functions/FallbackFunction'
- 'Functions/FnArgumentVariableConfusion'
- 'Functions/FunctionCalledWithOtherCase'
- 'Functions/Functionnames'
- 'Functions/FunctionsUsingReference'
- 'Functions/GeneratorCannotReturn'
- 'Functions/HardcodedPasswords'
- 'Functions/HasFluentInterface'
- 'Functions/HasNotFluentInterface'
- 'Functions/Identity'
- 'Functions/InsufficientTypehint'
- 'Functions/IsExtFunction'
- 'Functions/IsGenerator'
- 'Functions/IsGlobal'
- 'Functions/KillsApp'
- 'Functions/LoopCalling'
- 'Functions/MethodIsNotAnIf'

(continues on next page)

10.5. Predefined config files 247

Exakat Documentation, Release 1

(continued from previous page)

- 'Functions/MismatchParameterAndType'
- 'Functions/MismatchParameterName'
- 'Functions/MismatchTypeAndDefault'
- 'Functions/MismatchedDefaultArguments'
- 'Functions/MismatchedTypehint'
- 'Functions/MissingTypehint'
- 'Functions/ModifyTypedParameter'
- 'Functions/MultipleDeclarations'
- 'Functions/MultipleIdenticalClosure'
- 'Functions/MultipleReturn'
- 'Functions/MultipleSameArguments'
- 'Functions/MustReturn'
- 'Functions/NeverUsedParameter'
- 'Functions/NoBooleanAsDefault'
- 'Functions/NoClassAsTypehint'
- 'Functions/NoDefaultForReference'
- 'Functions/NoLiteralForReference'
- 'Functions/NoReferencedVoid'
- 'Functions/NoReturnUsed'
- 'Functions/NullTypeFavorite'
- 'Functions/NullableWithConstant'
- 'Functions/NullableWithoutCheck'
- 'Functions/OneLetterFunctions'
- 'Functions/OnlyVariableForReference'
- 'Functions/OnlyVariablePassedByReference'
- 'Functions/OptionalParameter'
- 'Functions/ParameterHiding'
- 'Functions/PrefixToType'
- 'Functions/RealFunctions'
- 'Functions/Recursive'
- 'Functions/RedeclaredPhpFunction'
- 'Functions/RelayFunction'
- 'Functions/RetypedReference'
- 'Functions/SemanticTyping'
- 'Functions/ShouldBeTypehinted'
- 'Functions/ShouldUseConstants'
- 'Functions/ShouldYieldWithKey'
- 'Functions/TooManyLocalVariables'
- 'Functions/TooManyParameters'
- 'Functions/TooMuchIndented'
- 'Functions/TypeDodging'
- 'Functions/TypehintMustBeReturned'
- 'Functions/TypehintedReferences'
- 'Functions/Typehints'
- 'Functions/UnbindingClosures'
- 'Functions/UndefinedFunctions'
- 'Functions/UnknownParameterName'
- 'Functions/UnsetOnArguments'
- 'Functions/UnusedArguments'
- 'Functions/UnusedFunctions'
- 'Functions/UnusedInheritedVariable'
- 'Functions/UnusedReturnedValue'

(continues on next page)

248 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Functions/UseArrowFunctions'
- 'Functions/UseConstantAsArguments'
- 'Functions/UseConstantsAsReturns'
- 'Functions/UsedFunctions'
- 'Functions/UselessArgument'
- 'Functions/UselessDefault'
- 'Functions/UselessReferenceArgument'
- 'Functions/UselessReturn'
- 'Functions/UselessTypeCheck'
- 'Functions/UsesDefaultArguments'
- 'Functions/UsingDeprecated'
- 'Functions/VariableArguments'
- 'Functions/VariableParameterAmbiguityInArrowFunction'
- 'Functions/VoidIsNotAReference'
- 'Functions/WithoutReturn'
- 'Functions/WrongArgumentNameWithPhpFunction'
- 'Functions/WrongArgumentType'
- 'Functions/WrongCase'
- 'Functions/WrongNumberOfArguments'
- 'Functions/WrongNumberOfArgumentsMethods'
- 'Functions/WrongOptionalParameter'
- 'Functions/WrongReturnedType'
- 'Functions/WrongTypeWithCall'
- 'Functions/WrongTypehintedName'
- 'Functions/funcGetArgModified'
- 'Interfaces/AlreadyParentsInterface'
- 'Interfaces/AvoidSelfInInterface'
- 'Interfaces/CantImplementTraversable'
- 'Interfaces/CantOverloadConstants'
- 'Interfaces/CouldUseInterface'
- 'Interfaces/EmptyInterface'
- 'Interfaces/InheritedClassConstantVisibility'
- 'Interfaces/InterfaceMethod'
- 'Interfaces/InterfaceUsage'
- 'Interfaces/Interfacenames'
- 'Interfaces/IsExtInterface'
- 'Interfaces/IsNotImplemented'
- 'Interfaces/NoConstructorInInterface'
- 'Interfaces/NoGaranteeForPropertyConstant'
- 'Interfaces/Php'
- 'Interfaces/PossibleInterfaces'
- 'Interfaces/RepeatedInterface'
- 'Interfaces/UndefinedInterfaces'
- 'Interfaces/UnusedInterfaces'
- 'Interfaces/UsedInterfaces'
- 'Interfaces/UselessInterfaces'
- 'Namespaces/Alias'
- 'Namespaces/AliasConfusion'
- 'Namespaces/ConstantFullyQualified'
- 'Namespaces/ConstantWithUseFavorite'
- 'Namespaces/CouldUseAlias'
- 'Namespaces/CouldUseMagicConstant'

(continues on next page)

10.5. Predefined config files 249

Exakat Documentation, Release 1

(continued from previous page)

- 'Namespaces/EmptyNamespace'
- 'Namespaces/GlobalImport'
- 'Namespaces/HiddenUse'
- 'Namespaces/MultipleAliasDefinitionPerFile'
- 'Namespaces/MultipleAliasDefinitions'
- 'Namespaces/NamespaceUsage'
- 'Namespaces/Namespacesnames'
- 'Namespaces/NoKeywordInNamespace'
- 'Namespaces/OverloadExistingNames'
- 'Namespaces/ShouldMakeAlias'
- 'Namespaces/UnresolvedUse'
- 'Namespaces/UnusedUse'
- 'Namespaces/UseFunctionsConstants'
- 'Namespaces/UseWithFullyQualifiedNS'
- 'Namespaces/UsedUse'
- 'Namespaces/WrongCase'
- 'Patterns/AbstractAway'
- 'Patterns/CourrierAntiPattern'
- 'Patterns/DependencyInjection'
- 'Patterns/Factory'
- 'Patterns/GetterSetter'
- 'Performances/ArrayKeyExistsSpeedup'
- 'Performances/ArrayMergeInLoops'
- 'Performances/Autoappend'
- 'Performances/AvoidArrayPush'
- 'Performances/CacheVariableOutsideLoop'
- 'Performances/ClassOperator'
- 'Performances/CountToAppend'
- 'Performances/CsvInLoops'
- 'Performances/DoInBase'
- 'Performances/DoubleArrayFlip'
- 'Performances/EllipsisMerge'
- 'Performances/FetchOneRowFormat'
- 'Performances/IssetWholeArray'
- 'Performances/JoinFile'
- 'Performances/LogicalToInArray'
- 'Performances/MakeOneCall'
- 'Performances/MbStringInLoop'
- 'Performances/MemoizeMagicCall'
- 'Performances/NoConcatInLoop'
- 'Performances/NoGlob'
- 'Performances/NotCountNull'
- 'Performances/OptimizeExplode'
- 'Performances/PHP7EncapsedStrings'
- 'Performances/Php74ArrayKeyExists'
- 'Performances/PreCalculateUse'
- 'Performances/PrePostIncrement'
- 'Performances/RegexOnArrays'
- 'Performances/RegexOnCollector'
- 'Performances/ShouldCacheLocal'
- 'Performances/SimpleSwitch'
- 'Performances/SimplifyForeach'

(continues on next page)

250 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Performances/SkipEmptyArray'
- 'Performances/SlowFunctions'
- 'Performances/StaticCallDontNeedObjects'
- 'Performances/StaticCallWithSelf'
- 'Performances/StrposTooMuch'
- 'Performances/SubstrFirst'
- 'Performances/SubstrInLoops'
- 'Performances/TooManyExtractions'
- 'Performances/UseArraySlice'
- 'Performances/UseBlindVar'
- 'Performances/timeVsstrtotime'
- 'Php/AlternativeSyntax'
- 'Php/Argon2Usage'
- 'Php/ArrayKeyExistsWithObjects'
- 'Php/AssertFunctionIsReserved'
- 'Php/AssertionUsage'
- 'Php/AssignAnd'
- 'Php/Assumptions'
- 'Php/AutoloadUsage'
- 'Php/AvoidGetobjectVars'
- 'Php/AvoidMbDectectEncoding'
- 'Php/AvoidReal'
- 'Php/AvoidSetErrorHandlerContextArg'
- 'Php/BetterRand'
- 'Php/CallingStaticTraitMethod'
- 'Php/CantUseReturnValueInWriteContext'
- 'Php/CaseForPSS'
- 'Php/CastUnsetUsage'
- 'Php/CastingUsage'
- 'Php/ClassAliasSupportsInternalClasses'
- 'Php/ClassConstWithArray'
- 'Php/ClassFunctionConfusion'
- 'Php/CloneConstant'
- 'Php/CloseTags'
- 'Php/CloseTagsConsistency'
- 'Php/ClosureThisSupport'
- 'Php/Coalesce'
- 'Php/CoalesceEqual'
- 'Php/CompactInexistant'
- 'Php/ComparisonOnDifferentTypes'
- 'Php/ConcatAndAddition'
- 'Php/ConstWithArray'
- 'Php/ConstantScalarExpression'
- 'Php/CookiesVariables'
- 'Php/CouldUseIsCountable'
- 'Php/CouldUsePromotedProperties'
- 'Php/Crc32MightBeNegative'
- 'Php/CryptoUsage'
- 'Php/DateFormats'
- 'Php/DateTimeNotImmutable'
- 'Php/DeclareEncoding'
- 'Php/DeclareStrict'

(continues on next page)

10.5. Predefined config files 251

Exakat Documentation, Release 1

(continued from previous page)

- 'Php/DeclareStrictType'
- 'Php/DeclareTicks'
- 'Php/DefineWithArray'
- 'Php/DeprecateDollarCurly'
- 'Php/Deprecated'
- 'Php/DetectCurrentClass'
- 'Php/DirectCallToClone'
- 'Php/DirectiveName'
- 'Php/DirectivesUsage'
- 'Php/DlUsage'
- 'Php/DontPolluteGlobalSpace'
- 'Php/EchoTagUsage'
- 'Php/EllipsisUsage'
- 'Php/EmptyList'
- 'Php/EnumUsage'
- 'Php/ErrorLogUsage'
- 'Php/ExitNoArg'
- 'Php/ExponentUsage'
- 'Php/FailingAnalysis'
- 'Php/FalseToArray'
- 'Php/FilesFullPath'
- 'Php/FilterToAddSlashes'
- 'Php/FinalConstant'
- 'Php/FirstClassCallable'
- 'Php/FlexibleHeredoc'
- 'Php/FopenMode'
- 'Php/ForeachDontChangePointer'
- 'Php/ForeachObject'
- 'Php/GlobalWithoutSimpleVariable'
- 'Php/GlobalsVsGlobal'
- 'Php/Gotonames'
- 'Php/GroupUseDeclaration'
- 'Php/GroupUseTrailingComma'
- 'Php/Haltcompiler'
- 'Php/HashAlgos'
- 'Php/HashAlgos53'
- 'Php/HashAlgos54'
- 'Php/HashAlgos71'
- 'Php/HashAlgos74'
- 'Php/HashUsesObjects'
- 'Php/IdnUts46'
- 'Php/ImplodeOneArg'
- 'Php/IncludeVariables'
- 'Php/IncomingValues'
- 'Php/IncomingVariables'
- 'Php/Incompilable'
- 'Php/IntegerSeparatorUsage'
- 'Php/InternalParameterType'
- 'Php/IsAWithString'
- 'Php/IsINF'
- 'Php/IsNAN'
- 'Php/IsnullVsEqualNull'

(continues on next page)

252 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Php/IssetMultipleArgs'
- 'Php/JsonSerializeReturnType'
- 'Php/Labelnames'
- 'Php/LetterCharsLogicalFavorite'
- 'Php/ListShortSyntax'
- 'Php/ListWithAppends'
- 'Php/ListWithKeys'
- 'Php/ListWithReference'
- 'Php/LogicalInLetters'
- 'Php/MethodCallOnNew'
- 'Php/MiddleVersion'
- 'Php/MissingMagicIsset'
- 'Php/MissingSubpattern'
- 'Php/MixedKeyword'
- 'Php/MixedUsage'
- 'Php/MultipleDeclareStrict'
- 'Php/MustCallParentConstructor'
- 'Php/NamedArgumentAndVariadic'
- 'Php/NamedParameterUsage'
- 'Php/NativeClassTypeCompatibility'
- 'Php/NestedTernaryWithoutParenthesis'
- 'Php/NeverKeyword'
- 'Php/NeverTypehintUsage'
- 'Php/NewExponent'
- 'Php/NewInitializers'
- 'Php/NoCastToInt'
- 'Php/NoClassInGlobal'
- 'Php/NoListWithString'
- 'Php/NoMoreCurlyArrays'
- 'Php/NoNullForNative'
- 'Php/NoReferenceForStaticProperty'
- 'Php/NoReferenceForTernary'
- 'Php/NoReturnForGenerator'
- 'Php/NoStringWithAppend'
- 'Php/NoSubstrMinusOne'
- 'Php/NotScalarType'
- 'Php/OnlyVariablePassedByReference'
- 'Php/OpensslEncryptAlgoChange'
- 'Php/OveriddenFunction'
- 'Php/PHP70scalartypehints'
- 'Php/PHP71scalartypehints'
- 'Php/PHP72scalartypehints'
- 'Php/PHP73LastEmptyArgument'
- 'Php/PHP80scalartypehints'
- 'Php/PHP81scalartypehints'
- 'Php/ParenthesisAsParameter'
- 'Php/Password55'
- 'Php/PathinfoReturns'
- 'Php/PearUsage'
- 'Php/Php54NewFunctions'
- 'Php/Php54RemovedFunctions'
- 'Php/Php55NewFunctions'

(continues on next page)

10.5. Predefined config files 253

Exakat Documentation, Release 1

(continued from previous page)

- 'Php/Php55RemovedFunctions'
- 'Php/Php56NewFunctions'
- 'Php/Php70NewClasses'
- 'Php/Php70NewFunctions'
- 'Php/Php70NewInterfaces'
- 'Php/Php70RemovedDirective'
- 'Php/Php70RemovedFunctions'
- 'Php/Php71NewClasses'
- 'Php/Php71NewFunctions'
- 'Php/Php71RemovedDirective'
- 'Php/Php71microseconds'
- 'Php/Php72Deprecation'
- 'Php/Php72NewClasses'
- 'Php/Php72NewConstants'
- 'Php/Php72NewFunctions'
- 'Php/Php72ObjectKeyword'
- 'Php/Php72RemovedFunctions'
- 'Php/Php73NewFunctions'
- 'Php/Php73RemovedFunctions'
- 'Php/Php74Deprecation'
- 'Php/Php74NewClasses'
- 'Php/Php74NewConstants'
- 'Php/Php74NewDirective'
- 'Php/Php74NewFunctions'
- 'Php/Php74RemovedDirective'
- 'Php/Php74RemovedFunctions'
- 'Php/Php74ReservedKeyword'
- 'Php/Php74mbstrrpos3rdArg'
- 'Php/Php7RelaxedKeyword'
- 'Php/Php80NamedParameterVariadic'
- 'Php/Php80NewFunctions'
- 'Php/Php80OnlyTypeHints'
- 'Php/Php80RemovedConstant'
- 'Php/Php80RemovedDirective'
- 'Php/Php80RemovedFunctions'
- 'Php/Php80RemovesResources'
- 'Php/Php80UnionTypehint'
- 'Php/Php80VariableSyntax'
- 'Php/Php81IntersectionTypehint'
- 'Php/Php81NewFunctions'
- 'Php/Php81NewTypes'
- 'Php/Php81RemovedConstant'
- 'Php/Php81RemovedDirective'
- 'Php/Php81RemovedFunctions'
- 'Php/Php81RemovesResources'
- 'Php/Php82NewFunctions'
- 'Php/Php82NewTypes'
- 'Php/Php83NewClasses'
- 'Php/Php83NewFunctions'
- 'Php/PhpErrorMsgUsage'
- 'Php/PlusPlusOnLetters'
- 'Php/PregMatchAllFlag'

(continues on next page)

254 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Php/Prints'
- 'Php/RawPostDataUsage'
- 'Php/ReadonlyPropertyChangedByCloning'
- 'Php/ReflectionExportIsDeprecated'
- 'Php/ReservedKeywords7'
- 'Php/ReservedMatchKeyword'
- 'Php/ReservedMethods'
- 'Php/ReservedNames'
- 'Php/RestrictGlobalUsage'
- 'Php/ReturnTypehintUsage'
- 'Php/ReturnWithParenthesis'
- 'Php/SafePhpvars'
- 'Php/ScalarAreNotArrays'
- 'Php/ScalarTypehintUsage'
- 'Php/SerializeMagic'
- 'Php/SessionVariables'
- 'Php/SetExceptionHandlerPHP7'
- 'Php/SetHandlers'
- 'Php/ShellFavorite'
- 'Php/ShortOpenTagRequired'
- 'Php/ShortTernary'
- 'Php/ShouldPreprocess'
- 'Php/ShouldUseArrayColumn'
- 'Php/ShouldUseArrayFilter'
- 'Php/ShouldUseCoalesce'
- 'Php/ShouldUseFunction'
- 'Php/SignatureTrailingComma'
- 'Php/SpreadOperatorForArray'
- 'Php/StaticVariableDefaultCanBeAnyExpression'
- 'Php/StaticclassUsage'
- 'Php/StringIntComparison'
- 'Php/StrposWithIntegers'
- 'Php/StrtrArguments'
- 'Php/SuperGlobalUsage'
- 'Php/ThrowUsage'
- 'Php/ThrowWasAnExpression'
- 'Php/TooManyNativeCalls'
- 'Php/TrailingComma'
- 'Php/TriggerErrorUsage'
- 'Php/TryCatchUsage'
- 'Php/TryMultipleCatch'
- 'Php/TypedPropertyUsage'
- 'Php/UnicodeEscapePartial'
- 'Php/UnicodeEscapeSyntax'
- 'Php/UnknownPcre2Option'
- 'Php/UnpackingInsideArrays'
- 'Php/UnsetOrCast'
- 'Php/UpperCaseFunction'
- 'Php/UpperCaseKeyword'
- 'Php/UseAttributes'
- 'Php/UseBrowscap'
- 'Php/UseClassAlias'

(continues on next page)

10.5. Predefined config files 255

Exakat Documentation, Release 1

(continued from previous page)

- 'Php/UseCli'
- 'Php/UseContravariance'
- 'Php/UseCookies'
- 'Php/UseCovariance'
- 'Php/UseDNF'
- 'Php/UseDateTimeImmutable'
- 'Php/UseEnumCaseInConstantExpression'
- 'Php/UseGetDebugType'
- 'Php/UseMatch'
- 'Php/UseNullSafeOperator'
- 'Php/UseNullableType'
- 'Php/UseObjectApi'
- 'Php/UsePathinfo'
- 'Php/UsePathinfoArgs'
- 'Php/UseSessionStartOptions'
- 'Php/UseSetCookie'
- 'Php/UseStdclass'
- 'Php/UseStrContains'
- 'Php/UseTrailingUseComma'
- 'Php/UseWeb'
- 'Php/UsesEnv'
- 'Php/UsortSorting'
- 'Php/Utf8EncodeDeprecated'
- 'Php/VersionCompareOperator'
- 'Php/WrongAttributeConfiguration'
- 'Php/WrongTypeForNativeFunction'
- 'Php/YieldFromUsage'
- 'Php/YieldUsage'
- 'Php/debugInfoUsage'
- 'Php/oldAutoloadUsage'
- 'Portability/FopenMode'
- 'Portability/GlobBraceUsage'
- 'Portability/IconvTranslit'
- 'Portability/LinuxOnlyFiles'
- 'Portability/WindowsOnlyConstants'
- 'Project/IsLibrary'
- 'Psr/Psr11Usage'
- 'Psr/Psr13Usage'
- 'Psr/Psr16Usage'
- 'Psr/Psr3Usage'
- 'Psr/Psr6Usage'
- 'Psr/Psr7Usage'
- 'Security/AnchorRegex'
- 'Security/AvoidThoseCrypto'
- 'Security/CantDisableClass'
- 'Security/CantDisableFunction'
- 'Security/CompareHash'
- 'Security/ConfigureExtract'
- 'Security/CryptoKeyLength'
- 'Security/CurlOptions'
- 'Security/DirectInjection'
- 'Security/DontEchoError'

(continues on next page)

256 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Security/DynamicDl'
- 'Security/EncodedLetters'
- 'Security/FilterInputSource'
- 'Security/FilterNotRaw'
- 'Security/GPRAliases'
- 'Security/IncompatibleTypesWithIncoming'
- 'Security/IndirectInjection'
- 'Security/IntegerConversion'
- 'Security/KeepFilesRestricted'
- 'Security/MinusOneOnError'
- 'Security/MkdirDefault'
- 'Security/MoveUploadedFile'
- 'Security/NoEntIgnore'
- 'Security/NoNetForXmlLoad'
- 'Security/NoSleep'
- 'Security/NoWeakSSLCrypto'
- 'Security/RegisterGlobals'
- 'Security/SafeHttpHeaders'
- 'Security/SensitiveArgument'
- 'Security/SessionCachedData'
- 'Security/SessionLazyWrite'
- 'Security/SetCookieArgs'
- 'Security/ShouldUsePreparedStatement'
- 'Security/ShouldUseSessionRegenerateId'
- 'Security/Sqlite3RequiresSingleQuotes'
- 'Security/SuperGlobalContagion'
- 'Security/UnserializeSecondArg'
- 'Security/UploadFilenameInjection'
- 'Security/parseUrlWithoutParameters'
- 'Structures/AddZero'
- 'Structures/AlteringForeachWithoutReference'
- 'Structures/AlternativeConsistenceByFile'
- 'Structures/AlwaysFalse'
- 'Structures/ArrayAccessOnLiteralArray'
- 'Structures/ArrayAddition'
- 'Structures/ArrayCountTripleEqual'
- 'Structures/ArrayFillWithObjects'
- 'Structures/ArrayMapPassesByValue'
- 'Structures/ArrayMergeAndVariadic'
- 'Structures/ArrayMergeArrayArray'
- 'Structures/ArrayMergeWithEllipsis'
- 'Structures/ArraySearchMultipleKeys'
- 'Structures/AssigneAndCompare'
- 'Structures/AssignedInOneBranch'
- 'Structures/AutoUnsetForeach'
- 'Structures/BailOutEarly'
- 'Structures/BasenameSuffix'
- 'Structures/BlindVariableUsedBeyondLoop'
- 'Structures/BooleanStrictComparison'
- 'Structures/Bracketless'
- 'Structures/Break0'
- 'Structures/BreakNonInteger'

(continues on next page)

10.5. Predefined config files 257

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/BreakOutsideLoop'
- 'Structures/BuriedAssignation'
- 'Structures/CalltimePassByReference'
- 'Structures/CanCountNonCountable'
- 'Structures/CannotUseAppendForReading'
- 'Structures/CastFavorite'
- 'Structures/CastToBoolean'
- 'Structures/CastingTernary'
- 'Structures/CatchShadowsVariable'
- 'Structures/CheckAllTypes'
- 'Structures/CheckDivision'
- 'Structures/CheckJson'
- 'Structures/CoalesceAndConcat'
- 'Structures/CoalesceNullCoalesce'
- 'Structures/CommonAlternatives'
- 'Structures/ComparedButNotAssignedStrings'
- 'Structures/ComparedComparison'
- 'Structures/ComparisonFavorite'
- 'Structures/ComplexExpression'
- 'Structures/ConcatEmpty'
- 'Structures/ConcatenationInterpolationFavorite'
- 'Structures/ConditionalStructures'
- 'Structures/ConstDefineFavorite'
- 'Structures/ConstantComparisonConsistance'
- 'Structures/ConstantConditions'
- 'Structures/ConstantScalarExpression'
- 'Structures/ContinueIsForLoop'
- 'Structures/CouldBeArrayCombine'
- 'Structures/CouldBeElse'
- 'Structures/CouldBeSpaceship'
- 'Structures/CouldBeStatic'
- 'Structures/CouldBeTernary'
- 'Structures/CouldCastToArray'
- 'Structures/CouldUseArrayFillKeys'
- 'Structures/CouldUseArraySum'
- 'Structures/CouldUseArrayUnique'
- 'Structures/CouldUseCompact'
- 'Structures/CouldUseDir'
- 'Structures/CouldUseMatch'
- 'Structures/CouldUseNullableOperator'
- 'Structures/CouldUseShortAssignation'
- 'Structures/CouldUseStrContains'
- 'Structures/CouldUseStrrepeat'
- 'Structures/CouldUseYieldFrom'
- 'Structures/CountIsNotNegative'
- 'Structures/CryptWithoutSalt'
- 'Structures/CurlVersionNow'
- 'Structures/DanglingArrayReferences'
- 'Structures/DateTimePreference'
- 'Structures/DeclareStaticOnce'
- 'Structures/DefaultThenDiscard'
- 'Structures/DeprecatedMbEncoding'

(continues on next page)

258 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/DereferencingAS'
- 'Structures/DieExitConsistance'
- 'Structures/DifferencePreference'
- 'Structures/DirThenSlash'
- 'Structures/DirectlyUseFile'
- 'Structures/DontAddSeconds'
- 'Structures/DontBeTooManual'
- 'Structures/DontChangeBlindKey'
- 'Structures/DontCompareTypedBoolean'
- 'Structures/DontLoopOnYield'
- 'Structures/DontMixPlusPlus'
- 'Structures/DontReadAndWriteInOneExpression'
- 'Structures/DontReuseForeachSource'
- 'Structures/DontUseTheTypeAsVariable'
- 'Structures/DoubleAssignation'
- 'Structures/DoubleChecks'
- 'Structures/DoubleInstruction'
- 'Structures/DoubleObjectAssignation'
- 'Structures/DropElseAfterReturn'
- 'Structures/DuplicateCalls'
- 'Structures/DynamicCalls'
- 'Structures/DynamicCode'
- 'Structures/EchoPrintConsistance'
- 'Structures/EchoWithConcat'
- 'Structures/ElseIfElseif'
- 'Structures/ElseUsage'
- 'Structures/EmptyBlocks'
- 'Structures/EmptyJsonError'
- 'Structures/EmptyLines'
- 'Structures/EmptyLoop'
- 'Structures/EmptyTryCatch'
- 'Structures/EmptyWithExpression'
- 'Structures/ErrorMessages'
- 'Structures/ErrorReportingWithInteger'
- 'Structures/EvalUsage'
- 'Structures/EvalWithoutTry'
- 'Structures/ExitUsage'
- 'Structures/FailingSubstrComparison'
- 'Structures/Fallthrough'
- 'Structures/FilePutContentsDataType'
- 'Structures/FileUploadUsage'
- 'Structures/FileUsage'
- 'Structures/ForWithFunctioncall'
- 'Structures/ForeachNeedReferencedSource'
- 'Structures/ForeachReferenceIsNotModified'
- 'Structures/ForeachSourceValue'
- 'Structures/ForeachWithList'
- 'Structures/ForgottenWhiteSpace'
- 'Structures/FunctionPreSubscripting'
- 'Structures/FunctionSubscripting'
- 'Structures/GetClassWithoutArg'
- 'Structures/GlobalInGlobal'

(continues on next page)

10.5. Predefined config files 259

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/GlobalOutsideLoop'
- 'Structures/GlobalUsage'
- 'Structures/GoToKeyDirectly'
- 'Structures/GtOrLtFavorite'
- 'Structures/HeredocDelimiterFavorite'
- 'Structures/Htmlentitiescall'
- 'Structures/HtmlentitiescallDefaultFlag'
- 'Structures/IdenticalCase'
- 'Structures/IdenticalConditions'
- 'Structures/IdenticalConsecutive'
- 'Structures/IdenticalElseif'
- 'Structures/IdenticalOnBothSides'
- 'Structures/IdenticalVariablesInForeach'
- 'Structures/IfThenReturnFavorite'
- 'Structures/IfWithSameConditions'
- 'Structures/Iffectation'
- 'Structures/ImplicitConversionToInt'
- 'Structures/ImplicitGlobal'
- 'Structures/ImpliedIf'
- 'Structures/ImplodeArgsOrder'
- 'Structures/IncludeUsage'
- 'Structures/InconsistentConcatenation'
- 'Structures/InconsistentElseif'
- 'Structures/IndicesAreIntOrString'
- 'Structures/InfiniteRecursion'
- 'Structures/InitThenIf'
- 'Structures/InvalidCast'
- 'Structures/InvalidDateScanningFormat'
- 'Structures/InvalidPackFormat'
- 'Structures/InvalidRegex'
- 'Structures/IsAVersusInstanceof'
- 'Structures/IsZero'
- 'Structures/IssetWithConstant'
- 'Structures/JsonEncodeExceptions'
- 'Structures/JsonWithOption'
- 'Structures/ListOmissions'
- 'Structures/LogicalMistakes'
- 'Structures/LoneBlock'
- 'Structures/LongArguments'
- 'Structures/LongBlock'
- 'Structures/MailUsage'
- 'Structures/MaxLevelOfIdentation'
- 'Structures/MbStringNonEncodings'
- 'Structures/MbstringThirdArg'
- 'Structures/MbstringUnknownEncoding'
- 'Structures/McryptcreateivWithoutOption'
- 'Structures/MergeIfThen'
- 'Structures/MismatchedTernary'
- 'Structures/MissingAssignation'
- 'Structures/MissingCases'
- 'Structures/MissingNew'
- 'Structures/MissingParenthesis'

(continues on next page)

260 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/MisusedYield'
- 'Structures/MixedConcatInterpolation'
- 'Structures/ModernEmpty'
- 'Structures/MultilineExpressions'
- 'Structures/MultipleCatch'
- 'Structures/MultipleDefinedCase'
- 'Structures/MultipleSimilarCalls'
- 'Structures/MultipleTypeCasesInSwitch'
- 'Structures/MultipleTypeVariable'
- 'Structures/MultipleUnset'
- 'Structures/MultiplyByOne'
- 'Structures/NamedRegex'
- 'Structures/NegativePow'
- 'Structures/NestedIfthen'
- 'Structures/NestedLoops'
- 'Structures/NestedMatch'
- 'Structures/NestedTernary'
- 'Structures/NeverNegative'
- 'Structures/NewLineStyle'
- 'Structures/NextMonthTrap'
- 'Structures/NoAppendOnSource'
- 'Structures/NoArrayUnique'
- 'Structures/NoAssignationInFunction'
- 'Structures/NoChangeIncomingVariables'
- 'Structures/NoChoice'
- 'Structures/NoDirectAccess'
- 'Structures/NoDirectUsage'
- 'Structures/NoEmptyRegex'
- 'Structures/NoEmptyStringWithExplode'
- 'Structures/NoGetClassNull'
- 'Structures/NoHardcodedHash'
- 'Structures/NoHardcodedIp'
- 'Structures/NoHardcodedPath'
- 'Structures/NoHardcodedPort'
- 'Structures/NoIssetWithEmpty'
- 'Structures/NoMaxOnEmptyArray'
- 'Structures/NoNeedForElse'
- 'Structures/NoNeedForTriple'
- 'Structures/NoNeedGetClass'
- 'Structures/NoNullForIndex'
- 'Structures/NoObjectAsIndex'
- 'Structures/NoParenthesisForLanguageConstruct'
- 'Structures/NoReferenceOnLeft'
- 'Structures/NoReturnInFinally'
- 'Structures/NoSubstrOne'
- 'Structures/NoValidCast'
- 'Structures/NoVariableIsACondition'
- 'Structures/NonBreakableSpaceInNames'
- 'Structures/NonIntStringAsIndex'
- 'Structures/Noscream'
- 'Structures/NotEqual'
- 'Structures/NotNot'

(continues on next page)

10.5. Predefined config files 261

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/NotOrNot'
- 'Structures/ObjectReferences'
- 'Structures/OnceUsage'
- 'Structures/OneDotOrObjectOperatorPerLine'
- 'Structures/OneExpressionBracketsConsistency'
- 'Structures/OneIfIsSufficient'
- 'Structures/OneLevelOfIndentation'
- 'Structures/OneLineTwoInstructions'
- 'Structures/OnlyFirstByte'
- 'Structures/OnlyVariableReturnedByReference'
- 'Structures/OpensslRandomPseudoByteSecondArg'
- 'Structures/OrDie'
- 'Structures/OverwrittenForeachVar'
- 'Structures/PHP7Dirname'
- 'Structures/PhpinfoUsage'
- 'Structures/PlusEgalOne'
- 'Structures/PossibleIncrement'
- 'Structures/PossibleInfiniteLoop'
- 'Structures/PrintAndDie'
- 'Structures/PrintWithoutParenthesis'
- 'Structures/PrintfArguments'
- 'Structures/PropertyVariableConfusion'
- 'Structures/QueriesInLoop'
- 'Structures/RandomWithoutTry'
- 'Structures/RecalledCondition'
- 'Structures/RegexDelimiter'
- 'Structures/RepeatedPrint'
- 'Structures/RepeatedRegex'
- 'Structures/ResourcesUsage'
- 'Structures/ResultMayBeMissing'
- 'Structures/ReturnTrueFalse'
- 'Structures/ReturnVoid'
- 'Structures/ReuseVariable'
- 'Structures/SGVariablesConfusion'
- 'Structures/SameConditions'
- 'Structures/SequenceInFor'
- 'Structures/SetAside'
- 'Structures/SetlocaleNeedsConstants'
- 'Structures/ShellUsage'
- 'Structures/ShortOrCompleteComparison'
- 'Structures/ShortTags'
- 'Structures/ShouldChainException'
- 'Structures/ShouldMakeTernary'
- 'Structures/ShouldPreprocess'
- 'Structures/ShouldUseExplodeArgs'
- 'Structures/ShouldUseForeach'
- 'Structures/ShouldUseMath'
- 'Structures/ShouldUseOperator'
- 'Structures/SimplePreg'
- 'Structures/SprintfFormatCompilation'
- 'Structures/StaticInclude'
- 'Structures/StaticLoop'

(continues on next page)

262 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/StrictInArrayFavorite'
- 'Structures/StringInterpolationFavorite'
- 'Structures/StripTagsSkipsClosedTag'
- 'Structures/StrposCompare'
- 'Structures/StrposLessThanOne'
- 'Structures/SubstrLastArg'
- 'Structures/SubstrToTrim'
- 'Structures/SuspiciousComparison'
- 'Structures/SwitchToSwitch'
- 'Structures/SwitchWithMultipleDefault'
- 'Structures/SwitchWithoutDefault'
- 'Structures/TernaryInConcat'
- 'Structures/TestThenCast'
- 'Structures/ThrowsAndAssign'
- 'Structures/TimestampDifference'
- 'Structures/TooManyChainedCalls'
- 'Structures/TooManyElseif'
- 'Structures/TryFinally'
- 'Structures/UncheckedResources'
- 'Structures/UnconditionLoopBreak'
- 'Structures/UnknownPregOption'
- 'Structures/Unpreprocessed'
- 'Structures/UnreachableCode'
- 'Structures/UnsetInForeach'
- 'Structures/UnsupportedOperandTypes'
- 'Structures/UnsupportedTypesWithOperators'
- 'Structures/UnusedGlobal'
- 'Structures/UnusedLabel'
- 'Structures/UseArrayFunctions'
- 'Structures/UseCaseValue'
- 'Structures/UseConstant'
- 'Structures/UseCountRecursive'
- 'Structures/UseDebug'
- 'Structures/UseFileAppend'
- 'Structures/UseInstanceof'
- 'Structures/UseListWithForeach'
- 'Structures/UsePositiveCondition'
- 'Structures/UseSameTypesForComparisons'
- 'Structures/UseStrEndsWith'
- 'Structures/UseStrStartsWith'
- 'Structures/UseSystemTmp'
- 'Structures/UseUrlQueryFunctions'
- 'Structures/UseVariableInsideLoop'
- 'Structures/UselessBrackets'
- 'Structures/UselessCasting'
- 'Structures/UselessCheck'
- 'Structures/UselessCoalesce'
- 'Structures/UselessGlobal'
- 'Structures/UselessInstruction'
- 'Structures/UselessNullCoalesce'
- 'Structures/UselessParenthesis'
- 'Structures/UselessShortTernary'

(continues on next page)

10.5. Predefined config files 263

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/UselessSwitch'
- 'Structures/UselessTrailingComma'
- 'Structures/UselessUnset'
- 'Structures/VardumpUsage'
- 'Structures/VariableGlobal'
- 'Structures/VariableMayBeNonGlobal'
- 'Structures/WhileListEach'
- 'Structures/WrongLocale'
- 'Structures/WrongPrecedenceInExpression'
- 'Structures/WrongRange'
- 'Structures/YodaComparison'
- 'Structures/pregOptionE'
- 'Structures/strOrMbFavorite'
- 'Structures/toStringThrowsException'
- 'Traits/AlreadyParentsTrait'
- 'Traits/CannotCallTraitMethod'
- 'Traits/ConstantsInTraits'
- 'Traits/CouldUseTrait'
- 'Traits/DependantTrait'
- 'Traits/EmptyTrait'
- 'Traits/FinalTraitsAreFinal'
- 'Traits/IncompatibleProperty'
- 'Traits/IsExtTrait'
- 'Traits/LocallyUsedProperty'
- 'Traits/MethodCollisionTraits'
- 'Traits/MultipleUsage'
- 'Traits/NoPrivateAbstract'
- 'Traits/Php'
- 'Traits/SelfUsingTrait'
- 'Traits/SidelinedMethod'
- 'Traits/TraitIsNotAType'
- 'Traits/TraitMethod'
- 'Traits/TraitNotFound'
- 'Traits/TraitUsage'
- 'Traits/Traitnames'
- 'Traits/UndefinedInsteadof'
- 'Traits/UndefinedTrait'
- 'Traits/UnusedClassTrait'
- 'Traits/UnusedTrait'
- 'Traits/UsedOnceTrait'
- 'Traits/UsedTrait'
- 'Traits/UselessAlias'
- 'Type/ArrayIndex'
- 'Type/Binary'
- 'Type/CharString'
- 'Type/Continents'
- 'Type/DuplicateLiteral'
- 'Type/Email'
- 'Type/GPCIndex'
- 'Type/Heredoc'
- 'Type/Hexadecimal'
- 'Type/HexadecimalString'

(continues on next page)

264 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Type/HttpHeader'
- 'Type/HttpStatus'
- 'Type/IncomingDateFormat'
- 'Type/Ip'
- 'Type/MalformedOctal'
- 'Type/Md5String'
- 'Type/MimeType'
- 'Type/NoRealComparison'
- 'Type/Nowdoc'
- 'Type/Octal'
- 'Type/OctalInString'
- 'Type/OneVariableStrings'
- 'Type/OpensslCipher'
- 'Type/Pack'
- 'Type/Path'
- 'Type/Pcre'
- 'Type/Ports'
- 'Type/Printf'
- 'Type/Protocols'
- 'Type/Regex'
- 'Type/Sapi'
- 'Type/Shellcommands'
- 'Type/ShouldBeSingleQuote'
- 'Type/ShouldTypecast'
- 'Type/SilentlyCastInteger'
- 'Type/SimilarIntegers'
- 'Type/SpecialIntegers'
- 'Type/Sql'
- 'Type/StringHoldAVariable'
- 'Type/StringInterpolation'
- 'Type/StringWithStrangeSpace'
- 'Type/UdpDomains'
- 'Type/UnicodeBlock'
- 'Type/Url'
- 'Typehints/CouldBeArray'
- 'Typehints/CouldBeBoolean'
- 'Typehints/CouldBeCIT'
- 'Typehints/CouldBeCallable'
- 'Typehints/CouldBeFloat'
- 'Typehints/CouldBeGenerator'
- 'Typehints/CouldBeInt'
- 'Typehints/CouldBeIterable'
- 'Typehints/CouldBeNever'
- 'Typehints/CouldBeNull'
- 'Typehints/CouldBeParent'
- 'Typehints/CouldBeResource'
- 'Typehints/CouldBeSelf'
- 'Typehints/CouldBeString'
- 'Typehints/CouldBeVoid'
- 'Typehints/CouldNotType'
- 'Typehints/MissingReturntype'
- 'Typehints/MissingTypehints'

(continues on next page)

10.5. Predefined config files 265

Exakat Documentation, Release 1

(continued from previous page)

- 'Typehints/StandaloneTypeTFN'
- 'Typehints/WrongTypeWithDefault'
- 'Utils/Selector'
- 'Variables/AmbiguousTypes'
- 'Variables/AssignedTwiceOrMore'
- 'Variables/Blind'
- 'Variables/CloseNaming'
- 'Variables/ComplexDynamicNames'
- 'Variables/ConstantTypo'
- 'Variables/Globals'
- 'Variables/InconsistentUsage'
- 'Variables/InheritedStaticVariable'
- 'Variables/InterfaceArguments'
- 'Variables/IsLocalConstant'
- 'Variables/LocalGlobals'
- 'Variables/LostReferences'
- 'Variables/NoInitialS'
- 'Variables/NoStaticVarInMethod'
- 'Variables/NoVariableNeeded'
- 'Variables/Overwriting'
- 'Variables/OverwrittenLiterals'
- 'Variables/Php5IndirectExpression'
- 'Variables/Php7IndirectExpression'
- 'Variables/RealVariables'
- 'Variables/RecycledVariables'
- 'Variables/RedeclaredStaticVariable'
- 'Variables/References'
- 'Variables/SelfTransform'
- 'Variables/StaticVariableInNamespace'
- 'Variables/StaticVariableInitialisation'
- 'Variables/StaticVariables'
- 'Variables/StrangeName'
- 'Variables/UncommonEnvVar'
- 'Variables/UndefinedConstantName'
- 'Variables/UndefinedVariable'
- 'Variables/UniqueUsage'
- 'Variables/VariableLong'
- 'Variables/VariableNonascii'
- 'Variables/VariableOneLetter'
- 'Variables/VariablePhp'
- 'Variables/VariableUppercase'
- 'Variables/VariableUsedOnce'
- 'Variables/VariableUsedOnceByContext'
- 'Variables/VariableVariables'
- 'Variables/WrittenOnlyVariable'
- 'Vendors/Codeigniter'
- 'Vendors/Concrete5'
- 'Vendors/Drupal'
- 'Vendors/Ez'
- 'Vendors/Feast'
- 'Vendors/Fuel'
- 'Vendors/Joomla'

(continues on next page)

266 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Vendors/Laravel'
- 'Vendors/Phalcon'
- 'Vendors/Sylius'
- 'Vendors/Symfony'
- 'Vendors/Typo3'
- 'Vendors/Wordpress'
- 'Vendors/Yii'

10.5.2 Analyze

Analyze for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[Analyze]
analyzer[] = "Arrays/AmbiguousKeys";
analyzer[] = "Arrays/AppendAndAssignArrays";
analyzer[] = "Arrays/FloatConversionAsIndex";
analyzer[] = "Arrays/MultipleIdenticalKeys";
analyzer[] = "Arrays/NoSpreadForHash";
analyzer[] = "Arrays/NonConstantArray";
analyzer[] = "Arrays/NullBoolean";
analyzer[] = "Arrays/RandomlySortedLiterals";
analyzer[] = "Arrays/TooManyDimensions";
analyzer[] = "Arrays/WeakType";
analyzer[] = "Attributes/MissingAttributeAttribute";
analyzer[] = "Attributes/ModifyImmutable";
analyzer[] = "Classes/AbstractOrImplements";
analyzer[] = "Classes/AbstractStatic";
analyzer[] = "Classes/AccessPrivate";
analyzer[] = "Classes/AccessProtected";
analyzer[] = "Classes/AmbiguousStatic";
analyzer[] = "Classes/AmbiguousVisibilities";
analyzer[] = "Classes/AvoidOptionArrays";
analyzer[] = "Classes/AvoidOptionalProperties";
analyzer[] = "Classes/CantExtendFinal";
analyzer[] = "Classes/CantInstantiateClass";
analyzer[] = "Classes/CantInstantiateNonClass";
analyzer[] = "Classes/CantOverwriteFinalConstant";
analyzer[] = "Classes/CheckAfterNullSafeOperator";
analyzer[] = "Classes/CheckOnCallUsage";
analyzer[] = "Classes/CitSameName";
analyzer[] = "Classes/CloneWithNonObject";
analyzer[] = "Classes/CouldBeAbstractClass";
analyzer[] = "Classes/CouldBeFinal";
analyzer[] = "Classes/CouldBeStatic";
analyzer[] = "Classes/CouldInjectParam";
analyzer[] = "Classes/CyclicReferences";
analyzer[] = "Classes/DependantAbstractClass";
analyzer[] = "Classes/DifferentArgumentCounts";
analyzer[] = "Classes/DirectCallToMagicMethod";

(continues on next page)

10.5. Predefined config files 267

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Classes/DontSendThisInConstructor";
analyzer[] = "Classes/DontUnsetProperties";
analyzer[] = "Classes/EmptyClass";
analyzer[] = "Classes/HiddenNullable";
analyzer[] = "Classes/ImplementIsForInterface";
analyzer[] = "Classes/ImplementedMethodsArePublic";
analyzer[] = "Classes/IncompatibleSignature";
analyzer[] = "Classes/IncompatibleSignature74";
analyzer[] = "Classes/InheritedPropertyMustMatch";
analyzer[] = "Classes/InstantiatingAbstractClass";
analyzer[] = "Classes/MakeDefault";
analyzer[] = "Classes/MakeGlobalAProperty";
analyzer[] = "Classes/MethodSignatureMustBeCompatible";
analyzer[] = "Classes/MismatchProperties";
analyzer[] = "Classes/MissingAbstractMethod";
analyzer[] = "Classes/MultipleDeclarations";
analyzer[] = "Classes/MultipleTraitOrInterface";
analyzer[] = "Classes/NewThenCall";
analyzer[] = "Classes/NoMagicWithArray";
analyzer[] = "Classes/NoNullWithNullSafeOperator";
analyzer[] = "Classes/NoPSSOutsideClass";
analyzer[] = "Classes/NoParent";
analyzer[] = "Classes/NoPublicAccess";
analyzer[] = "Classes/NoReadonlyAssignationInGlobal";
analyzer[] = "Classes/NoSelfReferencingConstant";
analyzer[] = "Classes/NonNullableSetters";
analyzer[] = "Classes/NonPpp";
analyzer[] = "Classes/NonStaticMethodsCalledStatic";
analyzer[] = "Classes/OldStyleConstructor";
analyzer[] = "Classes/OldStyleVar";
analyzer[] = "Classes/ParentFirst";
analyzer[] = "Classes/ParentIsNotStatic";
analyzer[] = "Classes/PropertyCouldBeLocal";
analyzer[] = "Classes/PropertyMethodSameName";
analyzer[] = "Classes/PropertyNeverUsed";
analyzer[] = "Classes/PropertyUsedInOneMethodOnly";
analyzer[] = "Classes/PssWithoutClass";
analyzer[] = "Classes/ScalarOrObjectProperty";
analyzer[] = "Classes/ShouldUseSelf";
analyzer[] = "Classes/ShouldUseThis";
analyzer[] = "Classes/StaticCannotCallNonStatic";
analyzer[] = "Classes/StaticContainsThis";
analyzer[] = "Classes/StaticMethodsCalledFromObject";
analyzer[] = "Classes/SwappedArguments";
analyzer[] = "Classes/ThisIsForClasses";
analyzer[] = "Classes/ThisIsNotAnArray";
analyzer[] = "Classes/ThisIsNotForStatic";
analyzer[] = "Classes/ThrowInDestruct";
analyzer[] = "Classes/TooManyDereferencing";
analyzer[] = "Classes/TooManyFinds";
analyzer[] = "Classes/TooManyInjections";
analyzer[] = "Classes/UndeclaredStaticProperty";

(continues on next page)

268 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Classes/UndefinedClasses";
analyzer[] = "Classes/UndefinedConstants";
analyzer[] = "Classes/UndefinedParentMP";
analyzer[] = "Classes/UndefinedProperty";
analyzer[] = "Classes/UndefinedStaticMP";
analyzer[] = "Classes/UndefinedStaticclass";
analyzer[] = "Classes/UnfinishedObject";
analyzer[] = "Classes/UnreachableMethod";
analyzer[] = "Classes/UnresolvedClasses";
analyzer[] = "Classes/UnresolvedInstanceof";
analyzer[] = "Classes/UnusedClass";
analyzer[] = "Classes/UnusedConstant";
analyzer[] = "Classes/UnusedPublicMethod";
analyzer[] = "Classes/UseClassOperator";
analyzer[] = "Classes/UseInstanceof";
analyzer[] = "Classes/UsedOnceProperty";
analyzer[] = "Classes/UselessAbstract";
analyzer[] = "Classes/UselessAssignationOfPromotedProperty";
analyzer[] = "Classes/UselessConstructor";
analyzer[] = "Classes/UselessFinal";
analyzer[] = "Classes/UselessMethod";
analyzer[] = "Classes/UsingThisOutsideAClass";
analyzer[] = "Classes/WeakType";
analyzer[] = "Classes/WrongName";
analyzer[] = "Classes/WrongTypedPropertyInit";
analyzer[] = "Constants/BadConstantnames";
analyzer[] = "Constants/ConstRecommended";
analyzer[] = "Constants/ConstantUsedOnce";
analyzer[] = "Constants/CreatedOutsideItsNamespace";
analyzer[] = "Constants/InvalidName";
analyzer[] = "Constants/MultipleConstantDefinition";
analyzer[] = "Constants/StrangeName";
analyzer[] = "Constants/UndefinedConstants";
analyzer[] = "Enums/NoMagicMethod";
analyzer[] = "Enums/UndefinedEnumcase";
analyzer[] = "Enums/UnusedEnumCase";
analyzer[] = "Exceptions/CantThrow";
analyzer[] = "Exceptions/CatchUndefinedVariable";
analyzer[] = "Exceptions/ConvertedExceptions";
analyzer[] = "Exceptions/ForgottenThrown";
analyzer[] = "Exceptions/OverwriteException";
analyzer[] = "Exceptions/ThrowFunctioncall";
analyzer[] = "Exceptions/ThrowRawExceptions";
analyzer[] = "Exceptions/UncaughtExceptions";
analyzer[] = "Exceptions/Unthrown";
analyzer[] = "Exceptions/UselessTry";
analyzer[] = "Files/InclusionWrongCase";
analyzer[] = "Files/MissingInclude";
analyzer[] = "Functions/AliasesUsage";
analyzer[] = "Functions/AvoidBooleanArgument";
analyzer[] = "Functions/CallbackNeedsReturn";
analyzer[] = "Functions/CanCallGenerator";

(continues on next page)

10.5. Predefined config files 269

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Functions/CancelledParameter";
analyzer[] = "Functions/CannotUseStaticForClosure";
analyzer[] = "Functions/CouldCentralize";
analyzer[] = "Functions/DeepDefinitions";
analyzer[] = "Functions/DontUseVoid";
analyzer[] = "Functions/DuplicateNamedParameter";
analyzer[] = "Functions/EmptyFunction";
analyzer[] = "Functions/FnArgumentVariableConfusion";
analyzer[] = "Functions/HardcodedPasswords";
analyzer[] = "Functions/InsufficientTypehint";
analyzer[] = "Functions/MethodIsNotAnIf";
analyzer[] = "Functions/MismatchParameterName";
analyzer[] = "Functions/MismatchTypeAndDefault";
analyzer[] = "Functions/MismatchedDefaultArguments";
analyzer[] = "Functions/MismatchedTypehint";
analyzer[] = "Functions/ModifyTypedParameter";
analyzer[] = "Functions/MustReturn";
analyzer[] = "Functions/NeverUsedParameter";
analyzer[] = "Functions/NoBooleanAsDefault";
analyzer[] = "Functions/NoDefaultForReference";
analyzer[] = "Functions/NoLiteralForReference";
analyzer[] = "Functions/NoReferencedVoid";
analyzer[] = "Functions/NoReturnUsed";
analyzer[] = "Functions/OnlyVariableForReference";
analyzer[] = "Functions/OnlyVariablePassedByReference";
analyzer[] = "Functions/RedeclaredPhpFunction";
analyzer[] = "Functions/RetypedReference";
analyzer[] = "Functions/ShouldUseConstants";
analyzer[] = "Functions/ShouldYieldWithKey";
analyzer[] = "Functions/TooManyLocalVariables";
analyzer[] = "Functions/TypehintMustBeReturned";
analyzer[] = "Functions/TypehintedReferences";
analyzer[] = "Functions/UndefinedFunctions";
analyzer[] = "Functions/UnknownParameterName";
analyzer[] = "Functions/UnusedArguments";
analyzer[] = "Functions/UnusedInheritedVariable";
analyzer[] = "Functions/UnusedReturnedValue";
analyzer[] = "Functions/UseConstantAsArguments";
analyzer[] = "Functions/UseConstantsAsReturns";
analyzer[] = "Functions/UselessArgument";
analyzer[] = "Functions/UselessReferenceArgument";
analyzer[] = "Functions/UselessReturn";
analyzer[] = "Functions/UsesDefaultArguments";
analyzer[] = "Functions/UsingDeprecated";
analyzer[] = "Functions/VoidIsNotAReference";
analyzer[] = "Functions/WithoutReturn";
analyzer[] = "Functions/WrongArgumentNameWithPhpFunction";
analyzer[] = "Functions/WrongArgumentType";
analyzer[] = "Functions/WrongNumberOfArguments";
analyzer[] = "Functions/WrongOptionalParameter";
analyzer[] = "Functions/WrongReturnedType";
analyzer[] = "Functions/WrongTypeWithCall";

(continues on next page)

270 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Functions/funcGetArgModified";
analyzer[] = "Interfaces/AlreadyParentsInterface";
analyzer[] = "Interfaces/CantImplementTraversable";
analyzer[] = "Interfaces/CouldUseInterface";
analyzer[] = "Interfaces/EmptyInterface";
analyzer[] = "Interfaces/IsNotImplemented";
analyzer[] = "Interfaces/NoGaranteeForPropertyConstant";
analyzer[] = "Interfaces/RepeatedInterface";
analyzer[] = "Interfaces/UndefinedInterfaces";
analyzer[] = "Interfaces/UselessInterfaces";
analyzer[] = "Namespaces/ConstantFullyQualified";
analyzer[] = "Namespaces/EmptyNamespace";
analyzer[] = "Namespaces/HiddenUse";
analyzer[] = "Namespaces/MultipleAliasDefinitionPerFile";
analyzer[] = "Namespaces/MultipleAliasDefinitions";
analyzer[] = "Namespaces/OverloadExistingNames";
analyzer[] = "Namespaces/ShouldMakeAlias";
analyzer[] = "Namespaces/UnresolvedUse";
analyzer[] = "Namespaces/UseWithFullyQualifiedNS";
analyzer[] = "Performances/ArrayMergeInLoops";
analyzer[] = "Performances/LogicalToInArray";
analyzer[] = "Performances/MemoizeMagicCall";
analyzer[] = "Performances/PrePostIncrement";
analyzer[] = "Performances/StrposTooMuch";
analyzer[] = "Performances/UseArraySlice";
analyzer[] = "Php/ArrayKeyExistsWithObjects";
analyzer[] = "Php/AssertFunctionIsReserved";
analyzer[] = "Php/AssignAnd";
analyzer[] = "Php/Assumptions";
analyzer[] = "Php/AvoidMbDectectEncoding";
analyzer[] = "Php/BetterRand";
analyzer[] = "Php/CloneConstant";
analyzer[] = "Php/ConcatAndAddition";
analyzer[] = "Php/Crc32MightBeNegative";
analyzer[] = "Php/DateTimeNotImmutable";
analyzer[] = "Php/Deprecated";
analyzer[] = "Php/DontPolluteGlobalSpace";
analyzer[] = "Php/EmptyList";
analyzer[] = "Php/ExitNoArg";
analyzer[] = "Php/FalseToArray";
analyzer[] = "Php/FopenMode";
analyzer[] = "Php/ForeachObject";
analyzer[] = "Php/HashAlgos";
analyzer[] = "Php/Incompilable";
analyzer[] = "Php/InternalParameterType";
analyzer[] = "Php/IsAWithString";
analyzer[] = "Php/IsnullVsEqualNull";
analyzer[] = "Php/JsonSerializeReturnType";
analyzer[] = "Php/LogicalInLetters";
analyzer[] = "Php/MissingMagicIsset";
analyzer[] = "Php/MissingSubpattern";
analyzer[] = "Php/MultipleDeclareStrict";

(continues on next page)

10.5. Predefined config files 271

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Php/MustCallParentConstructor";
analyzer[] = "Php/NativeClassTypeCompatibility";
analyzer[] = "Php/NeverKeyword";
analyzer[] = "Php/NoCastToInt";
analyzer[] = "Php/NoClassInGlobal";
analyzer[] = "Php/NoNullForNative";
analyzer[] = "Php/NoReferenceForTernary";
analyzer[] = "Php/OnlyVariablePassedByReference";
analyzer[] = "Php/PathinfoReturns";
analyzer[] = "Php/Php81NewFunctions";
analyzer[] = "Php/ScalarAreNotArrays";
analyzer[] = "Php/ShortOpenTagRequired";
analyzer[] = "Php/ShouldUseCoalesce";
analyzer[] = "Php/StrposWithIntegers";
analyzer[] = "Php/StrtrArguments";
analyzer[] = "Php/TooManyNativeCalls";
analyzer[] = "Php/UnknownPcre2Option";
analyzer[] = "Php/UseObjectApi";
analyzer[] = "Php/UsePathinfo";
analyzer[] = "Php/UseSetCookie";
analyzer[] = "Php/UseStdclass";
analyzer[] = "Php/VersionCompareOperator";
analyzer[] = "Php/WrongAttributeConfiguration";
analyzer[] = "Php/WrongTypeForNativeFunction";
analyzer[] = "Php/oldAutoloadUsage";
analyzer[] = "Security/DontEchoError";
analyzer[] = "Security/ShouldUsePreparedStatement";
analyzer[] = "Structures/AddZero";
analyzer[] = "Structures/AlteringForeachWithoutReference";
analyzer[] = "Structures/AlternativeConsistenceByFile";
analyzer[] = "Structures/AlwaysFalse";
analyzer[] = "Structures/ArrayAccessOnLiteralArray";
analyzer[] = "Structures/ArrayFillWithObjects";
analyzer[] = "Structures/ArrayMapPassesByValue";
analyzer[] = "Structures/ArrayMergeAndVariadic";
analyzer[] = "Structures/ArrayMergeArrayArray";
analyzer[] = "Structures/AssigneAndCompare";
analyzer[] = "Structures/AutoUnsetForeach";
analyzer[] = "Structures/BailOutEarly";
analyzer[] = "Structures/BooleanStrictComparison";
analyzer[] = "Structures/BreakOutsideLoop";
analyzer[] = "Structures/BuriedAssignation";
analyzer[] = "Structures/CannotUseAppendForReading";
analyzer[] = "Structures/CastToBoolean";
analyzer[] = "Structures/CastingTernary";
analyzer[] = "Structures/CatchShadowsVariable";
analyzer[] = "Structures/CheckAllTypes";
analyzer[] = "Structures/CheckDivision";
analyzer[] = "Structures/CheckJson";
analyzer[] = "Structures/CoalesceAndConcat";
analyzer[] = "Structures/CoalesceNullCoalesce";
analyzer[] = "Structures/CommonAlternatives";

(continues on next page)

272 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/ComparedComparison";
analyzer[] = "Structures/ConcatEmpty";
analyzer[] = "Structures/ContinueIsForLoop";
analyzer[] = "Structures/CouldBeElse";
analyzer[] = "Structures/CouldBeSpaceship";
analyzer[] = "Structures/CouldBeStatic";
analyzer[] = "Structures/CouldUseDir";
analyzer[] = "Structures/CouldUseShortAssignation";
analyzer[] = "Structures/CouldUseStrrepeat";
analyzer[] = "Structures/CouldUseYieldFrom";
analyzer[] = "Structures/CountIsNotNegative";
analyzer[] = "Structures/DanglingArrayReferences";
analyzer[] = "Structures/DefaultThenDiscard";
analyzer[] = "Structures/DirThenSlash";
analyzer[] = "Structures/DontAddSeconds";
analyzer[] = "Structures/DontChangeBlindKey";
analyzer[] = "Structures/DontMixPlusPlus";
analyzer[] = "Structures/DontReadAndWriteInOneExpression";
analyzer[] = "Structures/DontReuseForeachSource";
analyzer[] = "Structures/DoubleAssignation";
analyzer[] = "Structures/DoubleChecks";
analyzer[] = "Structures/DoubleInstruction";
analyzer[] = "Structures/DoubleObjectAssignation";
analyzer[] = "Structures/DropElseAfterReturn";
analyzer[] = "Structures/EchoWithConcat";
analyzer[] = "Structures/ElseIfElseif";
analyzer[] = "Structures/EmptyBlocks";
analyzer[] = "Structures/EmptyJsonError";
analyzer[] = "Structures/EmptyLines";
analyzer[] = "Structures/EmptyLoop";
analyzer[] = "Structures/EmptyTryCatch";
analyzer[] = "Structures/ErrorReportingWithInteger";
analyzer[] = "Structures/EvalUsage";
analyzer[] = "Structures/EvalWithoutTry";
analyzer[] = "Structures/ExitUsage";
analyzer[] = "Structures/FailingSubstrComparison";
analyzer[] = "Structures/ForeachReferenceIsNotModified";
analyzer[] = "Structures/ForeachSourceValue";
analyzer[] = "Structures/ForgottenWhiteSpace";
analyzer[] = "Structures/GlobalUsage";
analyzer[] = "Structures/Htmlentitiescall";
analyzer[] = "Structures/HtmlentitiescallDefaultFlag";
analyzer[] = "Structures/IdenticalCase";
analyzer[] = "Structures/IdenticalConditions";
analyzer[] = "Structures/IdenticalConsecutive";
analyzer[] = "Structures/IdenticalOnBothSides";
analyzer[] = "Structures/IdenticalVariablesInForeach";
analyzer[] = "Structures/IfWithSameConditions";
analyzer[] = "Structures/Iffectation";
analyzer[] = "Structures/ImplicitConversionToInt";
analyzer[] = "Structures/ImpliedIf";
analyzer[] = "Structures/ImplodeArgsOrder";

(continues on next page)

10.5. Predefined config files 273

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/IndicesAreIntOrString";
analyzer[] = "Structures/InfiniteRecursion";
analyzer[] = "Structures/InvalidCast";
analyzer[] = "Structures/InvalidDateScanningFormat";
analyzer[] = "Structures/InvalidPackFormat";
analyzer[] = "Structures/InvalidRegex";
analyzer[] = "Structures/IsZero";
analyzer[] = "Structures/ListOmissions";
analyzer[] = "Structures/LogicalMistakes";
analyzer[] = "Structures/LoneBlock";
analyzer[] = "Structures/LongArguments";
analyzer[] = "Structures/MaxLevelOfIdentation";
analyzer[] = "Structures/MbStringNonEncodings";
analyzer[] = "Structures/MbstringThirdArg";
analyzer[] = "Structures/MbstringUnknownEncoding";
analyzer[] = "Structures/MergeIfThen";
analyzer[] = "Structures/MismatchedTernary";
analyzer[] = "Structures/MissingAssignation";
analyzer[] = "Structures/MissingCases";
analyzer[] = "Structures/MissingNew";
analyzer[] = "Structures/MissingParenthesis";
analyzer[] = "Structures/MisusedYield";
analyzer[] = "Structures/MixedConcatInterpolation";
analyzer[] = "Structures/ModernEmpty";
analyzer[] = "Structures/MultipleDefinedCase";
analyzer[] = "Structures/MultipleTypeVariable";
analyzer[] = "Structures/MultiplyByOne";
analyzer[] = "Structures/NegativePow";
analyzer[] = "Structures/NestedIfthen";
analyzer[] = "Structures/NestedMatch";
analyzer[] = "Structures/NestedTernary";
analyzer[] = "Structures/NeverNegative";
analyzer[] = "Structures/NextMonthTrap";
analyzer[] = "Structures/NoAppendOnSource";
analyzer[] = "Structures/NoChangeIncomingVariables";
analyzer[] = "Structures/NoChoice";
analyzer[] = "Structures/NoDirectUsage";
analyzer[] = "Structures/NoEmptyRegex";
analyzer[] = "Structures/NoEmptyStringWithExplode";
analyzer[] = "Structures/NoGetClassNull";
analyzer[] = "Structures/NoHardcodedHash";
analyzer[] = "Structures/NoHardcodedIp";
analyzer[] = "Structures/NoHardcodedPath";
analyzer[] = "Structures/NoHardcodedPort";
analyzer[] = "Structures/NoIssetWithEmpty";
analyzer[] = "Structures/NoNeedForElse";
analyzer[] = "Structures/NoNeedForTriple";
analyzer[] = "Structures/NoNullForIndex";
analyzer[] = "Structures/NoObjectAsIndex";
analyzer[] = "Structures/NoParenthesisForLanguageConstruct";
analyzer[] = "Structures/NoReferenceOnLeft";
analyzer[] = "Structures/NoSubstrOne";

(continues on next page)

274 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/NoValidCast";
analyzer[] = "Structures/NoVariableIsACondition";
analyzer[] = "Structures/NonIntStringAsIndex";
analyzer[] = "Structures/Noscream";
analyzer[] = "Structures/NotEqual";
analyzer[] = "Structures/NotNot";
analyzer[] = "Structures/ObjectReferences";
analyzer[] = "Structures/OnceUsage";
analyzer[] = "Structures/OneLineTwoInstructions";
analyzer[] = "Structures/OnlyFirstByte";
analyzer[] = "Structures/OnlyVariableReturnedByReference";
analyzer[] = "Structures/OrDie";
analyzer[] = "Structures/OverwrittenForeachVar";
analyzer[] = "Structures/PossibleInfiniteLoop";
analyzer[] = "Structures/PrintAndDie";
analyzer[] = "Structures/PrintWithoutParenthesis";
analyzer[] = "Structures/PrintfArguments";
analyzer[] = "Structures/QueriesInLoop";
analyzer[] = "Structures/RepeatedPrint";
analyzer[] = "Structures/RepeatedRegex";
analyzer[] = "Structures/ResultMayBeMissing";
analyzer[] = "Structures/ReturnTrueFalse";
analyzer[] = "Structures/SameConditions";
analyzer[] = "Structures/ShouldChainException";
analyzer[] = "Structures/ShouldMakeTernary";
analyzer[] = "Structures/ShouldPreprocess";
analyzer[] = "Structures/ShouldUseExplodeArgs";
analyzer[] = "Structures/SprintfFormatCompilation";
analyzer[] = "Structures/StaticInclude";
analyzer[] = "Structures/StaticLoop";
analyzer[] = "Structures/StripTagsSkipsClosedTag";
analyzer[] = "Structures/StrposCompare";
analyzer[] = "Structures/StrposLessThanOne";
analyzer[] = "Structures/SuspiciousComparison";
analyzer[] = "Structures/SwitchToSwitch";
analyzer[] = "Structures/SwitchWithoutDefault";
analyzer[] = "Structures/TernaryInConcat";
analyzer[] = "Structures/TestThenCast";
analyzer[] = "Structures/ThrowsAndAssign";
analyzer[] = "Structures/TimestampDifference";
analyzer[] = "Structures/UncheckedResources";
analyzer[] = "Structures/UnconditionLoopBreak";
analyzer[] = "Structures/UnknownPregOption";
analyzer[] = "Structures/Unpreprocessed";
analyzer[] = "Structures/UnsetInForeach";
analyzer[] = "Structures/UnsupportedOperandTypes";
analyzer[] = "Structures/UnsupportedTypesWithOperators";
analyzer[] = "Structures/UnusedGlobal";
analyzer[] = "Structures/UseConstant";
analyzer[] = "Structures/UseInstanceof";
analyzer[] = "Structures/UsePositiveCondition";
analyzer[] = "Structures/UseSameTypesForComparisons";

(continues on next page)

10.5. Predefined config files 275

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/UseSystemTmp";
analyzer[] = "Structures/UselessBrackets";
analyzer[] = "Structures/UselessCasting";
analyzer[] = "Structures/UselessCheck";
analyzer[] = "Structures/UselessCoalesce";
analyzer[] = "Structures/UselessGlobal";
analyzer[] = "Structures/UselessInstruction";
analyzer[] = "Structures/UselessNullCoalesce";
analyzer[] = "Structures/UselessParenthesis";
analyzer[] = "Structures/UselessShortTernary";
analyzer[] = "Structures/UselessSwitch";
analyzer[] = "Structures/UselessUnset";
analyzer[] = "Structures/VardumpUsage";
analyzer[] = "Structures/WhileListEach";
analyzer[] = "Structures/WrongLocale";
analyzer[] = "Structures/WrongPrecedenceInExpression";
analyzer[] = "Structures/WrongRange";
analyzer[] = "Structures/pregOptionE";
analyzer[] = "Structures/toStringThrowsException";
analyzer[] = "Traits/AlreadyParentsTrait";
analyzer[] = "Traits/CannotCallTraitMethod";
analyzer[] = "Traits/DependantTrait";
analyzer[] = "Traits/EmptyTrait";
analyzer[] = "Traits/MethodCollisionTraits";
analyzer[] = "Traits/TraitIsNotAType";
analyzer[] = "Traits/TraitNotFound";
analyzer[] = "Traits/UndefinedInsteadof";
analyzer[] = "Traits/UndefinedTrait";
analyzer[] = "Traits/UselessAlias";
analyzer[] = "Type/NoRealComparison";
analyzer[] = "Type/OneVariableStrings";
analyzer[] = "Type/ShouldTypecast";
analyzer[] = "Type/SilentlyCastInteger";
analyzer[] = "Type/StringHoldAVariable";
analyzer[] = "Type/StringWithStrangeSpace";
analyzer[] = "Typehints/MissingReturntype";
analyzer[] = "Typehints/StandaloneTypeTFN";
analyzer[] = "Typehints/WrongTypeWithDefault";
analyzer[] = "Variables/AssignedTwiceOrMore";
analyzer[] = "Variables/ConstantTypo";
analyzer[] = "Variables/LostReferences";
analyzer[] = "Variables/OverwrittenLiterals";
analyzer[] = "Variables/RecycledVariables";
analyzer[] = "Variables/UndefinedConstantName";
analyzer[] = "Variables/UndefinedVariable";
analyzer[] = "Variables/VariableNonascii";
analyzer[] = "Variables/VariableUsedOnce";
analyzer[] = "Variables/VariableUsedOnceByContext";
analyzer[] = "Variables/WrittenOnlyVariable";

276 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

Analyze for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'Analyze':
- 'Arrays/AmbiguousKeys'
- 'Arrays/AppendAndAssignArrays'
- 'Arrays/FloatConversionAsIndex'
- 'Arrays/MultipleIdenticalKeys'
- 'Arrays/NoSpreadForHash'
- 'Arrays/NonConstantArray'
- 'Arrays/NullBoolean'
- 'Arrays/RandomlySortedLiterals'
- 'Arrays/TooManyDimensions'
- 'Arrays/WeakType'
- 'Attributes/MissingAttributeAttribute'
- 'Attributes/ModifyImmutable'
- 'Classes/AbstractOrImplements'
- 'Classes/AbstractStatic'
- 'Classes/AccessPrivate'
- 'Classes/AccessProtected'
- 'Classes/AmbiguousStatic'
- 'Classes/AmbiguousVisibilities'
- 'Classes/AvoidOptionArrays'
- 'Classes/AvoidOptionalProperties'
- 'Classes/CantExtendFinal'
- 'Classes/CantInstantiateClass'
- 'Classes/CantInstantiateNonClass'
- 'Classes/CantOverwriteFinalConstant'
- 'Classes/CheckAfterNullSafeOperator'
- 'Classes/CheckOnCallUsage'
- 'Classes/CitSameName'
- 'Classes/CloneWithNonObject'
- 'Classes/CouldBeAbstractClass'
- 'Classes/CouldBeFinal'
- 'Classes/CouldBeStatic'
- 'Classes/CouldInjectParam'
- 'Classes/CyclicReferences'
- 'Classes/DependantAbstractClass'
- 'Classes/DifferentArgumentCounts'
- 'Classes/DirectCallToMagicMethod'
- 'Classes/DontSendThisInConstructor'
- 'Classes/DontUnsetProperties'
- 'Classes/EmptyClass'
- 'Classes/HiddenNullable'
- 'Classes/ImplementIsForInterface'
- 'Classes/ImplementedMethodsArePublic'
- 'Classes/IncompatibleSignature'
- 'Classes/IncompatibleSignature74'
- 'Classes/InheritedPropertyMustMatch'
- 'Classes/InstantiatingAbstractClass'

(continues on next page)

10.5. Predefined config files 277

Exakat Documentation, Release 1

(continued from previous page)

- 'Classes/MakeDefault'
- 'Classes/MakeGlobalAProperty'
- 'Classes/MethodSignatureMustBeCompatible'
- 'Classes/MismatchProperties'
- 'Classes/MissingAbstractMethod'
- 'Classes/MultipleDeclarations'
- 'Classes/MultipleTraitOrInterface'
- 'Classes/NewThenCall'
- 'Classes/NoMagicWithArray'
- 'Classes/NoNullWithNullSafeOperator'
- 'Classes/NoPSSOutsideClass'
- 'Classes/NoParent'
- 'Classes/NoPublicAccess'
- 'Classes/NoReadonlyAssignationInGlobal'
- 'Classes/NoSelfReferencingConstant'
- 'Classes/NonNullableSetters'
- 'Classes/NonPpp'
- 'Classes/NonStaticMethodsCalledStatic'
- 'Classes/OldStyleConstructor'
- 'Classes/OldStyleVar'
- 'Classes/ParentFirst'
- 'Classes/ParentIsNotStatic'
- 'Classes/PropertyCouldBeLocal'
- 'Classes/PropertyMethodSameName'
- 'Classes/PropertyNeverUsed'
- 'Classes/PropertyUsedInOneMethodOnly'
- 'Classes/PssWithoutClass'
- 'Classes/ScalarOrObjectProperty'
- 'Classes/ShouldUseSelf'
- 'Classes/ShouldUseThis'
- 'Classes/StaticCannotCallNonStatic'
- 'Classes/StaticContainsThis'
- 'Classes/StaticMethodsCalledFromObject'
- 'Classes/SwappedArguments'
- 'Classes/ThisIsForClasses'
- 'Classes/ThisIsNotAnArray'
- 'Classes/ThisIsNotForStatic'
- 'Classes/ThrowInDestruct'
- 'Classes/TooManyDereferencing'
- 'Classes/TooManyFinds'
- 'Classes/TooManyInjections'
- 'Classes/UndeclaredStaticProperty'
- 'Classes/UndefinedClasses'
- 'Classes/UndefinedConstants'
- 'Classes/UndefinedParentMP'
- 'Classes/UndefinedProperty'
- 'Classes/UndefinedStaticMP'
- 'Classes/UndefinedStaticclass'
- 'Classes/UnfinishedObject'
- 'Classes/UnreachableMethod'
- 'Classes/UnresolvedClasses'
- 'Classes/UnresolvedInstanceof'

(continues on next page)

278 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Classes/UnusedClass'
- 'Classes/UnusedConstant'
- 'Classes/UnusedPublicMethod'
- 'Classes/UseClassOperator'
- 'Classes/UseInstanceof'
- 'Classes/UsedOnceProperty'
- 'Classes/UselessAbstract'
- 'Classes/UselessAssignationOfPromotedProperty'
- 'Classes/UselessConstructor'
- 'Classes/UselessFinal'
- 'Classes/UselessMethod'
- 'Classes/UsingThisOutsideAClass'
- 'Classes/WeakType'
- 'Classes/WrongName'
- 'Classes/WrongTypedPropertyInit'
- 'Constants/BadConstantnames'
- 'Constants/ConstRecommended'
- 'Constants/ConstantUsedOnce'
- 'Constants/CreatedOutsideItsNamespace'
- 'Constants/InvalidName'
- 'Constants/MultipleConstantDefinition'
- 'Constants/StrangeName'
- 'Constants/UndefinedConstants'
- 'Enums/NoMagicMethod'
- 'Enums/UndefinedEnumcase'
- 'Enums/UnusedEnumCase'
- 'Exceptions/CantThrow'
- 'Exceptions/CatchUndefinedVariable'
- 'Exceptions/ConvertedExceptions'
- 'Exceptions/ForgottenThrown'
- 'Exceptions/OverwriteException'
- 'Exceptions/ThrowFunctioncall'
- 'Exceptions/ThrowRawExceptions'
- 'Exceptions/UncaughtExceptions'
- 'Exceptions/Unthrown'
- 'Exceptions/UselessTry'
- 'Files/InclusionWrongCase'
- 'Files/MissingInclude'
- 'Functions/AliasesUsage'
- 'Functions/AvoidBooleanArgument'
- 'Functions/CallbackNeedsReturn'
- 'Functions/CanCallGenerator'
- 'Functions/CancelledParameter'
- 'Functions/CannotUseStaticForClosure'
- 'Functions/CouldCentralize'
- 'Functions/DeepDefinitions'
- 'Functions/DontUseVoid'
- 'Functions/DuplicateNamedParameter'
- 'Functions/EmptyFunction'
- 'Functions/FnArgumentVariableConfusion'
- 'Functions/HardcodedPasswords'
- 'Functions/InsufficientTypehint'

(continues on next page)

10.5. Predefined config files 279

Exakat Documentation, Release 1

(continued from previous page)

- 'Functions/MethodIsNotAnIf'
- 'Functions/MismatchParameterName'
- 'Functions/MismatchTypeAndDefault'
- 'Functions/MismatchedDefaultArguments'
- 'Functions/MismatchedTypehint'
- 'Functions/ModifyTypedParameter'
- 'Functions/MustReturn'
- 'Functions/NeverUsedParameter'
- 'Functions/NoBooleanAsDefault'
- 'Functions/NoDefaultForReference'
- 'Functions/NoLiteralForReference'
- 'Functions/NoReferencedVoid'
- 'Functions/NoReturnUsed'
- 'Functions/OnlyVariableForReference'
- 'Functions/OnlyVariablePassedByReference'
- 'Functions/RedeclaredPhpFunction'
- 'Functions/RetypedReference'
- 'Functions/ShouldUseConstants'
- 'Functions/ShouldYieldWithKey'
- 'Functions/TooManyLocalVariables'
- 'Functions/TypehintMustBeReturned'
- 'Functions/TypehintedReferences'
- 'Functions/UndefinedFunctions'
- 'Functions/UnknownParameterName'
- 'Functions/UnusedArguments'
- 'Functions/UnusedInheritedVariable'
- 'Functions/UnusedReturnedValue'
- 'Functions/UseConstantAsArguments'
- 'Functions/UseConstantsAsReturns'
- 'Functions/UselessArgument'
- 'Functions/UselessReferenceArgument'
- 'Functions/UselessReturn'
- 'Functions/UsesDefaultArguments'
- 'Functions/UsingDeprecated'
- 'Functions/VoidIsNotAReference'
- 'Functions/WithoutReturn'
- 'Functions/WrongArgumentNameWithPhpFunction'
- 'Functions/WrongArgumentType'
- 'Functions/WrongNumberOfArguments'
- 'Functions/WrongOptionalParameter'
- 'Functions/WrongReturnedType'
- 'Functions/WrongTypeWithCall'
- 'Functions/funcGetArgModified'
- 'Interfaces/AlreadyParentsInterface'
- 'Interfaces/CantImplementTraversable'
- 'Interfaces/CouldUseInterface'
- 'Interfaces/EmptyInterface'
- 'Interfaces/IsNotImplemented'
- 'Interfaces/NoGaranteeForPropertyConstant'
- 'Interfaces/RepeatedInterface'
- 'Interfaces/UndefinedInterfaces'
- 'Interfaces/UselessInterfaces'

(continues on next page)

280 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Namespaces/ConstantFullyQualified'
- 'Namespaces/EmptyNamespace'
- 'Namespaces/HiddenUse'
- 'Namespaces/MultipleAliasDefinitionPerFile'
- 'Namespaces/MultipleAliasDefinitions'
- 'Namespaces/OverloadExistingNames'
- 'Namespaces/ShouldMakeAlias'
- 'Namespaces/UnresolvedUse'
- 'Namespaces/UseWithFullyQualifiedNS'
- 'Performances/ArrayMergeInLoops'
- 'Performances/LogicalToInArray'
- 'Performances/MemoizeMagicCall'
- 'Performances/PrePostIncrement'
- 'Performances/StrposTooMuch'
- 'Performances/UseArraySlice'
- 'Php/ArrayKeyExistsWithObjects'
- 'Php/AssertFunctionIsReserved'
- 'Php/AssignAnd'
- 'Php/Assumptions'
- 'Php/AvoidMbDectectEncoding'
- 'Php/BetterRand'
- 'Php/CloneConstant'
- 'Php/ConcatAndAddition'
- 'Php/Crc32MightBeNegative'
- 'Php/DateTimeNotImmutable'
- 'Php/Deprecated'
- 'Php/DontPolluteGlobalSpace'
- 'Php/EmptyList'
- 'Php/ExitNoArg'
- 'Php/FalseToArray'
- 'Php/FopenMode'
- 'Php/ForeachObject'
- 'Php/HashAlgos'
- 'Php/Incompilable'
- 'Php/InternalParameterType'
- 'Php/IsAWithString'
- 'Php/IsnullVsEqualNull'
- 'Php/JsonSerializeReturnType'
- 'Php/LogicalInLetters'
- 'Php/MissingMagicIsset'
- 'Php/MissingSubpattern'
- 'Php/MultipleDeclareStrict'
- 'Php/MustCallParentConstructor'
- 'Php/NativeClassTypeCompatibility'
- 'Php/NeverKeyword'
- 'Php/NoCastToInt'
- 'Php/NoClassInGlobal'
- 'Php/NoNullForNative'
- 'Php/NoReferenceForTernary'
- 'Php/OnlyVariablePassedByReference'
- 'Php/PathinfoReturns'
- 'Php/Php81NewFunctions'

(continues on next page)

10.5. Predefined config files 281

Exakat Documentation, Release 1

(continued from previous page)

- 'Php/ScalarAreNotArrays'
- 'Php/ShortOpenTagRequired'
- 'Php/ShouldUseCoalesce'
- 'Php/StrposWithIntegers'
- 'Php/StrtrArguments'
- 'Php/TooManyNativeCalls'
- 'Php/UnknownPcre2Option'
- 'Php/UseObjectApi'
- 'Php/UsePathinfo'
- 'Php/UseSetCookie'
- 'Php/UseStdclass'
- 'Php/VersionCompareOperator'
- 'Php/WrongAttributeConfiguration'
- 'Php/WrongTypeForNativeFunction'
- 'Php/oldAutoloadUsage'
- 'Security/DontEchoError'
- 'Security/ShouldUsePreparedStatement'
- 'Structures/AddZero'
- 'Structures/AlteringForeachWithoutReference'
- 'Structures/AlternativeConsistenceByFile'
- 'Structures/AlwaysFalse'
- 'Structures/ArrayAccessOnLiteralArray'
- 'Structures/ArrayFillWithObjects'
- 'Structures/ArrayMapPassesByValue'
- 'Structures/ArrayMergeAndVariadic'
- 'Structures/ArrayMergeArrayArray'
- 'Structures/AssigneAndCompare'
- 'Structures/AutoUnsetForeach'
- 'Structures/BailOutEarly'
- 'Structures/BooleanStrictComparison'
- 'Structures/BreakOutsideLoop'
- 'Structures/BuriedAssignation'
- 'Structures/CannotUseAppendForReading'
- 'Structures/CastToBoolean'
- 'Structures/CastingTernary'
- 'Structures/CatchShadowsVariable'
- 'Structures/CheckAllTypes'
- 'Structures/CheckDivision'
- 'Structures/CheckJson'
- 'Structures/CoalesceAndConcat'
- 'Structures/CoalesceNullCoalesce'
- 'Structures/CommonAlternatives'
- 'Structures/ComparedComparison'
- 'Structures/ConcatEmpty'
- 'Structures/ContinueIsForLoop'
- 'Structures/CouldBeElse'
- 'Structures/CouldBeSpaceship'
- 'Structures/CouldBeStatic'
- 'Structures/CouldUseDir'
- 'Structures/CouldUseShortAssignation'
- 'Structures/CouldUseStrrepeat'
- 'Structures/CouldUseYieldFrom'

(continues on next page)

282 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/CountIsNotNegative'
- 'Structures/DanglingArrayReferences'
- 'Structures/DefaultThenDiscard'
- 'Structures/DirThenSlash'
- 'Structures/DontAddSeconds'
- 'Structures/DontChangeBlindKey'
- 'Structures/DontMixPlusPlus'
- 'Structures/DontReadAndWriteInOneExpression'
- 'Structures/DontReuseForeachSource'
- 'Structures/DoubleAssignation'
- 'Structures/DoubleChecks'
- 'Structures/DoubleInstruction'
- 'Structures/DoubleObjectAssignation'
- 'Structures/DropElseAfterReturn'
- 'Structures/EchoWithConcat'
- 'Structures/ElseIfElseif'
- 'Structures/EmptyBlocks'
- 'Structures/EmptyJsonError'
- 'Structures/EmptyLines'
- 'Structures/EmptyLoop'
- 'Structures/EmptyTryCatch'
- 'Structures/ErrorReportingWithInteger'
- 'Structures/EvalUsage'
- 'Structures/EvalWithoutTry'
- 'Structures/ExitUsage'
- 'Structures/FailingSubstrComparison'
- 'Structures/ForeachReferenceIsNotModified'
- 'Structures/ForeachSourceValue'
- 'Structures/ForgottenWhiteSpace'
- 'Structures/GlobalUsage'
- 'Structures/Htmlentitiescall'
- 'Structures/HtmlentitiescallDefaultFlag'
- 'Structures/IdenticalCase'
- 'Structures/IdenticalConditions'
- 'Structures/IdenticalConsecutive'
- 'Structures/IdenticalOnBothSides'
- 'Structures/IdenticalVariablesInForeach'
- 'Structures/IfWithSameConditions'
- 'Structures/Iffectation'
- 'Structures/ImplicitConversionToInt'
- 'Structures/ImpliedIf'
- 'Structures/ImplodeArgsOrder'
- 'Structures/IndicesAreIntOrString'
- 'Structures/InfiniteRecursion'
- 'Structures/InvalidCast'
- 'Structures/InvalidDateScanningFormat'
- 'Structures/InvalidPackFormat'
- 'Structures/InvalidRegex'
- 'Structures/IsZero'
- 'Structures/ListOmissions'
- 'Structures/LogicalMistakes'
- 'Structures/LoneBlock'

(continues on next page)

10.5. Predefined config files 283

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/LongArguments'
- 'Structures/MaxLevelOfIdentation'
- 'Structures/MbStringNonEncodings'
- 'Structures/MbstringThirdArg'
- 'Structures/MbstringUnknownEncoding'
- 'Structures/MergeIfThen'
- 'Structures/MismatchedTernary'
- 'Structures/MissingAssignation'
- 'Structures/MissingCases'
- 'Structures/MissingNew'
- 'Structures/MissingParenthesis'
- 'Structures/MisusedYield'
- 'Structures/MixedConcatInterpolation'
- 'Structures/ModernEmpty'
- 'Structures/MultipleDefinedCase'
- 'Structures/MultipleTypeVariable'
- 'Structures/MultiplyByOne'
- 'Structures/NegativePow'
- 'Structures/NestedIfthen'
- 'Structures/NestedMatch'
- 'Structures/NestedTernary'
- 'Structures/NeverNegative'
- 'Structures/NextMonthTrap'
- 'Structures/NoAppendOnSource'
- 'Structures/NoChangeIncomingVariables'
- 'Structures/NoChoice'
- 'Structures/NoDirectUsage'
- 'Structures/NoEmptyRegex'
- 'Structures/NoEmptyStringWithExplode'
- 'Structures/NoGetClassNull'
- 'Structures/NoHardcodedHash'
- 'Structures/NoHardcodedIp'
- 'Structures/NoHardcodedPath'
- 'Structures/NoHardcodedPort'
- 'Structures/NoIssetWithEmpty'
- 'Structures/NoNeedForElse'
- 'Structures/NoNeedForTriple'
- 'Structures/NoNullForIndex'
- 'Structures/NoObjectAsIndex'
- 'Structures/NoParenthesisForLanguageConstruct'
- 'Structures/NoReferenceOnLeft'
- 'Structures/NoSubstrOne'
- 'Structures/NoValidCast'
- 'Structures/NoVariableIsACondition'
- 'Structures/NonIntStringAsIndex'
- 'Structures/Noscream'
- 'Structures/NotEqual'
- 'Structures/NotNot'
- 'Structures/ObjectReferences'
- 'Structures/OnceUsage'
- 'Structures/OneLineTwoInstructions'
- 'Structures/OnlyFirstByte'

(continues on next page)

284 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/OnlyVariableReturnedByReference'
- 'Structures/OrDie'
- 'Structures/OverwrittenForeachVar'
- 'Structures/PossibleInfiniteLoop'
- 'Structures/PrintAndDie'
- 'Structures/PrintWithoutParenthesis'
- 'Structures/PrintfArguments'
- 'Structures/QueriesInLoop'
- 'Structures/RepeatedPrint'
- 'Structures/RepeatedRegex'
- 'Structures/ResultMayBeMissing'
- 'Structures/ReturnTrueFalse'
- 'Structures/SameConditions'
- 'Structures/ShouldChainException'
- 'Structures/ShouldMakeTernary'
- 'Structures/ShouldPreprocess'
- 'Structures/ShouldUseExplodeArgs'
- 'Structures/SprintfFormatCompilation'
- 'Structures/StaticInclude'
- 'Structures/StaticLoop'
- 'Structures/StripTagsSkipsClosedTag'
- 'Structures/StrposCompare'
- 'Structures/StrposLessThanOne'
- 'Structures/SuspiciousComparison'
- 'Structures/SwitchToSwitch'
- 'Structures/SwitchWithoutDefault'
- 'Structures/TernaryInConcat'
- 'Structures/TestThenCast'
- 'Structures/ThrowsAndAssign'
- 'Structures/TimestampDifference'
- 'Structures/UncheckedResources'
- 'Structures/UnconditionLoopBreak'
- 'Structures/UnknownPregOption'
- 'Structures/Unpreprocessed'
- 'Structures/UnsetInForeach'
- 'Structures/UnsupportedOperandTypes'
- 'Structures/UnsupportedTypesWithOperators'
- 'Structures/UnusedGlobal'
- 'Structures/UseConstant'
- 'Structures/UseInstanceof'
- 'Structures/UsePositiveCondition'
- 'Structures/UseSameTypesForComparisons'
- 'Structures/UseSystemTmp'
- 'Structures/UselessBrackets'
- 'Structures/UselessCasting'
- 'Structures/UselessCheck'
- 'Structures/UselessCoalesce'
- 'Structures/UselessGlobal'
- 'Structures/UselessInstruction'
- 'Structures/UselessNullCoalesce'
- 'Structures/UselessParenthesis'
- 'Structures/UselessShortTernary'

(continues on next page)

10.5. Predefined config files 285

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/UselessSwitch'
- 'Structures/UselessUnset'
- 'Structures/VardumpUsage'
- 'Structures/WhileListEach'
- 'Structures/WrongLocale'
- 'Structures/WrongPrecedenceInExpression'
- 'Structures/WrongRange'
- 'Structures/pregOptionE'
- 'Structures/toStringThrowsException'
- 'Traits/AlreadyParentsTrait'
- 'Traits/CannotCallTraitMethod'
- 'Traits/DependantTrait'
- 'Traits/EmptyTrait'
- 'Traits/MethodCollisionTraits'
- 'Traits/TraitIsNotAType'
- 'Traits/TraitNotFound'
- 'Traits/UndefinedInsteadof'
- 'Traits/UndefinedTrait'
- 'Traits/UselessAlias'
- 'Type/NoRealComparison'
- 'Type/OneVariableStrings'
- 'Type/ShouldTypecast'
- 'Type/SilentlyCastInteger'
- 'Type/StringHoldAVariable'
- 'Type/StringWithStrangeSpace'
- 'Typehints/MissingReturntype'
- 'Typehints/StandaloneTypeTFN'
- 'Typehints/WrongTypeWithDefault'
- 'Variables/AssignedTwiceOrMore'
- 'Variables/ConstantTypo'
- 'Variables/LostReferences'
- 'Variables/OverwrittenLiterals'
- 'Variables/RecycledVariables'
- 'Variables/UndefinedConstantName'
- 'Variables/UndefinedVariable'
- 'Variables/VariableNonascii'
- 'Variables/VariableUsedOnce'
- 'Variables/VariableUsedOnceByContext'
- 'Variables/WrittenOnlyVariable'

10.5.3 Appinfo

Appinfo for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[Appinfo]
analyzer[] = "Arrays/ArrayNSUsage";
analyzer[] = "Arrays/Arrayindex";
analyzer[] = "Arrays/Multidimensional";
analyzer[] = "Arrays/Phparrayindex";

(continues on next page)

286 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Arrays/WithCallback";
analyzer[] = "Attributes/NestedAttributes";
analyzer[] = "Classes/Abstractclass";
analyzer[] = "Classes/Abstractmethods";
analyzer[] = "Classes/Anonymous";
analyzer[] = "Classes/ClassAliasUsage";
analyzer[] = "Classes/ClassOverreach";
analyzer[] = "Classes/Classnames";
analyzer[] = "Classes/CloningUsage";
analyzer[] = "Classes/ConstVisibilityUsage";
analyzer[] = "Classes/ConstantDefinition";
analyzer[] = "Classes/DynamicClass";
analyzer[] = "Classes/DynamicConstantCall";
analyzer[] = "Classes/DynamicMethodCall";
analyzer[] = "Classes/DynamicNew";
analyzer[] = "Classes/DynamicPropertyCall";
analyzer[] = "Classes/ImmutableSignature";
analyzer[] = "Classes/MagicMethod";
analyzer[] = "Classes/MultipleClassesInFile";
analyzer[] = "Classes/NewDynamicConstantSyntax";
analyzer[] = "Classes/OldStyleConstructor";
analyzer[] = "Classes/OverwrittenConst";
analyzer[] = "Classes/PromotedProperties";
analyzer[] = "Classes/ReadonlyUsage";
analyzer[] = "Classes/RedefinedMethods";
analyzer[] = "Classes/StaticMethods";
analyzer[] = "Classes/StaticProperties";
analyzer[] = "Classes/TestClass";
analyzer[] = "Classes/UntypedNoDefaultProperties";
analyzer[] = "Classes/VariableClasses";
analyzer[] = "Composer/Autoload";
analyzer[] = "Composer/UseComposer";
analyzer[] = "Composer/UseComposerLock";
analyzer[] = "Constants/CaseInsensitiveConstants";
analyzer[] = "Constants/ConditionedConstants";
analyzer[] = "Constants/ConstantUsage";
analyzer[] = "Constants/DynamicCreation";
analyzer[] = "Constants/MagicConstantUsage";
analyzer[] = "Constants/PhpConstantUsage";
analyzer[] = "Constants/VariableConstant";
analyzer[] = "Dump/ParameterArgumentsLinks";
analyzer[] = "Exceptions/DefinedExceptions";
analyzer[] = "Exceptions/MultipleCatch";
analyzer[] = "Exceptions/ThrownExceptions";
analyzer[] = "Extensions/Extamqp";
analyzer[] = "Extensions/Extapache";
analyzer[] = "Extensions/Extapc";
analyzer[] = "Extensions/Extapcu";
analyzer[] = "Extensions/Extarray";
analyzer[] = "Extensions/Extast";
analyzer[] = "Extensions/Extbcmath";
analyzer[] = "Extensions/Extbzip2";

(continues on next page)

10.5. Predefined config files 287

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Extensions/Extcalendar";
analyzer[] = "Extensions/Extcmark";
analyzer[] = "Extensions/Extcom";
analyzer[] = "Extensions/Extcrypto";
analyzer[] = "Extensions/Extcsv";
analyzer[] = "Extensions/Extctype";
analyzer[] = "Extensions/Extcurl";
analyzer[] = "Extensions/Extdate";
analyzer[] = "Extensions/Extdb2";
analyzer[] = "Extensions/Extdba";
analyzer[] = "Extensions/Extdecimal";
analyzer[] = "Extensions/Extdio";
analyzer[] = "Extensions/Extdom";
analyzer[] = "Extensions/Extds";
analyzer[] = "Extensions/Exteaccelerator";
analyzer[] = "Extensions/Exteio";
analyzer[] = "Extensions/Extenchant";
analyzer[] = "Extensions/Extev";
analyzer[] = "Extensions/Extevent";
analyzer[] = "Extensions/Extexcimer";
analyzer[] = "Extensions/Extexif";
analyzer[] = "Extensions/Extexpect";
analyzer[] = "Extensions/Extfam";
analyzer[] = "Extensions/Extfann";
analyzer[] = "Extensions/Extffi";
analyzer[] = "Extensions/Extfile";
analyzer[] = "Extensions/Extfileinfo";
analyzer[] = "Extensions/Extfilter";
analyzer[] = "Extensions/Extfpm";
analyzer[] = "Extensions/Extftp";
analyzer[] = "Extensions/Extgd";
analyzer[] = "Extensions/Extgearman";
analyzer[] = "Extensions/Extgender";
analyzer[] = "Extensions/Extgeoip";
analyzer[] = "Extensions/Extgeospatial";
analyzer[] = "Extensions/Extgettext";
analyzer[] = "Extensions/Extgmagick";
analyzer[] = "Extensions/Extgmp";
analyzer[] = "Extensions/Extgnupg";
analyzer[] = "Extensions/Extgrpc";
analyzer[] = "Extensions/Exthash";
analyzer[] = "Extensions/Exthrtime";
analyzer[] = "Extensions/Exthttp";
analyzer[] = "Extensions/Extibase";
analyzer[] = "Extensions/Extice";
analyzer[] = "Extensions/Exticonv";
analyzer[] = "Extensions/Extigbinary";
analyzer[] = "Extensions/Extimagick";
analyzer[] = "Extensions/Extimap";
analyzer[] = "Extensions/Extinfo";
analyzer[] = "Extensions/Extinotify";
analyzer[] = "Extensions/Extintl";

(continues on next page)

288 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Extensions/Extjson";
analyzer[] = "Extensions/Extjudy";
analyzer[] = "Extensions/Extldap";
analyzer[] = "Extensions/Extleveldb";
analyzer[] = "Extensions/Extlibsodium";
analyzer[] = "Extensions/Extlibxml";
analyzer[] = "Extensions/Extlua";
analyzer[] = "Extensions/Extlzf";
analyzer[] = "Extensions/Extmail";
analyzer[] = "Extensions/Extmailparse";
analyzer[] = "Extensions/Extmath";
analyzer[] = "Extensions/Extmbstring";
analyzer[] = "Extensions/Extmcrypt";
analyzer[] = "Extensions/Extmemcache";
analyzer[] = "Extensions/Extmemcached";
analyzer[] = "Extensions/Extmongo";
analyzer[] = "Extensions/Extmongodb";
analyzer[] = "Extensions/Extmsgpack";
analyzer[] = "Extensions/Extmssql";
analyzer[] = "Extensions/Extmysql";
analyzer[] = "Extensions/Extmysqli";
analyzer[] = "Extensions/Extncurses";
analyzer[] = "Extensions/Extnewt";
analyzer[] = "Extensions/Extnsapi";
analyzer[] = "Extensions/Extob";
analyzer[] = "Extensions/Extoci8";
analyzer[] = "Extensions/Extodbc";
analyzer[] = "Extensions/Extopcache";
analyzer[] = "Extensions/Extopencensus";
analyzer[] = "Extensions/Extopenssl";
analyzer[] = "Extensions/Extparle";
analyzer[] = "Extensions/Extpassword";
analyzer[] = "Extensions/Extpcntl";
analyzer[] = "Extensions/Extpcov";
analyzer[] = "Extensions/Extpcre";
analyzer[] = "Extensions/Extpdo";
analyzer[] = "Extensions/Extpgsql";
analyzer[] = "Extensions/Extphalcon";
analyzer[] = "Extensions/Extphar";
analyzer[] = "Extensions/Extpkcs11";
analyzer[] = "Extensions/Extposix";
analyzer[] = "Extensions/Extprotobuf";
analyzer[] = "Extensions/Extpspell";
analyzer[] = "Extensions/Extpsr";
analyzer[] = "Extensions/Extrandom";
analyzer[] = "Extensions/Extrar";
analyzer[] = "Extensions/Extrdkafka";
analyzer[] = "Extensions/Extreadline";
analyzer[] = "Extensions/Extredis";
analyzer[] = "Extensions/Extreflection";
analyzer[] = "Extensions/Extscrypt";
analyzer[] = "Extensions/Extsdl";

(continues on next page)

10.5. Predefined config files 289

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Extensions/Extseaslog";
analyzer[] = "Extensions/Extsem";
analyzer[] = "Extensions/Extsession";
analyzer[] = "Extensions/Extshmop";
analyzer[] = "Extensions/Extsimplexml";
analyzer[] = "Extensions/Extsnmp";
analyzer[] = "Extensions/Extsoap";
analyzer[] = "Extensions/Extsockets";
analyzer[] = "Extensions/Extsphinx";
analyzer[] = "Extensions/Extspl";
analyzer[] = "Extensions/Extspx";
analyzer[] = "Extensions/Extsqlite";
analyzer[] = "Extensions/Extsqlite3";
analyzer[] = "Extensions/Extsqlsrv";
analyzer[] = "Extensions/Extssh2";
analyzer[] = "Extensions/Extstandard";
analyzer[] = "Extensions/Extstats";
analyzer[] = "Extensions/Extstomp";
analyzer[] = "Extensions/Extstring";
analyzer[] = "Extensions/Extsuhosin";
analyzer[] = "Extensions/Extsvm";
analyzer[] = "Extensions/Extswoole";
analyzer[] = "Extensions/Exttaint";
analyzer[] = "Extensions/Extteds";
analyzer[] = "Extensions/Exttidy";
analyzer[] = "Extensions/Exttokenizer";
analyzer[] = "Extensions/Exttokyotyrant";
analyzer[] = "Extensions/Exttrader";
analyzer[] = "Extensions/Extuopz";
analyzer[] = "Extensions/Extuuid";
analyzer[] = "Extensions/Extv8js";
analyzer[] = "Extensions/Extvarnish";
analyzer[] = "Extensions/Extvips";
analyzer[] = "Extensions/Extwasm";
analyzer[] = "Extensions/Extwddx";
analyzer[] = "Extensions/Extweakref";
analyzer[] = "Extensions/Extxattr";
analyzer[] = "Extensions/Extxdebug";
analyzer[] = "Extensions/Extxdiff";
analyzer[] = "Extensions/Extxhprof";
analyzer[] = "Extensions/Extxml";
analyzer[] = "Extensions/Extxmlreader";
analyzer[] = "Extensions/Extxmlrpc";
analyzer[] = "Extensions/Extxmlwriter";
analyzer[] = "Extensions/Extxsl";
analyzer[] = "Extensions/Extxxtea";
analyzer[] = "Extensions/Extyaml";
analyzer[] = "Extensions/Extyar";
analyzer[] = "Extensions/Extzendmonitor";
analyzer[] = "Extensions/Extzip";
analyzer[] = "Extensions/Extzlib";
analyzer[] = "Extensions/Extzmq";

(continues on next page)

290 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Extensions/Extzookeeper";
analyzer[] = "Files/IsCliScript";
analyzer[] = "Files/NotDefinitionsOnly";
analyzer[] = "Functions/Closures";
analyzer[] = "Functions/ConditionedFunctions";
analyzer[] = "Functions/DeepDefinitions";
analyzer[] = "Functions/Dynamiccall";
analyzer[] = "Functions/FallbackFunction";
analyzer[] = "Functions/Functionnames";
analyzer[] = "Functions/FunctionsUsingReference";
analyzer[] = "Functions/IsGenerator";
analyzer[] = "Functions/MultipleDeclarations";
analyzer[] = "Functions/Recursive";
analyzer[] = "Functions/RedeclaredPhpFunction";
analyzer[] = "Functions/Typehints";
analyzer[] = "Functions/UseArrowFunctions";
analyzer[] = "Functions/VariableArguments";
analyzer[] = "Interfaces/Interfacenames";
analyzer[] = "Namespaces/Alias";
analyzer[] = "Namespaces/NamespaceUsage";
analyzer[] = "Namespaces/Namespacesnames";
analyzer[] = "Patterns/CourrierAntiPattern";
analyzer[] = "Patterns/DependencyInjection";
analyzer[] = "Patterns/Factory";
analyzer[] = "Php/AlternativeSyntax";
analyzer[] = "Php/Argon2Usage";
analyzer[] = "Php/AssertionUsage";
analyzer[] = "Php/AutoloadUsage";
analyzer[] = "Php/CastingUsage";
analyzer[] = "Php/Coalesce";
analyzer[] = "Php/ConstantScalarExpression";
analyzer[] = "Php/CryptoUsage";
analyzer[] = "Php/DeclareEncoding";
analyzer[] = "Php/DeclareStrict";
analyzer[] = "Php/DeclareStrictType";
analyzer[] = "Php/DeclareTicks";
analyzer[] = "Php/DirectivesUsage";
analyzer[] = "Php/DlUsage";
analyzer[] = "Php/EchoTagUsage";
analyzer[] = "Php/EllipsisUsage";
analyzer[] = "Php/ErrorLogUsage";
analyzer[] = "Php/FinalConstant";
analyzer[] = "Php/FirstClassCallable";
analyzer[] = "Php/Gotonames";
analyzer[] = "Php/GroupUseDeclaration";
analyzer[] = "Php/Haltcompiler";
analyzer[] = "Php/Incompilable";
analyzer[] = "Php/IntegerSeparatorUsage";
analyzer[] = "Php/IsINF";
analyzer[] = "Php/IsNAN";
analyzer[] = "Php/Labelnames";
analyzer[] = "Php/ListShortSyntax";

(continues on next page)

10.5. Predefined config files 291

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Php/ListWithKeys";
analyzer[] = "Php/MiddleVersion";
analyzer[] = "Php/MixedUsage";
analyzer[] = "Php/NamedParameterUsage";
analyzer[] = "Php/NestedTernaryWithoutParenthesis";
analyzer[] = "Php/NeverKeyword";
analyzer[] = "Php/NeverTypehintUsage";
analyzer[] = "Php/NewInitializers";
analyzer[] = "Php/OveriddenFunction";
analyzer[] = "Php/PearUsage";
analyzer[] = "Php/Php7RelaxedKeyword";
analyzer[] = "Php/Php80OnlyTypeHints";
analyzer[] = "Php/Php80UnionTypehint";
analyzer[] = "Php/Php80VariableSyntax";
analyzer[] = "Php/Php81IntersectionTypehint";
analyzer[] = "Php/PlusPlusOnLetters";
analyzer[] = "Php/RawPostDataUsage";
analyzer[] = "Php/ReturnTypehintUsage";
analyzer[] = "Php/ScalarTypehintUsage";
analyzer[] = "Php/ShortTernary";
analyzer[] = "Php/SpreadOperatorForArray";
analyzer[] = "Php/SuperGlobalUsage";
analyzer[] = "Php/ThrowUsage";
analyzer[] = "Php/TrailingComma";
analyzer[] = "Php/TriggerErrorUsage";
analyzer[] = "Php/TryCatchUsage";
analyzer[] = "Php/TryMultipleCatch";
analyzer[] = "Php/TypedPropertyUsage";
analyzer[] = "Php/UseAttributes";
analyzer[] = "Php/UseBrowscap";
analyzer[] = "Php/UseClassAlias";
analyzer[] = "Php/UseCli";
analyzer[] = "Php/UseContravariance";
analyzer[] = "Php/UseCookies";
analyzer[] = "Php/UseCovariance";
analyzer[] = "Php/UseDNF";
analyzer[] = "Php/UseEnumCaseInConstantExpression";
analyzer[] = "Php/UseNullSafeOperator";
analyzer[] = "Php/UseNullableType";
analyzer[] = "Php/UseTrailingUseComma";
analyzer[] = "Php/UseWeb";
analyzer[] = "Php/UsesEnv";
analyzer[] = "Php/YieldFromUsage";
analyzer[] = "Php/YieldUsage";
analyzer[] = "Psr/Psr11Usage";
analyzer[] = "Psr/Psr13Usage";
analyzer[] = "Psr/Psr16Usage";
analyzer[] = "Psr/Psr3Usage";
analyzer[] = "Psr/Psr6Usage";
analyzer[] = "Psr/Psr7Usage";
analyzer[] = "Security/CantDisableClass";
analyzer[] = "Security/CantDisableFunction";

(continues on next page)

292 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/ArrayAddition";
analyzer[] = "Structures/ComplexExpression";
analyzer[] = "Structures/ConstDefineFavorite";
analyzer[] = "Structures/ConstantScalarExpression";
analyzer[] = "Structures/DateTimePreference";
analyzer[] = "Structures/DereferencingAS";
analyzer[] = "Structures/DynamicCalls";
analyzer[] = "Structures/DynamicCode";
analyzer[] = "Structures/ElseUsage";
analyzer[] = "Structures/ErrorMessages";
analyzer[] = "Structures/EvalUsage";
analyzer[] = "Structures/ExitUsage";
analyzer[] = "Structures/FilePutContentsDataType";
analyzer[] = "Structures/FileUploadUsage";
analyzer[] = "Structures/FileUsage";
analyzer[] = "Structures/FunctionSubscripting";
analyzer[] = "Structures/GlobalInGlobal";
analyzer[] = "Structures/GlobalUsage";
analyzer[] = "Structures/IncludeUsage";
analyzer[] = "Structures/MailUsage";
analyzer[] = "Structures/MultipleCatch";
analyzer[] = "Structures/NestedLoops";
analyzer[] = "Structures/NoDirectAccess";
analyzer[] = "Structures/NonBreakableSpaceInNames";
analyzer[] = "Structures/Noscream";
analyzer[] = "Structures/OnceUsage";
analyzer[] = "Structures/ResourcesUsage";
analyzer[] = "Structures/ShellUsage";
analyzer[] = "Structures/ShortTags";
analyzer[] = "Structures/TryFinally";
analyzer[] = "Structures/UseDebug";
analyzer[] = "Traits/Php";
analyzer[] = "Traits/TraitUsage";
analyzer[] = "Traits/Traitnames";
analyzer[] = "Type/ArrayIndex";
analyzer[] = "Type/Binary";
analyzer[] = "Type/Email";
analyzer[] = "Type/GPCIndex";
analyzer[] = "Type/Heredoc";
analyzer[] = "Type/Hexadecimal";
analyzer[] = "Type/Ip";
analyzer[] = "Type/Md5String";
analyzer[] = "Type/Nowdoc";
analyzer[] = "Type/Octal";
analyzer[] = "Type/Pack";
analyzer[] = "Type/Path";
analyzer[] = "Type/Printf";
analyzer[] = "Type/Protocols";
analyzer[] = "Type/Regex";
analyzer[] = "Type/Shellcommands";
analyzer[] = "Type/Sql";
analyzer[] = "Type/Url";

(continues on next page)

10.5. Predefined config files 293

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Variables/References";
analyzer[] = "Variables/StaticVariables";
analyzer[] = "Variables/UncommonEnvVar";
analyzer[] = "Variables/VariableLong";
analyzer[] = "Variables/VariablePhp";
analyzer[] = "Variables/VariableVariables";
analyzer[] = "Vendors/Codeigniter";
analyzer[] = "Vendors/Concrete5";
analyzer[] = "Vendors/Drupal";
analyzer[] = "Vendors/Ez";
analyzer[] = "Vendors/Feast";
analyzer[] = "Vendors/Fuel";
analyzer[] = "Vendors/Joomla";
analyzer[] = "Vendors/Laravel";
analyzer[] = "Vendors/Phalcon";
analyzer[] = "Vendors/Sylius";
analyzer[] = "Vendors/Symfony";
analyzer[] = "Vendors/Typo3";
analyzer[] = "Vendors/Wordpress";
analyzer[] = "Vendors/Yii";

Appinfo for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'Appinfo':
- 'Arrays/ArrayNSUsage'
- 'Arrays/Arrayindex'
- 'Arrays/Multidimensional'
- 'Arrays/Phparrayindex'
- 'Arrays/WithCallback'
- 'Attributes/NestedAttributes'
- 'Classes/Abstractclass'
- 'Classes/Abstractmethods'
- 'Classes/Anonymous'
- 'Classes/ClassAliasUsage'
- 'Classes/ClassOverreach'
- 'Classes/Classnames'
- 'Classes/CloningUsage'
- 'Classes/ConstVisibilityUsage'
- 'Classes/ConstantDefinition'
- 'Classes/DynamicClass'
- 'Classes/DynamicConstantCall'
- 'Classes/DynamicMethodCall'
- 'Classes/DynamicNew'
- 'Classes/DynamicPropertyCall'
- 'Classes/ImmutableSignature'
- 'Classes/MagicMethod'
- 'Classes/MultipleClassesInFile'

(continues on next page)

294 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Classes/NewDynamicConstantSyntax'
- 'Classes/OldStyleConstructor'
- 'Classes/OverwrittenConst'
- 'Classes/PromotedProperties'
- 'Classes/ReadonlyUsage'
- 'Classes/RedefinedMethods'
- 'Classes/StaticMethods'
- 'Classes/StaticProperties'
- 'Classes/TestClass'
- 'Classes/UntypedNoDefaultProperties'
- 'Classes/VariableClasses'
- 'Composer/Autoload'
- 'Composer/UseComposer'
- 'Composer/UseComposerLock'
- 'Constants/CaseInsensitiveConstants'
- 'Constants/ConditionedConstants'
- 'Constants/ConstantUsage'
- 'Constants/DynamicCreation'
- 'Constants/MagicConstantUsage'
- 'Constants/PhpConstantUsage'
- 'Constants/VariableConstant'
- 'Dump/ParameterArgumentsLinks'
- 'Exceptions/DefinedExceptions'
- 'Exceptions/MultipleCatch'
- 'Exceptions/ThrownExceptions'
- 'Extensions/Extamqp'
- 'Extensions/Extapache'
- 'Extensions/Extapc'
- 'Extensions/Extapcu'
- 'Extensions/Extarray'
- 'Extensions/Extast'
- 'Extensions/Extbcmath'
- 'Extensions/Extbzip2'
- 'Extensions/Extcalendar'
- 'Extensions/Extcmark'
- 'Extensions/Extcom'
- 'Extensions/Extcrypto'
- 'Extensions/Extcsv'
- 'Extensions/Extctype'
- 'Extensions/Extcurl'
- 'Extensions/Extdate'
- 'Extensions/Extdb2'
- 'Extensions/Extdba'
- 'Extensions/Extdecimal'
- 'Extensions/Extdio'
- 'Extensions/Extdom'
- 'Extensions/Extds'
- 'Extensions/Exteaccelerator'
- 'Extensions/Exteio'
- 'Extensions/Extenchant'
- 'Extensions/Extev'
- 'Extensions/Extevent'

(continues on next page)

10.5. Predefined config files 295

Exakat Documentation, Release 1

(continued from previous page)

- 'Extensions/Extexcimer'
- 'Extensions/Extexif'
- 'Extensions/Extexpect'
- 'Extensions/Extfam'
- 'Extensions/Extfann'
- 'Extensions/Extffi'
- 'Extensions/Extfile'
- 'Extensions/Extfileinfo'
- 'Extensions/Extfilter'
- 'Extensions/Extfpm'
- 'Extensions/Extftp'
- 'Extensions/Extgd'
- 'Extensions/Extgearman'
- 'Extensions/Extgender'
- 'Extensions/Extgeoip'
- 'Extensions/Extgeospatial'
- 'Extensions/Extgettext'
- 'Extensions/Extgmagick'
- 'Extensions/Extgmp'
- 'Extensions/Extgnupg'
- 'Extensions/Extgrpc'
- 'Extensions/Exthash'
- 'Extensions/Exthrtime'
- 'Extensions/Exthttp'
- 'Extensions/Extibase'
- 'Extensions/Extice'
- 'Extensions/Exticonv'
- 'Extensions/Extigbinary'
- 'Extensions/Extimagick'
- 'Extensions/Extimap'
- 'Extensions/Extinfo'
- 'Extensions/Extinotify'
- 'Extensions/Extintl'
- 'Extensions/Extjson'
- 'Extensions/Extjudy'
- 'Extensions/Extldap'
- 'Extensions/Extleveldb'
- 'Extensions/Extlibsodium'
- 'Extensions/Extlibxml'
- 'Extensions/Extlua'
- 'Extensions/Extlzf'
- 'Extensions/Extmail'
- 'Extensions/Extmailparse'
- 'Extensions/Extmath'
- 'Extensions/Extmbstring'
- 'Extensions/Extmcrypt'
- 'Extensions/Extmemcache'
- 'Extensions/Extmemcached'
- 'Extensions/Extmongo'
- 'Extensions/Extmongodb'
- 'Extensions/Extmsgpack'
- 'Extensions/Extmssql'

(continues on next page)

296 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Extensions/Extmysql'
- 'Extensions/Extmysqli'
- 'Extensions/Extncurses'
- 'Extensions/Extnewt'
- 'Extensions/Extnsapi'
- 'Extensions/Extob'
- 'Extensions/Extoci8'
- 'Extensions/Extodbc'
- 'Extensions/Extopcache'
- 'Extensions/Extopencensus'
- 'Extensions/Extopenssl'
- 'Extensions/Extparle'
- 'Extensions/Extpassword'
- 'Extensions/Extpcntl'
- 'Extensions/Extpcov'
- 'Extensions/Extpcre'
- 'Extensions/Extpdo'
- 'Extensions/Extpgsql'
- 'Extensions/Extphalcon'
- 'Extensions/Extphar'
- 'Extensions/Extpkcs11'
- 'Extensions/Extposix'
- 'Extensions/Extprotobuf'
- 'Extensions/Extpspell'
- 'Extensions/Extpsr'
- 'Extensions/Extrandom'
- 'Extensions/Extrar'
- 'Extensions/Extrdkafka'
- 'Extensions/Extreadline'
- 'Extensions/Extredis'
- 'Extensions/Extreflection'
- 'Extensions/Extscrypt'
- 'Extensions/Extsdl'
- 'Extensions/Extseaslog'
- 'Extensions/Extsem'
- 'Extensions/Extsession'
- 'Extensions/Extshmop'
- 'Extensions/Extsimplexml'
- 'Extensions/Extsnmp'
- 'Extensions/Extsoap'
- 'Extensions/Extsockets'
- 'Extensions/Extsphinx'
- 'Extensions/Extspl'
- 'Extensions/Extspx'
- 'Extensions/Extsqlite'
- 'Extensions/Extsqlite3'
- 'Extensions/Extsqlsrv'
- 'Extensions/Extssh2'
- 'Extensions/Extstandard'
- 'Extensions/Extstats'
- 'Extensions/Extstomp'
- 'Extensions/Extstring'

(continues on next page)

10.5. Predefined config files 297

Exakat Documentation, Release 1

(continued from previous page)

- 'Extensions/Extsuhosin'
- 'Extensions/Extsvm'
- 'Extensions/Extswoole'
- 'Extensions/Exttaint'
- 'Extensions/Extteds'
- 'Extensions/Exttidy'
- 'Extensions/Exttokenizer'
- 'Extensions/Exttokyotyrant'
- 'Extensions/Exttrader'
- 'Extensions/Extuopz'
- 'Extensions/Extuuid'
- 'Extensions/Extv8js'
- 'Extensions/Extvarnish'
- 'Extensions/Extvips'
- 'Extensions/Extwasm'
- 'Extensions/Extwddx'
- 'Extensions/Extweakref'
- 'Extensions/Extxattr'
- 'Extensions/Extxdebug'
- 'Extensions/Extxdiff'
- 'Extensions/Extxhprof'
- 'Extensions/Extxml'
- 'Extensions/Extxmlreader'
- 'Extensions/Extxmlrpc'
- 'Extensions/Extxmlwriter'
- 'Extensions/Extxsl'
- 'Extensions/Extxxtea'
- 'Extensions/Extyaml'
- 'Extensions/Extyar'
- 'Extensions/Extzendmonitor'
- 'Extensions/Extzip'
- 'Extensions/Extzlib'
- 'Extensions/Extzmq'
- 'Extensions/Extzookeeper'
- 'Files/IsCliScript'
- 'Files/NotDefinitionsOnly'
- 'Functions/Closures'
- 'Functions/ConditionedFunctions'
- 'Functions/DeepDefinitions'
- 'Functions/Dynamiccall'
- 'Functions/FallbackFunction'
- 'Functions/Functionnames'
- 'Functions/FunctionsUsingReference'
- 'Functions/IsGenerator'
- 'Functions/MultipleDeclarations'
- 'Functions/Recursive'
- 'Functions/RedeclaredPhpFunction'
- 'Functions/Typehints'
- 'Functions/UseArrowFunctions'
- 'Functions/VariableArguments'
- 'Interfaces/Interfacenames'
- 'Namespaces/Alias'

(continues on next page)

298 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Namespaces/NamespaceUsage'
- 'Namespaces/Namespacesnames'
- 'Patterns/CourrierAntiPattern'
- 'Patterns/DependencyInjection'
- 'Patterns/Factory'
- 'Php/AlternativeSyntax'
- 'Php/Argon2Usage'
- 'Php/AssertionUsage'
- 'Php/AutoloadUsage'
- 'Php/CastingUsage'
- 'Php/Coalesce'
- 'Php/ConstantScalarExpression'
- 'Php/CryptoUsage'
- 'Php/DeclareEncoding'
- 'Php/DeclareStrict'
- 'Php/DeclareStrictType'
- 'Php/DeclareTicks'
- 'Php/DirectivesUsage'
- 'Php/DlUsage'
- 'Php/EchoTagUsage'
- 'Php/EllipsisUsage'
- 'Php/ErrorLogUsage'
- 'Php/FinalConstant'
- 'Php/FirstClassCallable'
- 'Php/Gotonames'
- 'Php/GroupUseDeclaration'
- 'Php/Haltcompiler'
- 'Php/Incompilable'
- 'Php/IntegerSeparatorUsage'
- 'Php/IsINF'
- 'Php/IsNAN'
- 'Php/Labelnames'
- 'Php/ListShortSyntax'
- 'Php/ListWithKeys'
- 'Php/MiddleVersion'
- 'Php/MixedUsage'
- 'Php/NamedParameterUsage'
- 'Php/NestedTernaryWithoutParenthesis'
- 'Php/NeverKeyword'
- 'Php/NeverTypehintUsage'
- 'Php/NewInitializers'
- 'Php/OveriddenFunction'
- 'Php/PearUsage'
- 'Php/Php7RelaxedKeyword'
- 'Php/Php80OnlyTypeHints'
- 'Php/Php80UnionTypehint'
- 'Php/Php80VariableSyntax'
- 'Php/Php81IntersectionTypehint'
- 'Php/PlusPlusOnLetters'
- 'Php/RawPostDataUsage'
- 'Php/ReturnTypehintUsage'
- 'Php/ScalarTypehintUsage'

(continues on next page)

10.5. Predefined config files 299

Exakat Documentation, Release 1

(continued from previous page)

- 'Php/ShortTernary'
- 'Php/SpreadOperatorForArray'
- 'Php/SuperGlobalUsage'
- 'Php/ThrowUsage'
- 'Php/TrailingComma'
- 'Php/TriggerErrorUsage'
- 'Php/TryCatchUsage'
- 'Php/TryMultipleCatch'
- 'Php/TypedPropertyUsage'
- 'Php/UseAttributes'
- 'Php/UseBrowscap'
- 'Php/UseClassAlias'
- 'Php/UseCli'
- 'Php/UseContravariance'
- 'Php/UseCookies'
- 'Php/UseCovariance'
- 'Php/UseDNF'
- 'Php/UseEnumCaseInConstantExpression'
- 'Php/UseNullSafeOperator'
- 'Php/UseNullableType'
- 'Php/UseTrailingUseComma'
- 'Php/UseWeb'
- 'Php/UsesEnv'
- 'Php/YieldFromUsage'
- 'Php/YieldUsage'
- 'Psr/Psr11Usage'
- 'Psr/Psr13Usage'
- 'Psr/Psr16Usage'
- 'Psr/Psr3Usage'
- 'Psr/Psr6Usage'
- 'Psr/Psr7Usage'
- 'Security/CantDisableClass'
- 'Security/CantDisableFunction'
- 'Structures/ArrayAddition'
- 'Structures/ComplexExpression'
- 'Structures/ConstDefineFavorite'
- 'Structures/ConstantScalarExpression'
- 'Structures/DateTimePreference'
- 'Structures/DereferencingAS'
- 'Structures/DynamicCalls'
- 'Structures/DynamicCode'
- 'Structures/ElseUsage'
- 'Structures/ErrorMessages'
- 'Structures/EvalUsage'
- 'Structures/ExitUsage'
- 'Structures/FilePutContentsDataType'
- 'Structures/FileUploadUsage'
- 'Structures/FileUsage'
- 'Structures/FunctionSubscripting'
- 'Structures/GlobalInGlobal'
- 'Structures/GlobalUsage'
- 'Structures/IncludeUsage'

(continues on next page)

300 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/MailUsage'
- 'Structures/MultipleCatch'
- 'Structures/NestedLoops'
- 'Structures/NoDirectAccess'
- 'Structures/NonBreakableSpaceInNames'
- 'Structures/Noscream'
- 'Structures/OnceUsage'
- 'Structures/ResourcesUsage'
- 'Structures/ShellUsage'
- 'Structures/ShortTags'
- 'Structures/TryFinally'
- 'Structures/UseDebug'
- 'Traits/Php'
- 'Traits/TraitUsage'
- 'Traits/Traitnames'
- 'Type/ArrayIndex'
- 'Type/Binary'
- 'Type/Email'
- 'Type/GPCIndex'
- 'Type/Heredoc'
- 'Type/Hexadecimal'
- 'Type/Ip'
- 'Type/Md5String'
- 'Type/Nowdoc'
- 'Type/Octal'
- 'Type/Pack'
- 'Type/Path'
- 'Type/Printf'
- 'Type/Protocols'
- 'Type/Regex'
- 'Type/Shellcommands'
- 'Type/Sql'
- 'Type/Url'
- 'Variables/References'
- 'Variables/StaticVariables'
- 'Variables/UncommonEnvVar'
- 'Variables/VariableLong'
- 'Variables/VariablePhp'
- 'Variables/VariableVariables'
- 'Vendors/Codeigniter'
- 'Vendors/Concrete5'
- 'Vendors/Drupal'
- 'Vendors/Ez'
- 'Vendors/Feast'
- 'Vendors/Fuel'
- 'Vendors/Joomla'
- 'Vendors/Laravel'
- 'Vendors/Phalcon'
- 'Vendors/Sylius'
- 'Vendors/Symfony'
- 'Vendors/Typo3'
- 'Vendors/Wordpress'

(continues on next page)

10.5. Predefined config files 301

Exakat Documentation, Release 1

(continued from previous page)

- 'Vendors/Yii'

10.5.4 Attributes

Attributes for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[Attributes]
analyzer[] = "Attributes/Deprecated";
analyzer[] = "Attributes/Friend";
analyzer[] = "Attributes/MissingAttributeAttribute";
analyzer[] = "Attributes/ModifyImmutable";
analyzer[] = "Attributes/Override";
analyzer[] = "Attributes/PhpNativeAttributes";
analyzer[] = "Attributes/UsingDeprecated";
analyzer[] = "Functions/KillsApp";
analyzer[] = "Functions/UsingDeprecated";

Attributes for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'Attributes':
- 'Attributes/Deprecated'
- 'Attributes/Friend'
- 'Attributes/MissingAttributeAttribute'
- 'Attributes/ModifyImmutable'
- 'Attributes/Override'
- 'Attributes/PhpNativeAttributes'
- 'Attributes/UsingDeprecated'
- 'Functions/KillsApp'
- 'Functions/UsingDeprecated'

10.5.5 CE

CE for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[CE]
analyzer[] = "Arrays/ArrayNSUsage";
analyzer[] = "Arrays/Arrayindex";
analyzer[] = "Arrays/Multidimensional";
analyzer[] = "Arrays/MultipleIdenticalKeys";
analyzer[] = "Arrays/NegativeStart";

(continues on next page)

302 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Arrays/Phparrayindex";
analyzer[] = "Arrays/WithCallback";
analyzer[] = "Classes/Abstractclass";
analyzer[] = "Classes/Abstractmethods";
analyzer[] = "Classes/Anonymous";
analyzer[] = "Classes/CheckOnCallUsage";
analyzer[] = "Classes/ClassAliasUsage";
analyzer[] = "Classes/Classnames";
analyzer[] = "Classes/CloningUsage";
analyzer[] = "Classes/ConstantClass";
analyzer[] = "Classes/ConstantDefinition";
analyzer[] = "Classes/DefinedConstants";
analyzer[] = "Classes/DefinedProperty";
analyzer[] = "Classes/DirectCallToMagicMethod";
analyzer[] = "Classes/DontUnsetProperties";
analyzer[] = "Classes/DynamicClass";
analyzer[] = "Classes/DynamicConstantCall";
analyzer[] = "Classes/DynamicMethodCall";
analyzer[] = "Classes/DynamicNew";
analyzer[] = "Classes/DynamicPropertyCall";
analyzer[] = "Classes/FinalPrivate";
analyzer[] = "Classes/HasMagicProperty";
analyzer[] = "Classes/ImmutableSignature";
analyzer[] = "Classes/IsNotFamily";
analyzer[] = "Classes/IsaMagicProperty";
analyzer[] = "Classes/MagicMethod";
analyzer[] = "Classes/MultipleClassesInFile";
analyzer[] = "Classes/MultipleDeclarations";
analyzer[] = "Classes/MultipleTraitOrInterface";
analyzer[] = "Classes/NoMagicWithArray";
analyzer[] = "Classes/NoParent";
analyzer[] = "Classes/NonPpp";
analyzer[] = "Classes/NonStaticMethodsCalledStatic";
analyzer[] = "Classes/OldStyleConstructor";
analyzer[] = "Classes/OverwrittenConst";
analyzer[] = "Classes/RedefinedConstants";
analyzer[] = "Classes/RedefinedDefault";
analyzer[] = "Classes/RedefinedMethods";
analyzer[] = "Classes/StaticContainsThis";
analyzer[] = "Classes/StaticMethods";
analyzer[] = "Classes/StaticMethodsCalledFromObject";
analyzer[] = "Classes/StaticProperties";
analyzer[] = "Classes/TestClass";
analyzer[] = "Classes/ThrowInDestruct";
analyzer[] = "Classes/UndeclaredStaticProperty";
analyzer[] = "Classes/UndefinedConstants";
analyzer[] = "Classes/UndefinedProperty";
analyzer[] = "Classes/UndefinedStaticclass";
analyzer[] = "Classes/UseClassOperator";
analyzer[] = "Classes/UseInstanceof";
analyzer[] = "Classes/UselessFinal";
analyzer[] = "Classes/VariableClasses";

(continues on next page)

10.5. Predefined config files 303

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Classes/WrongTypedPropertyInit";
analyzer[] = "Complete/CreateCompactVariables";
analyzer[] = "Complete/CreateMagicProperty";
analyzer[] = "Complete/FollowClosureDefinition";
analyzer[] = "Complete/MakeClassConstantDefinition";
analyzer[] = "Complete/MakeFunctioncallWithReference";
analyzer[] = "Complete/OverwrittenConstants";
analyzer[] = "Complete/OverwrittenProperties";
analyzer[] = "Complete/SetArrayClassDefinition";
analyzer[] = "Complete/SetParentDefinition";
analyzer[] = "Composer/Autoload";
analyzer[] = "Composer/UseComposer";
analyzer[] = "Composer/UseComposerLock";
analyzer[] = "Constants/CaseInsensitiveConstants";
analyzer[] = "Constants/ConstRecommended";
analyzer[] = "Constants/ConstantStrangeNames";
analyzer[] = "Constants/ConstantUsage";
analyzer[] = "Constants/Constantnames";
analyzer[] = "Constants/CustomConstantUsage";
analyzer[] = "Constants/DynamicCreation";
analyzer[] = "Constants/IsExtConstant";
analyzer[] = "Constants/IsPhpConstant";
analyzer[] = "Constants/MagicConstantUsage";
analyzer[] = "Constants/MultipleConstantDefinition";
analyzer[] = "Constants/PhpConstantUsage";
analyzer[] = "Constants/UndefinedConstants";
analyzer[] = "Constants/VariableConstant";
analyzer[] = "Dump/CallOrder";
analyzer[] = "Dump/CollectAtomCounts";
analyzer[] = "Dump/CollectClassChanges";
analyzer[] = "Dump/CollectClassChildren";
analyzer[] = "Dump/CollectClassConstantCounts";
analyzer[] = "Dump/CollectClassDepth";
analyzer[] = "Dump/CollectClassInterfaceCounts";
analyzer[] = "Dump/CollectClassTraitsCounts";
analyzer[] = "Dump/CollectClassesDependencies";
analyzer[] = "Dump/CollectDefinitionsStats";
analyzer[] = "Dump/CollectFilesDependencies";
analyzer[] = "Dump/CollectForeachFavorite";
analyzer[] = "Dump/CollectGlobalVariables";
analyzer[] = "Dump/CollectLiterals";
analyzer[] = "Dump/CollectLocalVariableCounts";
analyzer[] = "Dump/CollectMbstringEncodings";
analyzer[] = "Dump/CollectMethodCounts";
analyzer[] = "Dump/CollectNativeCallsPerExpressions";
analyzer[] = "Dump/CollectParameterCounts";
analyzer[] = "Dump/CollectParameterNames";
analyzer[] = "Dump/CollectPhpStructures";
analyzer[] = "Dump/CollectPropertyCounts";
analyzer[] = "Dump/CollectReadability";
analyzer[] = "Dump/CollectUseCounts";
analyzer[] = "Dump/CollectVariables";

(continues on next page)

304 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Dump/ConstantOrder";
analyzer[] = "Dump/CyclomaticComplexity";
analyzer[] = "Dump/DereferencingLevels";
analyzer[] = "Dump/EnvironnementVariables";
analyzer[] = "Dump/FossilizedMethods";
analyzer[] = "Dump/Inclusions";
analyzer[] = "Dump/IndentationLevels";
analyzer[] = "Dump/NewOrder";
analyzer[] = "Dump/ParameterArgumentsLinks";
analyzer[] = "Dump/TypehintingStats";
analyzer[] = "Dump/Typehintorder";
analyzer[] = "Exceptions/DefinedExceptions";
analyzer[] = "Exceptions/MultipleCatch";
analyzer[] = "Exceptions/OverwriteException";
analyzer[] = "Exceptions/ThrowFunctioncall";
analyzer[] = "Exceptions/ThrownExceptions";
analyzer[] = "Extensions/Extamqp";
analyzer[] = "Extensions/Extapache";
analyzer[] = "Extensions/Extapc";
analyzer[] = "Extensions/Extapcu";
analyzer[] = "Extensions/Extarray";
analyzer[] = "Extensions/Extast";
analyzer[] = "Extensions/Extbcmath";
analyzer[] = "Extensions/Extbzip2";
analyzer[] = "Extensions/Extcalendar";
analyzer[] = "Extensions/Extcmark";
analyzer[] = "Extensions/Extcom";
analyzer[] = "Extensions/Extcrypto";
analyzer[] = "Extensions/Extctype";
analyzer[] = "Extensions/Extcurl";
analyzer[] = "Extensions/Extdate";
analyzer[] = "Extensions/Extdb2";
analyzer[] = "Extensions/Extdba";
analyzer[] = "Extensions/Extdecimal";
analyzer[] = "Extensions/Extdio";
analyzer[] = "Extensions/Extdom";
analyzer[] = "Extensions/Extds";
analyzer[] = "Extensions/Exteaccelerator";
analyzer[] = "Extensions/Exteio";
analyzer[] = "Extensions/Extenchant";
analyzer[] = "Extensions/Extev";
analyzer[] = "Extensions/Extevent";
analyzer[] = "Extensions/Extexif";
analyzer[] = "Extensions/Extexpect";
analyzer[] = "Extensions/Extfam";
analyzer[] = "Extensions/Extfann";
analyzer[] = "Extensions/Extffi";
analyzer[] = "Extensions/Extfile";
analyzer[] = "Extensions/Extfileinfo";
analyzer[] = "Extensions/Extfilter";
analyzer[] = "Extensions/Extfpm";
analyzer[] = "Extensions/Extftp";

(continues on next page)

10.5. Predefined config files 305

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Extensions/Extgd";
analyzer[] = "Extensions/Extgearman";
analyzer[] = "Extensions/Extgender";
analyzer[] = "Extensions/Extgeoip";
analyzer[] = "Extensions/Extgettext";
analyzer[] = "Extensions/Extgmagick";
analyzer[] = "Extensions/Extgmp";
analyzer[] = "Extensions/Extgnupg";
analyzer[] = "Extensions/Extgrpc";
analyzer[] = "Extensions/Exthash";
analyzer[] = "Extensions/Exthrtime";
analyzer[] = "Extensions/Exthttp";
analyzer[] = "Extensions/Extibase";
analyzer[] = "Extensions/Exticonv";
analyzer[] = "Extensions/Extigbinary";
analyzer[] = "Extensions/Extimagick";
analyzer[] = "Extensions/Extimap";
analyzer[] = "Extensions/Extinfo";
analyzer[] = "Extensions/Extinotify";
analyzer[] = "Extensions/Extintl";
analyzer[] = "Extensions/Extjson";
analyzer[] = "Extensions/Extjudy";
analyzer[] = "Extensions/Extldap";
analyzer[] = "Extensions/Extleveldb";
analyzer[] = "Extensions/Extlibsodium";
analyzer[] = "Extensions/Extlibxml";
analyzer[] = "Extensions/Extlua";
analyzer[] = "Extensions/Extlzf";
analyzer[] = "Extensions/Extmail";
analyzer[] = "Extensions/Extmailparse";
analyzer[] = "Extensions/Extmath";
analyzer[] = "Extensions/Extmbstring";
analyzer[] = "Extensions/Extmcrypt";
analyzer[] = "Extensions/Extmemcache";
analyzer[] = "Extensions/Extmemcached";
analyzer[] = "Extensions/Extmongo";
analyzer[] = "Extensions/Extmongodb";
analyzer[] = "Extensions/Extmsgpack";
analyzer[] = "Extensions/Extmssql";
analyzer[] = "Extensions/Extmysql";
analyzer[] = "Extensions/Extmysqli";
analyzer[] = "Extensions/Extncurses";
analyzer[] = "Extensions/Extnewt";
analyzer[] = "Extensions/Extnsapi";
analyzer[] = "Extensions/Extob";
analyzer[] = "Extensions/Extoci8";
analyzer[] = "Extensions/Extodbc";
analyzer[] = "Extensions/Extopcache";
analyzer[] = "Extensions/Extopencensus";
analyzer[] = "Extensions/Extopenssl";
analyzer[] = "Extensions/Extparle";
analyzer[] = "Extensions/Extpassword";

(continues on next page)

306 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Extensions/Extpcntl";
analyzer[] = "Extensions/Extpcov";
analyzer[] = "Extensions/Extpcre";
analyzer[] = "Extensions/Extpdo";
analyzer[] = "Extensions/Extpgsql";
analyzer[] = "Extensions/Extphalcon";
analyzer[] = "Extensions/Extphar";
analyzer[] = "Extensions/Extposix";
analyzer[] = "Extensions/Extpspell";
analyzer[] = "Extensions/Extpsr";
analyzer[] = "Extensions/Extrar";
analyzer[] = "Extensions/Extrdkafka";
analyzer[] = "Extensions/Extreadline";
analyzer[] = "Extensions/Extredis";
analyzer[] = "Extensions/Extreflection";
analyzer[] = "Extensions/Extsdl";
analyzer[] = "Extensions/Extseaslog";
analyzer[] = "Extensions/Extsem";
analyzer[] = "Extensions/Extsession";
analyzer[] = "Extensions/Extshmop";
analyzer[] = "Extensions/Extsimplexml";
analyzer[] = "Extensions/Extsnmp";
analyzer[] = "Extensions/Extsoap";
analyzer[] = "Extensions/Extsockets";
analyzer[] = "Extensions/Extsphinx";
analyzer[] = "Extensions/Extspl";
analyzer[] = "Extensions/Extsqlite";
analyzer[] = "Extensions/Extsqlite3";
analyzer[] = "Extensions/Extsqlsrv";
analyzer[] = "Extensions/Extssh2";
analyzer[] = "Extensions/Extstandard";
analyzer[] = "Extensions/Extstats";
analyzer[] = "Extensions/Extstring";
analyzer[] = "Extensions/Extsuhosin";
analyzer[] = "Extensions/Extsvm";
analyzer[] = "Extensions/Extswoole";
analyzer[] = "Extensions/Exttidy";
analyzer[] = "Extensions/Exttokenizer";
analyzer[] = "Extensions/Exttokyotyrant";
analyzer[] = "Extensions/Exttrader";
analyzer[] = "Extensions/Extuopz";
analyzer[] = "Extensions/Extuuid";
analyzer[] = "Extensions/Extv8js";
analyzer[] = "Extensions/Extvarnish";
analyzer[] = "Extensions/Extvips";
analyzer[] = "Extensions/Extwasm";
analyzer[] = "Extensions/Extwddx";
analyzer[] = "Extensions/Extweakref";
analyzer[] = "Extensions/Extxattr";
analyzer[] = "Extensions/Extxdebug";
analyzer[] = "Extensions/Extxdiff";
analyzer[] = "Extensions/Extxhprof";

(continues on next page)

10.5. Predefined config files 307

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Extensions/Extxml";
analyzer[] = "Extensions/Extxmlreader";
analyzer[] = "Extensions/Extxmlrpc";
analyzer[] = "Extensions/Extxmlwriter";
analyzer[] = "Extensions/Extxsl";
analyzer[] = "Extensions/Extxxtea";
analyzer[] = "Extensions/Extyaml";
analyzer[] = "Extensions/Extzendmonitor";
analyzer[] = "Extensions/Extzip";
analyzer[] = "Extensions/Extzlib";
analyzer[] = "Extensions/Extzmq";
analyzer[] = "Extensions/Extzookeeper";
analyzer[] = "Files/IsCliScript";
analyzer[] = "Files/NotDefinitionsOnly";
analyzer[] = "Functions/AliasesUsage";
analyzer[] = "Functions/CallbackNeedsReturn";
analyzer[] = "Functions/CantUse";
analyzer[] = "Functions/Closures";
analyzer[] = "Functions/ConditionedFunctions";
analyzer[] = "Functions/DeepDefinitions";
analyzer[] = "Functions/DynamicCode";
analyzer[] = "Functions/Dynamiccall";
analyzer[] = "Functions/FallbackFunction";
analyzer[] = "Functions/Functionnames";
analyzer[] = "Functions/FunctionsUsingReference";
analyzer[] = "Functions/IsExtFunction";
analyzer[] = "Functions/IsGenerator";
analyzer[] = "Functions/KillsApp";
analyzer[] = "Functions/MismatchParameterName";
analyzer[] = "Functions/MultipleDeclarations";
analyzer[] = "Functions/MustReturn";
analyzer[] = "Functions/NoLiteralForReference";
analyzer[] = "Functions/NullableWithConstant";
analyzer[] = "Functions/Recursive";
analyzer[] = "Functions/RedeclaredPhpFunction";
analyzer[] = "Functions/ShouldYieldWithKey";
analyzer[] = "Functions/TypehintMustBeReturned";
analyzer[] = "Functions/TypehintedReferences";
analyzer[] = "Functions/Typehints";
analyzer[] = "Functions/UnbindingClosures";
analyzer[] = "Functions/UndefinedFunctions";
analyzer[] = "Functions/UnknownParameterName";
analyzer[] = "Functions/UnusedInheritedVariable";
analyzer[] = "Functions/UseArrowFunctions";
analyzer[] = "Functions/UseConstantAsArguments";
analyzer[] = "Functions/UsesDefaultArguments";
analyzer[] = "Functions/VariableArguments";
analyzer[] = "Functions/WrongNumberOfArguments";
analyzer[] = "Functions/WrongOptionalParameter";
analyzer[] = "Functions/WrongReturnedType";
analyzer[] = "Functions/WrongTypeWithCall";
analyzer[] = "Interfaces/CantImplementTraversable";

(continues on next page)

308 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Interfaces/Interfacenames";
analyzer[] = "Interfaces/IsExtInterface";
analyzer[] = "Interfaces/IsNotImplemented";
analyzer[] = "Interfaces/UndefinedInterfaces";
analyzer[] = "Namespaces/Alias";
analyzer[] = "Namespaces/EmptyNamespace";
analyzer[] = "Namespaces/HiddenUse";
analyzer[] = "Namespaces/MultipleAliasDefinitionPerFile";
analyzer[] = "Namespaces/MultipleAliasDefinitions";
analyzer[] = "Namespaces/NamespaceUsage";
analyzer[] = "Namespaces/Namespacesnames";
analyzer[] = "Namespaces/ShouldMakeAlias";
analyzer[] = "Patterns/CourrierAntiPattern";
analyzer[] = "Patterns/DependencyInjection";
analyzer[] = "Patterns/Factory";
analyzer[] = "Performances/ArrayMergeInLoops";
analyzer[] = "Performances/PrePostIncrement";
analyzer[] = "Performances/StrposTooMuch";
analyzer[] = "Performances/UseArraySlice";
analyzer[] = "Php/AlternativeSyntax";
analyzer[] = "Php/Argon2Usage";
analyzer[] = "Php/ArrayKeyExistsWithObjects";
analyzer[] = "Php/AssertionUsage";
analyzer[] = "Php/AssignAnd";
analyzer[] = "Php/AutoloadUsage";
analyzer[] = "Php/BetterRand";
analyzer[] = "Php/CastUnsetUsage";
analyzer[] = "Php/CastingUsage";
analyzer[] = "Php/Coalesce";
analyzer[] = "Php/ConcatAndAddition";
analyzer[] = "Php/CryptoUsage";
analyzer[] = "Php/DeclareEncoding";
analyzer[] = "Php/DeclareStrict";
analyzer[] = "Php/DeclareStrictType";
analyzer[] = "Php/DeclareTicks";
analyzer[] = "Php/Deprecated";
analyzer[] = "Php/DetectCurrentClass";
analyzer[] = "Php/DirectivesUsage";
analyzer[] = "Php/DlUsage";
analyzer[] = "Php/EchoTagUsage";
analyzer[] = "Php/EllipsisUsage";
analyzer[] = "Php/ErrorLogUsage";
analyzer[] = "Php/FilterToAddSlashes";
analyzer[] = "Php/FopenMode";
analyzer[] = "Php/Gotonames";
analyzer[] = "Php/GroupUseDeclaration";
analyzer[] = "Php/Haltcompiler";
analyzer[] = "Php/HashAlgos74";
analyzer[] = "Php/IdnUts46";
analyzer[] = "Php/Incompilable";
analyzer[] = "Php/IntegerSeparatorUsage";
analyzer[] = "Php/InternalParameterType";

(continues on next page)

10.5. Predefined config files 309

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Php/IsAWithString";
analyzer[] = "Php/IsINF";
analyzer[] = "Php/IsNAN";
analyzer[] = "Php/IsnullVsEqualNull";
analyzer[] = "Php/Labelnames";
analyzer[] = "Php/ListShortSyntax";
analyzer[] = "Php/ListWithKeys";
analyzer[] = "Php/LogicalInLetters";
analyzer[] = "Php/MiddleVersion";
analyzer[] = "Php/MissingSubpattern";
analyzer[] = "Php/NestedTernaryWithoutParenthesis";
analyzer[] = "Php/NoClassInGlobal";
analyzer[] = "Php/NoMoreCurlyArrays";
analyzer[] = "Php/NoReferenceForTernary";
analyzer[] = "Php/OveriddenFunction";
analyzer[] = "Php/PearUsage";
analyzer[] = "Php/Php74Deprecation";
analyzer[] = "Php/Php74NewClasses";
analyzer[] = "Php/Php74NewConstants";
analyzer[] = "Php/Php74NewFunctions";
analyzer[] = "Php/Php74RemovedDirective";
analyzer[] = "Php/Php74RemovedFunctions";
analyzer[] = "Php/Php74ReservedKeyword";
analyzer[] = "Php/Php74mbstrrpos3rdArg";
analyzer[] = "Php/Php7RelaxedKeyword";
analyzer[] = "Php/Php80NamedParameterVariadic";
analyzer[] = "Php/Php80NewFunctions";
analyzer[] = "Php/Php80OnlyTypeHints";
analyzer[] = "Php/Php80RemovedConstant";
analyzer[] = "Php/Php80RemovedDirective";
analyzer[] = "Php/Php80RemovedFunctions";
analyzer[] = "Php/Php80RemovesResources";
analyzer[] = "Php/Php80UnionTypehint";
analyzer[] = "Php/Php80VariableSyntax";
analyzer[] = "Php/PhpErrorMsgUsage";
analyzer[] = "Php/RawPostDataUsage";
analyzer[] = "Php/ReflectionExportIsDeprecated";
analyzer[] = "Php/ReturnTypehintUsage";
analyzer[] = "Php/ScalarAreNotArrays";
analyzer[] = "Php/ScalarTypehintUsage";
analyzer[] = "Php/ShouldUseCoalesce";
analyzer[] = "Php/SignatureTrailingComma";
analyzer[] = "Php/SpreadOperatorForArray";
analyzer[] = "Php/StrtrArguments";
analyzer[] = "Php/SuperGlobalUsage";
analyzer[] = "Php/ThrowUsage";
analyzer[] = "Php/ThrowWasAnExpression";
analyzer[] = "Php/TrailingComma";
analyzer[] = "Php/TriggerErrorUsage";
analyzer[] = "Php/TryCatchUsage";
analyzer[] = "Php/TryMultipleCatch";
analyzer[] = "Php/TypedPropertyUsage";

(continues on next page)

310 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Php/UseAttributes";
analyzer[] = "Php/UseBrowscap";
analyzer[] = "Php/UseCli";
analyzer[] = "Php/UseContravariance";
analyzer[] = "Php/UseCookies";
analyzer[] = "Php/UseCovariance";
analyzer[] = "Php/UseMatch";
analyzer[] = "Php/UseNullSafeOperator";
analyzer[] = "Php/UseNullableType";
analyzer[] = "Php/UseObjectApi";
analyzer[] = "Php/UsePathinfo";
analyzer[] = "Php/UseTrailingUseComma";
analyzer[] = "Php/UseWeb";
analyzer[] = "Php/UsesEnv";
analyzer[] = "Php/WrongTypeForNativeFunction";
analyzer[] = "Php/YieldFromUsage";
analyzer[] = "Php/YieldUsage";
analyzer[] = "Psr/Psr11Usage";
analyzer[] = "Psr/Psr13Usage";
analyzer[] = "Psr/Psr16Usage";
analyzer[] = "Psr/Psr3Usage";
analyzer[] = "Psr/Psr6Usage";
analyzer[] = "Psr/Psr7Usage";
analyzer[] = "Security/CantDisableClass";
analyzer[] = "Security/CantDisableFunction";
analyzer[] = "Security/DontEchoError";
analyzer[] = "Security/ShouldUsePreparedStatement";
analyzer[] = "Structures/AddZero";
analyzer[] = "Structures/AlteringForeachWithoutReference";
analyzer[] = "Structures/ArrayMapPassesByValue";
analyzer[] = "Structures/AssigneAndCompare";
analyzer[] = "Structures/AutoUnsetForeach";
analyzer[] = "Structures/BooleanStrictComparison";
analyzer[] = "Structures/CastingTernary";
analyzer[] = "Structures/CheckJson";
analyzer[] = "Structures/CoalesceAndConcat";
analyzer[] = "Structures/ComplexExpression";
analyzer[] = "Structures/ConstDefineFavorite";
analyzer[] = "Structures/ConstantScalarExpression";
analyzer[] = "Structures/CouldUseDir";
analyzer[] = "Structures/CouldUseShortAssignation";
analyzer[] = "Structures/CouldUseStrrepeat";
analyzer[] = "Structures/CurlVersionNow";
analyzer[] = "Structures/DanglingArrayReferences";
analyzer[] = "Structures/DereferencingAS";
analyzer[] = "Structures/DirThenSlash";
analyzer[] = "Structures/DontReadAndWriteInOneExpression";
analyzer[] = "Structures/DropElseAfterReturn";
analyzer[] = "Structures/DynamicCalls";
analyzer[] = "Structures/DynamicCode";
analyzer[] = "Structures/ElseIfElseif";
analyzer[] = "Structures/ElseUsage";

(continues on next page)

10.5. Predefined config files 311

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/EmptyBlocks";
analyzer[] = "Structures/ErrorMessages";
analyzer[] = "Structures/ErrorReportingWithInteger";
analyzer[] = "Structures/EvalUsage";
analyzer[] = "Structures/EvalWithoutTry";
analyzer[] = "Structures/ExitUsage";
analyzer[] = "Structures/FailingSubstrComparison";
analyzer[] = "Structures/FileUploadUsage";
analyzer[] = "Structures/FileUsage";
analyzer[] = "Structures/ForeachReferenceIsNotModified";
analyzer[] = "Structures/ForgottenWhiteSpace";
analyzer[] = "Structures/FunctionSubscripting";
analyzer[] = "Structures/GlobalInGlobal";
analyzer[] = "Structures/GlobalUsage";
analyzer[] = "Structures/Htmlentitiescall";
analyzer[] = "Structures/IdenticalConditions";
analyzer[] = "Structures/IdenticalOnBothSides";
analyzer[] = "Structures/IfWithSameConditions";
analyzer[] = "Structures/ImpliedIf";
analyzer[] = "Structures/ImplodeArgsOrder";
analyzer[] = "Structures/IncludeUsage";
analyzer[] = "Structures/IndicesAreIntOrString";
analyzer[] = "Structures/InvalidPackFormat";
analyzer[] = "Structures/InvalidRegex";
analyzer[] = "Structures/IsZero";
analyzer[] = "Structures/ListOmissions";
analyzer[] = "Structures/LogicalMistakes";
analyzer[] = "Structures/LoneBlock";
analyzer[] = "Structures/MailUsage";
analyzer[] = "Structures/MbstringThirdArg";
analyzer[] = "Structures/MbstringUnknownEncoding";
analyzer[] = "Structures/MergeIfThen";
analyzer[] = "Structures/MissingParenthesis";
analyzer[] = "Structures/MultipleCatch";
analyzer[] = "Structures/MultipleDefinedCase";
analyzer[] = "Structures/MultiplyByOne";
analyzer[] = "Structures/NegativePow";
analyzer[] = "Structures/NestedLoops";
analyzer[] = "Structures/NestedTernary";
analyzer[] = "Structures/NeverNegative";
analyzer[] = "Structures/NextMonthTrap";
analyzer[] = "Structures/NoChoice";
analyzer[] = "Structures/NoDirectAccess";
analyzer[] = "Structures/NoEmptyRegex";
analyzer[] = "Structures/NoIssetWithEmpty";
analyzer[] = "Structures/NoParenthesisForLanguageConstruct";
analyzer[] = "Structures/NoReferenceOnLeft";
analyzer[] = "Structures/NoSubstrOne";
analyzer[] = "Structures/NonBreakableSpaceInNames";
analyzer[] = "Structures/Noscream";
analyzer[] = "Structures/NotEqual";
analyzer[] = "Structures/NotNot";

(continues on next page)

312 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/ObjectReferences";
analyzer[] = "Structures/OnceUsage";
analyzer[] = "Structures/OpensslRandomPseudoByteSecondArg";
analyzer[] = "Structures/OrDie";
analyzer[] = "Structures/PrintAndDie";
analyzer[] = "Structures/PrintWithoutParenthesis";
analyzer[] = "Structures/PrintfArguments";
analyzer[] = "Structures/RepeatedPrint";
analyzer[] = "Structures/RepeatedRegex";
analyzer[] = "Structures/ResourcesUsage";
analyzer[] = "Structures/ResultMayBeMissing";
analyzer[] = "Structures/ReturnTrueFalse";
analyzer[] = "Structures/SameConditions";
analyzer[] = "Structures/ShellUsage";
analyzer[] = "Structures/ShortTags";
analyzer[] = "Structures/ShouldChainException";
analyzer[] = "Structures/ShouldMakeTernary";
analyzer[] = "Structures/ShouldUseExplodeArgs";
analyzer[] = "Structures/StripTagsSkipsClosedTag";
analyzer[] = "Structures/StrposCompare";
analyzer[] = "Structures/SwitchWithoutDefault";
analyzer[] = "Structures/TernaryInConcat";
analyzer[] = "Structures/ThrowsAndAssign";
analyzer[] = "Structures/TimestampDifference";
analyzer[] = "Structures/TryFinally";
analyzer[] = "Structures/UncheckedResources";
analyzer[] = "Structures/UnconditionLoopBreak";
analyzer[] = "Structures/UnknownPregOption";
analyzer[] = "Structures/UnsupportedTypesWithOperators";
analyzer[] = "Structures/UseConstant";
analyzer[] = "Structures/UseDebug";
analyzer[] = "Structures/UseInstanceof";
analyzer[] = "Structures/UseSystemTmp";
analyzer[] = "Structures/UselessBrackets";
analyzer[] = "Structures/UselessCasting";
analyzer[] = "Structures/UselessCheck";
analyzer[] = "Structures/UselessInstruction";
analyzer[] = "Structures/UselessParenthesis";
analyzer[] = "Structures/UselessUnset";
analyzer[] = "Structures/VardumpUsage";
analyzer[] = "Structures/WhileListEach";
analyzer[] = "Structures/pregOptionE";
analyzer[] = "Traits/IsExtTrait";
analyzer[] = "Traits/Php";
analyzer[] = "Traits/TraitUsage";
analyzer[] = "Traits/Traitnames";
analyzer[] = "Traits/UndefinedInsteadof";
analyzer[] = "Traits/UndefinedTrait";
analyzer[] = "Traits/UselessAlias";
analyzer[] = "Type/ArrayIndex";
analyzer[] = "Type/Binary";
analyzer[] = "Type/Email";

(continues on next page)

10.5. Predefined config files 313

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Type/GPCIndex";
analyzer[] = "Type/Heredoc";
analyzer[] = "Type/Hexadecimal";
analyzer[] = "Type/Md5String";
analyzer[] = "Type/NoRealComparison";
analyzer[] = "Type/Nowdoc";
analyzer[] = "Type/Octal";
analyzer[] = "Type/OneVariableStrings";
analyzer[] = "Type/Pack";
analyzer[] = "Type/Path";
analyzer[] = "Type/Printf";
analyzer[] = "Type/Protocols";
analyzer[] = "Type/Regex";
analyzer[] = "Type/Shellcommands";
analyzer[] = "Type/ShouldTypecast";
analyzer[] = "Type/SilentlyCastInteger";
analyzer[] = "Type/Sql";
analyzer[] = "Type/StringWithStrangeSpace";
analyzer[] = "Type/Url";
analyzer[] = "Typehints/CouldBeArray";
analyzer[] = "Typehints/CouldBeBoolean";
analyzer[] = "Typehints/CouldBeCIT";
analyzer[] = "Typehints/CouldBeFloat";
analyzer[] = "Typehints/CouldBeInt";
analyzer[] = "Typehints/CouldBeNull";
analyzer[] = "Typehints/CouldBeString";
analyzer[] = "Typehints/MissingReturntype";
analyzer[] = "Variables/References";
analyzer[] = "Variables/SelfTransform";
analyzer[] = "Variables/StaticVariables";
analyzer[] = "Variables/UncommonEnvVar";
analyzer[] = "Variables/UndefinedVariable";
analyzer[] = "Variables/VariableLong";
analyzer[] = "Variables/VariableUsedOnceByContext";
analyzer[] = "Variables/VariableVariables";
analyzer[] = "Vendors/Codeigniter";
analyzer[] = "Vendors/Concrete5";
analyzer[] = "Vendors/Drupal";
analyzer[] = "Vendors/Ez";
analyzer[] = "Vendors/Fuel";
analyzer[] = "Vendors/Joomla";
analyzer[] = "Vendors/Laravel";
analyzer[] = "Vendors/Phalcon";
analyzer[] = "Vendors/Symfony";
analyzer[] = "Vendors/Typo3";
analyzer[] = "Vendors/Wordpress";
analyzer[] = "Vendors/Yii";

314 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

CE for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'CE':
- 'Arrays/ArrayNSUsage'
- 'Arrays/Arrayindex'
- 'Arrays/Multidimensional'
- 'Arrays/MultipleIdenticalKeys'
- 'Arrays/NegativeStart'
- 'Arrays/Phparrayindex'
- 'Arrays/WithCallback'
- 'Classes/Abstractclass'
- 'Classes/Abstractmethods'
- 'Classes/Anonymous'
- 'Classes/CheckOnCallUsage'
- 'Classes/ClassAliasUsage'
- 'Classes/Classnames'
- 'Classes/CloningUsage'
- 'Classes/ConstantClass'
- 'Classes/ConstantDefinition'
- 'Classes/DefinedConstants'
- 'Classes/DefinedProperty'
- 'Classes/DirectCallToMagicMethod'
- 'Classes/DontUnsetProperties'
- 'Classes/DynamicClass'
- 'Classes/DynamicConstantCall'
- 'Classes/DynamicMethodCall'
- 'Classes/DynamicNew'
- 'Classes/DynamicPropertyCall'
- 'Classes/FinalPrivate'
- 'Classes/HasMagicProperty'
- 'Classes/ImmutableSignature'
- 'Classes/IsNotFamily'
- 'Classes/IsaMagicProperty'
- 'Classes/MagicMethod'
- 'Classes/MultipleClassesInFile'
- 'Classes/MultipleDeclarations'
- 'Classes/MultipleTraitOrInterface'
- 'Classes/NoMagicWithArray'
- 'Classes/NoParent'
- 'Classes/NonPpp'
- 'Classes/NonStaticMethodsCalledStatic'
- 'Classes/OldStyleConstructor'
- 'Classes/OverwrittenConst'
- 'Classes/RedefinedConstants'
- 'Classes/RedefinedDefault'
- 'Classes/RedefinedMethods'
- 'Classes/StaticContainsThis'
- 'Classes/StaticMethods'
- 'Classes/StaticMethodsCalledFromObject'

(continues on next page)

10.5. Predefined config files 315

Exakat Documentation, Release 1

(continued from previous page)

- 'Classes/StaticProperties'
- 'Classes/TestClass'
- 'Classes/ThrowInDestruct'
- 'Classes/UndeclaredStaticProperty'
- 'Classes/UndefinedConstants'
- 'Classes/UndefinedProperty'
- 'Classes/UndefinedStaticclass'
- 'Classes/UseClassOperator'
- 'Classes/UseInstanceof'
- 'Classes/UselessFinal'
- 'Classes/VariableClasses'
- 'Classes/WrongTypedPropertyInit'
- 'Complete/CreateCompactVariables'
- 'Complete/CreateMagicProperty'
- 'Complete/FollowClosureDefinition'
- 'Complete/MakeClassConstantDefinition'
- 'Complete/MakeFunctioncallWithReference'
- 'Complete/OverwrittenConstants'
- 'Complete/OverwrittenProperties'
- 'Complete/SetArrayClassDefinition'
- 'Complete/SetParentDefinition'
- 'Composer/Autoload'
- 'Composer/UseComposer'
- 'Composer/UseComposerLock'
- 'Constants/CaseInsensitiveConstants'
- 'Constants/ConstRecommended'
- 'Constants/ConstantStrangeNames'
- 'Constants/ConstantUsage'
- 'Constants/Constantnames'
- 'Constants/CustomConstantUsage'
- 'Constants/DynamicCreation'
- 'Constants/IsExtConstant'
- 'Constants/IsPhpConstant'
- 'Constants/MagicConstantUsage'
- 'Constants/MultipleConstantDefinition'
- 'Constants/PhpConstantUsage'
- 'Constants/UndefinedConstants'
- 'Constants/VariableConstant'
- 'Dump/CallOrder'
- 'Dump/CollectAtomCounts'
- 'Dump/CollectClassChanges'
- 'Dump/CollectClassChildren'
- 'Dump/CollectClassConstantCounts'
- 'Dump/CollectClassDepth'
- 'Dump/CollectClassInterfaceCounts'
- 'Dump/CollectClassTraitsCounts'
- 'Dump/CollectClassesDependencies'
- 'Dump/CollectDefinitionsStats'
- 'Dump/CollectFilesDependencies'
- 'Dump/CollectForeachFavorite'
- 'Dump/CollectGlobalVariables'
- 'Dump/CollectLiterals'

(continues on next page)

316 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Dump/CollectLocalVariableCounts'
- 'Dump/CollectMbstringEncodings'
- 'Dump/CollectMethodCounts'
- 'Dump/CollectNativeCallsPerExpressions'
- 'Dump/CollectParameterCounts'
- 'Dump/CollectParameterNames'
- 'Dump/CollectPhpStructures'
- 'Dump/CollectPropertyCounts'
- 'Dump/CollectReadability'
- 'Dump/CollectUseCounts'
- 'Dump/CollectVariables'
- 'Dump/ConstantOrder'
- 'Dump/CyclomaticComplexity'
- 'Dump/DereferencingLevels'
- 'Dump/EnvironnementVariables'
- 'Dump/FossilizedMethods'
- 'Dump/Inclusions'
- 'Dump/IndentationLevels'
- 'Dump/NewOrder'
- 'Dump/ParameterArgumentsLinks'
- 'Dump/TypehintingStats'
- 'Dump/Typehintorder'
- 'Exceptions/DefinedExceptions'
- 'Exceptions/MultipleCatch'
- 'Exceptions/OverwriteException'
- 'Exceptions/ThrowFunctioncall'
- 'Exceptions/ThrownExceptions'
- 'Extensions/Extamqp'
- 'Extensions/Extapache'
- 'Extensions/Extapc'
- 'Extensions/Extapcu'
- 'Extensions/Extarray'
- 'Extensions/Extast'
- 'Extensions/Extbcmath'
- 'Extensions/Extbzip2'
- 'Extensions/Extcalendar'
- 'Extensions/Extcmark'
- 'Extensions/Extcom'
- 'Extensions/Extcrypto'
- 'Extensions/Extctype'
- 'Extensions/Extcurl'
- 'Extensions/Extdate'
- 'Extensions/Extdb2'
- 'Extensions/Extdba'
- 'Extensions/Extdecimal'
- 'Extensions/Extdio'
- 'Extensions/Extdom'
- 'Extensions/Extds'
- 'Extensions/Exteaccelerator'
- 'Extensions/Exteio'
- 'Extensions/Extenchant'
- 'Extensions/Extev'

(continues on next page)

10.5. Predefined config files 317

Exakat Documentation, Release 1

(continued from previous page)

- 'Extensions/Extevent'
- 'Extensions/Extexif'
- 'Extensions/Extexpect'
- 'Extensions/Extfam'
- 'Extensions/Extfann'
- 'Extensions/Extffi'
- 'Extensions/Extfile'
- 'Extensions/Extfileinfo'
- 'Extensions/Extfilter'
- 'Extensions/Extfpm'
- 'Extensions/Extftp'
- 'Extensions/Extgd'
- 'Extensions/Extgearman'
- 'Extensions/Extgender'
- 'Extensions/Extgeoip'
- 'Extensions/Extgettext'
- 'Extensions/Extgmagick'
- 'Extensions/Extgmp'
- 'Extensions/Extgnupg'
- 'Extensions/Extgrpc'
- 'Extensions/Exthash'
- 'Extensions/Exthrtime'
- 'Extensions/Exthttp'
- 'Extensions/Extibase'
- 'Extensions/Exticonv'
- 'Extensions/Extigbinary'
- 'Extensions/Extimagick'
- 'Extensions/Extimap'
- 'Extensions/Extinfo'
- 'Extensions/Extinotify'
- 'Extensions/Extintl'
- 'Extensions/Extjson'
- 'Extensions/Extjudy'
- 'Extensions/Extldap'
- 'Extensions/Extleveldb'
- 'Extensions/Extlibsodium'
- 'Extensions/Extlibxml'
- 'Extensions/Extlua'
- 'Extensions/Extlzf'
- 'Extensions/Extmail'
- 'Extensions/Extmailparse'
- 'Extensions/Extmath'
- 'Extensions/Extmbstring'
- 'Extensions/Extmcrypt'
- 'Extensions/Extmemcache'
- 'Extensions/Extmemcached'
- 'Extensions/Extmongo'
- 'Extensions/Extmongodb'
- 'Extensions/Extmsgpack'
- 'Extensions/Extmssql'
- 'Extensions/Extmysql'
- 'Extensions/Extmysqli'

(continues on next page)

318 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Extensions/Extncurses'
- 'Extensions/Extnewt'
- 'Extensions/Extnsapi'
- 'Extensions/Extob'
- 'Extensions/Extoci8'
- 'Extensions/Extodbc'
- 'Extensions/Extopcache'
- 'Extensions/Extopencensus'
- 'Extensions/Extopenssl'
- 'Extensions/Extparle'
- 'Extensions/Extpassword'
- 'Extensions/Extpcntl'
- 'Extensions/Extpcov'
- 'Extensions/Extpcre'
- 'Extensions/Extpdo'
- 'Extensions/Extpgsql'
- 'Extensions/Extphalcon'
- 'Extensions/Extphar'
- 'Extensions/Extposix'
- 'Extensions/Extpspell'
- 'Extensions/Extpsr'
- 'Extensions/Extrar'
- 'Extensions/Extrdkafka'
- 'Extensions/Extreadline'
- 'Extensions/Extredis'
- 'Extensions/Extreflection'
- 'Extensions/Extsdl'
- 'Extensions/Extseaslog'
- 'Extensions/Extsem'
- 'Extensions/Extsession'
- 'Extensions/Extshmop'
- 'Extensions/Extsimplexml'
- 'Extensions/Extsnmp'
- 'Extensions/Extsoap'
- 'Extensions/Extsockets'
- 'Extensions/Extsphinx'
- 'Extensions/Extspl'
- 'Extensions/Extsqlite'
- 'Extensions/Extsqlite3'
- 'Extensions/Extsqlsrv'
- 'Extensions/Extssh2'
- 'Extensions/Extstandard'
- 'Extensions/Extstats'
- 'Extensions/Extstring'
- 'Extensions/Extsuhosin'
- 'Extensions/Extsvm'
- 'Extensions/Extswoole'
- 'Extensions/Exttidy'
- 'Extensions/Exttokenizer'
- 'Extensions/Exttokyotyrant'
- 'Extensions/Exttrader'
- 'Extensions/Extuopz'

(continues on next page)

10.5. Predefined config files 319

Exakat Documentation, Release 1

(continued from previous page)

- 'Extensions/Extuuid'
- 'Extensions/Extv8js'
- 'Extensions/Extvarnish'
- 'Extensions/Extvips'
- 'Extensions/Extwasm'
- 'Extensions/Extwddx'
- 'Extensions/Extweakref'
- 'Extensions/Extxattr'
- 'Extensions/Extxdebug'
- 'Extensions/Extxdiff'
- 'Extensions/Extxhprof'
- 'Extensions/Extxml'
- 'Extensions/Extxmlreader'
- 'Extensions/Extxmlrpc'
- 'Extensions/Extxmlwriter'
- 'Extensions/Extxsl'
- 'Extensions/Extxxtea'
- 'Extensions/Extyaml'
- 'Extensions/Extzendmonitor'
- 'Extensions/Extzip'
- 'Extensions/Extzlib'
- 'Extensions/Extzmq'
- 'Extensions/Extzookeeper'
- 'Files/IsCliScript'
- 'Files/NotDefinitionsOnly'
- 'Functions/AliasesUsage'
- 'Functions/CallbackNeedsReturn'
- 'Functions/CantUse'
- 'Functions/Closures'
- 'Functions/ConditionedFunctions'
- 'Functions/DeepDefinitions'
- 'Functions/DynamicCode'
- 'Functions/Dynamiccall'
- 'Functions/FallbackFunction'
- 'Functions/Functionnames'
- 'Functions/FunctionsUsingReference'
- 'Functions/IsExtFunction'
- 'Functions/IsGenerator'
- 'Functions/KillsApp'
- 'Functions/MismatchParameterName'
- 'Functions/MultipleDeclarations'
- 'Functions/MustReturn'
- 'Functions/NoLiteralForReference'
- 'Functions/NullableWithConstant'
- 'Functions/Recursive'
- 'Functions/RedeclaredPhpFunction'
- 'Functions/ShouldYieldWithKey'
- 'Functions/TypehintMustBeReturned'
- 'Functions/TypehintedReferences'
- 'Functions/Typehints'
- 'Functions/UnbindingClosures'
- 'Functions/UndefinedFunctions'

(continues on next page)

320 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Functions/UnknownParameterName'
- 'Functions/UnusedInheritedVariable'
- 'Functions/UseArrowFunctions'
- 'Functions/UseConstantAsArguments'
- 'Functions/UsesDefaultArguments'
- 'Functions/VariableArguments'
- 'Functions/WrongNumberOfArguments'
- 'Functions/WrongOptionalParameter'
- 'Functions/WrongReturnedType'
- 'Functions/WrongTypeWithCall'
- 'Interfaces/CantImplementTraversable'
- 'Interfaces/Interfacenames'
- 'Interfaces/IsExtInterface'
- 'Interfaces/IsNotImplemented'
- 'Interfaces/UndefinedInterfaces'
- 'Namespaces/Alias'
- 'Namespaces/EmptyNamespace'
- 'Namespaces/HiddenUse'
- 'Namespaces/MultipleAliasDefinitionPerFile'
- 'Namespaces/MultipleAliasDefinitions'
- 'Namespaces/NamespaceUsage'
- 'Namespaces/Namespacesnames'
- 'Namespaces/ShouldMakeAlias'
- 'Patterns/CourrierAntiPattern'
- 'Patterns/DependencyInjection'
- 'Patterns/Factory'
- 'Performances/ArrayMergeInLoops'
- 'Performances/PrePostIncrement'
- 'Performances/StrposTooMuch'
- 'Performances/UseArraySlice'
- 'Php/AlternativeSyntax'
- 'Php/Argon2Usage'
- 'Php/ArrayKeyExistsWithObjects'
- 'Php/AssertionUsage'
- 'Php/AssignAnd'
- 'Php/AutoloadUsage'
- 'Php/BetterRand'
- 'Php/CastUnsetUsage'
- 'Php/CastingUsage'
- 'Php/Coalesce'
- 'Php/ConcatAndAddition'
- 'Php/CryptoUsage'
- 'Php/DeclareEncoding'
- 'Php/DeclareStrict'
- 'Php/DeclareStrictType'
- 'Php/DeclareTicks'
- 'Php/Deprecated'
- 'Php/DetectCurrentClass'
- 'Php/DirectivesUsage'
- 'Php/DlUsage'
- 'Php/EchoTagUsage'
- 'Php/EllipsisUsage'

(continues on next page)

10.5. Predefined config files 321

Exakat Documentation, Release 1

(continued from previous page)

- 'Php/ErrorLogUsage'
- 'Php/FilterToAddSlashes'
- 'Php/FopenMode'
- 'Php/Gotonames'
- 'Php/GroupUseDeclaration'
- 'Php/Haltcompiler'
- 'Php/HashAlgos74'
- 'Php/IdnUts46'
- 'Php/Incompilable'
- 'Php/IntegerSeparatorUsage'
- 'Php/InternalParameterType'
- 'Php/IsAWithString'
- 'Php/IsINF'
- 'Php/IsNAN'
- 'Php/IsnullVsEqualNull'
- 'Php/Labelnames'
- 'Php/ListShortSyntax'
- 'Php/ListWithKeys'
- 'Php/LogicalInLetters'
- 'Php/MiddleVersion'
- 'Php/MissingSubpattern'
- 'Php/NestedTernaryWithoutParenthesis'
- 'Php/NoClassInGlobal'
- 'Php/NoMoreCurlyArrays'
- 'Php/NoReferenceForTernary'
- 'Php/OveriddenFunction'
- 'Php/PearUsage'
- 'Php/Php74Deprecation'
- 'Php/Php74NewClasses'
- 'Php/Php74NewConstants'
- 'Php/Php74NewFunctions'
- 'Php/Php74RemovedDirective'
- 'Php/Php74RemovedFunctions'
- 'Php/Php74ReservedKeyword'
- 'Php/Php74mbstrrpos3rdArg'
- 'Php/Php7RelaxedKeyword'
- 'Php/Php80NamedParameterVariadic'
- 'Php/Php80NewFunctions'
- 'Php/Php80OnlyTypeHints'
- 'Php/Php80RemovedConstant'
- 'Php/Php80RemovedDirective'
- 'Php/Php80RemovedFunctions'
- 'Php/Php80RemovesResources'
- 'Php/Php80UnionTypehint'
- 'Php/Php80VariableSyntax'
- 'Php/PhpErrorMsgUsage'
- 'Php/RawPostDataUsage'
- 'Php/ReflectionExportIsDeprecated'
- 'Php/ReturnTypehintUsage'
- 'Php/ScalarAreNotArrays'
- 'Php/ScalarTypehintUsage'
- 'Php/ShouldUseCoalesce'

(continues on next page)

322 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Php/SignatureTrailingComma'
- 'Php/SpreadOperatorForArray'
- 'Php/StrtrArguments'
- 'Php/SuperGlobalUsage'
- 'Php/ThrowUsage'
- 'Php/ThrowWasAnExpression'
- 'Php/TrailingComma'
- 'Php/TriggerErrorUsage'
- 'Php/TryCatchUsage'
- 'Php/TryMultipleCatch'
- 'Php/TypedPropertyUsage'
- 'Php/UseAttributes'
- 'Php/UseBrowscap'
- 'Php/UseCli'
- 'Php/UseContravariance'
- 'Php/UseCookies'
- 'Php/UseCovariance'
- 'Php/UseMatch'
- 'Php/UseNullSafeOperator'
- 'Php/UseNullableType'
- 'Php/UseObjectApi'
- 'Php/UsePathinfo'
- 'Php/UseTrailingUseComma'
- 'Php/UseWeb'
- 'Php/UsesEnv'
- 'Php/WrongTypeForNativeFunction'
- 'Php/YieldFromUsage'
- 'Php/YieldUsage'
- 'Psr/Psr11Usage'
- 'Psr/Psr13Usage'
- 'Psr/Psr16Usage'
- 'Psr/Psr3Usage'
- 'Psr/Psr6Usage'
- 'Psr/Psr7Usage'
- 'Security/CantDisableClass'
- 'Security/CantDisableFunction'
- 'Security/DontEchoError'
- 'Security/ShouldUsePreparedStatement'
- 'Structures/AddZero'
- 'Structures/AlteringForeachWithoutReference'
- 'Structures/ArrayMapPassesByValue'
- 'Structures/AssigneAndCompare'
- 'Structures/AutoUnsetForeach'
- 'Structures/BooleanStrictComparison'
- 'Structures/CastingTernary'
- 'Structures/CheckJson'
- 'Structures/CoalesceAndConcat'
- 'Structures/ComplexExpression'
- 'Structures/ConstDefineFavorite'
- 'Structures/ConstantScalarExpression'
- 'Structures/CouldUseDir'
- 'Structures/CouldUseShortAssignation'

(continues on next page)

10.5. Predefined config files 323

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/CouldUseStrrepeat'
- 'Structures/CurlVersionNow'
- 'Structures/DanglingArrayReferences'
- 'Structures/DereferencingAS'
- 'Structures/DirThenSlash'
- 'Structures/DontReadAndWriteInOneExpression'
- 'Structures/DropElseAfterReturn'
- 'Structures/DynamicCalls'
- 'Structures/DynamicCode'
- 'Structures/ElseIfElseif'
- 'Structures/ElseUsage'
- 'Structures/EmptyBlocks'
- 'Structures/ErrorMessages'
- 'Structures/ErrorReportingWithInteger'
- 'Structures/EvalUsage'
- 'Structures/EvalWithoutTry'
- 'Structures/ExitUsage'
- 'Structures/FailingSubstrComparison'
- 'Structures/FileUploadUsage'
- 'Structures/FileUsage'
- 'Structures/ForeachReferenceIsNotModified'
- 'Structures/ForgottenWhiteSpace'
- 'Structures/FunctionSubscripting'
- 'Structures/GlobalInGlobal'
- 'Structures/GlobalUsage'
- 'Structures/Htmlentitiescall'
- 'Structures/IdenticalConditions'
- 'Structures/IdenticalOnBothSides'
- 'Structures/IfWithSameConditions'
- 'Structures/ImpliedIf'
- 'Structures/ImplodeArgsOrder'
- 'Structures/IncludeUsage'
- 'Structures/IndicesAreIntOrString'
- 'Structures/InvalidPackFormat'
- 'Structures/InvalidRegex'
- 'Structures/IsZero'
- 'Structures/ListOmissions'
- 'Structures/LogicalMistakes'
- 'Structures/LoneBlock'
- 'Structures/MailUsage'
- 'Structures/MbstringThirdArg'
- 'Structures/MbstringUnknownEncoding'
- 'Structures/MergeIfThen'
- 'Structures/MissingParenthesis'
- 'Structures/MultipleCatch'
- 'Structures/MultipleDefinedCase'
- 'Structures/MultiplyByOne'
- 'Structures/NegativePow'
- 'Structures/NestedLoops'
- 'Structures/NestedTernary'
- 'Structures/NeverNegative'
- 'Structures/NextMonthTrap'

(continues on next page)

324 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/NoChoice'
- 'Structures/NoDirectAccess'
- 'Structures/NoEmptyRegex'
- 'Structures/NoIssetWithEmpty'
- 'Structures/NoParenthesisForLanguageConstruct'
- 'Structures/NoReferenceOnLeft'
- 'Structures/NoSubstrOne'
- 'Structures/NonBreakableSpaceInNames'
- 'Structures/Noscream'
- 'Structures/NotEqual'
- 'Structures/NotNot'
- 'Structures/ObjectReferences'
- 'Structures/OnceUsage'
- 'Structures/OpensslRandomPseudoByteSecondArg'
- 'Structures/OrDie'
- 'Structures/PrintAndDie'
- 'Structures/PrintWithoutParenthesis'
- 'Structures/PrintfArguments'
- 'Structures/RepeatedPrint'
- 'Structures/RepeatedRegex'
- 'Structures/ResourcesUsage'
- 'Structures/ResultMayBeMissing'
- 'Structures/ReturnTrueFalse'
- 'Structures/SameConditions'
- 'Structures/ShellUsage'
- 'Structures/ShortTags'
- 'Structures/ShouldChainException'
- 'Structures/ShouldMakeTernary'
- 'Structures/ShouldUseExplodeArgs'
- 'Structures/StripTagsSkipsClosedTag'
- 'Structures/StrposCompare'
- 'Structures/SwitchWithoutDefault'
- 'Structures/TernaryInConcat'
- 'Structures/ThrowsAndAssign'
- 'Structures/TimestampDifference'
- 'Structures/TryFinally'
- 'Structures/UncheckedResources'
- 'Structures/UnconditionLoopBreak'
- 'Structures/UnknownPregOption'
- 'Structures/UnsupportedTypesWithOperators'
- 'Structures/UseConstant'
- 'Structures/UseDebug'
- 'Structures/UseInstanceof'
- 'Structures/UseSystemTmp'
- 'Structures/UselessBrackets'
- 'Structures/UselessCasting'
- 'Structures/UselessCheck'
- 'Structures/UselessInstruction'
- 'Structures/UselessParenthesis'
- 'Structures/UselessUnset'
- 'Structures/VardumpUsage'
- 'Structures/WhileListEach'

(continues on next page)

10.5. Predefined config files 325

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/pregOptionE'
- 'Traits/IsExtTrait'
- 'Traits/Php'
- 'Traits/TraitUsage'
- 'Traits/Traitnames'
- 'Traits/UndefinedInsteadof'
- 'Traits/UndefinedTrait'
- 'Traits/UselessAlias'
- 'Type/ArrayIndex'
- 'Type/Binary'
- 'Type/Email'
- 'Type/GPCIndex'
- 'Type/Heredoc'
- 'Type/Hexadecimal'
- 'Type/Md5String'
- 'Type/NoRealComparison'
- 'Type/Nowdoc'
- 'Type/Octal'
- 'Type/OneVariableStrings'
- 'Type/Pack'
- 'Type/Path'
- 'Type/Printf'
- 'Type/Protocols'
- 'Type/Regex'
- 'Type/Shellcommands'
- 'Type/ShouldTypecast'
- 'Type/SilentlyCastInteger'
- 'Type/Sql'
- 'Type/StringWithStrangeSpace'
- 'Type/Url'
- 'Typehints/CouldBeArray'
- 'Typehints/CouldBeBoolean'
- 'Typehints/CouldBeCIT'
- 'Typehints/CouldBeFloat'
- 'Typehints/CouldBeInt'
- 'Typehints/CouldBeNull'
- 'Typehints/CouldBeString'
- 'Typehints/MissingReturntype'
- 'Variables/References'
- 'Variables/SelfTransform'
- 'Variables/StaticVariables'
- 'Variables/UncommonEnvVar'
- 'Variables/UndefinedVariable'
- 'Variables/VariableLong'
- 'Variables/VariableUsedOnceByContext'
- 'Variables/VariableVariables'
- 'Vendors/Codeigniter'
- 'Vendors/Concrete5'
- 'Vendors/Drupal'
- 'Vendors/Ez'
- 'Vendors/Fuel'
- 'Vendors/Joomla'

(continues on next page)

326 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Vendors/Laravel'
- 'Vendors/Phalcon'
- 'Vendors/Symfony'
- 'Vendors/Typo3'
- 'Vendors/Wordpress'
- 'Vendors/Yii'

10.5.6 CI-checks

CI-checks for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[CI-checks]
analyzer[] = "Arrays/MultipleIdenticalKeys";
analyzer[] = "Classes/CheckOnCallUsage";
analyzer[] = "Classes/DirectCallToMagicMethod";
analyzer[] = "Classes/DontUnsetProperties";
analyzer[] = "Classes/MultipleDeclarations";
analyzer[] = "Classes/MultipleTraitOrInterface";
analyzer[] = "Classes/NoMagicWithArray";
analyzer[] = "Classes/NoParent";
analyzer[] = "Classes/NonPpp";
analyzer[] = "Classes/NonStaticMethodsCalledStatic";
analyzer[] = "Classes/RedefinedConstants";
analyzer[] = "Classes/RedefinedDefault";
analyzer[] = "Classes/StaticContainsThis";
analyzer[] = "Classes/StaticMethodsCalledFromObject";
analyzer[] = "Classes/ThrowInDestruct";
analyzer[] = "Classes/UndeclaredStaticProperty";
analyzer[] = "Classes/UndefinedConstants";
analyzer[] = "Classes/UndefinedProperty";
analyzer[] = "Classes/UndefinedStaticclass";
analyzer[] = "Classes/UseClassOperator";
analyzer[] = "Classes/UseInstanceof";
analyzer[] = "Classes/UselessFinal";
analyzer[] = "Classes/WrongTypedPropertyInit";
analyzer[] = "Constants/ConstRecommended";
analyzer[] = "Constants/ConstantStrangeNames";
analyzer[] = "Constants/MultipleConstantDefinition";
analyzer[] = "Constants/UndefinedConstants";
analyzer[] = "Exceptions/OverwriteException";
analyzer[] = "Exceptions/ThrowFunctioncall";
analyzer[] = "Functions/AliasesUsage";
analyzer[] = "Functions/CallbackNeedsReturn";
analyzer[] = "Functions/MustReturn";
analyzer[] = "Functions/NoLiteralForReference";
analyzer[] = "Functions/RedeclaredPhpFunction";
analyzer[] = "Functions/ShouldYieldWithKey";
analyzer[] = "Functions/TypehintMustBeReturned";
analyzer[] = "Functions/TypehintedReferences";

(continues on next page)

10.5. Predefined config files 327

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Functions/UndefinedFunctions";
analyzer[] = "Functions/UnknownParameterName";
analyzer[] = "Functions/UnusedInheritedVariable";
analyzer[] = "Functions/UseConstantAsArguments";
analyzer[] = "Functions/UsesDefaultArguments";
analyzer[] = "Functions/WrongArgumentNameWithPhpFunction";
analyzer[] = "Functions/WrongNumberOfArguments";
analyzer[] = "Functions/WrongOptionalParameter";
analyzer[] = "Functions/WrongReturnedType";
analyzer[] = "Functions/WrongTypeWithCall";
analyzer[] = "Interfaces/CantImplementTraversable";
analyzer[] = "Interfaces/IsNotImplemented";
analyzer[] = "Interfaces/UndefinedInterfaces";
analyzer[] = "Namespaces/EmptyNamespace";
analyzer[] = "Namespaces/HiddenUse";
analyzer[] = "Namespaces/MultipleAliasDefinitionPerFile";
analyzer[] = "Namespaces/MultipleAliasDefinitions";
analyzer[] = "Namespaces/ShouldMakeAlias";
analyzer[] = "Performances/ArrayMergeInLoops";
analyzer[] = "Performances/PrePostIncrement";
analyzer[] = "Performances/StrposTooMuch";
analyzer[] = "Performances/UseArraySlice";
analyzer[] = "Php/AssignAnd";
analyzer[] = "Php/BetterRand";
analyzer[] = "Php/ConcatAndAddition";
analyzer[] = "Php/Deprecated";
analyzer[] = "Php/FopenMode";
analyzer[] = "Php/InternalParameterType";
analyzer[] = "Php/IsAWithString";
analyzer[] = "Php/IsnullVsEqualNull";
analyzer[] = "Php/LogicalInLetters";
analyzer[] = "Php/MissingSubpattern";
analyzer[] = "Php/NoClassInGlobal";
analyzer[] = "Php/NoReferenceForTernary";
analyzer[] = "Php/ScalarAreNotArrays";
analyzer[] = "Php/ShouldUseCoalesce";
analyzer[] = "Php/StrtrArguments";
analyzer[] = "Php/UseObjectApi";
analyzer[] = "Php/UsePathinfo";
analyzer[] = "Php/WrongTypeForNativeFunction";
analyzer[] = "Security/DontEchoError";
analyzer[] = "Security/ShouldUsePreparedStatement";
analyzer[] = "Structures/AddZero";
analyzer[] = "Structures/AlteringForeachWithoutReference";
analyzer[] = "Structures/AssigneAndCompare";
analyzer[] = "Structures/AutoUnsetForeach";
analyzer[] = "Structures/BooleanStrictComparison";
analyzer[] = "Structures/CastingTernary";
analyzer[] = "Structures/CheckJson";
analyzer[] = "Structures/CoalesceAndConcat";
analyzer[] = "Structures/CouldUseDir";
analyzer[] = "Structures/CouldUseShortAssignation";

(continues on next page)

328 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/CouldUseStrrepeat";
analyzer[] = "Structures/DanglingArrayReferences";
analyzer[] = "Structures/DirThenSlash";
analyzer[] = "Structures/DropElseAfterReturn";
analyzer[] = "Structures/ElseIfElseif";
analyzer[] = "Structures/EmptyBlocks";
analyzer[] = "Structures/ErrorReportingWithInteger";
analyzer[] = "Structures/EvalWithoutTry";
analyzer[] = "Structures/ExitUsage";
analyzer[] = "Structures/FailingSubstrComparison";
analyzer[] = "Structures/ForeachReferenceIsNotModified";
analyzer[] = "Structures/ForgottenWhiteSpace";
analyzer[] = "Structures/Htmlentitiescall";
analyzer[] = "Structures/HtmlentitiescallDefaultFlag";
analyzer[] = "Structures/IdenticalConditions";
analyzer[] = "Structures/IdenticalOnBothSides";
analyzer[] = "Structures/IfWithSameConditions";
analyzer[] = "Structures/ImpliedIf";
analyzer[] = "Structures/ImplodeArgsOrder";
analyzer[] = "Structures/IndicesAreIntOrString";
analyzer[] = "Structures/InvalidPackFormat";
analyzer[] = "Structures/InvalidRegex";
analyzer[] = "Structures/IsZero";
analyzer[] = "Structures/ListOmissions";
analyzer[] = "Structures/LogicalMistakes";
analyzer[] = "Structures/LoneBlock";
analyzer[] = "Structures/MbstringThirdArg";
analyzer[] = "Structures/MbstringUnknownEncoding";
analyzer[] = "Structures/MergeIfThen";
analyzer[] = "Structures/MissingParenthesis";
analyzer[] = "Structures/MultipleDefinedCase";
analyzer[] = "Structures/MultiplyByOne";
analyzer[] = "Structures/NegativePow";
analyzer[] = "Structures/NestedTernary";
analyzer[] = "Structures/NeverNegative";
analyzer[] = "Structures/NextMonthTrap";
analyzer[] = "Structures/NoChoice";
analyzer[] = "Structures/NoEmptyRegex";
analyzer[] = "Structures/NoIssetWithEmpty";
analyzer[] = "Structures/NoParenthesisForLanguageConstruct";
analyzer[] = "Structures/NoReferenceOnLeft";
analyzer[] = "Structures/NoSubstrOne";
analyzer[] = "Structures/Noscream";
analyzer[] = "Structures/NotEqual";
analyzer[] = "Structures/NotNot";
analyzer[] = "Structures/ObjectReferences";
analyzer[] = "Structures/OrDie";
analyzer[] = "Structures/PrintAndDie";
analyzer[] = "Structures/PrintWithoutParenthesis";
analyzer[] = "Structures/PrintfArguments";
analyzer[] = "Structures/RepeatedPrint";
analyzer[] = "Structures/RepeatedRegex";

(continues on next page)

10.5. Predefined config files 329

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/ResultMayBeMissing";
analyzer[] = "Structures/ReturnTrueFalse";
analyzer[] = "Structures/SameConditions";
analyzer[] = "Structures/ShouldChainException";
analyzer[] = "Structures/ShouldMakeTernary";
analyzer[] = "Structures/ShouldUseExplodeArgs";
analyzer[] = "Structures/StripTagsSkipsClosedTag";
analyzer[] = "Structures/StrposCompare";
analyzer[] = "Structures/SwitchWithoutDefault";
analyzer[] = "Structures/TernaryInConcat";
analyzer[] = "Structures/ThrowsAndAssign";
analyzer[] = "Structures/TimestampDifference";
analyzer[] = "Structures/UncheckedResources";
analyzer[] = "Structures/UnconditionLoopBreak";
analyzer[] = "Structures/UseConstant";
analyzer[] = "Structures/UseInstanceof";
analyzer[] = "Structures/UseSystemTmp";
analyzer[] = "Structures/UselessBrackets";
analyzer[] = "Structures/UselessCasting";
analyzer[] = "Structures/UselessCheck";
analyzer[] = "Structures/UselessInstruction";
analyzer[] = "Structures/UselessParenthesis";
analyzer[] = "Structures/UselessUnset";
analyzer[] = "Structures/VardumpUsage";
analyzer[] = "Structures/WhileListEach";
analyzer[] = "Structures/pregOptionE";
analyzer[] = "Traits/UndefinedInsteadof";
analyzer[] = "Traits/UndefinedTrait";
analyzer[] = "Traits/UselessAlias";
analyzer[] = "Type/NoRealComparison";
analyzer[] = "Type/OneVariableStrings";
analyzer[] = "Type/ShouldTypecast";
analyzer[] = "Type/SilentlyCastInteger";
analyzer[] = "Type/StringWithStrangeSpace";
analyzer[] = "Typehints/MissingReturntype";
analyzer[] = "Variables/UndefinedVariable";

CI-checks for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'CI-checks':
- 'Arrays/MultipleIdenticalKeys'
- 'Classes/CheckOnCallUsage'
- 'Classes/DirectCallToMagicMethod'
- 'Classes/DontUnsetProperties'
- 'Classes/MultipleDeclarations'
- 'Classes/MultipleTraitOrInterface'
- 'Classes/NoMagicWithArray'

(continues on next page)

330 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Classes/NoParent'
- 'Classes/NonPpp'
- 'Classes/NonStaticMethodsCalledStatic'
- 'Classes/RedefinedConstants'
- 'Classes/RedefinedDefault'
- 'Classes/StaticContainsThis'
- 'Classes/StaticMethodsCalledFromObject'
- 'Classes/ThrowInDestruct'
- 'Classes/UndeclaredStaticProperty'
- 'Classes/UndefinedConstants'
- 'Classes/UndefinedProperty'
- 'Classes/UndefinedStaticclass'
- 'Classes/UseClassOperator'
- 'Classes/UseInstanceof'
- 'Classes/UselessFinal'
- 'Classes/WrongTypedPropertyInit'
- 'Constants/ConstRecommended'
- 'Constants/ConstantStrangeNames'
- 'Constants/MultipleConstantDefinition'
- 'Constants/UndefinedConstants'
- 'Exceptions/OverwriteException'
- 'Exceptions/ThrowFunctioncall'
- 'Functions/AliasesUsage'
- 'Functions/CallbackNeedsReturn'
- 'Functions/MustReturn'
- 'Functions/NoLiteralForReference'
- 'Functions/RedeclaredPhpFunction'
- 'Functions/ShouldYieldWithKey'
- 'Functions/TypehintMustBeReturned'
- 'Functions/TypehintedReferences'
- 'Functions/UndefinedFunctions'
- 'Functions/UnknownParameterName'
- 'Functions/UnusedInheritedVariable'
- 'Functions/UseConstantAsArguments'
- 'Functions/UsesDefaultArguments'
- 'Functions/WrongArgumentNameWithPhpFunction'
- 'Functions/WrongNumberOfArguments'
- 'Functions/WrongOptionalParameter'
- 'Functions/WrongReturnedType'
- 'Functions/WrongTypeWithCall'
- 'Interfaces/CantImplementTraversable'
- 'Interfaces/IsNotImplemented'
- 'Interfaces/UndefinedInterfaces'
- 'Namespaces/EmptyNamespace'
- 'Namespaces/HiddenUse'
- 'Namespaces/MultipleAliasDefinitionPerFile'
- 'Namespaces/MultipleAliasDefinitions'
- 'Namespaces/ShouldMakeAlias'
- 'Performances/ArrayMergeInLoops'
- 'Performances/PrePostIncrement'
- 'Performances/StrposTooMuch'
- 'Performances/UseArraySlice'

(continues on next page)

10.5. Predefined config files 331

Exakat Documentation, Release 1

(continued from previous page)

- 'Php/AssignAnd'
- 'Php/BetterRand'
- 'Php/ConcatAndAddition'
- 'Php/Deprecated'
- 'Php/FopenMode'
- 'Php/InternalParameterType'
- 'Php/IsAWithString'
- 'Php/IsnullVsEqualNull'
- 'Php/LogicalInLetters'
- 'Php/MissingSubpattern'
- 'Php/NoClassInGlobal'
- 'Php/NoReferenceForTernary'
- 'Php/ScalarAreNotArrays'
- 'Php/ShouldUseCoalesce'
- 'Php/StrtrArguments'
- 'Php/UseObjectApi'
- 'Php/UsePathinfo'
- 'Php/WrongTypeForNativeFunction'
- 'Security/DontEchoError'
- 'Security/ShouldUsePreparedStatement'
- 'Structures/AddZero'
- 'Structures/AlteringForeachWithoutReference'
- 'Structures/AssigneAndCompare'
- 'Structures/AutoUnsetForeach'
- 'Structures/BooleanStrictComparison'
- 'Structures/CastingTernary'
- 'Structures/CheckJson'
- 'Structures/CoalesceAndConcat'
- 'Structures/CouldUseDir'
- 'Structures/CouldUseShortAssignation'
- 'Structures/CouldUseStrrepeat'
- 'Structures/DanglingArrayReferences'
- 'Structures/DirThenSlash'
- 'Structures/DropElseAfterReturn'
- 'Structures/ElseIfElseif'
- 'Structures/EmptyBlocks'
- 'Structures/ErrorReportingWithInteger'
- 'Structures/EvalWithoutTry'
- 'Structures/ExitUsage'
- 'Structures/FailingSubstrComparison'
- 'Structures/ForeachReferenceIsNotModified'
- 'Structures/ForgottenWhiteSpace'
- 'Structures/Htmlentitiescall'
- 'Structures/HtmlentitiescallDefaultFlag'
- 'Structures/IdenticalConditions'
- 'Structures/IdenticalOnBothSides'
- 'Structures/IfWithSameConditions'
- 'Structures/ImpliedIf'
- 'Structures/ImplodeArgsOrder'
- 'Structures/IndicesAreIntOrString'
- 'Structures/InvalidPackFormat'
- 'Structures/InvalidRegex'

(continues on next page)

332 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/IsZero'
- 'Structures/ListOmissions'
- 'Structures/LogicalMistakes'
- 'Structures/LoneBlock'
- 'Structures/MbstringThirdArg'
- 'Structures/MbstringUnknownEncoding'
- 'Structures/MergeIfThen'
- 'Structures/MissingParenthesis'
- 'Structures/MultipleDefinedCase'
- 'Structures/MultiplyByOne'
- 'Structures/NegativePow'
- 'Structures/NestedTernary'
- 'Structures/NeverNegative'
- 'Structures/NextMonthTrap'
- 'Structures/NoChoice'
- 'Structures/NoEmptyRegex'
- 'Structures/NoIssetWithEmpty'
- 'Structures/NoParenthesisForLanguageConstruct'
- 'Structures/NoReferenceOnLeft'
- 'Structures/NoSubstrOne'
- 'Structures/Noscream'
- 'Structures/NotEqual'
- 'Structures/NotNot'
- 'Structures/ObjectReferences'
- 'Structures/OrDie'
- 'Structures/PrintAndDie'
- 'Structures/PrintWithoutParenthesis'
- 'Structures/PrintfArguments'
- 'Structures/RepeatedPrint'
- 'Structures/RepeatedRegex'
- 'Structures/ResultMayBeMissing'
- 'Structures/ReturnTrueFalse'
- 'Structures/SameConditions'
- 'Structures/ShouldChainException'
- 'Structures/ShouldMakeTernary'
- 'Structures/ShouldUseExplodeArgs'
- 'Structures/StripTagsSkipsClosedTag'
- 'Structures/StrposCompare'
- 'Structures/SwitchWithoutDefault'
- 'Structures/TernaryInConcat'
- 'Structures/ThrowsAndAssign'
- 'Structures/TimestampDifference'
- 'Structures/UncheckedResources'
- 'Structures/UnconditionLoopBreak'
- 'Structures/UseConstant'
- 'Structures/UseInstanceof'
- 'Structures/UseSystemTmp'
- 'Structures/UselessBrackets'
- 'Structures/UselessCasting'
- 'Structures/UselessCheck'
- 'Structures/UselessInstruction'
- 'Structures/UselessParenthesis'

(continues on next page)

10.5. Predefined config files 333

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/UselessUnset'
- 'Structures/VardumpUsage'
- 'Structures/WhileListEach'
- 'Structures/pregOptionE'
- 'Traits/UndefinedInsteadof'
- 'Traits/UndefinedTrait'
- 'Traits/UselessAlias'
- 'Type/NoRealComparison'
- 'Type/OneVariableStrings'
- 'Type/ShouldTypecast'
- 'Type/SilentlyCastInteger'
- 'Type/StringWithStrangeSpace'
- 'Typehints/MissingReturntype'
- 'Variables/UndefinedVariable'

10.5.7 Changed Behavior

Changed Behavior for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[Changed Behavior]
analyzer[] = "Arrays/AmbiguousKeys";
analyzer[] = "Arrays/AppendAndAssignArrays";
analyzer[] = "Arrays/ArrayNSUsage";
analyzer[] = "Arrays/Arrayindex";
analyzer[] = "Arrays/EmptySlots";
analyzer[] = "Arrays/FloatConversionAsIndex";
analyzer[] = "Arrays/GettingLastElement";
analyzer[] = "Arrays/NegativeStart";
analyzer[] = "Arrays/NoSpreadForHash";
analyzer[] = "Arrays/NonConstantArray";
analyzer[] = "Arrays/WeakType";
analyzer[] = "Arrays/WithCallback";
analyzer[] = "Attributes/InjectableVersion";
analyzer[] = "Attributes/MissingAttributeAttribute";
analyzer[] = "Attributes/ModifyImmutable";
analyzer[] = "Attributes/NestedAttributes";
analyzer[] = "Attributes/PhpNativeAttributes";
analyzer[] = "Classes/AbstractConstants";
analyzer[] = "Classes/AbstractOrImplements";
analyzer[] = "Classes/AbstractStatic";
analyzer[] = "Classes/Abstractclass";
analyzer[] = "Classes/AmbiguousVisibilities";
analyzer[] = "Classes/CannotBeReadonly";
analyzer[] = "Classes/CheckAfterNullSafeOperator";
analyzer[] = "Classes/CouldBeIterable";
analyzer[] = "Classes/CouldBeProtectedConstant";
analyzer[] = "Classes/CouldBeProtectedMethod";
analyzer[] = "Classes/CouldBeProtectedProperty";
analyzer[] = "Classes/CouldBeReadonlyProperty";

(continues on next page)

334 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Classes/CouldInjectParam";
analyzer[] = "Classes/CouldSetPropertyDefault";
analyzer[] = "Classes/CouldUseClassOperator";
analyzer[] = "Classes/DefinedParentMP";
analyzer[] = "Classes/ExportProperty";
analyzer[] = "Classes/ExtendsStdclass";
analyzer[] = "Classes/IncompatibleConstructor";
analyzer[] = "Classes/MethodPropertyConfusion";
analyzer[] = "Classes/MissingVisibility";
analyzer[] = "Classes/MultiplePropertyDeclaration";
analyzer[] = "Classes/MultipleTraitOrInterface";
analyzer[] = "Classes/NoMagicWithArray";
analyzer[] = "Classes/NoNullWithNullSafeOperator";
analyzer[] = "Classes/NoPSSOutsideClass";
analyzer[] = "Classes/NoParent";
analyzer[] = "Classes/NoReadonlyAssignationInGlobal";
analyzer[] = "Classes/PromotedProperties";
analyzer[] = "Classes/PssWithoutClass";
analyzer[] = "Classes/RaisedAccessLevel";
analyzer[] = "Classes/ReadonlyUsage";
analyzer[] = "Classes/RedefinedConstants";
analyzer[] = "Classes/RedefinedDefault";
analyzer[] = "Classes/RedefinedMethods";
analyzer[] = "Classes/ThisIsForClasses";
analyzer[] = "Classes/ThisIsNotAnArray";
analyzer[] = "Classes/TooManyDereferencing";
analyzer[] = "Classes/TooManyFinds";
analyzer[] = "Classes/TooManyInjections";
analyzer[] = "Classes/TypehintCyclicDependencies";
analyzer[] = "Classes/UndefinedConstants";
analyzer[] = "Classes/UndefinedProperty";
analyzer[] = "Classes/UndefinedStaticMP";
analyzer[] = "Classes/UndefinedStaticclass";
analyzer[] = "Classes/UninitedProperty";
analyzer[] = "Classes/UnitializedProperties";
analyzer[] = "Classes/UnreachableConstant";
analyzer[] = "Classes/UnreachableMethod";
analyzer[] = "Classes/UnresolvedCatch";
analyzer[] = "Classes/UnresolvedClasses";
analyzer[] = "Classes/UnresolvedInstanceof";
analyzer[] = "Classes/UnusedClass";
analyzer[] = "Classes/UnusedConstant";
analyzer[] = "Classes/UnusedMethods";
analyzer[] = "Classes/UnusedPrivateMethod";
analyzer[] = "Classes/UnusedProtectedMethods";
analyzer[] = "Classes/UnusedPublicMethod";
analyzer[] = "Classes/UseClassOperator";
analyzer[] = "Classes/UseInstanceof";
analyzer[] = "Classes/UseThis";
analyzer[] = "Classes/UsedClass";
analyzer[] = "Classes/UsedMethods";
analyzer[] = "Classes/UsedOnceProperty";

(continues on next page)

10.5. Predefined config files 335

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Classes/UsedPrivateMethod";
analyzer[] = "Classes/UsedProtectedMethod";
analyzer[] = "Classes/UselessAbstract";
analyzer[] = "Classes/UselessAssignationOfPromotedProperty";
analyzer[] = "Classes/UselessConstructor";
analyzer[] = "Classes/UselessFinal";
analyzer[] = "Classes/UselessNullSafeOperator";
analyzer[] = "Classes/UselessTypehint";
analyzer[] = "Classes/UsingThisOutsideAClass";
analyzer[] = "Classes/VariableClasses";
analyzer[] = "Classes/WeakType";
analyzer[] = "Classes/toStringPss";
analyzer[] = "Complete/CreateCompactVariables";
analyzer[] = "Complete/CreateDefaultValues";
analyzer[] = "Complete/CreateForeachDefault";
analyzer[] = "Complete/CreateMagicMethod";
analyzer[] = "Complete/CreateMagicProperty";
analyzer[] = "Complete/ExtendedTypehints";
analyzer[] = "Complete/FollowClosureDefinition";
analyzer[] = "Complete/MakeClassConstantDefinition";
analyzer[] = "Complete/MakeClassMethodDefinition";
analyzer[] = "Complete/OverwrittenProperties";
analyzer[] = "Complete/PhpExtStubPropertyMethod";
analyzer[] = "Complete/PhpNativeReference";
analyzer[] = "Complete/PropagateConstants";
analyzer[] = "Complete/ReturnTypehint";
analyzer[] = "Complete/SetArrayClassDefinition";
analyzer[] = "Complete/SetClassMethodRemoteDefinition";
analyzer[] = "Complete/SetClassPropertyDefinitionWithTypehint";
analyzer[] = "Complete/SetClassRemoteDefinitionWithGlobal";
analyzer[] = "Complete/SetClassRemoteDefinitionWithInjection";
analyzer[] = "Complete/SetClassRemoteDefinitionWithLocalNew";
analyzer[] = "Complete/SetClassRemoteDefinitionWithReturnTypehint";
analyzer[] = "Complete/SetClassRemoteDefinitionWithTypehint";
analyzer[] = "Complete/SetCloneLink";
analyzer[] = "Complete/SetMethodFnp";
analyzer[] = "Complete/SetParentDefinition";
analyzer[] = "Complete/SolveTraitConstants";
analyzer[] = "Complete/SolveTraitMethods";
analyzer[] = "Complete/VariableTypehint";
analyzer[] = "Constants/ConstDefinePreference";
analyzer[] = "Constants/CouldUseConstant";
analyzer[] = "Constants/CreatedOutsideItsNamespace";
analyzer[] = "Constants/CustomConstantUsage";
analyzer[] = "Constants/DefineInsensitivePreference";
analyzer[] = "Constants/DynamicCreation";
analyzer[] = "Constants/InconsistantCase";
analyzer[] = "Constants/InvalidName";
analyzer[] = "Constants/IsExtConstant";
analyzer[] = "Constants/IsGlobalConstant";
analyzer[] = "Constants/IsPhpConstant";
analyzer[] = "Constants/MagicConstantUsage";

(continues on next page)

336 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Constants/MultipleConstantDefinition";
analyzer[] = "Constants/PhpConstantUsage";
analyzer[] = "Constants/StrangeName";
analyzer[] = "Constants/UndefinedConstants";
analyzer[] = "Constants/UnusedConstants";
analyzer[] = "Constants/VariableConstant";
analyzer[] = "Custom/MethodUsage";
analyzer[] = "Dump/CallOrder";
analyzer[] = "Dump/ClassInjectionCount";
analyzer[] = "Dump/CollectCalls";
analyzer[] = "Dump/CollectCatch";
analyzer[] = "Dump/CollectClassChanges";
analyzer[] = "Dump/CollectClassChildren";
analyzer[] = "Dump/CollectClassDepth";
analyzer[] = "Dump/CollectClassInterfaceCounts";
analyzer[] = "Dump/CollectClassTraitsCounts";
analyzer[] = "Dump/CollectDependencyExtension";
analyzer[] = "Dump/CollectGraphTriplets";
analyzer[] = "Dump/CollectLocalVariableCounts";
analyzer[] = "Dump/CollectMethodCounts";
analyzer[] = "Dump/CollectNativeCallsPerExpressions";
analyzer[] = "Dump/CollectParameterCounts";
analyzer[] = "Dump/CollectPropertyCounts";
analyzer[] = "Dump/CollectPropertyUsage";
analyzer[] = "Dump/CollectReadability";
analyzer[] = "Dump/CollectSetLocale";
analyzer[] = "Dump/CollectStructures";
analyzer[] = "Dump/CollectUseCounts";
analyzer[] = "Dump/CombinedCalls";
analyzer[] = "Dump/CyclomaticComplexity";
analyzer[] = "Dump/EnvironnementVariables";
analyzer[] = "Dump/FossilizedMethods";
analyzer[] = "Dump/Inclusions";
analyzer[] = "Dump/IndentationLevels";
analyzer[] = "Dump/NewOrder";
analyzer[] = "Dump/ParameterArgumentsLinks";
analyzer[] = "Dump/PublicReach";
analyzer[] = "Dump/TypehintingStats";
analyzer[] = "Dump/Typehintorder";
analyzer[] = "Exceptions/AlreadyCaught";
analyzer[] = "Exceptions/CantThrow";
analyzer[] = "Exceptions/CatchE";
analyzer[] = "Exceptions/CatchUndefinedVariable";
analyzer[] = "Exceptions/CaughtButNotThrown";
analyzer[] = "Exceptions/CaughtExceptions";
analyzer[] = "Exceptions/CouldDropVariable";
analyzer[] = "Exceptions/DefinedExceptions";
analyzer[] = "Exceptions/ForgottenThrown";
analyzer[] = "Exceptions/IsPhpException";
analyzer[] = "Exceptions/LargeTryBlock";
analyzer[] = "Exceptions/LongPreparation";
analyzer[] = "Exceptions/MultipleCatch";

(continues on next page)

10.5. Predefined config files 337

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Exceptions/OverwriteException";
analyzer[] = "Exceptions/PossibleTypeError";
analyzer[] = "Exceptions/Rethrown";
analyzer[] = "Exceptions/SetChainingException";
analyzer[] = "Exceptions/ThrowFunctioncall";
analyzer[] = "Exceptions/TryNoCatch";
analyzer[] = "Exceptions/UncaughtExceptions";
analyzer[] = "Exceptions/Unthrown";
analyzer[] = "Exceptions/UnusedExceptionVariable";
analyzer[] = "Exceptions/UselessTry";
analyzer[] = "Extensions/Extamqp";
analyzer[] = "Extensions/Extapache";
analyzer[] = "Extensions/Extapc";
analyzer[] = "Extensions/Extapcu";
analyzer[] = "Extensions/Extarray";
analyzer[] = "Extensions/Extast";
analyzer[] = "Extensions/Extbcmath";
analyzer[] = "Extensions/Extbzip2";
analyzer[] = "Extensions/Extcalendar";
analyzer[] = "Extensions/Extpcov";
analyzer[] = "Extensions/Extsqlite";
analyzer[] = "Extensions/Extsqlite3";
analyzer[] = "Functions/AddDefaultValue";
analyzer[] = "Functions/AliasesUsage";
analyzer[] = "Functions/AvoidBooleanArgument";
analyzer[] = "Functions/CancelledParameter";
analyzer[] = "Functions/CannotUseStaticForClosure";
analyzer[] = "Functions/CantUse";
analyzer[] = "Functions/Closure2String";
analyzer[] = "Functions/Closures";
analyzer[] = "Functions/ConditionedFunctions";
analyzer[] = "Functions/CouldBeCallable";
analyzer[] = "Functions/CouldBeStaticClosure";
analyzer[] = "Functions/CouldCentralize";
analyzer[] = "Functions/CouldTypehint";
analyzer[] = "Functions/DynamicCode";
analyzer[] = "Functions/ExceedingTypehint";
analyzer[] = "Functions/GeneratorCannotReturn";
analyzer[] = "Functions/HasNotFluentInterface";
analyzer[] = "Functions/IsGenerator";
analyzer[] = "Functions/MismatchParameterName";
analyzer[] = "Functions/MismatchTypeAndDefault";
analyzer[] = "Functions/MustReturn";
analyzer[] = "Functions/NoLiteralForReference";
analyzer[] = "Functions/NullTypeFavorite";
analyzer[] = "Functions/Recursive";
analyzer[] = "Functions/TypeDodging";
analyzer[] = "Functions/TypehintMustBeReturned";
analyzer[] = "Functions/UseArrowFunctions";
analyzer[] = "Functions/UselessDefault";
analyzer[] = "Functions/UselessReferenceArgument";
analyzer[] = "Functions/VariableParameterAmbiguityInArrowFunction";

(continues on next page)

338 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Functions/VoidIsNotAReference";
analyzer[] = "Functions/WrongOptionalParameter";
analyzer[] = "Functions/funcGetArgModified";
analyzer[] = "Interfaces/AlreadyParentsInterface";
analyzer[] = "Interfaces/AvoidSelfInInterface";
analyzer[] = "Interfaces/CantImplementTraversable";
analyzer[] = "Interfaces/CantOverloadConstants";
analyzer[] = "Interfaces/CouldUseInterface";
analyzer[] = "Interfaces/EmptyInterface";
analyzer[] = "Interfaces/InterfaceMethod";
analyzer[] = "Interfaces/InterfaceUsage";
analyzer[] = "Interfaces/Interfacenames";
analyzer[] = "Interfaces/IsExtInterface";
analyzer[] = "Interfaces/IsNotImplemented";
analyzer[] = "Interfaces/NoGaranteeForPropertyConstant";
analyzer[] = "Interfaces/Php";
analyzer[] = "Interfaces/PossibleInterfaces";
analyzer[] = "Interfaces/RepeatedInterface";
analyzer[] = "Interfaces/UndefinedInterfaces";
analyzer[] = "Interfaces/UnusedInterfaces";
analyzer[] = "Interfaces/UsedInterfaces";
analyzer[] = "Interfaces/UselessInterfaces";
analyzer[] = "Namespaces/Alias";
analyzer[] = "Namespaces/AliasConfusion";
analyzer[] = "Namespaces/ConstantFullyQualified";
analyzer[] = "Namespaces/CouldUseAlias";
analyzer[] = "Namespaces/CouldUseMagicConstant";
analyzer[] = "Namespaces/EmptyNamespace";
analyzer[] = "Namespaces/GlobalImport";
analyzer[] = "Namespaces/HiddenUse";
analyzer[] = "Namespaces/MultipleAliasDefinitionPerFile";
analyzer[] = "Namespaces/MultipleAliasDefinitions";
analyzer[] = "Namespaces/NamespaceUsage";
analyzer[] = "Namespaces/Namespacesnames";
analyzer[] = "Namespaces/NoKeywordInNamespace";
analyzer[] = "Namespaces/ShouldMakeAlias";
analyzer[] = "Namespaces/UnresolvedUse";
analyzer[] = "Namespaces/UnusedUse";
analyzer[] = "Namespaces/UseFunctionsConstants";
analyzer[] = "Namespaces/UseWithFullyQualifiedNS";
analyzer[] = "Namespaces/UsedUse";
analyzer[] = "Namespaces/WrongCase";
analyzer[] = "Patterns/AbstractAway";
analyzer[] = "Patterns/CourrierAntiPattern";
analyzer[] = "Patterns/DependencyInjection";
analyzer[] = "Patterns/Factory";
analyzer[] = "Patterns/GetterSetter";
analyzer[] = "Performances/ArrayKeyExistsSpeedup";
analyzer[] = "Performances/ArrayMergeInLoops";
analyzer[] = "Performances/Autoappend";
analyzer[] = "Performances/AvoidArrayPush";
analyzer[] = "Performances/CacheVariableOutsideLoop";

(continues on next page)

10.5. Predefined config files 339

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Performances/ClassOperator";
analyzer[] = "Performances/CountToAppend";
analyzer[] = "Performances/DoInBase";
analyzer[] = "Performances/DoubleArrayFlip";
analyzer[] = "Performances/EllipsisMerge";
analyzer[] = "Performances/FetchOneRowFormat";
analyzer[] = "Performances/IssetWholeArray";
analyzer[] = "Performances/LogicalToInArray";
analyzer[] = "Performances/MakeOneCall";
analyzer[] = "Performances/MbStringInLoop";
analyzer[] = "Performances/MemoizeMagicCall";
analyzer[] = "Performances/NoConcatInLoop";
analyzer[] = "Performances/NoGlob";
analyzer[] = "Performances/NotCountNull";
analyzer[] = "Performances/OptimizeExplode";
analyzer[] = "Performances/PHP7EncapsedStrings";
analyzer[] = "Performances/Php74ArrayKeyExists";
analyzer[] = "Performances/PreCalculateUse";
analyzer[] = "Performances/PrePostIncrement";
analyzer[] = "Performances/RegexOnArrays";
analyzer[] = "Performances/RegexOnCollector";
analyzer[] = "Performances/SimpleSwitch";
analyzer[] = "Performances/SkipEmptyArray";
analyzer[] = "Performances/SlowFunctions";
analyzer[] = "Performances/StrposTooMuch";
analyzer[] = "Performances/SubstrFirst";
analyzer[] = "Performances/SubstrInLoops";
analyzer[] = "Performances/TooManyExtractions";
analyzer[] = "Performances/UseArraySlice";
analyzer[] = "Performances/UseBlindVar";
analyzer[] = "Performances/timeVsstrtotime";
analyzer[] = "Php/ArrayKeyExistsWithObjects";
analyzer[] = "Php/AssertFunctionIsReserved";
analyzer[] = "Php/Assumptions";
analyzer[] = "Php/AutoloadUsage";
analyzer[] = "Php/AvoidGetobjectVars";
analyzer[] = "Php/AvoidMbDectectEncoding";
analyzer[] = "Php/AvoidReal";
analyzer[] = "Php/AvoidSetErrorHandlerContextArg";
analyzer[] = "Php/BetterRand";
analyzer[] = "Php/CallingStaticTraitMethod";
analyzer[] = "Php/CantUseReturnValueInWriteContext";
analyzer[] = "Php/CaseForPSS";
analyzer[] = "Php/CastingUsage";
analyzer[] = "Php/ClassConstWithArray";
analyzer[] = "Php/ClassFunctionConfusion";
analyzer[] = "Php/CloseTagsConsistency";
analyzer[] = "Php/ClosureThisSupport";
analyzer[] = "Php/Coalesce";
analyzer[] = "Php/CoalesceEqual";
analyzer[] = "Php/CompactInexistant";
analyzer[] = "Php/ComparisonOnDifferentTypes";

(continues on next page)

340 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Php/ConcatAndAddition";
analyzer[] = "Php/ConstWithArray";
analyzer[] = "Php/ConstantScalarExpression";
analyzer[] = "Php/CookiesVariables";
analyzer[] = "Php/CouldUseIsCountable";
analyzer[] = "Php/Crc32MightBeNegative";
analyzer[] = "Php/CryptoUsage";
analyzer[] = "Php/DateFormats";
analyzer[] = "Php/DeclareEncoding";
analyzer[] = "Php/DeclareStrict";
analyzer[] = "Php/DeclareStrictType";
analyzer[] = "Php/DetectCurrentClass";
analyzer[] = "Php/DirectivesUsage";
analyzer[] = "Php/DlUsage";
analyzer[] = "Php/ExitNoArg";
analyzer[] = "Php/FilesFullPath";
analyzer[] = "Php/FilterToAddSlashes";
analyzer[] = "Php/FinalConstant";
analyzer[] = "Php/FlexibleHeredoc";
analyzer[] = "Php/FopenMode";
analyzer[] = "Php/ForeachDontChangePointer";
analyzer[] = "Php/ForeachObject";
analyzer[] = "Php/GlobalWithoutSimpleVariable";
analyzer[] = "Php/GlobalsVsGlobal";
analyzer[] = "Php/Gotonames";
analyzer[] = "Php/GroupUseDeclaration";
analyzer[] = "Php/GroupUseTrailingComma";
analyzer[] = "Php/HashAlgos71";
analyzer[] = "Php/HashAlgos74";
analyzer[] = "Php/HashUsesObjects";
analyzer[] = "Php/ImplodeOneArg";
analyzer[] = "Php/IncomingValues";
analyzer[] = "Php/IntegerSeparatorUsage";
analyzer[] = "Php/InternalParameterType";
analyzer[] = "Php/IsAWithString";
analyzer[] = "Php/IsINF";
analyzer[] = "Php/IsNAN";
analyzer[] = "Php/IsnullVsEqualNull";
analyzer[] = "Php/IssetMultipleArgs";
analyzer[] = "Php/JsonSerializeReturnType";
analyzer[] = "Php/Labelnames";
analyzer[] = "Php/LetterCharsLogicalFavorite";
analyzer[] = "Php/ListShortSyntax";
analyzer[] = "Php/ListWithAppends";
analyzer[] = "Php/ListWithKeys";
analyzer[] = "Php/MethodCallOnNew";
analyzer[] = "Php/MiddleVersion";
analyzer[] = "Php/MissingMagicIsset";
analyzer[] = "Php/MissingSubpattern";
analyzer[] = "Php/MultipleDeclareStrict";
analyzer[] = "Php/MustCallParentConstructor";
analyzer[] = "Php/NamedArgumentAndVariadic";

(continues on next page)

10.5. Predefined config files 341

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Php/NativeClassTypeCompatibility";
analyzer[] = "Php/NestedTernaryWithoutParenthesis";
analyzer[] = "Php/NeverKeyword";
analyzer[] = "Php/NeverTypehintUsage";
analyzer[] = "Php/NewExponent";
analyzer[] = "Php/NoCastToInt";
analyzer[] = "Php/NoClassInGlobal";
analyzer[] = "Php/NoListWithString";
analyzer[] = "Php/NoNullForNative";
analyzer[] = "Php/NoReferenceForStaticProperty";
analyzer[] = "Php/NoSubstrMinusOne";
analyzer[] = "Php/NotScalarType";
analyzer[] = "Php/OnlyVariablePassedByReference";
analyzer[] = "Php/OpensslEncryptAlgoChange";
analyzer[] = "Php/PHP70scalartypehints";
analyzer[] = "Php/PHP71scalartypehints";
analyzer[] = "Php/PHP72scalartypehints";
analyzer[] = "Php/PHP73LastEmptyArgument";
analyzer[] = "Php/PHP80scalartypehints";
analyzer[] = "Php/PHP81scalartypehints";
analyzer[] = "Php/ParenthesisAsParameter";
analyzer[] = "Php/Password55";
analyzer[] = "Php/PathinfoReturns";
analyzer[] = "Php/PearUsage";
analyzer[] = "Php/Php54RemovedFunctions";
analyzer[] = "Php/Php71microseconds";
analyzer[] = "Php/Php72NewClasses";
analyzer[] = "Php/Php72NewConstants";
analyzer[] = "Php/Php74mbstrrpos3rdArg";
analyzer[] = "Php/Php80OnlyTypeHints";
analyzer[] = "Php/Php81NewTypes";
analyzer[] = "Php/Php81RemovesResources";
analyzer[] = "Php/Php82NewFunctions";
analyzer[] = "Php/Php82NewTypes";
analyzer[] = "Php/Php83NewClasses";
analyzer[] = "Php/Php83NewFunctions";
analyzer[] = "Php/PhpErrorMsgUsage";
analyzer[] = "Php/PregMatchAllFlag";
analyzer[] = "Php/Prints";
analyzer[] = "Php/ReflectionExportIsDeprecated";
analyzer[] = "Php/ReservedKeywords7";
analyzer[] = "Php/ReservedMethods";
analyzer[] = "Php/ReservedNames";
analyzer[] = "Php/RestrictGlobalUsage";
analyzer[] = "Php/ReturnTypehintUsage";
analyzer[] = "Php/ReturnWithParenthesis";
analyzer[] = "Php/SafePhpvars";
analyzer[] = "Php/ScalarAreNotArrays";
analyzer[] = "Php/ScalarTypehintUsage";
analyzer[] = "Php/SerializeMagic";
analyzer[] = "Php/SessionVariables";
analyzer[] = "Php/SetExceptionHandlerPHP7";

(continues on next page)

342 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Php/SetHandlers";
analyzer[] = "Php/ShellFavorite";
analyzer[] = "Php/ShortOpenTagRequired";
analyzer[] = "Php/ShortTernary";
analyzer[] = "Php/StaticVariableDefaultCanBeAnyExpression";
analyzer[] = "Php/StringIntComparison";
analyzer[] = "Php/StrposWithIntegers";
analyzer[] = "Php/ThrowWasAnExpression";
analyzer[] = "Php/UnicodeEscapePartial";
analyzer[] = "Php/UpperCaseKeyword";
analyzer[] = "Php/UseAttributes";
analyzer[] = "Php/UseNullSafeOperator";
analyzer[] = "Php/UsortSorting";
analyzer[] = "Security/CurlOptions";
analyzer[] = "Security/DirectInjection";
analyzer[] = "Security/DontEchoError";
analyzer[] = "Security/DynamicDl";
analyzer[] = "Security/EncodedLetters";
analyzer[] = "Security/FilterInputSource";
analyzer[] = "Security/FilterNotRaw";
analyzer[] = "Security/GPRAliases";
analyzer[] = "Security/IncompatibleTypesWithIncoming";
analyzer[] = "Security/IndirectInjection";
analyzer[] = "Security/IntegerConversion";
analyzer[] = "Security/KeepFilesRestricted";
analyzer[] = "Security/MinusOneOnError";
analyzer[] = "Security/MkdirDefault";
analyzer[] = "Security/MoveUploadedFile";
analyzer[] = "Security/NoEntIgnore";
analyzer[] = "Security/NoNetForXmlLoad";
analyzer[] = "Security/NoSleep";
analyzer[] = "Security/NoWeakSSLCrypto";
analyzer[] = "Security/RegisterGlobals";
analyzer[] = "Security/SafeHttpHeaders";
analyzer[] = "Security/SensitiveArgument";
analyzer[] = "Security/SessionCachedData";
analyzer[] = "Security/SessionLazyWrite";
analyzer[] = "Security/SetCookieArgs";
analyzer[] = "Security/ShouldUsePreparedStatement";
analyzer[] = "Security/ShouldUseSessionRegenerateId";
analyzer[] = "Security/Sqlite3RequiresSingleQuotes";
analyzer[] = "Structures/AlwaysFalse";
analyzer[] = "Structures/ArrayAccessOnLiteralArray";
analyzer[] = "Structures/ArrayMergeArrayArray";
analyzer[] = "Structures/Bracketless";
analyzer[] = "Structures/CheckDivision";
analyzer[] = "Structures/CoalesceNullCoalesce";
analyzer[] = "Structures/ConstantScalarExpression";
analyzer[] = "Structures/CouldBeArrayCombine";
analyzer[] = "Structures/CouldBeStatic";
analyzer[] = "Structures/CouldCastToArray";
analyzer[] = "Structures/CouldUseShortAssignation";

(continues on next page)

10.5. Predefined config files 343

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/CouldUseStrContains";
analyzer[] = "Structures/CouldUseYieldFrom";
analyzer[] = "Structures/CountIsNotNegative";
analyzer[] = "Structures/CryptWithoutSalt";
analyzer[] = "Structures/CurlVersionNow";
analyzer[] = "Structures/DateTimePreference";
analyzer[] = "Structures/DeprecatedMbEncoding";
analyzer[] = "Structures/DereferencingAS";
analyzer[] = "Structures/DirThenSlash";
analyzer[] = "Structures/DontUseTheTypeAsVariable";
analyzer[] = "Structures/DoubleObjectAssignation";
analyzer[] = "Structures/EmptyJsonError";
analyzer[] = "Structures/EmptyLoop";
analyzer[] = "Structures/EmptyWithExpression";
analyzer[] = "Structures/EvalWithoutTry";
analyzer[] = "Structures/FilePutContentsDataType";
analyzer[] = "Structures/ForWithFunctioncall";
analyzer[] = "Structures/FunctionPreSubscripting";
analyzer[] = "Structures/GtOrLtFavorite";
analyzer[] = "Structures/HtmlentitiescallDefaultFlag";
analyzer[] = "Structures/IdenticalCase";
analyzer[] = "Structures/ImplodeArgsOrder";
analyzer[] = "Structures/IndicesAreIntOrString";
analyzer[] = "Structures/InitThenIf";
analyzer[] = "Structures/InvalidCast";
analyzer[] = "Structures/InvalidPackFormat";
analyzer[] = "Structures/InvalidRegex";
analyzer[] = "Structures/IsZero";
analyzer[] = "Structures/IssetWithConstant";
analyzer[] = "Structures/LoneBlock";
analyzer[] = "Structures/MbStringNonEncodings";
analyzer[] = "Structures/McryptcreateivWithoutOption";
analyzer[] = "Structures/MergeIfThen";
analyzer[] = "Structures/MissingAssignation";
analyzer[] = "Structures/MissingNew";
analyzer[] = "Structures/MissingParenthesis";
analyzer[] = "Structures/MisusedYield";
analyzer[] = "Structures/MultilineExpressions";
analyzer[] = "Structures/MultipleSimilarCalls";
analyzer[] = "Structures/NestedMatch";
analyzer[] = "Structures/NoChoice";
analyzer[] = "Structures/NoEmptyStringWithExplode";
analyzer[] = "Structures/NoMaxOnEmptyArray";
analyzer[] = "Structures/NoNullForIndex";
analyzer[] = "Structures/NoParenthesisForLanguageConstruct";
analyzer[] = "Structures/NonIntStringAsIndex";
analyzer[] = "Structures/OneLineTwoInstructions";
analyzer[] = "Structures/OnlyFirstByte";
analyzer[] = "Structures/PlusEgalOne";
analyzer[] = "Structures/RecalledCondition";
analyzer[] = "Structures/RepeatedPrint";
analyzer[] = "Structures/ReturnVoid";

(continues on next page)

344 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/ShortOrCompleteComparison";
analyzer[] = "Structures/StrposLessThanOne";
analyzer[] = "Structures/ThrowsAndAssign";
analyzer[] = "Structures/UnreachableCode";
analyzer[] = "Structures/UnusedLabel";
analyzer[] = "Structures/UseArrayFunctions";
analyzer[] = "Structures/UseCaseValue";
analyzer[] = "Structures/UseCountRecursive";
analyzer[] = "Structures/UseDebug";
analyzer[] = "Structures/UseFileAppend";
analyzer[] = "Structures/UseInstanceof";
analyzer[] = "Structures/UseListWithForeach";
analyzer[] = "Structures/UselessCoalesce";
analyzer[] = "Structures/UselessShortTernary";
analyzer[] = "Structures/UselessTrailingComma";
analyzer[] = "Structures/WhileListEach";
analyzer[] = "Structures/WrongPrecedenceInExpression";
analyzer[] = "Structures/toStringThrowsException";
analyzer[] = "Traits/ConstantsInTraits";
analyzer[] = "Traits/CouldUseTrait";
analyzer[] = "Traits/DependantTrait";
analyzer[] = "Traits/EmptyTrait";
analyzer[] = "Traits/IncompatibleProperty";
analyzer[] = "Traits/IsExtTrait";
analyzer[] = "Traits/LocallyUsedProperty";
analyzer[] = "Traits/MethodCollisionTraits";
analyzer[] = "Traits/MultipleUsage";
analyzer[] = "Traits/NoPrivateAbstract";
analyzer[] = "Traits/Php";
analyzer[] = "Traits/SelfUsingTrait";
analyzer[] = "Traits/TraitMethod";
analyzer[] = "Traits/TraitNotFound";
analyzer[] = "Traits/TraitUsage";
analyzer[] = "Traits/Traitnames";
analyzer[] = "Traits/UndefinedInsteadof";
analyzer[] = "Traits/UndefinedTrait";
analyzer[] = "Traits/UnusedClassTrait";
analyzer[] = "Traits/UnusedTrait";
analyzer[] = "Traits/UsedTrait";
analyzer[] = "Traits/UselessAlias";
analyzer[] = "Type/ArrayIndex";
analyzer[] = "Type/Binary";
analyzer[] = "Type/CharString";
analyzer[] = "Type/DuplicateLiteral";
analyzer[] = "Type/Email";
analyzer[] = "Type/HttpStatus";
analyzer[] = "Type/Ip";
analyzer[] = "Type/Printf";
analyzer[] = "Type/StringInterpolation";
analyzer[] = "Typehints/CouldBeResource";
analyzer[] = "Typehints/StandaloneTypeTFN";
analyzer[] = "Utils/Selector";

(continues on next page)

10.5. Predefined config files 345

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Variables/AmbiguousTypes";
analyzer[] = "Variables/CloseNaming";
analyzer[] = "Variables/InconsistentUsage";
analyzer[] = "Variables/InheritedStaticVariable";
analyzer[] = "Variables/InterfaceArguments";
analyzer[] = "Variables/IsLocalConstant";
analyzer[] = "Variables/References";
analyzer[] = "Variables/SelfTransform";
analyzer[] = "Variables/StaticVariableInitialisation";

Changed Behavior for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'Changed Behavior':
- 'Arrays/AmbiguousKeys'
- 'Arrays/AppendAndAssignArrays'
- 'Arrays/ArrayNSUsage'
- 'Arrays/Arrayindex'
- 'Arrays/EmptySlots'
- 'Arrays/FloatConversionAsIndex'
- 'Arrays/GettingLastElement'
- 'Arrays/NegativeStart'
- 'Arrays/NoSpreadForHash'
- 'Arrays/NonConstantArray'
- 'Arrays/WeakType'
- 'Arrays/WithCallback'
- 'Attributes/InjectableVersion'
- 'Attributes/MissingAttributeAttribute'
- 'Attributes/ModifyImmutable'
- 'Attributes/NestedAttributes'
- 'Attributes/PhpNativeAttributes'
- 'Classes/AbstractConstants'
- 'Classes/AbstractOrImplements'
- 'Classes/AbstractStatic'
- 'Classes/Abstractclass'
- 'Classes/AmbiguousVisibilities'
- 'Classes/CannotBeReadonly'
- 'Classes/CheckAfterNullSafeOperator'
- 'Classes/CouldBeIterable'
- 'Classes/CouldBeProtectedConstant'
- 'Classes/CouldBeProtectedMethod'
- 'Classes/CouldBeProtectedProperty'
- 'Classes/CouldBeReadonlyProperty'
- 'Classes/CouldInjectParam'
- 'Classes/CouldSetPropertyDefault'
- 'Classes/CouldUseClassOperator'
- 'Classes/DefinedParentMP'
- 'Classes/ExportProperty'

(continues on next page)

346 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Classes/ExtendsStdclass'
- 'Classes/IncompatibleConstructor'
- 'Classes/MethodPropertyConfusion'
- 'Classes/MissingVisibility'
- 'Classes/MultiplePropertyDeclaration'
- 'Classes/MultipleTraitOrInterface'
- 'Classes/NoMagicWithArray'
- 'Classes/NoNullWithNullSafeOperator'
- 'Classes/NoPSSOutsideClass'
- 'Classes/NoParent'
- 'Classes/NoReadonlyAssignationInGlobal'
- 'Classes/PromotedProperties'
- 'Classes/PssWithoutClass'
- 'Classes/RaisedAccessLevel'
- 'Classes/ReadonlyUsage'
- 'Classes/RedefinedConstants'
- 'Classes/RedefinedDefault'
- 'Classes/RedefinedMethods'
- 'Classes/ThisIsForClasses'
- 'Classes/ThisIsNotAnArray'
- 'Classes/TooManyDereferencing'
- 'Classes/TooManyFinds'
- 'Classes/TooManyInjections'
- 'Classes/TypehintCyclicDependencies'
- 'Classes/UndefinedConstants'
- 'Classes/UndefinedProperty'
- 'Classes/UndefinedStaticMP'
- 'Classes/UndefinedStaticclass'
- 'Classes/UninitedProperty'
- 'Classes/UnitializedProperties'
- 'Classes/UnreachableConstant'
- 'Classes/UnreachableMethod'
- 'Classes/UnresolvedCatch'
- 'Classes/UnresolvedClasses'
- 'Classes/UnresolvedInstanceof'
- 'Classes/UnusedClass'
- 'Classes/UnusedConstant'
- 'Classes/UnusedMethods'
- 'Classes/UnusedPrivateMethod'
- 'Classes/UnusedProtectedMethods'
- 'Classes/UnusedPublicMethod'
- 'Classes/UseClassOperator'
- 'Classes/UseInstanceof'
- 'Classes/UseThis'
- 'Classes/UsedClass'
- 'Classes/UsedMethods'
- 'Classes/UsedOnceProperty'
- 'Classes/UsedPrivateMethod'
- 'Classes/UsedProtectedMethod'
- 'Classes/UselessAbstract'
- 'Classes/UselessAssignationOfPromotedProperty'
- 'Classes/UselessConstructor'

(continues on next page)

10.5. Predefined config files 347

Exakat Documentation, Release 1

(continued from previous page)

- 'Classes/UselessFinal'
- 'Classes/UselessNullSafeOperator'
- 'Classes/UselessTypehint'
- 'Classes/UsingThisOutsideAClass'
- 'Classes/VariableClasses'
- 'Classes/WeakType'
- 'Classes/toStringPss'
- 'Complete/CreateCompactVariables'
- 'Complete/CreateDefaultValues'
- 'Complete/CreateForeachDefault'
- 'Complete/CreateMagicMethod'
- 'Complete/CreateMagicProperty'
- 'Complete/ExtendedTypehints'
- 'Complete/FollowClosureDefinition'
- 'Complete/MakeClassConstantDefinition'
- 'Complete/MakeClassMethodDefinition'
- 'Complete/OverwrittenProperties'
- 'Complete/PhpExtStubPropertyMethod'
- 'Complete/PhpNativeReference'
- 'Complete/PropagateConstants'
- 'Complete/ReturnTypehint'
- 'Complete/SetArrayClassDefinition'
- 'Complete/SetClassMethodRemoteDefinition'
- 'Complete/SetClassPropertyDefinitionWithTypehint'
- 'Complete/SetClassRemoteDefinitionWithGlobal'
- 'Complete/SetClassRemoteDefinitionWithInjection'
- 'Complete/SetClassRemoteDefinitionWithLocalNew'
- 'Complete/SetClassRemoteDefinitionWithReturnTypehint'
- 'Complete/SetClassRemoteDefinitionWithTypehint'
- 'Complete/SetCloneLink'
- 'Complete/SetMethodFnp'
- 'Complete/SetParentDefinition'
- 'Complete/SolveTraitConstants'
- 'Complete/SolveTraitMethods'
- 'Complete/VariableTypehint'
- 'Constants/ConstDefinePreference'
- 'Constants/CouldUseConstant'
- 'Constants/CreatedOutsideItsNamespace'
- 'Constants/CustomConstantUsage'
- 'Constants/DefineInsensitivePreference'
- 'Constants/DynamicCreation'
- 'Constants/InconsistantCase'
- 'Constants/InvalidName'
- 'Constants/IsExtConstant'
- 'Constants/IsGlobalConstant'
- 'Constants/IsPhpConstant'
- 'Constants/MagicConstantUsage'
- 'Constants/MultipleConstantDefinition'
- 'Constants/PhpConstantUsage'
- 'Constants/StrangeName'
- 'Constants/UndefinedConstants'
- 'Constants/UnusedConstants'

(continues on next page)

348 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Constants/VariableConstant'
- 'Custom/MethodUsage'
- 'Dump/CallOrder'
- 'Dump/ClassInjectionCount'
- 'Dump/CollectCalls'
- 'Dump/CollectCatch'
- 'Dump/CollectClassChanges'
- 'Dump/CollectClassChildren'
- 'Dump/CollectClassDepth'
- 'Dump/CollectClassInterfaceCounts'
- 'Dump/CollectClassTraitsCounts'
- 'Dump/CollectDependencyExtension'
- 'Dump/CollectGraphTriplets'
- 'Dump/CollectLocalVariableCounts'
- 'Dump/CollectMethodCounts'
- 'Dump/CollectNativeCallsPerExpressions'
- 'Dump/CollectParameterCounts'
- 'Dump/CollectPropertyCounts'
- 'Dump/CollectPropertyUsage'
- 'Dump/CollectReadability'
- 'Dump/CollectSetLocale'
- 'Dump/CollectStructures'
- 'Dump/CollectUseCounts'
- 'Dump/CombinedCalls'
- 'Dump/CyclomaticComplexity'
- 'Dump/EnvironnementVariables'
- 'Dump/FossilizedMethods'
- 'Dump/Inclusions'
- 'Dump/IndentationLevels'
- 'Dump/NewOrder'
- 'Dump/ParameterArgumentsLinks'
- 'Dump/PublicReach'
- 'Dump/TypehintingStats'
- 'Dump/Typehintorder'
- 'Exceptions/AlreadyCaught'
- 'Exceptions/CantThrow'
- 'Exceptions/CatchE'
- 'Exceptions/CatchUndefinedVariable'
- 'Exceptions/CaughtButNotThrown'
- 'Exceptions/CaughtExceptions'
- 'Exceptions/CouldDropVariable'
- 'Exceptions/DefinedExceptions'
- 'Exceptions/ForgottenThrown'
- 'Exceptions/IsPhpException'
- 'Exceptions/LargeTryBlock'
- 'Exceptions/LongPreparation'
- 'Exceptions/MultipleCatch'
- 'Exceptions/OverwriteException'
- 'Exceptions/PossibleTypeError'
- 'Exceptions/Rethrown'
- 'Exceptions/SetChainingException'
- 'Exceptions/ThrowFunctioncall'

(continues on next page)

10.5. Predefined config files 349

Exakat Documentation, Release 1

(continued from previous page)

- 'Exceptions/TryNoCatch'
- 'Exceptions/UncaughtExceptions'
- 'Exceptions/Unthrown'
- 'Exceptions/UnusedExceptionVariable'
- 'Exceptions/UselessTry'
- 'Extensions/Extamqp'
- 'Extensions/Extapache'
- 'Extensions/Extapc'
- 'Extensions/Extapcu'
- 'Extensions/Extarray'
- 'Extensions/Extast'
- 'Extensions/Extbcmath'
- 'Extensions/Extbzip2'
- 'Extensions/Extcalendar'
- 'Extensions/Extpcov'
- 'Extensions/Extsqlite'
- 'Extensions/Extsqlite3'
- 'Functions/AddDefaultValue'
- 'Functions/AliasesUsage'
- 'Functions/AvoidBooleanArgument'
- 'Functions/CancelledParameter'
- 'Functions/CannotUseStaticForClosure'
- 'Functions/CantUse'
- 'Functions/Closure2String'
- 'Functions/Closures'
- 'Functions/ConditionedFunctions'
- 'Functions/CouldBeCallable'
- 'Functions/CouldBeStaticClosure'
- 'Functions/CouldCentralize'
- 'Functions/CouldTypehint'
- 'Functions/DynamicCode'
- 'Functions/ExceedingTypehint'
- 'Functions/GeneratorCannotReturn'
- 'Functions/HasNotFluentInterface'
- 'Functions/IsGenerator'
- 'Functions/MismatchParameterName'
- 'Functions/MismatchTypeAndDefault'
- 'Functions/MustReturn'
- 'Functions/NoLiteralForReference'
- 'Functions/NullTypeFavorite'
- 'Functions/Recursive'
- 'Functions/TypeDodging'
- 'Functions/TypehintMustBeReturned'
- 'Functions/UseArrowFunctions'
- 'Functions/UselessDefault'
- 'Functions/UselessReferenceArgument'
- 'Functions/VariableParameterAmbiguityInArrowFunction'
- 'Functions/VoidIsNotAReference'
- 'Functions/WrongOptionalParameter'
- 'Functions/funcGetArgModified'
- 'Interfaces/AlreadyParentsInterface'
- 'Interfaces/AvoidSelfInInterface'

(continues on next page)

350 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Interfaces/CantImplementTraversable'
- 'Interfaces/CantOverloadConstants'
- 'Interfaces/CouldUseInterface'
- 'Interfaces/EmptyInterface'
- 'Interfaces/InterfaceMethod'
- 'Interfaces/InterfaceUsage'
- 'Interfaces/Interfacenames'
- 'Interfaces/IsExtInterface'
- 'Interfaces/IsNotImplemented'
- 'Interfaces/NoGaranteeForPropertyConstant'
- 'Interfaces/Php'
- 'Interfaces/PossibleInterfaces'
- 'Interfaces/RepeatedInterface'
- 'Interfaces/UndefinedInterfaces'
- 'Interfaces/UnusedInterfaces'
- 'Interfaces/UsedInterfaces'
- 'Interfaces/UselessInterfaces'
- 'Namespaces/Alias'
- 'Namespaces/AliasConfusion'
- 'Namespaces/ConstantFullyQualified'
- 'Namespaces/CouldUseAlias'
- 'Namespaces/CouldUseMagicConstant'
- 'Namespaces/EmptyNamespace'
- 'Namespaces/GlobalImport'
- 'Namespaces/HiddenUse'
- 'Namespaces/MultipleAliasDefinitionPerFile'
- 'Namespaces/MultipleAliasDefinitions'
- 'Namespaces/NamespaceUsage'
- 'Namespaces/Namespacesnames'
- 'Namespaces/NoKeywordInNamespace'
- 'Namespaces/ShouldMakeAlias'
- 'Namespaces/UnresolvedUse'
- 'Namespaces/UnusedUse'
- 'Namespaces/UseFunctionsConstants'
- 'Namespaces/UseWithFullyQualifiedNS'
- 'Namespaces/UsedUse'
- 'Namespaces/WrongCase'
- 'Patterns/AbstractAway'
- 'Patterns/CourrierAntiPattern'
- 'Patterns/DependencyInjection'
- 'Patterns/Factory'
- 'Patterns/GetterSetter'
- 'Performances/ArrayKeyExistsSpeedup'
- 'Performances/ArrayMergeInLoops'
- 'Performances/Autoappend'
- 'Performances/AvoidArrayPush'
- 'Performances/CacheVariableOutsideLoop'
- 'Performances/ClassOperator'
- 'Performances/CountToAppend'
- 'Performances/DoInBase'
- 'Performances/DoubleArrayFlip'
- 'Performances/EllipsisMerge'

(continues on next page)

10.5. Predefined config files 351

Exakat Documentation, Release 1

(continued from previous page)

- 'Performances/FetchOneRowFormat'
- 'Performances/IssetWholeArray'
- 'Performances/LogicalToInArray'
- 'Performances/MakeOneCall'
- 'Performances/MbStringInLoop'
- 'Performances/MemoizeMagicCall'
- 'Performances/NoConcatInLoop'
- 'Performances/NoGlob'
- 'Performances/NotCountNull'
- 'Performances/OptimizeExplode'
- 'Performances/PHP7EncapsedStrings'
- 'Performances/Php74ArrayKeyExists'
- 'Performances/PreCalculateUse'
- 'Performances/PrePostIncrement'
- 'Performances/RegexOnArrays'
- 'Performances/RegexOnCollector'
- 'Performances/SimpleSwitch'
- 'Performances/SkipEmptyArray'
- 'Performances/SlowFunctions'
- 'Performances/StrposTooMuch'
- 'Performances/SubstrFirst'
- 'Performances/SubstrInLoops'
- 'Performances/TooManyExtractions'
- 'Performances/UseArraySlice'
- 'Performances/UseBlindVar'
- 'Performances/timeVsstrtotime'
- 'Php/ArrayKeyExistsWithObjects'
- 'Php/AssertFunctionIsReserved'
- 'Php/Assumptions'
- 'Php/AutoloadUsage'
- 'Php/AvoidGetobjectVars'
- 'Php/AvoidMbDectectEncoding'
- 'Php/AvoidReal'
- 'Php/AvoidSetErrorHandlerContextArg'
- 'Php/BetterRand'
- 'Php/CallingStaticTraitMethod'
- 'Php/CantUseReturnValueInWriteContext'
- 'Php/CaseForPSS'
- 'Php/CastingUsage'
- 'Php/ClassConstWithArray'
- 'Php/ClassFunctionConfusion'
- 'Php/CloseTagsConsistency'
- 'Php/ClosureThisSupport'
- 'Php/Coalesce'
- 'Php/CoalesceEqual'
- 'Php/CompactInexistant'
- 'Php/ComparisonOnDifferentTypes'
- 'Php/ConcatAndAddition'
- 'Php/ConstWithArray'
- 'Php/ConstantScalarExpression'
- 'Php/CookiesVariables'
- 'Php/CouldUseIsCountable'

(continues on next page)

352 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Php/Crc32MightBeNegative'
- 'Php/CryptoUsage'
- 'Php/DateFormats'
- 'Php/DeclareEncoding'
- 'Php/DeclareStrict'
- 'Php/DeclareStrictType'
- 'Php/DetectCurrentClass'
- 'Php/DirectivesUsage'
- 'Php/DlUsage'
- 'Php/ExitNoArg'
- 'Php/FilesFullPath'
- 'Php/FilterToAddSlashes'
- 'Php/FinalConstant'
- 'Php/FlexibleHeredoc'
- 'Php/FopenMode'
- 'Php/ForeachDontChangePointer'
- 'Php/ForeachObject'
- 'Php/GlobalWithoutSimpleVariable'
- 'Php/GlobalsVsGlobal'
- 'Php/Gotonames'
- 'Php/GroupUseDeclaration'
- 'Php/GroupUseTrailingComma'
- 'Php/HashAlgos71'
- 'Php/HashAlgos74'
- 'Php/HashUsesObjects'
- 'Php/ImplodeOneArg'
- 'Php/IncomingValues'
- 'Php/IntegerSeparatorUsage'
- 'Php/InternalParameterType'
- 'Php/IsAWithString'
- 'Php/IsINF'
- 'Php/IsNAN'
- 'Php/IsnullVsEqualNull'
- 'Php/IssetMultipleArgs'
- 'Php/JsonSerializeReturnType'
- 'Php/Labelnames'
- 'Php/LetterCharsLogicalFavorite'
- 'Php/ListShortSyntax'
- 'Php/ListWithAppends'
- 'Php/ListWithKeys'
- 'Php/MethodCallOnNew'
- 'Php/MiddleVersion'
- 'Php/MissingMagicIsset'
- 'Php/MissingSubpattern'
- 'Php/MultipleDeclareStrict'
- 'Php/MustCallParentConstructor'
- 'Php/NamedArgumentAndVariadic'
- 'Php/NativeClassTypeCompatibility'
- 'Php/NestedTernaryWithoutParenthesis'
- 'Php/NeverKeyword'
- 'Php/NeverTypehintUsage'
- 'Php/NewExponent'

(continues on next page)

10.5. Predefined config files 353

Exakat Documentation, Release 1

(continued from previous page)

- 'Php/NoCastToInt'
- 'Php/NoClassInGlobal'
- 'Php/NoListWithString'
- 'Php/NoNullForNative'
- 'Php/NoReferenceForStaticProperty'
- 'Php/NoSubstrMinusOne'
- 'Php/NotScalarType'
- 'Php/OnlyVariablePassedByReference'
- 'Php/OpensslEncryptAlgoChange'
- 'Php/PHP70scalartypehints'
- 'Php/PHP71scalartypehints'
- 'Php/PHP72scalartypehints'
- 'Php/PHP73LastEmptyArgument'
- 'Php/PHP80scalartypehints'
- 'Php/PHP81scalartypehints'
- 'Php/ParenthesisAsParameter'
- 'Php/Password55'
- 'Php/PathinfoReturns'
- 'Php/PearUsage'
- 'Php/Php54RemovedFunctions'
- 'Php/Php71microseconds'
- 'Php/Php72NewClasses'
- 'Php/Php72NewConstants'
- 'Php/Php74mbstrrpos3rdArg'
- 'Php/Php80OnlyTypeHints'
- 'Php/Php81NewTypes'
- 'Php/Php81RemovesResources'
- 'Php/Php82NewFunctions'
- 'Php/Php82NewTypes'
- 'Php/Php83NewClasses'
- 'Php/Php83NewFunctions'
- 'Php/PhpErrorMsgUsage'
- 'Php/PregMatchAllFlag'
- 'Php/Prints'
- 'Php/ReflectionExportIsDeprecated'
- 'Php/ReservedKeywords7'
- 'Php/ReservedMethods'
- 'Php/ReservedNames'
- 'Php/RestrictGlobalUsage'
- 'Php/ReturnTypehintUsage'
- 'Php/ReturnWithParenthesis'
- 'Php/SafePhpvars'
- 'Php/ScalarAreNotArrays'
- 'Php/ScalarTypehintUsage'
- 'Php/SerializeMagic'
- 'Php/SessionVariables'
- 'Php/SetExceptionHandlerPHP7'
- 'Php/SetHandlers'
- 'Php/ShellFavorite'
- 'Php/ShortOpenTagRequired'
- 'Php/ShortTernary'
- 'Php/StaticVariableDefaultCanBeAnyExpression'

(continues on next page)

354 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Php/StringIntComparison'
- 'Php/StrposWithIntegers'
- 'Php/ThrowWasAnExpression'
- 'Php/UnicodeEscapePartial'
- 'Php/UpperCaseKeyword'
- 'Php/UseAttributes'
- 'Php/UseNullSafeOperator'
- 'Php/UsortSorting'
- 'Security/CurlOptions'
- 'Security/DirectInjection'
- 'Security/DontEchoError'
- 'Security/DynamicDl'
- 'Security/EncodedLetters'
- 'Security/FilterInputSource'
- 'Security/FilterNotRaw'
- 'Security/GPRAliases'
- 'Security/IncompatibleTypesWithIncoming'
- 'Security/IndirectInjection'
- 'Security/IntegerConversion'
- 'Security/KeepFilesRestricted'
- 'Security/MinusOneOnError'
- 'Security/MkdirDefault'
- 'Security/MoveUploadedFile'
- 'Security/NoEntIgnore'
- 'Security/NoNetForXmlLoad'
- 'Security/NoSleep'
- 'Security/NoWeakSSLCrypto'
- 'Security/RegisterGlobals'
- 'Security/SafeHttpHeaders'
- 'Security/SensitiveArgument'
- 'Security/SessionCachedData'
- 'Security/SessionLazyWrite'
- 'Security/SetCookieArgs'
- 'Security/ShouldUsePreparedStatement'
- 'Security/ShouldUseSessionRegenerateId'
- 'Security/Sqlite3RequiresSingleQuotes'
- 'Structures/AlwaysFalse'
- 'Structures/ArrayAccessOnLiteralArray'
- 'Structures/ArrayMergeArrayArray'
- 'Structures/Bracketless'
- 'Structures/CheckDivision'
- 'Structures/CoalesceNullCoalesce'
- 'Structures/ConstantScalarExpression'
- 'Structures/CouldBeArrayCombine'
- 'Structures/CouldBeStatic'
- 'Structures/CouldCastToArray'
- 'Structures/CouldUseShortAssignation'
- 'Structures/CouldUseStrContains'
- 'Structures/CouldUseYieldFrom'
- 'Structures/CountIsNotNegative'
- 'Structures/CryptWithoutSalt'
- 'Structures/CurlVersionNow'

(continues on next page)

10.5. Predefined config files 355

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/DateTimePreference'
- 'Structures/DeprecatedMbEncoding'
- 'Structures/DereferencingAS'
- 'Structures/DirThenSlash'
- 'Structures/DontUseTheTypeAsVariable'
- 'Structures/DoubleObjectAssignation'
- 'Structures/EmptyJsonError'
- 'Structures/EmptyLoop'
- 'Structures/EmptyWithExpression'
- 'Structures/EvalWithoutTry'
- 'Structures/FilePutContentsDataType'
- 'Structures/ForWithFunctioncall'
- 'Structures/FunctionPreSubscripting'
- 'Structures/GtOrLtFavorite'
- 'Structures/HtmlentitiescallDefaultFlag'
- 'Structures/IdenticalCase'
- 'Structures/ImplodeArgsOrder'
- 'Structures/IndicesAreIntOrString'
- 'Structures/InitThenIf'
- 'Structures/InvalidCast'
- 'Structures/InvalidPackFormat'
- 'Structures/InvalidRegex'
- 'Structures/IsZero'
- 'Structures/IssetWithConstant'
- 'Structures/LoneBlock'
- 'Structures/MbStringNonEncodings'
- 'Structures/McryptcreateivWithoutOption'
- 'Structures/MergeIfThen'
- 'Structures/MissingAssignation'
- 'Structures/MissingNew'
- 'Structures/MissingParenthesis'
- 'Structures/MisusedYield'
- 'Structures/MultilineExpressions'
- 'Structures/MultipleSimilarCalls'
- 'Structures/NestedMatch'
- 'Structures/NoChoice'
- 'Structures/NoEmptyStringWithExplode'
- 'Structures/NoMaxOnEmptyArray'
- 'Structures/NoNullForIndex'
- 'Structures/NoParenthesisForLanguageConstruct'
- 'Structures/NonIntStringAsIndex'
- 'Structures/OneLineTwoInstructions'
- 'Structures/OnlyFirstByte'
- 'Structures/PlusEgalOne'
- 'Structures/RecalledCondition'
- 'Structures/RepeatedPrint'
- 'Structures/ReturnVoid'
- 'Structures/ShortOrCompleteComparison'
- 'Structures/StrposLessThanOne'
- 'Structures/ThrowsAndAssign'
- 'Structures/UnreachableCode'
- 'Structures/UnusedLabel'

(continues on next page)

356 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/UseArrayFunctions'
- 'Structures/UseCaseValue'
- 'Structures/UseCountRecursive'
- 'Structures/UseDebug'
- 'Structures/UseFileAppend'
- 'Structures/UseInstanceof'
- 'Structures/UseListWithForeach'
- 'Structures/UselessCoalesce'
- 'Structures/UselessShortTernary'
- 'Structures/UselessTrailingComma'
- 'Structures/WhileListEach'
- 'Structures/WrongPrecedenceInExpression'
- 'Structures/toStringThrowsException'
- 'Traits/ConstantsInTraits'
- 'Traits/CouldUseTrait'
- 'Traits/DependantTrait'
- 'Traits/EmptyTrait'
- 'Traits/IncompatibleProperty'
- 'Traits/IsExtTrait'
- 'Traits/LocallyUsedProperty'
- 'Traits/MethodCollisionTraits'
- 'Traits/MultipleUsage'
- 'Traits/NoPrivateAbstract'
- 'Traits/Php'
- 'Traits/SelfUsingTrait'
- 'Traits/TraitMethod'
- 'Traits/TraitNotFound'
- 'Traits/TraitUsage'
- 'Traits/Traitnames'
- 'Traits/UndefinedInsteadof'
- 'Traits/UndefinedTrait'
- 'Traits/UnusedClassTrait'
- 'Traits/UnusedTrait'
- 'Traits/UsedTrait'
- 'Traits/UselessAlias'
- 'Type/ArrayIndex'
- 'Type/Binary'
- 'Type/CharString'
- 'Type/DuplicateLiteral'
- 'Type/Email'
- 'Type/HttpStatus'
- 'Type/Ip'
- 'Type/Printf'
- 'Type/StringInterpolation'
- 'Typehints/CouldBeResource'
- 'Typehints/StandaloneTypeTFN'
- 'Utils/Selector'
- 'Variables/AmbiguousTypes'
- 'Variables/CloseNaming'
- 'Variables/InconsistentUsage'
- 'Variables/InheritedStaticVariable'
- 'Variables/InterfaceArguments'

(continues on next page)

10.5. Predefined config files 357

Exakat Documentation, Release 1

(continued from previous page)

- 'Variables/IsLocalConstant'
- 'Variables/References'
- 'Variables/SelfTransform'
- 'Variables/StaticVariableInitialisation'

10.5.8 Class Review

Class Review for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[Class Review]
analyzer[] = "Classes/AbstractConstants";
analyzer[] = "Classes/AvoidOptionArrays";
analyzer[] = "Classes/CancelCommonMethod";
analyzer[] = "Classes/CannotBeReadonly";
analyzer[] = "Classes/CantInstantiateNonClass";
analyzer[] = "Classes/CantOverwriteFinalConstant";
analyzer[] = "Classes/ClassInvasion";
analyzer[] = "Classes/ConstantClass";
analyzer[] = "Classes/CouldBeAbstractClass";
analyzer[] = "Classes/CouldBeClassConstant";
analyzer[] = "Classes/CouldBeFinal";
analyzer[] = "Classes/CouldBeParentMethod";
analyzer[] = "Classes/CouldBePrivate";
analyzer[] = "Classes/CouldBePrivateConstante";
analyzer[] = "Classes/CouldBePrivateMethod";
analyzer[] = "Classes/CouldBeProtectedConstant";
analyzer[] = "Classes/CouldBeProtectedMethod";
analyzer[] = "Classes/CouldBeProtectedProperty";
analyzer[] = "Classes/CouldBeReadonly";
analyzer[] = "Classes/CouldBeReadonlyProperty";
analyzer[] = "Classes/CouldBeStatic";
analyzer[] = "Classes/CouldBeStringable";
analyzer[] = "Classes/CouldInjectParam";
analyzer[] = "Classes/CouldSetPropertyDefault";
analyzer[] = "Classes/CyclicReferences";
analyzer[] = "Classes/DependantAbstractClass";
analyzer[] = "Classes/DifferentArgumentCounts";
analyzer[] = "Classes/DisconnectedClasses";
analyzer[] = "Classes/ExportProperty";
analyzer[] = "Classes/FinalByOcramius";
analyzer[] = "Classes/FinalPrivate";
analyzer[] = "Classes/Finalclass";
analyzer[] = "Classes/Finalmethod";
analyzer[] = "Classes/FossilizedMethod";
analyzer[] = "Classes/HiddenNullable";
analyzer[] = "Classes/IncompatibleConstructor";
analyzer[] = "Classes/InheritedPropertyMustMatch";
analyzer[] = "Classes/InsufficientPropertyTypehint";
analyzer[] = "Classes/LoweredAccessLevel";

(continues on next page)

358 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Classes/MagicMethodReturntypes";
analyzer[] = "Classes/MismatchProperties";
analyzer[] = "Classes/MissingAbstractMethod";
analyzer[] = "Classes/MissingVisibility";
analyzer[] = "Classes/MultiplePropertyDeclaration";
analyzer[] = "Classes/MutualExtension";
analyzer[] = "Classes/NewThenCall";
analyzer[] = "Classes/NoNullWithNullSafeOperator";
analyzer[] = "Classes/NoParent";
analyzer[] = "Classes/NoReadonlyAssignationInGlobal";
analyzer[] = "Classes/NoSelfReferencingConstant";
analyzer[] = "Classes/NonNullableSetters";
analyzer[] = "Classes/ParentIsNotStatic";
analyzer[] = "Classes/PropertyCouldBeLocal";
analyzer[] = "Classes/PropertyInvasion";
analyzer[] = "Classes/PropertyMethodSameName";
analyzer[] = "Classes/RaisedAccessLevel";
analyzer[] = "Classes/RedefinedMethods";
analyzer[] = "Classes/RedefinedProperty";
analyzer[] = "Classes/RewroteFinalClassConstant";
analyzer[] = "Classes/ShouldUseSelf";
analyzer[] = "Classes/StaticCannotCallNonStatic";
analyzer[] = "Classes/UndeclaredStaticProperty";
analyzer[] = "Classes/UndefinedMethod";
analyzer[] = "Classes/UnfinishedObject";
analyzer[] = "Classes/UninitedProperty";
analyzer[] = "Classes/UnreachableConstant";
analyzer[] = "Classes/UnreachableMethod";
analyzer[] = "Classes/UntypedNoDefaultProperties";
analyzer[] = "Classes/UnusedConstant";
analyzer[] = "Classes/UselessAssignationOfPromotedProperty";
analyzer[] = "Classes/UselessConstantOverwrite";
analyzer[] = "Classes/UselessNullSafeOperator";
analyzer[] = "Classes/UselessTypehint";
analyzer[] = "Classes/WrongTypedPropertyInit";
analyzer[] = "Enums/NoMagicMethod";
analyzer[] = "Enums/UndefinedEnumcase";
analyzer[] = "Exceptions/SetChainingException";
analyzer[] = "Functions/ExceedingTypehint";
analyzer[] = "Functions/ModifyTypedParameter";
analyzer[] = "Functions/NullableWithoutCheck";
analyzer[] = "Functions/TypeDodging";
analyzer[] = "Functions/WrongReturnedType";
analyzer[] = "Interfaces/AvoidSelfInInterface";
analyzer[] = "Interfaces/IsNotImplemented";
analyzer[] = "Interfaces/NoConstructorInInterface";
analyzer[] = "Interfaces/NoGaranteeForPropertyConstant";
analyzer[] = "Interfaces/UselessInterfaces";
analyzer[] = "Performances/MemoizeMagicCall";
analyzer[] = "Performances/StaticCallWithSelf";
analyzer[] = "Php/MissingMagicIsset";
analyzer[] = "Structures/CouldBeStatic";

(continues on next page)

10.5. Predefined config files 359

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/DoubleObjectAssignation";
analyzer[] = "Traits/IncompatibleProperty";
analyzer[] = "Traits/SelfUsingTrait";
analyzer[] = "Traits/SidelinedMethod";
analyzer[] = "Traits/TraitIsNotAType";
analyzer[] = "Traits/UnusedClassTrait";
analyzer[] = "Traits/UsedOnceTrait";
analyzer[] = "Typehints/WrongTypeWithDefault";
analyzer[] = "Variables/NoStaticVarInMethod";

Class Review for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'Class Review':
- 'Classes/AbstractConstants'
- 'Classes/AvoidOptionArrays'
- 'Classes/CancelCommonMethod'
- 'Classes/CannotBeReadonly'
- 'Classes/CantInstantiateNonClass'
- 'Classes/CantOverwriteFinalConstant'
- 'Classes/ClassInvasion'
- 'Classes/ConstantClass'
- 'Classes/CouldBeAbstractClass'
- 'Classes/CouldBeClassConstant'
- 'Classes/CouldBeFinal'
- 'Classes/CouldBeParentMethod'
- 'Classes/CouldBePrivate'
- 'Classes/CouldBePrivateConstante'
- 'Classes/CouldBePrivateMethod'
- 'Classes/CouldBeProtectedConstant'
- 'Classes/CouldBeProtectedMethod'
- 'Classes/CouldBeProtectedProperty'
- 'Classes/CouldBeReadonly'
- 'Classes/CouldBeReadonlyProperty'
- 'Classes/CouldBeStatic'
- 'Classes/CouldBeStringable'
- 'Classes/CouldInjectParam'
- 'Classes/CouldSetPropertyDefault'
- 'Classes/CyclicReferences'
- 'Classes/DependantAbstractClass'
- 'Classes/DifferentArgumentCounts'
- 'Classes/DisconnectedClasses'
- 'Classes/ExportProperty'
- 'Classes/FinalByOcramius'
- 'Classes/FinalPrivate'
- 'Classes/Finalclass'
- 'Classes/Finalmethod'
- 'Classes/FossilizedMethod'

(continues on next page)

360 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Classes/HiddenNullable'
- 'Classes/IncompatibleConstructor'
- 'Classes/InheritedPropertyMustMatch'
- 'Classes/InsufficientPropertyTypehint'
- 'Classes/LoweredAccessLevel'
- 'Classes/MagicMethodReturntypes'
- 'Classes/MismatchProperties'
- 'Classes/MissingAbstractMethod'
- 'Classes/MissingVisibility'
- 'Classes/MultiplePropertyDeclaration'
- 'Classes/MutualExtension'
- 'Classes/NewThenCall'
- 'Classes/NoNullWithNullSafeOperator'
- 'Classes/NoParent'
- 'Classes/NoReadonlyAssignationInGlobal'
- 'Classes/NoSelfReferencingConstant'
- 'Classes/NonNullableSetters'
- 'Classes/ParentIsNotStatic'
- 'Classes/PropertyCouldBeLocal'
- 'Classes/PropertyInvasion'
- 'Classes/PropertyMethodSameName'
- 'Classes/RaisedAccessLevel'
- 'Classes/RedefinedMethods'
- 'Classes/RedefinedProperty'
- 'Classes/RewroteFinalClassConstant'
- 'Classes/ShouldUseSelf'
- 'Classes/StaticCannotCallNonStatic'
- 'Classes/UndeclaredStaticProperty'
- 'Classes/UndefinedMethod'
- 'Classes/UnfinishedObject'
- 'Classes/UninitedProperty'
- 'Classes/UnreachableConstant'
- 'Classes/UnreachableMethod'
- 'Classes/UntypedNoDefaultProperties'
- 'Classes/UnusedConstant'
- 'Classes/UselessAssignationOfPromotedProperty'
- 'Classes/UselessConstantOverwrite'
- 'Classes/UselessNullSafeOperator'
- 'Classes/UselessTypehint'
- 'Classes/WrongTypedPropertyInit'
- 'Enums/NoMagicMethod'
- 'Enums/UndefinedEnumcase'
- 'Exceptions/SetChainingException'
- 'Functions/ExceedingTypehint'
- 'Functions/ModifyTypedParameter'
- 'Functions/NullableWithoutCheck'
- 'Functions/TypeDodging'
- 'Functions/WrongReturnedType'
- 'Interfaces/AvoidSelfInInterface'
- 'Interfaces/IsNotImplemented'
- 'Interfaces/NoConstructorInInterface'
- 'Interfaces/NoGaranteeForPropertyConstant'

(continues on next page)

10.5. Predefined config files 361

Exakat Documentation, Release 1

(continued from previous page)

- 'Interfaces/UselessInterfaces'
- 'Performances/MemoizeMagicCall'
- 'Performances/StaticCallWithSelf'
- 'Php/MissingMagicIsset'
- 'Structures/CouldBeStatic'
- 'Structures/DoubleObjectAssignation'
- 'Traits/IncompatibleProperty'
- 'Traits/SelfUsingTrait'
- 'Traits/SidelinedMethod'
- 'Traits/TraitIsNotAType'
- 'Traits/UnusedClassTrait'
- 'Traits/UsedOnceTrait'
- 'Typehints/WrongTypeWithDefault'
- 'Variables/NoStaticVarInMethod'

10.5.9 Classdependencies

Classdependencies for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[Classdependencies]
analyzer[] = "Dump/CollectClassesDependencies";

Classdependencies for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'Classdependencies':
- 'Dump/CollectClassesDependencies'

10.5.10 Coding conventions

Coding conventions for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[Coding conventions]
analyzer[] = "Arrays/EmptySlots";
analyzer[] = "Arrays/MistakenConcatenation";
analyzer[] = "Classes/MultipleClassesInFile";
analyzer[] = "Classes/MultiplePropertyDeclarationOnOneLine";
analyzer[] = "Classes/OrderOfDeclaration";
analyzer[] = "Classes/WrongCase";
analyzer[] = "Constants/ConstRecommended";
analyzer[] = "Functions/OneLetterFunctions";

(continues on next page)

362 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Functions/WrongCase";
analyzer[] = "Functions/WrongTypehintedName";
analyzer[] = "Namespaces/UseWithFullyQualifiedNS";
analyzer[] = "Namespaces/WrongCase";
analyzer[] = "Php/CloseTags";
analyzer[] = "Php/ReturnWithParenthesis";
analyzer[] = "Php/UpperCaseFunction";
analyzer[] = "Php/UpperCaseKeyword";
analyzer[] = "Structures/Bracketless";
analyzer[] = "Structures/ConstantComparisonConsistance";
analyzer[] = "Structures/DontBeTooManual";
analyzer[] = "Structures/EchoPrintConsistance";
analyzer[] = "Structures/HeredocDelimiterFavorite";
analyzer[] = "Structures/MixedConcatInterpolation";
analyzer[] = "Structures/PlusEgalOne";
analyzer[] = "Structures/UselessTrailingComma";
analyzer[] = "Structures/YodaComparison";
analyzer[] = "Type/ShouldBeSingleQuote";
analyzer[] = "Type/SimilarIntegers";
analyzer[] = "Type/StringInterpolation";
analyzer[] = "Variables/VariableUppercase";

Coding conventions for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'Coding conventions':
- 'Arrays/EmptySlots'
- 'Arrays/MistakenConcatenation'
- 'Classes/MultipleClassesInFile'
- 'Classes/MultiplePropertyDeclarationOnOneLine'
- 'Classes/OrderOfDeclaration'
- 'Classes/WrongCase'
- 'Constants/ConstRecommended'
- 'Functions/OneLetterFunctions'
- 'Functions/WrongCase'
- 'Functions/WrongTypehintedName'
- 'Namespaces/UseWithFullyQualifiedNS'
- 'Namespaces/WrongCase'
- 'Php/CloseTags'
- 'Php/ReturnWithParenthesis'
- 'Php/UpperCaseFunction'
- 'Php/UpperCaseKeyword'
- 'Structures/Bracketless'
- 'Structures/ConstantComparisonConsistance'
- 'Structures/DontBeTooManual'
- 'Structures/EchoPrintConsistance'
- 'Structures/HeredocDelimiterFavorite'
- 'Structures/MixedConcatInterpolation'

(continues on next page)

10.5. Predefined config files 363

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/PlusEgalOne'
- 'Structures/UselessTrailingComma'
- 'Structures/YodaComparison'
- 'Type/ShouldBeSingleQuote'
- 'Type/SimilarIntegers'
- 'Type/StringInterpolation'
- 'Variables/VariableUppercase'

10.5.11 CompatibilityPHP53

CompatibilityPHP53 for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[CompatibilityPHP53]
analyzer[] = "Arrays/ArrayNSUsage";
analyzer[] = "Arrays/MixedKeys";
analyzer[] = "Classes/Anonymous";
analyzer[] = "Classes/CantInheritAbstractMethod";
analyzer[] = "Classes/ChildRemoveTypehint";
analyzer[] = "Classes/ConstVisibilityUsage";
analyzer[] = "Classes/IntegerAsProperty";
analyzer[] = "Classes/NewDynamicConstantSyntax";
analyzer[] = "Classes/NonStaticMethodsCalledStatic";
analyzer[] = "Classes/NullOnNew";
analyzer[] = "Classes/TypedClassConstants";
analyzer[] = "Exceptions/MultipleCatch";
analyzer[] = "Extensions/Extdba";
analyzer[] = "Functions/GeneratorCannotReturn";
analyzer[] = "Functions/MultipleSameArguments";
analyzer[] = "Functions/VoidIsNotAReference";
analyzer[] = "Interfaces/CantOverloadConstants";
analyzer[] = "Namespaces/UseFunctionsConstants";
analyzer[] = "Php/CantUseReturnValueInWriteContext";
analyzer[] = "Php/CaseForPSS";
analyzer[] = "Php/ClassAliasSupportsInternalClasses";
analyzer[] = "Php/ClassConstWithArray";
analyzer[] = "Php/CloneConstant";
analyzer[] = "Php/ClosureThisSupport";
analyzer[] = "Php/CoalesceEqual";
analyzer[] = "Php/ConcatAndAddition";
analyzer[] = "Php/ConstWithArray";
analyzer[] = "Php/ConstantScalarExpression";
analyzer[] = "Php/DefineWithArray";
analyzer[] = "Php/DirectCallToClone";
analyzer[] = "Php/EllipsisUsage";
analyzer[] = "Php/EnumUsage";
analyzer[] = "Php/ExponentUsage";
analyzer[] = "Php/FilesFullPath";
analyzer[] = "Php/FlexibleHeredoc";
analyzer[] = "Php/GroupUseDeclaration";

(continues on next page)

364 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Php/GroupUseTrailingComma";
analyzer[] = "Php/HashAlgos53";
analyzer[] = "Php/HashAlgos71";
analyzer[] = "Php/ListShortSyntax";
analyzer[] = "Php/ListWithKeys";
analyzer[] = "Php/ListWithReference";
analyzer[] = "Php/MethodCallOnNew";
analyzer[] = "Php/NamedParameterUsage";
analyzer[] = "Php/NeverTypehintUsage";
analyzer[] = "Php/NoListWithString";
analyzer[] = "Php/NoReferenceForStaticProperty";
analyzer[] = "Php/NoReturnForGenerator";
analyzer[] = "Php/NoStringWithAppend";
analyzer[] = "Php/NoSubstrMinusOne";
analyzer[] = "Php/PHP70scalartypehints";
analyzer[] = "Php/PHP71scalartypehints";
analyzer[] = "Php/PHP72scalartypehints";
analyzer[] = "Php/PHP73LastEmptyArgument";
analyzer[] = "Php/PHP80scalartypehints";
analyzer[] = "Php/PHP81scalartypehints";
analyzer[] = "Php/ParenthesisAsParameter";
analyzer[] = "Php/Php54NewFunctions";
analyzer[] = "Php/Php55NewFunctions";
analyzer[] = "Php/Php56NewFunctions";
analyzer[] = "Php/Php70NewClasses";
analyzer[] = "Php/Php70NewFunctions";
analyzer[] = "Php/Php70NewInterfaces";
analyzer[] = "Php/Php71NewClasses";
analyzer[] = "Php/Php72NewClasses";
analyzer[] = "Php/Php73NewFunctions";
analyzer[] = "Php/Php7RelaxedKeyword";
analyzer[] = "Php/Php81NewTypes";
analyzer[] = "Php/Php82NewTypes";
analyzer[] = "Php/ReadonlyPropertyChangedByCloning";
analyzer[] = "Php/StaticVariableDefaultCanBeAnyExpression";
analyzer[] = "Php/StaticclassUsage";
analyzer[] = "Php/TrailingComma";
analyzer[] = "Php/TypedPropertyUsage";
analyzer[] = "Php/UnicodeEscapePartial";
analyzer[] = "Php/UnicodeEscapeSyntax";
analyzer[] = "Php/UnpackingInsideArrays";
analyzer[] = "Php/UseEnumCaseInConstantExpression";
analyzer[] = "Php/UseNullableType";
analyzer[] = "Php/debugInfoUsage";
analyzer[] = "Structures/Break0";
analyzer[] = "Structures/ConstantScalarExpression";
analyzer[] = "Structures/ContinueIsForLoop";
analyzer[] = "Structures/DereferencingAS";
analyzer[] = "Structures/ForeachWithList";
analyzer[] = "Structures/FunctionSubscripting";
analyzer[] = "Structures/IssetWithConstant";
analyzer[] = "Structures/NoGetClassNull";

(continues on next page)

10.5. Predefined config files 365

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/PHP7Dirname";
analyzer[] = "Structures/SwitchWithMultipleDefault";
analyzer[] = "Structures/VariableGlobal";
analyzer[] = "Traits/FinalTraitsAreFinal";
analyzer[] = "Traits/NoPrivateAbstract";
analyzer[] = "Type/Binary";
analyzer[] = "Type/MalformedOctal";
analyzer[] = "Variables/Php5IndirectExpression";
analyzer[] = "Variables/Php7IndirectExpression";
analyzer[] = "Variables/RedeclaredStaticVariable";

CompatibilityPHP53 for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'CompatibilityPHP53':
- 'Arrays/ArrayNSUsage'
- 'Arrays/MixedKeys'
- 'Classes/Anonymous'
- 'Classes/CantInheritAbstractMethod'
- 'Classes/ChildRemoveTypehint'
- 'Classes/ConstVisibilityUsage'
- 'Classes/IntegerAsProperty'
- 'Classes/NewDynamicConstantSyntax'
- 'Classes/NonStaticMethodsCalledStatic'
- 'Classes/NullOnNew'
- 'Classes/TypedClassConstants'
- 'Exceptions/MultipleCatch'
- 'Extensions/Extdba'
- 'Functions/GeneratorCannotReturn'
- 'Functions/MultipleSameArguments'
- 'Functions/VoidIsNotAReference'
- 'Interfaces/CantOverloadConstants'
- 'Namespaces/UseFunctionsConstants'
- 'Php/CantUseReturnValueInWriteContext'
- 'Php/CaseForPSS'
- 'Php/ClassAliasSupportsInternalClasses'
- 'Php/ClassConstWithArray'
- 'Php/CloneConstant'
- 'Php/ClosureThisSupport'
- 'Php/CoalesceEqual'
- 'Php/ConcatAndAddition'
- 'Php/ConstWithArray'
- 'Php/ConstantScalarExpression'
- 'Php/DefineWithArray'
- 'Php/DirectCallToClone'
- 'Php/EllipsisUsage'
- 'Php/EnumUsage'
- 'Php/ExponentUsage'

(continues on next page)

366 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Php/FilesFullPath'
- 'Php/FlexibleHeredoc'
- 'Php/GroupUseDeclaration'
- 'Php/GroupUseTrailingComma'
- 'Php/HashAlgos53'
- 'Php/HashAlgos71'
- 'Php/ListShortSyntax'
- 'Php/ListWithKeys'
- 'Php/ListWithReference'
- 'Php/MethodCallOnNew'
- 'Php/NamedParameterUsage'
- 'Php/NeverTypehintUsage'
- 'Php/NoListWithString'
- 'Php/NoReferenceForStaticProperty'
- 'Php/NoReturnForGenerator'
- 'Php/NoStringWithAppend'
- 'Php/NoSubstrMinusOne'
- 'Php/PHP70scalartypehints'
- 'Php/PHP71scalartypehints'
- 'Php/PHP72scalartypehints'
- 'Php/PHP73LastEmptyArgument'
- 'Php/PHP80scalartypehints'
- 'Php/PHP81scalartypehints'
- 'Php/ParenthesisAsParameter'
- 'Php/Php54NewFunctions'
- 'Php/Php55NewFunctions'
- 'Php/Php56NewFunctions'
- 'Php/Php70NewClasses'
- 'Php/Php70NewFunctions'
- 'Php/Php70NewInterfaces'
- 'Php/Php71NewClasses'
- 'Php/Php72NewClasses'
- 'Php/Php73NewFunctions'
- 'Php/Php7RelaxedKeyword'
- 'Php/Php81NewTypes'
- 'Php/Php82NewTypes'
- 'Php/ReadonlyPropertyChangedByCloning'
- 'Php/StaticVariableDefaultCanBeAnyExpression'
- 'Php/StaticclassUsage'
- 'Php/TrailingComma'
- 'Php/TypedPropertyUsage'
- 'Php/UnicodeEscapePartial'
- 'Php/UnicodeEscapeSyntax'
- 'Php/UnpackingInsideArrays'
- 'Php/UseEnumCaseInConstantExpression'
- 'Php/UseNullableType'
- 'Php/debugInfoUsage'
- 'Structures/Break0'
- 'Structures/ConstantScalarExpression'
- 'Structures/ContinueIsForLoop'
- 'Structures/DereferencingAS'
- 'Structures/ForeachWithList'

(continues on next page)

10.5. Predefined config files 367

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/FunctionSubscripting'
- 'Structures/IssetWithConstant'
- 'Structures/NoGetClassNull'
- 'Structures/PHP7Dirname'
- 'Structures/SwitchWithMultipleDefault'
- 'Structures/VariableGlobal'
- 'Traits/FinalTraitsAreFinal'
- 'Traits/NoPrivateAbstract'
- 'Type/Binary'
- 'Type/MalformedOctal'
- 'Variables/Php5IndirectExpression'
- 'Variables/Php7IndirectExpression'
- 'Variables/RedeclaredStaticVariable'

10.5.12 CompatibilityPHP54

CompatibilityPHP54 for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[CompatibilityPHP54]
analyzer[] = "Arrays/MixedKeys";
analyzer[] = "Classes/Anonymous";
analyzer[] = "Classes/CantInheritAbstractMethod";
analyzer[] = "Classes/ChildRemoveTypehint";
analyzer[] = "Classes/ConstVisibilityUsage";
analyzer[] = "Classes/IntegerAsProperty";
analyzer[] = "Classes/NewDynamicConstantSyntax";
analyzer[] = "Classes/NonStaticMethodsCalledStatic";
analyzer[] = "Classes/NullOnNew";
analyzer[] = "Classes/TypedClassConstants";
analyzer[] = "Exceptions/MultipleCatch";
analyzer[] = "Functions/GeneratorCannotReturn";
analyzer[] = "Functions/MultipleSameArguments";
analyzer[] = "Functions/VoidIsNotAReference";
analyzer[] = "Interfaces/CantOverloadConstants";
analyzer[] = "Namespaces/UseFunctionsConstants";
analyzer[] = "Php/CantUseReturnValueInWriteContext";
analyzer[] = "Php/CaseForPSS";
analyzer[] = "Php/ClassAliasSupportsInternalClasses";
analyzer[] = "Php/ClassConstWithArray";
analyzer[] = "Php/CloneConstant";
analyzer[] = "Php/CoalesceEqual";
analyzer[] = "Php/ConcatAndAddition";
analyzer[] = "Php/ConstWithArray";
analyzer[] = "Php/ConstantScalarExpression";
analyzer[] = "Php/DefineWithArray";
analyzer[] = "Php/DirectCallToClone";
analyzer[] = "Php/EllipsisUsage";
analyzer[] = "Php/EnumUsage";
analyzer[] = "Php/ExponentUsage";

(continues on next page)

368 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Php/FilesFullPath";
analyzer[] = "Php/FlexibleHeredoc";
analyzer[] = "Php/GroupUseDeclaration";
analyzer[] = "Php/GroupUseTrailingComma";
analyzer[] = "Php/HashAlgos53";
analyzer[] = "Php/HashAlgos54";
analyzer[] = "Php/HashAlgos71";
analyzer[] = "Php/ListShortSyntax";
analyzer[] = "Php/ListWithKeys";
analyzer[] = "Php/ListWithReference";
analyzer[] = "Php/NamedParameterUsage";
analyzer[] = "Php/NeverTypehintUsage";
analyzer[] = "Php/NoListWithString";
analyzer[] = "Php/NoReferenceForStaticProperty";
analyzer[] = "Php/NoReturnForGenerator";
analyzer[] = "Php/NoStringWithAppend";
analyzer[] = "Php/NoSubstrMinusOne";
analyzer[] = "Php/PHP70scalartypehints";
analyzer[] = "Php/PHP71scalartypehints";
analyzer[] = "Php/PHP72scalartypehints";
analyzer[] = "Php/PHP73LastEmptyArgument";
analyzer[] = "Php/PHP80scalartypehints";
analyzer[] = "Php/PHP81scalartypehints";
analyzer[] = "Php/ParenthesisAsParameter";
analyzer[] = "Php/Php54RemovedFunctions";
analyzer[] = "Php/Php55NewFunctions";
analyzer[] = "Php/Php56NewFunctions";
analyzer[] = "Php/Php70NewClasses";
analyzer[] = "Php/Php70NewFunctions";
analyzer[] = "Php/Php70NewInterfaces";
analyzer[] = "Php/Php71NewClasses";
analyzer[] = "Php/Php72NewClasses";
analyzer[] = "Php/Php73NewFunctions";
analyzer[] = "Php/Php7RelaxedKeyword";
analyzer[] = "Php/Php81NewTypes";
analyzer[] = "Php/Php82NewTypes";
analyzer[] = "Php/ReadonlyPropertyChangedByCloning";
analyzer[] = "Php/StaticVariableDefaultCanBeAnyExpression";
analyzer[] = "Php/StaticclassUsage";
analyzer[] = "Php/TrailingComma";
analyzer[] = "Php/TypedPropertyUsage";
analyzer[] = "Php/UnicodeEscapePartial";
analyzer[] = "Php/UnicodeEscapeSyntax";
analyzer[] = "Php/UnpackingInsideArrays";
analyzer[] = "Php/UseEnumCaseInConstantExpression";
analyzer[] = "Php/UseNullableType";
analyzer[] = "Php/debugInfoUsage";
analyzer[] = "Structures/BreakNonInteger";
analyzer[] = "Structures/CalltimePassByReference";
analyzer[] = "Structures/ConstantScalarExpression";
analyzer[] = "Structures/ContinueIsForLoop";
analyzer[] = "Structures/CryptWithoutSalt";

(continues on next page)

10.5. Predefined config files 369

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/DereferencingAS";
analyzer[] = "Structures/ForeachWithList";
analyzer[] = "Structures/IssetWithConstant";
analyzer[] = "Structures/NoGetClassNull";
analyzer[] = "Structures/PHP7Dirname";
analyzer[] = "Structures/SwitchWithMultipleDefault";
analyzer[] = "Structures/VariableGlobal";
analyzer[] = "Traits/FinalTraitsAreFinal";
analyzer[] = "Traits/NoPrivateAbstract";
analyzer[] = "Type/MalformedOctal";
analyzer[] = "Variables/Php5IndirectExpression";
analyzer[] = "Variables/Php7IndirectExpression";
analyzer[] = "Variables/RedeclaredStaticVariable";

CompatibilityPHP54 for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'CompatibilityPHP54':
- 'Arrays/MixedKeys'
- 'Classes/Anonymous'
- 'Classes/CantInheritAbstractMethod'
- 'Classes/ChildRemoveTypehint'
- 'Classes/ConstVisibilityUsage'
- 'Classes/IntegerAsProperty'
- 'Classes/NewDynamicConstantSyntax'
- 'Classes/NonStaticMethodsCalledStatic'
- 'Classes/NullOnNew'
- 'Classes/TypedClassConstants'
- 'Exceptions/MultipleCatch'
- 'Functions/GeneratorCannotReturn'
- 'Functions/MultipleSameArguments'
- 'Functions/VoidIsNotAReference'
- 'Interfaces/CantOverloadConstants'
- 'Namespaces/UseFunctionsConstants'
- 'Php/CantUseReturnValueInWriteContext'
- 'Php/CaseForPSS'
- 'Php/ClassAliasSupportsInternalClasses'
- 'Php/ClassConstWithArray'
- 'Php/CloneConstant'
- 'Php/CoalesceEqual'
- 'Php/ConcatAndAddition'
- 'Php/ConstWithArray'
- 'Php/ConstantScalarExpression'
- 'Php/DefineWithArray'
- 'Php/DirectCallToClone'
- 'Php/EllipsisUsage'
- 'Php/EnumUsage'
- 'Php/ExponentUsage'

(continues on next page)

370 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Php/FilesFullPath'
- 'Php/FlexibleHeredoc'
- 'Php/GroupUseDeclaration'
- 'Php/GroupUseTrailingComma'
- 'Php/HashAlgos53'
- 'Php/HashAlgos54'
- 'Php/HashAlgos71'
- 'Php/ListShortSyntax'
- 'Php/ListWithKeys'
- 'Php/ListWithReference'
- 'Php/NamedParameterUsage'
- 'Php/NeverTypehintUsage'
- 'Php/NoListWithString'
- 'Php/NoReferenceForStaticProperty'
- 'Php/NoReturnForGenerator'
- 'Php/NoStringWithAppend'
- 'Php/NoSubstrMinusOne'
- 'Php/PHP70scalartypehints'
- 'Php/PHP71scalartypehints'
- 'Php/PHP72scalartypehints'
- 'Php/PHP73LastEmptyArgument'
- 'Php/PHP80scalartypehints'
- 'Php/PHP81scalartypehints'
- 'Php/ParenthesisAsParameter'
- 'Php/Php54RemovedFunctions'
- 'Php/Php55NewFunctions'
- 'Php/Php56NewFunctions'
- 'Php/Php70NewClasses'
- 'Php/Php70NewFunctions'
- 'Php/Php70NewInterfaces'
- 'Php/Php71NewClasses'
- 'Php/Php72NewClasses'
- 'Php/Php73NewFunctions'
- 'Php/Php7RelaxedKeyword'
- 'Php/Php81NewTypes'
- 'Php/Php82NewTypes'
- 'Php/ReadonlyPropertyChangedByCloning'
- 'Php/StaticVariableDefaultCanBeAnyExpression'
- 'Php/StaticclassUsage'
- 'Php/TrailingComma'
- 'Php/TypedPropertyUsage'
- 'Php/UnicodeEscapePartial'
- 'Php/UnicodeEscapeSyntax'
- 'Php/UnpackingInsideArrays'
- 'Php/UseEnumCaseInConstantExpression'
- 'Php/UseNullableType'
- 'Php/debugInfoUsage'
- 'Structures/BreakNonInteger'
- 'Structures/CalltimePassByReference'
- 'Structures/ConstantScalarExpression'
- 'Structures/ContinueIsForLoop'
- 'Structures/CryptWithoutSalt'

(continues on next page)

10.5. Predefined config files 371

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/DereferencingAS'
- 'Structures/ForeachWithList'
- 'Structures/IssetWithConstant'
- 'Structures/NoGetClassNull'
- 'Structures/PHP7Dirname'
- 'Structures/SwitchWithMultipleDefault'
- 'Structures/VariableGlobal'
- 'Traits/FinalTraitsAreFinal'
- 'Traits/NoPrivateAbstract'
- 'Type/MalformedOctal'
- 'Variables/Php5IndirectExpression'
- 'Variables/Php7IndirectExpression'
- 'Variables/RedeclaredStaticVariable'

10.5.13 CompatibilityPHP55

CompatibilityPHP55 for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[CompatibilityPHP55]
analyzer[] = "Classes/Anonymous";
analyzer[] = "Classes/CantInheritAbstractMethod";
analyzer[] = "Classes/ChildRemoveTypehint";
analyzer[] = "Classes/ConstVisibilityUsage";
analyzer[] = "Classes/IntegerAsProperty";
analyzer[] = "Classes/NewDynamicConstantSyntax";
analyzer[] = "Classes/NonStaticMethodsCalledStatic";
analyzer[] = "Classes/NullOnNew";
analyzer[] = "Classes/TypedClassConstants";
analyzer[] = "Exceptions/MultipleCatch";
analyzer[] = "Extensions/Extapc";
analyzer[] = "Extensions/Extmysql";
analyzer[] = "Functions/GeneratorCannotReturn";
analyzer[] = "Functions/MultipleSameArguments";
analyzer[] = "Functions/VoidIsNotAReference";
analyzer[] = "Interfaces/CantOverloadConstants";
analyzer[] = "Namespaces/UseFunctionsConstants";
analyzer[] = "Php/ClassAliasSupportsInternalClasses";
analyzer[] = "Php/ClassConstWithArray";
analyzer[] = "Php/CloneConstant";
analyzer[] = "Php/CoalesceEqual";
analyzer[] = "Php/ConcatAndAddition";
analyzer[] = "Php/ConstWithArray";
analyzer[] = "Php/ConstantScalarExpression";
analyzer[] = "Php/DefineWithArray";
analyzer[] = "Php/DirectCallToClone";
analyzer[] = "Php/EllipsisUsage";
analyzer[] = "Php/EnumUsage";
analyzer[] = "Php/ExponentUsage";
analyzer[] = "Php/FilesFullPath";

(continues on next page)

372 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Php/FlexibleHeredoc";
analyzer[] = "Php/GroupUseDeclaration";
analyzer[] = "Php/GroupUseTrailingComma";
analyzer[] = "Php/HashAlgos53";
analyzer[] = "Php/HashAlgos54";
analyzer[] = "Php/HashAlgos71";
analyzer[] = "Php/ListShortSyntax";
analyzer[] = "Php/ListWithKeys";
analyzer[] = "Php/ListWithReference";
analyzer[] = "Php/NamedParameterUsage";
analyzer[] = "Php/NeverTypehintUsage";
analyzer[] = "Php/NoListWithString";
analyzer[] = "Php/NoReferenceForStaticProperty";
analyzer[] = "Php/NoReturnForGenerator";
analyzer[] = "Php/NoStringWithAppend";
analyzer[] = "Php/NoSubstrMinusOne";
analyzer[] = "Php/PHP70scalartypehints";
analyzer[] = "Php/PHP71scalartypehints";
analyzer[] = "Php/PHP72scalartypehints";
analyzer[] = "Php/PHP73LastEmptyArgument";
analyzer[] = "Php/PHP80scalartypehints";
analyzer[] = "Php/PHP81scalartypehints";
analyzer[] = "Php/ParenthesisAsParameter";
analyzer[] = "Php/Password55";
analyzer[] = "Php/Php55RemovedFunctions";
analyzer[] = "Php/Php56NewFunctions";
analyzer[] = "Php/Php70NewClasses";
analyzer[] = "Php/Php70NewFunctions";
analyzer[] = "Php/Php70NewInterfaces";
analyzer[] = "Php/Php71NewClasses";
analyzer[] = "Php/Php72NewClasses";
analyzer[] = "Php/Php73NewFunctions";
analyzer[] = "Php/Php7RelaxedKeyword";
analyzer[] = "Php/Php81NewTypes";
analyzer[] = "Php/Php82NewTypes";
analyzer[] = "Php/ReadonlyPropertyChangedByCloning";
analyzer[] = "Php/StaticVariableDefaultCanBeAnyExpression";
analyzer[] = "Php/TrailingComma";
analyzer[] = "Php/TypedPropertyUsage";
analyzer[] = "Php/UnicodeEscapePartial";
analyzer[] = "Php/UnicodeEscapeSyntax";
analyzer[] = "Php/UnpackingInsideArrays";
analyzer[] = "Php/UseEnumCaseInConstantExpression";
analyzer[] = "Php/UseNullableType";
analyzer[] = "Php/debugInfoUsage";
analyzer[] = "Structures/ConstantScalarExpression";
analyzer[] = "Structures/ContinueIsForLoop";
analyzer[] = "Structures/IssetWithConstant";
analyzer[] = "Structures/NoGetClassNull";
analyzer[] = "Structures/PHP7Dirname";
analyzer[] = "Structures/SwitchWithMultipleDefault";
analyzer[] = "Structures/VariableGlobal";

(continues on next page)

10.5. Predefined config files 373

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Traits/FinalTraitsAreFinal";
analyzer[] = "Traits/NoPrivateAbstract";
analyzer[] = "Type/MalformedOctal";
analyzer[] = "Variables/Php5IndirectExpression";
analyzer[] = "Variables/Php7IndirectExpression";
analyzer[] = "Variables/RedeclaredStaticVariable";

CompatibilityPHP55 for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'CompatibilityPHP55':
- 'Classes/Anonymous'
- 'Classes/CantInheritAbstractMethod'
- 'Classes/ChildRemoveTypehint'
- 'Classes/ConstVisibilityUsage'
- 'Classes/IntegerAsProperty'
- 'Classes/NewDynamicConstantSyntax'
- 'Classes/NonStaticMethodsCalledStatic'
- 'Classes/NullOnNew'
- 'Classes/TypedClassConstants'
- 'Exceptions/MultipleCatch'
- 'Extensions/Extapc'
- 'Extensions/Extmysql'
- 'Functions/GeneratorCannotReturn'
- 'Functions/MultipleSameArguments'
- 'Functions/VoidIsNotAReference'
- 'Interfaces/CantOverloadConstants'
- 'Namespaces/UseFunctionsConstants'
- 'Php/ClassAliasSupportsInternalClasses'
- 'Php/ClassConstWithArray'
- 'Php/CloneConstant'
- 'Php/CoalesceEqual'
- 'Php/ConcatAndAddition'
- 'Php/ConstWithArray'
- 'Php/ConstantScalarExpression'
- 'Php/DefineWithArray'
- 'Php/DirectCallToClone'
- 'Php/EllipsisUsage'
- 'Php/EnumUsage'
- 'Php/ExponentUsage'
- 'Php/FilesFullPath'
- 'Php/FlexibleHeredoc'
- 'Php/GroupUseDeclaration'
- 'Php/GroupUseTrailingComma'
- 'Php/HashAlgos53'
- 'Php/HashAlgos54'
- 'Php/HashAlgos71'
- 'Php/ListShortSyntax'

(continues on next page)

374 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Php/ListWithKeys'
- 'Php/ListWithReference'
- 'Php/NamedParameterUsage'
- 'Php/NeverTypehintUsage'
- 'Php/NoListWithString'
- 'Php/NoReferenceForStaticProperty'
- 'Php/NoReturnForGenerator'
- 'Php/NoStringWithAppend'
- 'Php/NoSubstrMinusOne'
- 'Php/PHP70scalartypehints'
- 'Php/PHP71scalartypehints'
- 'Php/PHP72scalartypehints'
- 'Php/PHP73LastEmptyArgument'
- 'Php/PHP80scalartypehints'
- 'Php/PHP81scalartypehints'
- 'Php/ParenthesisAsParameter'
- 'Php/Password55'
- 'Php/Php55RemovedFunctions'
- 'Php/Php56NewFunctions'
- 'Php/Php70NewClasses'
- 'Php/Php70NewFunctions'
- 'Php/Php70NewInterfaces'
- 'Php/Php71NewClasses'
- 'Php/Php72NewClasses'
- 'Php/Php73NewFunctions'
- 'Php/Php7RelaxedKeyword'
- 'Php/Php81NewTypes'
- 'Php/Php82NewTypes'
- 'Php/ReadonlyPropertyChangedByCloning'
- 'Php/StaticVariableDefaultCanBeAnyExpression'
- 'Php/TrailingComma'
- 'Php/TypedPropertyUsage'
- 'Php/UnicodeEscapePartial'
- 'Php/UnicodeEscapeSyntax'
- 'Php/UnpackingInsideArrays'
- 'Php/UseEnumCaseInConstantExpression'
- 'Php/UseNullableType'
- 'Php/debugInfoUsage'
- 'Structures/ConstantScalarExpression'
- 'Structures/ContinueIsForLoop'
- 'Structures/IssetWithConstant'
- 'Structures/NoGetClassNull'
- 'Structures/PHP7Dirname'
- 'Structures/SwitchWithMultipleDefault'
- 'Structures/VariableGlobal'
- 'Traits/FinalTraitsAreFinal'
- 'Traits/NoPrivateAbstract'
- 'Type/MalformedOctal'
- 'Variables/Php5IndirectExpression'
- 'Variables/Php7IndirectExpression'
- 'Variables/RedeclaredStaticVariable'

10.5. Predefined config files 375

Exakat Documentation, Release 1

10.5.14 CompatibilityPHP56

CompatibilityPHP56 for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[CompatibilityPHP56]
analyzer[] = "Classes/Anonymous";
analyzer[] = "Classes/CantInheritAbstractMethod";
analyzer[] = "Classes/ChildRemoveTypehint";
analyzer[] = "Classes/ConstVisibilityUsage";
analyzer[] = "Classes/IntegerAsProperty";
analyzer[] = "Classes/NewDynamicConstantSyntax";
analyzer[] = "Classes/NonStaticMethodsCalledStatic";
analyzer[] = "Classes/NullOnNew";
analyzer[] = "Classes/TypedClassConstants";
analyzer[] = "Exceptions/MultipleCatch";
analyzer[] = "Functions/GeneratorCannotReturn";
analyzer[] = "Functions/MultipleSameArguments";
analyzer[] = "Functions/VoidIsNotAReference";
analyzer[] = "Interfaces/CantOverloadConstants";
analyzer[] = "Php/ClassAliasSupportsInternalClasses";
analyzer[] = "Php/CloneConstant";
analyzer[] = "Php/CoalesceEqual";
analyzer[] = "Php/ConcatAndAddition";
analyzer[] = "Php/ConstantScalarExpression";
analyzer[] = "Php/DefineWithArray";
analyzer[] = "Php/DirectCallToClone";
analyzer[] = "Php/EnumUsage";
analyzer[] = "Php/FilesFullPath";
analyzer[] = "Php/FlexibleHeredoc";
analyzer[] = "Php/GroupUseDeclaration";
analyzer[] = "Php/GroupUseTrailingComma";
analyzer[] = "Php/HashAlgos53";
analyzer[] = "Php/HashAlgos54";
analyzer[] = "Php/HashAlgos71";
analyzer[] = "Php/ListShortSyntax";
analyzer[] = "Php/ListWithKeys";
analyzer[] = "Php/ListWithReference";
analyzer[] = "Php/NamedParameterUsage";
analyzer[] = "Php/NeverTypehintUsage";
analyzer[] = "Php/NoListWithString";
analyzer[] = "Php/NoReferenceForStaticProperty";
analyzer[] = "Php/NoReturnForGenerator";
analyzer[] = "Php/NoStringWithAppend";
analyzer[] = "Php/NoSubstrMinusOne";
analyzer[] = "Php/PHP70scalartypehints";
analyzer[] = "Php/PHP71scalartypehints";
analyzer[] = "Php/PHP72scalartypehints";
analyzer[] = "Php/PHP73LastEmptyArgument";
analyzer[] = "Php/PHP80scalartypehints";
analyzer[] = "Php/PHP81scalartypehints";
analyzer[] = "Php/ParenthesisAsParameter";

(continues on next page)

376 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Php/Php70NewClasses";
analyzer[] = "Php/Php70NewFunctions";
analyzer[] = "Php/Php70NewInterfaces";
analyzer[] = "Php/Php71NewClasses";
analyzer[] = "Php/Php72NewClasses";
analyzer[] = "Php/Php73NewFunctions";
analyzer[] = "Php/Php7RelaxedKeyword";
analyzer[] = "Php/Php80OnlyTypeHints";
analyzer[] = "Php/Php81NewTypes";
analyzer[] = "Php/Php82NewTypes";
analyzer[] = "Php/RawPostDataUsage";
analyzer[] = "Php/ReadonlyPropertyChangedByCloning";
analyzer[] = "Php/StaticVariableDefaultCanBeAnyExpression";
analyzer[] = "Php/TrailingComma";
analyzer[] = "Php/TypedPropertyUsage";
analyzer[] = "Php/UnicodeEscapePartial";
analyzer[] = "Php/UnicodeEscapeSyntax";
analyzer[] = "Php/UnpackingInsideArrays";
analyzer[] = "Php/UseEnumCaseInConstantExpression";
analyzer[] = "Php/UseNullableType";
analyzer[] = "Structures/ContinueIsForLoop";
analyzer[] = "Structures/IssetWithConstant";
analyzer[] = "Structures/NoGetClassNull";
analyzer[] = "Structures/PHP7Dirname";
analyzer[] = "Structures/SwitchWithMultipleDefault";
analyzer[] = "Structures/VariableGlobal";
analyzer[] = "Traits/FinalTraitsAreFinal";
analyzer[] = "Traits/NoPrivateAbstract";
analyzer[] = "Type/MalformedOctal";
analyzer[] = "Variables/Php5IndirectExpression";
analyzer[] = "Variables/Php7IndirectExpression";
analyzer[] = "Variables/RedeclaredStaticVariable";

CompatibilityPHP56 for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'CompatibilityPHP56':
- 'Classes/Anonymous'
- 'Classes/CantInheritAbstractMethod'
- 'Classes/ChildRemoveTypehint'
- 'Classes/ConstVisibilityUsage'
- 'Classes/IntegerAsProperty'
- 'Classes/NewDynamicConstantSyntax'
- 'Classes/NonStaticMethodsCalledStatic'
- 'Classes/NullOnNew'
- 'Classes/TypedClassConstants'
- 'Exceptions/MultipleCatch'
- 'Functions/GeneratorCannotReturn'

(continues on next page)

10.5. Predefined config files 377

Exakat Documentation, Release 1

(continued from previous page)

- 'Functions/MultipleSameArguments'
- 'Functions/VoidIsNotAReference'
- 'Interfaces/CantOverloadConstants'
- 'Php/ClassAliasSupportsInternalClasses'
- 'Php/CloneConstant'
- 'Php/CoalesceEqual'
- 'Php/ConcatAndAddition'
- 'Php/ConstantScalarExpression'
- 'Php/DefineWithArray'
- 'Php/DirectCallToClone'
- 'Php/EnumUsage'
- 'Php/FilesFullPath'
- 'Php/FlexibleHeredoc'
- 'Php/GroupUseDeclaration'
- 'Php/GroupUseTrailingComma'
- 'Php/HashAlgos53'
- 'Php/HashAlgos54'
- 'Php/HashAlgos71'
- 'Php/ListShortSyntax'
- 'Php/ListWithKeys'
- 'Php/ListWithReference'
- 'Php/NamedParameterUsage'
- 'Php/NeverTypehintUsage'
- 'Php/NoListWithString'
- 'Php/NoReferenceForStaticProperty'
- 'Php/NoReturnForGenerator'
- 'Php/NoStringWithAppend'
- 'Php/NoSubstrMinusOne'
- 'Php/PHP70scalartypehints'
- 'Php/PHP71scalartypehints'
- 'Php/PHP72scalartypehints'
- 'Php/PHP73LastEmptyArgument'
- 'Php/PHP80scalartypehints'
- 'Php/PHP81scalartypehints'
- 'Php/ParenthesisAsParameter'
- 'Php/Php70NewClasses'
- 'Php/Php70NewFunctions'
- 'Php/Php70NewInterfaces'
- 'Php/Php71NewClasses'
- 'Php/Php72NewClasses'
- 'Php/Php73NewFunctions'
- 'Php/Php7RelaxedKeyword'
- 'Php/Php80OnlyTypeHints'
- 'Php/Php81NewTypes'
- 'Php/Php82NewTypes'
- 'Php/RawPostDataUsage'
- 'Php/ReadonlyPropertyChangedByCloning'
- 'Php/StaticVariableDefaultCanBeAnyExpression'
- 'Php/TrailingComma'
- 'Php/TypedPropertyUsage'
- 'Php/UnicodeEscapePartial'
- 'Php/UnicodeEscapeSyntax'

(continues on next page)

378 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Php/UnpackingInsideArrays'
- 'Php/UseEnumCaseInConstantExpression'
- 'Php/UseNullableType'
- 'Structures/ContinueIsForLoop'
- 'Structures/IssetWithConstant'
- 'Structures/NoGetClassNull'
- 'Structures/PHP7Dirname'
- 'Structures/SwitchWithMultipleDefault'
- 'Structures/VariableGlobal'
- 'Traits/FinalTraitsAreFinal'
- 'Traits/NoPrivateAbstract'
- 'Type/MalformedOctal'
- 'Variables/Php5IndirectExpression'
- 'Variables/Php7IndirectExpression'
- 'Variables/RedeclaredStaticVariable'

10.5.15 CompatibilityPHP70

CompatibilityPHP70 for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[CompatibilityPHP70]
analyzer[] = "Classes/CantInheritAbstractMethod";
analyzer[] = "Classes/ChildRemoveTypehint";
analyzer[] = "Classes/ConstVisibilityUsage";
analyzer[] = "Classes/IntegerAsProperty";
analyzer[] = "Classes/NewDynamicConstantSyntax";
analyzer[] = "Classes/TypedClassConstants";
analyzer[] = "Classes/toStringPss";
analyzer[] = "Exceptions/MultipleCatch";
analyzer[] = "Functions/VoidIsNotAReference";
analyzer[] = "Functions/funcGetArgModified";
analyzer[] = "Interfaces/CantOverloadConstants";
analyzer[] = "Php/ClassAliasSupportsInternalClasses";
analyzer[] = "Php/CloneConstant";
analyzer[] = "Php/CoalesceEqual";
analyzer[] = "Php/ConcatAndAddition";
analyzer[] = "Php/EmptyList";
analyzer[] = "Php/EnumUsage";
analyzer[] = "Php/FilesFullPath";
analyzer[] = "Php/FinalConstant";
analyzer[] = "Php/FlexibleHeredoc";
analyzer[] = "Php/ForeachDontChangePointer";
analyzer[] = "Php/GlobalWithoutSimpleVariable";
analyzer[] = "Php/GroupUseTrailingComma";
analyzer[] = "Php/HashAlgos53";
analyzer[] = "Php/HashAlgos54";
analyzer[] = "Php/HashAlgos71";
analyzer[] = "Php/ListShortSyntax";
analyzer[] = "Php/ListWithAppends";

(continues on next page)

10.5. Predefined config files 379

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Php/ListWithKeys";
analyzer[] = "Php/ListWithReference";
analyzer[] = "Php/NamedParameterUsage";
analyzer[] = "Php/NeverTypehintUsage";
analyzer[] = "Php/NoReferenceForStaticProperty";
analyzer[] = "Php/NoSubstrMinusOne";
analyzer[] = "Php/PHP71scalartypehints";
analyzer[] = "Php/PHP72scalartypehints";
analyzer[] = "Php/PHP73LastEmptyArgument";
analyzer[] = "Php/PHP80scalartypehints";
analyzer[] = "Php/PHP81scalartypehints";
analyzer[] = "Php/Php70RemovedDirective";
analyzer[] = "Php/Php70RemovedFunctions";
analyzer[] = "Php/Php71NewClasses";
analyzer[] = "Php/Php72NewClasses";
analyzer[] = "Php/Php73NewFunctions";
analyzer[] = "Php/Php80OnlyTypeHints";
analyzer[] = "Php/Php80UnionTypehint";
analyzer[] = "Php/Php81NewTypes";
analyzer[] = "Php/Php82NewTypes";
analyzer[] = "Php/ReadonlyPropertyChangedByCloning";
analyzer[] = "Php/ReservedKeywords7";
analyzer[] = "Php/SetExceptionHandlerPHP7";
analyzer[] = "Php/StaticVariableDefaultCanBeAnyExpression";
analyzer[] = "Php/TrailingComma";
analyzer[] = "Php/TypedPropertyUsage";
analyzer[] = "Php/UnpackingInsideArrays";
analyzer[] = "Php/UseEnumCaseInConstantExpression";
analyzer[] = "Php/UseNullableType";
analyzer[] = "Php/UsortSorting";
analyzer[] = "Structures/BreakOutsideLoop";
analyzer[] = "Structures/ContinueIsForLoop";
analyzer[] = "Structures/McryptcreateivWithoutOption";
analyzer[] = "Structures/NoGetClassNull";
analyzer[] = "Structures/SetlocaleNeedsConstants";
analyzer[] = "Structures/pregOptionE";
analyzer[] = "Traits/FinalTraitsAreFinal";
analyzer[] = "Traits/NoPrivateAbstract";
analyzer[] = "Type/HexadecimalString";
analyzer[] = "Variables/Php7IndirectExpression";
analyzer[] = "Variables/RedeclaredStaticVariable";

380 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

CompatibilityPHP70 for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'CompatibilityPHP70':
- 'Classes/CantInheritAbstractMethod'
- 'Classes/ChildRemoveTypehint'
- 'Classes/ConstVisibilityUsage'
- 'Classes/IntegerAsProperty'
- 'Classes/NewDynamicConstantSyntax'
- 'Classes/TypedClassConstants'
- 'Classes/toStringPss'
- 'Exceptions/MultipleCatch'
- 'Functions/VoidIsNotAReference'
- 'Functions/funcGetArgModified'
- 'Interfaces/CantOverloadConstants'
- 'Php/ClassAliasSupportsInternalClasses'
- 'Php/CloneConstant'
- 'Php/CoalesceEqual'
- 'Php/ConcatAndAddition'
- 'Php/EmptyList'
- 'Php/EnumUsage'
- 'Php/FilesFullPath'
- 'Php/FinalConstant'
- 'Php/FlexibleHeredoc'
- 'Php/ForeachDontChangePointer'
- 'Php/GlobalWithoutSimpleVariable'
- 'Php/GroupUseTrailingComma'
- 'Php/HashAlgos53'
- 'Php/HashAlgos54'
- 'Php/HashAlgos71'
- 'Php/ListShortSyntax'
- 'Php/ListWithAppends'
- 'Php/ListWithKeys'
- 'Php/ListWithReference'
- 'Php/NamedParameterUsage'
- 'Php/NeverTypehintUsage'
- 'Php/NoReferenceForStaticProperty'
- 'Php/NoSubstrMinusOne'
- 'Php/PHP71scalartypehints'
- 'Php/PHP72scalartypehints'
- 'Php/PHP73LastEmptyArgument'
- 'Php/PHP80scalartypehints'
- 'Php/PHP81scalartypehints'
- 'Php/Php70RemovedDirective'
- 'Php/Php70RemovedFunctions'
- 'Php/Php71NewClasses'
- 'Php/Php72NewClasses'
- 'Php/Php73NewFunctions'
- 'Php/Php80OnlyTypeHints'
- 'Php/Php80UnionTypehint'

(continues on next page)

10.5. Predefined config files 381

Exakat Documentation, Release 1

(continued from previous page)

- 'Php/Php81NewTypes'
- 'Php/Php82NewTypes'
- 'Php/ReadonlyPropertyChangedByCloning'
- 'Php/ReservedKeywords7'
- 'Php/SetExceptionHandlerPHP7'
- 'Php/StaticVariableDefaultCanBeAnyExpression'
- 'Php/TrailingComma'
- 'Php/TypedPropertyUsage'
- 'Php/UnpackingInsideArrays'
- 'Php/UseEnumCaseInConstantExpression'
- 'Php/UseNullableType'
- 'Php/UsortSorting'
- 'Structures/BreakOutsideLoop'
- 'Structures/ContinueIsForLoop'
- 'Structures/McryptcreateivWithoutOption'
- 'Structures/NoGetClassNull'
- 'Structures/SetlocaleNeedsConstants'
- 'Structures/pregOptionE'
- 'Traits/FinalTraitsAreFinal'
- 'Traits/NoPrivateAbstract'
- 'Type/HexadecimalString'
- 'Variables/Php7IndirectExpression'
- 'Variables/RedeclaredStaticVariable'

10.5.16 CompatibilityPHP71

CompatibilityPHP71 for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[CompatibilityPHP71]
analyzer[] = "Arrays/StringInitialization";
analyzer[] = "Classes/CantInheritAbstractMethod";
analyzer[] = "Classes/ChildRemoveTypehint";
analyzer[] = "Classes/IntegerAsProperty";
analyzer[] = "Classes/NewDynamicConstantSyntax";
analyzer[] = "Classes/TypedClassConstants";
analyzer[] = "Classes/UsingThisOutsideAClass";
analyzer[] = "Extensions/Extmcrypt";
analyzer[] = "Functions/VoidIsNotAReference";
analyzer[] = "Interfaces/CantOverloadConstants";
analyzer[] = "Namespaces/NoKeywordInNamespace";
analyzer[] = "Php/BetterRand";
analyzer[] = "Php/ClassAliasSupportsInternalClasses";
analyzer[] = "Php/CloneConstant";
analyzer[] = "Php/CoalesceEqual";
analyzer[] = "Php/ConcatAndAddition";
analyzer[] = "Php/EnumUsage";
analyzer[] = "Php/FilesFullPath";
analyzer[] = "Php/FinalConstant";
analyzer[] = "Php/FlexibleHeredoc";

(continues on next page)

382 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Php/GroupUseTrailingComma";
analyzer[] = "Php/HashAlgos53";
analyzer[] = "Php/HashAlgos54";
analyzer[] = "Php/ListWithReference";
analyzer[] = "Php/NamedParameterUsage";
analyzer[] = "Php/NeverTypehintUsage";
analyzer[] = "Php/NoReferenceForStaticProperty";
analyzer[] = "Php/PHP72scalartypehints";
analyzer[] = "Php/PHP73LastEmptyArgument";
analyzer[] = "Php/PHP80scalartypehints";
analyzer[] = "Php/PHP81scalartypehints";
analyzer[] = "Php/Php70RemovedDirective";
analyzer[] = "Php/Php70RemovedFunctions";
analyzer[] = "Php/Php71NewFunctions";
analyzer[] = "Php/Php71RemovedDirective";
analyzer[] = "Php/Php71microseconds";
analyzer[] = "Php/Php72NewClasses";
analyzer[] = "Php/Php73NewFunctions";
analyzer[] = "Php/Php80OnlyTypeHints";
analyzer[] = "Php/Php80UnionTypehint";
analyzer[] = "Php/Php81NewTypes";
analyzer[] = "Php/Php82NewTypes";
analyzer[] = "Php/ReadonlyPropertyChangedByCloning";
analyzer[] = "Php/SignatureTrailingComma";
analyzer[] = "Php/StaticVariableDefaultCanBeAnyExpression";
analyzer[] = "Php/TrailingComma";
analyzer[] = "Php/TypedPropertyUsage";
analyzer[] = "Php/UnpackingInsideArrays";
analyzer[] = "Php/UseEnumCaseInConstantExpression";
analyzer[] = "Structures/ArrayMergeWithEllipsis";
analyzer[] = "Structures/ContinueIsForLoop";
analyzer[] = "Structures/NoGetClassNull";
analyzer[] = "Structures/NoSubstrOne";
analyzer[] = "Structures/pregOptionE";
analyzer[] = "Traits/FinalTraitsAreFinal";
analyzer[] = "Traits/NoPrivateAbstract";
analyzer[] = "Type/HexadecimalString";
analyzer[] = "Type/OctalInString";
analyzer[] = "Variables/RedeclaredStaticVariable";

CompatibilityPHP71 for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'CompatibilityPHP71':
- 'Arrays/StringInitialization'
- 'Classes/CantInheritAbstractMethod'
- 'Classes/ChildRemoveTypehint'
- 'Classes/IntegerAsProperty'

(continues on next page)

10.5. Predefined config files 383

Exakat Documentation, Release 1

(continued from previous page)

- 'Classes/NewDynamicConstantSyntax'
- 'Classes/TypedClassConstants'
- 'Classes/UsingThisOutsideAClass'
- 'Extensions/Extmcrypt'
- 'Functions/VoidIsNotAReference'
- 'Interfaces/CantOverloadConstants'
- 'Namespaces/NoKeywordInNamespace'
- 'Php/BetterRand'
- 'Php/ClassAliasSupportsInternalClasses'
- 'Php/CloneConstant'
- 'Php/CoalesceEqual'
- 'Php/ConcatAndAddition'
- 'Php/EnumUsage'
- 'Php/FilesFullPath'
- 'Php/FinalConstant'
- 'Php/FlexibleHeredoc'
- 'Php/GroupUseTrailingComma'
- 'Php/HashAlgos53'
- 'Php/HashAlgos54'
- 'Php/ListWithReference'
- 'Php/NamedParameterUsage'
- 'Php/NeverTypehintUsage'
- 'Php/NoReferenceForStaticProperty'
- 'Php/PHP72scalartypehints'
- 'Php/PHP73LastEmptyArgument'
- 'Php/PHP80scalartypehints'
- 'Php/PHP81scalartypehints'
- 'Php/Php70RemovedDirective'
- 'Php/Php70RemovedFunctions'
- 'Php/Php71NewFunctions'
- 'Php/Php71RemovedDirective'
- 'Php/Php71microseconds'
- 'Php/Php72NewClasses'
- 'Php/Php73NewFunctions'
- 'Php/Php80OnlyTypeHints'
- 'Php/Php80UnionTypehint'
- 'Php/Php81NewTypes'
- 'Php/Php82NewTypes'
- 'Php/ReadonlyPropertyChangedByCloning'
- 'Php/SignatureTrailingComma'
- 'Php/StaticVariableDefaultCanBeAnyExpression'
- 'Php/TrailingComma'
- 'Php/TypedPropertyUsage'
- 'Php/UnpackingInsideArrays'
- 'Php/UseEnumCaseInConstantExpression'
- 'Structures/ArrayMergeWithEllipsis'
- 'Structures/ContinueIsForLoop'
- 'Structures/NoGetClassNull'
- 'Structures/NoSubstrOne'
- 'Structures/pregOptionE'
- 'Traits/FinalTraitsAreFinal'
- 'Traits/NoPrivateAbstract'

(continues on next page)

384 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Type/HexadecimalString'
- 'Type/OctalInString'
- 'Variables/RedeclaredStaticVariable'

10.5.17 CompatibilityPHP72

CompatibilityPHP72 for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[CompatibilityPHP72]
analyzer[] = "Classes/NewDynamicConstantSyntax";
analyzer[] = "Classes/TypedClassConstants";
analyzer[] = "Constants/UndefinedConstants";
analyzer[] = "Functions/VoidIsNotAReference";
analyzer[] = "Interfaces/CantOverloadConstants";
analyzer[] = "Namespaces/NoKeywordInNamespace";
analyzer[] = "Php/AvoidSetErrorHandlerContextArg";
analyzer[] = "Php/ClassAliasSupportsInternalClasses";
analyzer[] = "Php/CloneConstant";
analyzer[] = "Php/CoalesceEqual";
analyzer[] = "Php/ConcatAndAddition";
analyzer[] = "Php/EnumUsage";
analyzer[] = "Php/FilesFullPath";
analyzer[] = "Php/FinalConstant";
analyzer[] = "Php/FlexibleHeredoc";
analyzer[] = "Php/HashAlgos53";
analyzer[] = "Php/HashAlgos54";
analyzer[] = "Php/HashUsesObjects";
analyzer[] = "Php/ListWithReference";
analyzer[] = "Php/NamedParameterUsage";
analyzer[] = "Php/NeverTypehintUsage";
analyzer[] = "Php/NoReferenceForStaticProperty";
analyzer[] = "Php/PHP73LastEmptyArgument";
analyzer[] = "Php/PHP80scalartypehints";
analyzer[] = "Php/PHP81scalartypehints";
analyzer[] = "Php/Php72Deprecation";
analyzer[] = "Php/Php72NewClasses";
analyzer[] = "Php/Php72NewConstants";
analyzer[] = "Php/Php72NewFunctions";
analyzer[] = "Php/Php72ObjectKeyword";
analyzer[] = "Php/Php72RemovedFunctions";
analyzer[] = "Php/Php73NewFunctions";
analyzer[] = "Php/Php80OnlyTypeHints";
analyzer[] = "Php/Php80UnionTypehint";
analyzer[] = "Php/Php81NewTypes";
analyzer[] = "Php/Php82NewTypes";
analyzer[] = "Php/ReadonlyPropertyChangedByCloning";
analyzer[] = "Php/SignatureTrailingComma";
analyzer[] = "Php/StaticVariableDefaultCanBeAnyExpression";
analyzer[] = "Php/ThrowWasAnExpression";

(continues on next page)

10.5. Predefined config files 385

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Php/TrailingComma";
analyzer[] = "Php/TypedPropertyUsage";
analyzer[] = "Php/UnpackingInsideArrays";
analyzer[] = "Php/UseEnumCaseInConstantExpression";
analyzer[] = "Structures/ArrayMergeWithEllipsis";
analyzer[] = "Structures/CanCountNonCountable";
analyzer[] = "Structures/ContinueIsForLoop";
analyzer[] = "Structures/NoGetClassNull";
analyzer[] = "Structures/pregOptionE";
analyzer[] = "Traits/FinalTraitsAreFinal";
analyzer[] = "Traits/NoPrivateAbstract";
analyzer[] = "Variables/RedeclaredStaticVariable";

CompatibilityPHP72 for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'CompatibilityPHP72':
- 'Classes/NewDynamicConstantSyntax'
- 'Classes/TypedClassConstants'
- 'Constants/UndefinedConstants'
- 'Functions/VoidIsNotAReference'
- 'Interfaces/CantOverloadConstants'
- 'Namespaces/NoKeywordInNamespace'
- 'Php/AvoidSetErrorHandlerContextArg'
- 'Php/ClassAliasSupportsInternalClasses'
- 'Php/CloneConstant'
- 'Php/CoalesceEqual'
- 'Php/ConcatAndAddition'
- 'Php/EnumUsage'
- 'Php/FilesFullPath'
- 'Php/FinalConstant'
- 'Php/FlexibleHeredoc'
- 'Php/HashAlgos53'
- 'Php/HashAlgos54'
- 'Php/HashUsesObjects'
- 'Php/ListWithReference'
- 'Php/NamedParameterUsage'
- 'Php/NeverTypehintUsage'
- 'Php/NoReferenceForStaticProperty'
- 'Php/PHP73LastEmptyArgument'
- 'Php/PHP80scalartypehints'
- 'Php/PHP81scalartypehints'
- 'Php/Php72Deprecation'
- 'Php/Php72NewClasses'
- 'Php/Php72NewConstants'
- 'Php/Php72NewFunctions'
- 'Php/Php72ObjectKeyword'
- 'Php/Php72RemovedFunctions'

(continues on next page)

386 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Php/Php73NewFunctions'
- 'Php/Php80OnlyTypeHints'
- 'Php/Php80UnionTypehint'
- 'Php/Php81NewTypes'
- 'Php/Php82NewTypes'
- 'Php/ReadonlyPropertyChangedByCloning'
- 'Php/SignatureTrailingComma'
- 'Php/StaticVariableDefaultCanBeAnyExpression'
- 'Php/ThrowWasAnExpression'
- 'Php/TrailingComma'
- 'Php/TypedPropertyUsage'
- 'Php/UnpackingInsideArrays'
- 'Php/UseEnumCaseInConstantExpression'
- 'Structures/ArrayMergeWithEllipsis'
- 'Structures/CanCountNonCountable'
- 'Structures/ContinueIsForLoop'
- 'Structures/NoGetClassNull'
- 'Structures/pregOptionE'
- 'Traits/FinalTraitsAreFinal'
- 'Traits/NoPrivateAbstract'
- 'Variables/RedeclaredStaticVariable'

10.5.18 CompatibilityPHP73

CompatibilityPHP73 for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[CompatibilityPHP73]
analyzer[] = "Attributes/NestedAttributes";
analyzer[] = "Classes/NewDynamicConstantSyntax";
analyzer[] = "Classes/TypedClassConstants";
analyzer[] = "Constants/CaseInsensitiveConstants";
analyzer[] = "Functions/VoidIsNotAReference";
analyzer[] = "Interfaces/CantOverloadConstants";
analyzer[] = "Namespaces/NoKeywordInNamespace";
analyzer[] = "Php/AssertFunctionIsReserved";
analyzer[] = "Php/ClassAliasSupportsInternalClasses";
analyzer[] = "Php/CloneConstant";
analyzer[] = "Php/CoalesceEqual";
analyzer[] = "Php/CompactInexistant";
analyzer[] = "Php/ConcatAndAddition";
analyzer[] = "Php/EnumUsage";
analyzer[] = "Php/FilesFullPath";
analyzer[] = "Php/FinalConstant";
analyzer[] = "Php/IntegerSeparatorUsage";
analyzer[] = "Php/NamedParameterUsage";
analyzer[] = "Php/NeverTypehintUsage";
analyzer[] = "Php/NewInitializers";
analyzer[] = "Php/PHP80scalartypehints";
analyzer[] = "Php/PHP81scalartypehints";

(continues on next page)

10.5. Predefined config files 387

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Php/Php73NewFunctions";
analyzer[] = "Php/Php73RemovedFunctions";
analyzer[] = "Php/Php74NewDirective";
analyzer[] = "Php/Php80OnlyTypeHints";
analyzer[] = "Php/Php80UnionTypehint";
analyzer[] = "Php/Php81NewTypes";
analyzer[] = "Php/Php82NewTypes";
analyzer[] = "Php/ReadonlyPropertyChangedByCloning";
analyzer[] = "Php/SignatureTrailingComma";
analyzer[] = "Php/StaticVariableDefaultCanBeAnyExpression";
analyzer[] = "Php/ThrowWasAnExpression";
analyzer[] = "Php/TypedPropertyUsage";
analyzer[] = "Php/UnknownPcre2Option";
analyzer[] = "Php/UnpackingInsideArrays";
analyzer[] = "Php/UseEnumCaseInConstantExpression";
analyzer[] = "Structures/ArrayMergeWithEllipsis";
analyzer[] = "Structures/ContinueIsForLoop";
analyzer[] = "Structures/DontReadAndWriteInOneExpression";
analyzer[] = "Traits/FinalTraitsAreFinal";
analyzer[] = "Traits/NoPrivateAbstract";
analyzer[] = "Variables/RedeclaredStaticVariable";

CompatibilityPHP73 for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'CompatibilityPHP73':
- 'Attributes/NestedAttributes'
- 'Classes/NewDynamicConstantSyntax'
- 'Classes/TypedClassConstants'
- 'Constants/CaseInsensitiveConstants'
- 'Functions/VoidIsNotAReference'
- 'Interfaces/CantOverloadConstants'
- 'Namespaces/NoKeywordInNamespace'
- 'Php/AssertFunctionIsReserved'
- 'Php/ClassAliasSupportsInternalClasses'
- 'Php/CloneConstant'
- 'Php/CoalesceEqual'
- 'Php/CompactInexistant'
- 'Php/ConcatAndAddition'
- 'Php/EnumUsage'
- 'Php/FilesFullPath'
- 'Php/FinalConstant'
- 'Php/IntegerSeparatorUsage'
- 'Php/NamedParameterUsage'
- 'Php/NeverTypehintUsage'
- 'Php/NewInitializers'
- 'Php/PHP80scalartypehints'
- 'Php/PHP81scalartypehints'

(continues on next page)

388 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Php/Php73NewFunctions'
- 'Php/Php73RemovedFunctions'
- 'Php/Php74NewDirective'
- 'Php/Php80OnlyTypeHints'
- 'Php/Php80UnionTypehint'
- 'Php/Php81NewTypes'
- 'Php/Php82NewTypes'
- 'Php/ReadonlyPropertyChangedByCloning'
- 'Php/SignatureTrailingComma'
- 'Php/StaticVariableDefaultCanBeAnyExpression'
- 'Php/ThrowWasAnExpression'
- 'Php/TypedPropertyUsage'
- 'Php/UnknownPcre2Option'
- 'Php/UnpackingInsideArrays'
- 'Php/UseEnumCaseInConstantExpression'
- 'Structures/ArrayMergeWithEllipsis'
- 'Structures/ContinueIsForLoop'
- 'Structures/DontReadAndWriteInOneExpression'
- 'Traits/FinalTraitsAreFinal'
- 'Traits/NoPrivateAbstract'
- 'Variables/RedeclaredStaticVariable'

10.5.19 CompatibilityPHP74

CompatibilityPHP74 for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[CompatibilityPHP74]
analyzer[] = "Attributes/NestedAttributes";
analyzer[] = "Classes/NewDynamicConstantSyntax";
analyzer[] = "Classes/TypedClassConstants";
analyzer[] = "Functions/UnbindingClosures";
analyzer[] = "Functions/VoidIsNotAReference";
analyzer[] = "Interfaces/CantOverloadConstants";
analyzer[] = "Namespaces/NoKeywordInNamespace";
analyzer[] = "Php/ArrayKeyExistsWithObjects";
analyzer[] = "Php/AvoidGetobjectVars";
analyzer[] = "Php/ClassAliasSupportsInternalClasses";
analyzer[] = "Php/CloneConstant";
analyzer[] = "Php/ConcatAndAddition";
analyzer[] = "Php/DetectCurrentClass";
analyzer[] = "Php/EnumUsage";
analyzer[] = "Php/FilesFullPath";
analyzer[] = "Php/FilterToAddSlashes";
analyzer[] = "Php/FinalConstant";
analyzer[] = "Php/HashAlgos74";
analyzer[] = "Php/IdnUts46";
analyzer[] = "Php/NamedParameterUsage";
analyzer[] = "Php/NestedTernaryWithoutParenthesis";
analyzer[] = "Php/NeverTypehintUsage";

(continues on next page)

10.5. Predefined config files 389

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Php/NewInitializers";
analyzer[] = "Php/NoMoreCurlyArrays";
analyzer[] = "Php/PHP80scalartypehints";
analyzer[] = "Php/PHP81scalartypehints";
analyzer[] = "Php/Php74Deprecation";
analyzer[] = "Php/Php74NewClasses";
analyzer[] = "Php/Php74NewConstants";
analyzer[] = "Php/Php74NewFunctions";
analyzer[] = "Php/Php74RemovedDirective";
analyzer[] = "Php/Php74RemovedFunctions";
analyzer[] = "Php/Php74ReservedKeyword";
analyzer[] = "Php/Php74mbstrrpos3rdArg";
analyzer[] = "Php/Php80NewFunctions";
analyzer[] = "Php/Php80OnlyTypeHints";
analyzer[] = "Php/Php80UnionTypehint";
analyzer[] = "Php/Php80VariableSyntax";
analyzer[] = "Php/Php81NewTypes";
analyzer[] = "Php/Php82NewTypes";
analyzer[] = "Php/ReadonlyPropertyChangedByCloning";
analyzer[] = "Php/ReflectionExportIsDeprecated";
analyzer[] = "Php/ScalarAreNotArrays";
analyzer[] = "Php/SignatureTrailingComma";
analyzer[] = "Php/StaticVariableDefaultCanBeAnyExpression";
analyzer[] = "Php/ThrowWasAnExpression";
analyzer[] = "Php/UseEnumCaseInConstantExpression";
analyzer[] = "Php/UseMatch";
analyzer[] = "Structures/CurlVersionNow";
analyzer[] = "Structures/DontReadAndWriteInOneExpression";
analyzer[] = "Structures/OpensslRandomPseudoByteSecondArg";
analyzer[] = "Traits/ConstantsInTraits";
analyzer[] = "Traits/FinalTraitsAreFinal";
analyzer[] = "Traits/NoPrivateAbstract";
analyzer[] = "Variables/RedeclaredStaticVariable";

CompatibilityPHP74 for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'CompatibilityPHP74':
- 'Attributes/NestedAttributes'
- 'Classes/NewDynamicConstantSyntax'
- 'Classes/TypedClassConstants'
- 'Functions/UnbindingClosures'
- 'Functions/VoidIsNotAReference'
- 'Interfaces/CantOverloadConstants'
- 'Namespaces/NoKeywordInNamespace'
- 'Php/ArrayKeyExistsWithObjects'
- 'Php/AvoidGetobjectVars'
- 'Php/ClassAliasSupportsInternalClasses'

(continues on next page)

390 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Php/CloneConstant'
- 'Php/ConcatAndAddition'
- 'Php/DetectCurrentClass'
- 'Php/EnumUsage'
- 'Php/FilesFullPath'
- 'Php/FilterToAddSlashes'
- 'Php/FinalConstant'
- 'Php/HashAlgos74'
- 'Php/IdnUts46'
- 'Php/NamedParameterUsage'
- 'Php/NestedTernaryWithoutParenthesis'
- 'Php/NeverTypehintUsage'
- 'Php/NewInitializers'
- 'Php/NoMoreCurlyArrays'
- 'Php/PHP80scalartypehints'
- 'Php/PHP81scalartypehints'
- 'Php/Php74Deprecation'
- 'Php/Php74NewClasses'
- 'Php/Php74NewConstants'
- 'Php/Php74NewFunctions'
- 'Php/Php74RemovedDirective'
- 'Php/Php74RemovedFunctions'
- 'Php/Php74ReservedKeyword'
- 'Php/Php74mbstrrpos3rdArg'
- 'Php/Php80NewFunctions'
- 'Php/Php80OnlyTypeHints'
- 'Php/Php80UnionTypehint'
- 'Php/Php80VariableSyntax'
- 'Php/Php81NewTypes'
- 'Php/Php82NewTypes'
- 'Php/ReadonlyPropertyChangedByCloning'
- 'Php/ReflectionExportIsDeprecated'
- 'Php/ScalarAreNotArrays'
- 'Php/SignatureTrailingComma'
- 'Php/StaticVariableDefaultCanBeAnyExpression'
- 'Php/ThrowWasAnExpression'
- 'Php/UseEnumCaseInConstantExpression'
- 'Php/UseMatch'
- 'Structures/CurlVersionNow'
- 'Structures/DontReadAndWriteInOneExpression'
- 'Structures/OpensslRandomPseudoByteSecondArg'
- 'Traits/ConstantsInTraits'
- 'Traits/FinalTraitsAreFinal'
- 'Traits/NoPrivateAbstract'
- 'Variables/RedeclaredStaticVariable'

10.5. Predefined config files 391

Exakat Documentation, Release 1

10.5.20 CompatibilityPHP80

CompatibilityPHP80 for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[CompatibilityPHP80]
analyzer[] = "Arrays/NegativeStart";
analyzer[] = "Attributes/NestedAttributes";
analyzer[] = "Classes/FinalPrivate";
analyzer[] = "Classes/NewDynamicConstantSyntax";
analyzer[] = "Classes/OldStyleConstructor";
analyzer[] = "Classes/TypedClassConstants";
analyzer[] = "Functions/MismatchParameterName";
analyzer[] = "Functions/NullableWithConstant";
analyzer[] = "Functions/VoidIsNotAReference";
analyzer[] = "Functions/WrongOptionalParameter";
analyzer[] = "Interfaces/CantOverloadConstants";
analyzer[] = "Php/AvoidGetobjectVars";
analyzer[] = "Php/CastUnsetUsage";
analyzer[] = "Php/ClassAliasSupportsInternalClasses";
analyzer[] = "Php/CloneConstant";
analyzer[] = "Php/ConcatAndAddition";
analyzer[] = "Php/EnumUsage";
analyzer[] = "Php/FinalConstant";
analyzer[] = "Php/MixedKeyword";
analyzer[] = "Php/NamedArgumentAndVariadic";
analyzer[] = "Php/NeverTypehintUsage";
analyzer[] = "Php/NewInitializers";
analyzer[] = "Php/PHP81scalartypehints";
analyzer[] = "Php/Php74RemovedDirective";
analyzer[] = "Php/Php80NamedParameterVariadic";
analyzer[] = "Php/Php80RemovedConstant";
analyzer[] = "Php/Php80RemovedDirective";
analyzer[] = "Php/Php80RemovedFunctions";
analyzer[] = "Php/Php80RemovesResources";
analyzer[] = "Php/Php81NewTypes";
analyzer[] = "Php/Php81RemovesResources";
analyzer[] = "Php/Php82NewTypes";
analyzer[] = "Php/PhpErrorMsgUsage";
analyzer[] = "Php/ReadonlyPropertyChangedByCloning";
analyzer[] = "Php/ReservedMatchKeyword";
analyzer[] = "Php/StaticVariableDefaultCanBeAnyExpression";
analyzer[] = "Php/StringIntComparison";
analyzer[] = "Php/UseEnumCaseInConstantExpression";
analyzer[] = "Structures/ArrayMapPassesByValue";
analyzer[] = "Structures/MultipleTypeCasesInSwitch";
analyzer[] = "Structures/NoMaxOnEmptyArray";
analyzer[] = "Structures/UnsupportedTypesWithOperators";
analyzer[] = "Traits/ConstantsInTraits";
analyzer[] = "Traits/FinalTraitsAreFinal";
analyzer[] = "Variables/RedeclaredStaticVariable";

392 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

CompatibilityPHP80 for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'CompatibilityPHP80':
- 'Arrays/NegativeStart'
- 'Attributes/NestedAttributes'
- 'Classes/FinalPrivate'
- 'Classes/NewDynamicConstantSyntax'
- 'Classes/OldStyleConstructor'
- 'Classes/TypedClassConstants'
- 'Functions/MismatchParameterName'
- 'Functions/NullableWithConstant'
- 'Functions/VoidIsNotAReference'
- 'Functions/WrongOptionalParameter'
- 'Interfaces/CantOverloadConstants'
- 'Php/AvoidGetobjectVars'
- 'Php/CastUnsetUsage'
- 'Php/ClassAliasSupportsInternalClasses'
- 'Php/CloneConstant'
- 'Php/ConcatAndAddition'
- 'Php/EnumUsage'
- 'Php/FinalConstant'
- 'Php/MixedKeyword'
- 'Php/NamedArgumentAndVariadic'
- 'Php/NeverTypehintUsage'
- 'Php/NewInitializers'
- 'Php/PHP81scalartypehints'
- 'Php/Php74RemovedDirective'
- 'Php/Php80NamedParameterVariadic'
- 'Php/Php80RemovedConstant'
- 'Php/Php80RemovedDirective'
- 'Php/Php80RemovedFunctions'
- 'Php/Php80RemovesResources'
- 'Php/Php81NewTypes'
- 'Php/Php81RemovesResources'
- 'Php/Php82NewTypes'
- 'Php/PhpErrorMsgUsage'
- 'Php/ReadonlyPropertyChangedByCloning'
- 'Php/ReservedMatchKeyword'
- 'Php/StaticVariableDefaultCanBeAnyExpression'
- 'Php/StringIntComparison'
- 'Php/UseEnumCaseInConstantExpression'
- 'Structures/ArrayMapPassesByValue'
- 'Structures/MultipleTypeCasesInSwitch'
- 'Structures/NoMaxOnEmptyArray'
- 'Structures/UnsupportedTypesWithOperators'
- 'Traits/ConstantsInTraits'
- 'Traits/FinalTraitsAreFinal'
- 'Variables/RedeclaredStaticVariable'

10.5. Predefined config files 393

Exakat Documentation, Release 1

10.5.21 CompatibilityPHP81

CompatibilityPHP81 for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[CompatibilityPHP81]
analyzer[] = "Arrays/FloatConversionAsIndex";
analyzer[] = "Classes/NewDynamicConstantSyntax";
analyzer[] = "Classes/TypedClassConstants";
analyzer[] = "Functions/NoReferencedVoid";
analyzer[] = "Functions/VoidIsNotAReference";
analyzer[] = "Php/CallingStaticTraitMethod";
analyzer[] = "Php/ClassAliasSupportsInternalClasses";
analyzer[] = "Php/FalseToArray";
analyzer[] = "Php/JsonSerializeReturnType";
analyzer[] = "Php/MixedKeyword";
analyzer[] = "Php/NamedArgumentAndVariadic";
analyzer[] = "Php/NativeClassTypeCompatibility";
analyzer[] = "Php/NeverKeyword";
analyzer[] = "Php/NoNullForNative";
analyzer[] = "Php/OpensslEncryptAlgoChange";
analyzer[] = "Php/Php74RemovedDirective";
analyzer[] = "Php/Php80RemovedDirective";
analyzer[] = "Php/Php81NewFunctions";
analyzer[] = "Php/Php81NewTypes";
analyzer[] = "Php/Php81RemovedConstant";
analyzer[] = "Php/Php81RemovedDirective";
analyzer[] = "Php/Php81RemovedFunctions";
analyzer[] = "Php/Php82NewTypes";
analyzer[] = "Php/ReadonlyPropertyChangedByCloning";
analyzer[] = "Php/RestrictGlobalUsage";
analyzer[] = "Php/StaticVariableDefaultCanBeAnyExpression";
analyzer[] = "Php/UseEnumCaseInConstantExpression";
analyzer[] = "Php/VersionCompareOperator";
analyzer[] = "Traits/CannotCallTraitMethod";
analyzer[] = "Traits/ConstantsInTraits";
analyzer[] = "Traits/FinalTraitsAreFinal";
analyzer[] = "Variables/InheritedStaticVariable";
analyzer[] = "Variables/RedeclaredStaticVariable";
analyzer[] = "Variables/StaticVariableInitialisation";

CompatibilityPHP81 for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'CompatibilityPHP81':
- 'Arrays/FloatConversionAsIndex'
- 'Classes/NewDynamicConstantSyntax'
- 'Classes/TypedClassConstants'

(continues on next page)

394 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Functions/NoReferencedVoid'
- 'Functions/VoidIsNotAReference'
- 'Php/CallingStaticTraitMethod'
- 'Php/ClassAliasSupportsInternalClasses'
- 'Php/FalseToArray'
- 'Php/JsonSerializeReturnType'
- 'Php/MixedKeyword'
- 'Php/NamedArgumentAndVariadic'
- 'Php/NativeClassTypeCompatibility'
- 'Php/NeverKeyword'
- 'Php/NoNullForNative'
- 'Php/OpensslEncryptAlgoChange'
- 'Php/Php74RemovedDirective'
- 'Php/Php80RemovedDirective'
- 'Php/Php81NewFunctions'
- 'Php/Php81NewTypes'
- 'Php/Php81RemovedConstant'
- 'Php/Php81RemovedDirective'
- 'Php/Php81RemovedFunctions'
- 'Php/Php82NewTypes'
- 'Php/ReadonlyPropertyChangedByCloning'
- 'Php/RestrictGlobalUsage'
- 'Php/StaticVariableDefaultCanBeAnyExpression'
- 'Php/UseEnumCaseInConstantExpression'
- 'Php/VersionCompareOperator'
- 'Traits/CannotCallTraitMethod'
- 'Traits/ConstantsInTraits'
- 'Traits/FinalTraitsAreFinal'
- 'Variables/InheritedStaticVariable'
- 'Variables/RedeclaredStaticVariable'
- 'Variables/StaticVariableInitialisation'

10.5.22 CompatibilityPHP82

CompatibilityPHP82 for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[CompatibilityPHP82]
analyzer[] = "Arrays/FloatConversionAsIndex";
analyzer[] = "Classes/ChecksPropertyExistence";
analyzer[] = "Classes/ExtendsStdclass";
analyzer[] = "Classes/NewDynamicConstantSyntax";
analyzer[] = "Classes/TypedClassConstants";
analyzer[] = "Classes/UndefinedProperty";
analyzer[] = "Functions/DeprecatedCallable";
analyzer[] = "Interfaces/InheritedClassConstantVisibility";
analyzer[] = "Php/ClassAliasSupportsInternalClasses";
analyzer[] = "Php/DeprecateDollarCurly";
analyzer[] = "Php/FalseToArray";
analyzer[] = "Php/Php82NewFunctions";

(continues on next page)

10.5. Predefined config files 395

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Php/ReadonlyPropertyChangedByCloning";
analyzer[] = "Php/StaticVariableDefaultCanBeAnyExpression";
analyzer[] = "Php/Utf8EncodeDeprecated";
analyzer[] = "Php/VersionCompareOperator";
analyzer[] = "Structures/DeprecatedMbEncoding";
analyzer[] = "Traits/CannotCallTraitMethod";
analyzer[] = "Traits/ConstantsInTraits";
analyzer[] = "Traits/FinalTraitsAreFinal";
analyzer[] = "Variables/RedeclaredStaticVariable";
analyzer[] = "Variables/StaticVariableInitialisation";

CompatibilityPHP82 for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'CompatibilityPHP82':
- 'Arrays/FloatConversionAsIndex'
- 'Classes/ChecksPropertyExistence'
- 'Classes/ExtendsStdclass'
- 'Classes/NewDynamicConstantSyntax'
- 'Classes/TypedClassConstants'
- 'Classes/UndefinedProperty'
- 'Functions/DeprecatedCallable'
- 'Interfaces/InheritedClassConstantVisibility'
- 'Php/ClassAliasSupportsInternalClasses'
- 'Php/DeprecateDollarCurly'
- 'Php/FalseToArray'
- 'Php/Php82NewFunctions'
- 'Php/ReadonlyPropertyChangedByCloning'
- 'Php/StaticVariableDefaultCanBeAnyExpression'
- 'Php/Utf8EncodeDeprecated'
- 'Php/VersionCompareOperator'
- 'Structures/DeprecatedMbEncoding'
- 'Traits/CannotCallTraitMethod'
- 'Traits/ConstantsInTraits'
- 'Traits/FinalTraitsAreFinal'
- 'Variables/RedeclaredStaticVariable'
- 'Variables/StaticVariableInitialisation'

396 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

10.5.23 CompatibilityPHP83

CompatibilityPHP83 for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[CompatibilityPHP83]
analyzer[] = "Interfaces/InheritedClassConstantVisibility";
analyzer[] = "Php/Php83NewClasses";
analyzer[] = "Php/Php83NewFunctions";
analyzer[] = "Structures/GetClassWithoutArg";
analyzer[] = "Traits/ConstantsInTraits";

CompatibilityPHP83 for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'CompatibilityPHP83':
- 'Interfaces/InheritedClassConstantVisibility'
- 'Php/Php83NewClasses'
- 'Php/Php83NewFunctions'
- 'Structures/GetClassWithoutArg'
- 'Traits/ConstantsInTraits'

10.5.24 Dead code

Dead code for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[Dead code]
analyzer[] = "Classes/CantExtendFinal";
analyzer[] = "Classes/LocallyUnusedProperty";
analyzer[] = "Classes/UnreachableMethod";
analyzer[] = "Classes/UnresolvedCatch";
analyzer[] = "Classes/UnresolvedInstanceof";
analyzer[] = "Classes/UnusedClass";
analyzer[] = "Classes/UnusedMethods";
analyzer[] = "Classes/UnusedPrivateMethod";
analyzer[] = "Classes/UnusedPrivateProperty";
analyzer[] = "Classes/UnusedProtectedMethods";
analyzer[] = "Constants/UnusedConstants";
analyzer[] = "Enums/UnusedEnumCase";
analyzer[] = "Exceptions/AlreadyCaught";
analyzer[] = "Exceptions/CaughtButNotThrown";
analyzer[] = "Exceptions/CouldDropVariable";
analyzer[] = "Exceptions/Rethrown";
analyzer[] = "Exceptions/Unthrown";
analyzer[] = "Functions/UnusedFunctions";

(continues on next page)

10.5. Predefined config files 397

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Functions/UnusedInheritedVariable";
analyzer[] = "Functions/UnusedReturnedValue";
analyzer[] = "Functions/UselessTypeCheck";
analyzer[] = "Interfaces/UnusedInterfaces";
analyzer[] = "Namespaces/EmptyNamespace";
analyzer[] = "Namespaces/UnusedUse";
analyzer[] = "Structures/EmptyLines";
analyzer[] = "Structures/IdenticalElseif";
analyzer[] = "Structures/UnreachableCode";
analyzer[] = "Structures/UnsetInForeach";
analyzer[] = "Structures/UnusedLabel";
analyzer[] = "Structures/UseVariableInsideLoop";
analyzer[] = "Traits/EmptyTrait";
analyzer[] = "Traits/SelfUsingTrait";
analyzer[] = "Variables/StaticVariableInNamespace";

Dead code for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'Dead code':
- 'Classes/CantExtendFinal'
- 'Classes/LocallyUnusedProperty'
- 'Classes/UnreachableMethod'
- 'Classes/UnresolvedCatch'
- 'Classes/UnresolvedInstanceof'
- 'Classes/UnusedClass'
- 'Classes/UnusedMethods'
- 'Classes/UnusedPrivateMethod'
- 'Classes/UnusedPrivateProperty'
- 'Classes/UnusedProtectedMethods'
- 'Constants/UnusedConstants'
- 'Enums/UnusedEnumCase'
- 'Exceptions/AlreadyCaught'
- 'Exceptions/CaughtButNotThrown'
- 'Exceptions/CouldDropVariable'
- 'Exceptions/Rethrown'
- 'Exceptions/Unthrown'
- 'Functions/UnusedFunctions'
- 'Functions/UnusedInheritedVariable'
- 'Functions/UnusedReturnedValue'
- 'Functions/UselessTypeCheck'
- 'Interfaces/UnusedInterfaces'
- 'Namespaces/EmptyNamespace'
- 'Namespaces/UnusedUse'
- 'Structures/EmptyLines'
- 'Structures/IdenticalElseif'
- 'Structures/UnreachableCode'
- 'Structures/UnsetInForeach'

(continues on next page)

398 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/UnusedLabel'
- 'Structures/UseVariableInsideLoop'
- 'Traits/EmptyTrait'
- 'Traits/SelfUsingTrait'
- 'Variables/StaticVariableInNamespace'

10.5.25 Deprecated

Deprecated for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[Deprecated]
analyzer[] = "Constants/CaseInsensitiveConstants";
analyzer[] = "Functions/IsExtFunction";
analyzer[] = "Functions/NoReferencedVoid";
analyzer[] = "Php/AssertFunctionIsReserved";
analyzer[] = "Php/CallingStaticTraitMethod";
analyzer[] = "Php/JsonSerializeReturnType";
analyzer[] = "Php/NestedTernaryWithoutParenthesis";
analyzer[] = "Php/NoNullForNative";

Deprecated for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'Deprecated':
- 'Constants/CaseInsensitiveConstants'
- 'Functions/IsExtFunction'
- 'Functions/NoReferencedVoid'
- 'Php/AssertFunctionIsReserved'
- 'Php/CallingStaticTraitMethod'
- 'Php/JsonSerializeReturnType'
- 'Php/NestedTernaryWithoutParenthesis'
- 'Php/NoNullForNative'

10.5.26 Dump

Dump for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[Dump]
analyzer[] = "Dump/ArgumentCountsPerCalls";
analyzer[] = "Dump/CallOrder";
analyzer[] = "Dump/ClassInjectionCount";

(continues on next page)

10.5. Predefined config files 399

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Dump/CollectAtomCounts";
analyzer[] = "Dump/CollectBlockSize";
analyzer[] = "Dump/CollectCalls";
analyzer[] = "Dump/CollectCatch";
analyzer[] = "Dump/CollectClassChanges";
analyzer[] = "Dump/CollectClassChildren";
analyzer[] = "Dump/CollectClassConstantCounts";
analyzer[] = "Dump/CollectClassDepth";
analyzer[] = "Dump/CollectClassInterfaceCounts";
analyzer[] = "Dump/CollectClassTraitsCounts";
analyzer[] = "Dump/CollectClassesDependencies";
analyzer[] = "Dump/CollectDefinitionsStats";
analyzer[] = "Dump/CollectDependencyExtension";
analyzer[] = "Dump/CollectFilesDependencies";
analyzer[] = "Dump/CollectForeachFavorite";
analyzer[] = "Dump/CollectGlobalVariables";
analyzer[] = "Dump/CollectGraphTriplets";
analyzer[] = "Dump/CollectLiterals";
analyzer[] = "Dump/CollectLocalVariableCounts";
analyzer[] = "Dump/CollectMbstringEncodings";
analyzer[] = "Dump/CollectMethodCounts";
analyzer[] = "Dump/CollectMethodsThrowingExceptions";
analyzer[] = "Dump/CollectNativeCallsPerExpressions";
analyzer[] = "Dump/CollectParameterCounts";
analyzer[] = "Dump/CollectParameterNames";
analyzer[] = "Dump/CollectPhpStructures";
analyzer[] = "Dump/CollectPropertyCounts";
analyzer[] = "Dump/CollectPropertyUsage";
analyzer[] = "Dump/CollectReadability";
analyzer[] = "Dump/CollectSetLocale";
analyzer[] = "Dump/CollectStructures";
analyzer[] = "Dump/CollectStubStructures";
analyzer[] = "Dump/CollectThrow";
analyzer[] = "Dump/CollectUseCounts";
analyzer[] = "Dump/CollectVariables";
analyzer[] = "Dump/CollectVendorStructures";
analyzer[] = "Dump/CollectsNames";
analyzer[] = "Dump/CombinedCalls";
analyzer[] = "Dump/ConstantOrder";
analyzer[] = "Dump/CouldBeAConstant";
analyzer[] = "Dump/CyclomaticComplexity";
analyzer[] = "Dump/DereferencingLevels";
analyzer[] = "Dump/DumpComparedLiterals";
analyzer[] = "Dump/EnvironnementVariables";
analyzer[] = "Dump/FossilizedMethods";
analyzer[] = "Dump/Inclusions";
analyzer[] = "Dump/IndentationLevels";
analyzer[] = "Dump/NewOrder";
analyzer[] = "Dump/TypehintingStats";
analyzer[] = "Dump/Typehintorder";
analyzer[] = "Exceptions/CaughtExceptions";
analyzer[] = "Exceptions/TryNoCatch";

(continues on next page)

400 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Php/ComparisonOnDifferentTypes";
analyzer[] = "Php/IncludeVariables";

Dump for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'Dump':
- 'Dump/ArgumentCountsPerCalls'
- 'Dump/CallOrder'
- 'Dump/ClassInjectionCount'
- 'Dump/CollectAtomCounts'
- 'Dump/CollectBlockSize'
- 'Dump/CollectCalls'
- 'Dump/CollectCatch'
- 'Dump/CollectClassChanges'
- 'Dump/CollectClassChildren'
- 'Dump/CollectClassConstantCounts'
- 'Dump/CollectClassDepth'
- 'Dump/CollectClassInterfaceCounts'
- 'Dump/CollectClassTraitsCounts'
- 'Dump/CollectClassesDependencies'
- 'Dump/CollectDefinitionsStats'
- 'Dump/CollectDependencyExtension'
- 'Dump/CollectFilesDependencies'
- 'Dump/CollectForeachFavorite'
- 'Dump/CollectGlobalVariables'
- 'Dump/CollectGraphTriplets'
- 'Dump/CollectLiterals'
- 'Dump/CollectLocalVariableCounts'
- 'Dump/CollectMbstringEncodings'
- 'Dump/CollectMethodCounts'
- 'Dump/CollectMethodsThrowingExceptions'
- 'Dump/CollectNativeCallsPerExpressions'
- 'Dump/CollectParameterCounts'
- 'Dump/CollectParameterNames'
- 'Dump/CollectPhpStructures'
- 'Dump/CollectPropertyCounts'
- 'Dump/CollectPropertyUsage'
- 'Dump/CollectReadability'
- 'Dump/CollectSetLocale'
- 'Dump/CollectStructures'
- 'Dump/CollectStubStructures'
- 'Dump/CollectThrow'
- 'Dump/CollectUseCounts'
- 'Dump/CollectVariables'
- 'Dump/CollectVendorStructures'
- 'Dump/CollectsNames'
- 'Dump/CombinedCalls'

(continues on next page)

10.5. Predefined config files 401

Exakat Documentation, Release 1

(continued from previous page)

- 'Dump/ConstantOrder'
- 'Dump/CouldBeAConstant'
- 'Dump/CyclomaticComplexity'
- 'Dump/DereferencingLevels'
- 'Dump/DumpComparedLiterals'
- 'Dump/EnvironnementVariables'
- 'Dump/FossilizedMethods'
- 'Dump/Inclusions'
- 'Dump/IndentationLevels'
- 'Dump/NewOrder'
- 'Dump/TypehintingStats'
- 'Dump/Typehintorder'
- 'Exceptions/CaughtExceptions'
- 'Exceptions/TryNoCatch'
- 'Php/ComparisonOnDifferentTypes'
- 'Php/IncludeVariables'

10.5.27 First

First for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[First]
analyzer[] = "Complete/ReturnTypehint";
analyzer[] = "Complete/VariableTypehint";
analyzer[] = "Variables/IsLocalConstant";

First for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'First':
- 'Complete/ReturnTypehint'
- 'Complete/VariableTypehint'
- 'Variables/IsLocalConstant'

10.5.28 Inventory

Inventory for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[Inventory]
analyzer[] = "Classes/ExtendsStdclass";
analyzer[] = "Classes/MagicProperties";

(continues on next page)

402 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Classes/PromotedProperties";
analyzer[] = "Constants/Constantnames";
analyzer[] = "Constants/RelayConstant";
analyzer[] = "Functions/MultipleIdenticalClosure";
analyzer[] = "Functions/RelayFunction";
analyzer[] = "Php/CookiesVariables";
analyzer[] = "Php/DateFormats";
analyzer[] = "Php/IncomingVariables";
analyzer[] = "Php/SessionVariables";
analyzer[] = "Structures/Fallthrough";
analyzer[] = "Structures/InitThenIf";
analyzer[] = "Type/ArrayIndex";
analyzer[] = "Type/Binary";
analyzer[] = "Type/CharString";
analyzer[] = "Type/Email";
analyzer[] = "Type/GPCIndex";
analyzer[] = "Type/Heredoc";
analyzer[] = "Type/Hexadecimal";
analyzer[] = "Type/HexadecimalString";
analyzer[] = "Type/HttpHeader";
analyzer[] = "Type/HttpStatus";
analyzer[] = "Type/IncomingDateFormat";
analyzer[] = "Type/Ip";
analyzer[] = "Type/Md5String";
analyzer[] = "Type/MimeType";
analyzer[] = "Type/OctalInString";
analyzer[] = "Type/OpensslCipher";
analyzer[] = "Type/Pack";
analyzer[] = "Type/Pcre";
analyzer[] = "Type/Ports";
analyzer[] = "Type/Printf";
analyzer[] = "Type/Regex";
analyzer[] = "Type/SpecialIntegers";
analyzer[] = "Type/Sql";
analyzer[] = "Type/UdpDomains";
analyzer[] = "Type/UnicodeBlock";
analyzer[] = "Type/Url";

Inventory for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'Inventory':
- 'Classes/ExtendsStdclass'
- 'Classes/MagicProperties'
- 'Classes/PromotedProperties'
- 'Constants/Constantnames'
- 'Constants/RelayConstant'
- 'Functions/MultipleIdenticalClosure'

(continues on next page)

10.5. Predefined config files 403

Exakat Documentation, Release 1

(continued from previous page)

- 'Functions/RelayFunction'
- 'Php/CookiesVariables'
- 'Php/DateFormats'
- 'Php/IncomingVariables'
- 'Php/SessionVariables'
- 'Structures/Fallthrough'
- 'Structures/InitThenIf'
- 'Type/ArrayIndex'
- 'Type/Binary'
- 'Type/CharString'
- 'Type/Email'
- 'Type/GPCIndex'
- 'Type/Heredoc'
- 'Type/Hexadecimal'
- 'Type/HexadecimalString'
- 'Type/HttpHeader'
- 'Type/HttpStatus'
- 'Type/IncomingDateFormat'
- 'Type/Ip'
- 'Type/Md5String'
- 'Type/MimeType'
- 'Type/OctalInString'
- 'Type/OpensslCipher'
- 'Type/Pack'
- 'Type/Pcre'
- 'Type/Ports'
- 'Type/Printf'
- 'Type/Regex'
- 'Type/SpecialIntegers'
- 'Type/Sql'
- 'Type/UdpDomains'
- 'Type/UnicodeBlock'
- 'Type/Url'

10.5.29 IsExt

IsExt for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[IsExt]
analyzer[] = "Classes/AccessProtected";
analyzer[] = "Classes/CantExtendFinal";
analyzer[] = "Classes/DefinedConstants";
analyzer[] = "Classes/IsInterfaceMethod";
analyzer[] = "Classes/LoweredAccessLevel";
analyzer[] = "Classes/NonStaticMethodsCalledStatic";
analyzer[] = "Classes/RedefinedPrivateProperty";
analyzer[] = "Classes/StaticMethodsCalledFromObject";
analyzer[] = "Enums/UndefinedEnumcase";
analyzer[] = "Functions/DontUseVoid";

(continues on next page)

404 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Functions/OnlyVariablePassedByReference";
analyzer[] = "Functions/UsesDefaultArguments";
analyzer[] = "Functions/WrongArgumentNameWithPhpFunction";
analyzer[] = "Functions/WrongNumberOfArguments";
analyzer[] = "Namespaces/OverloadExistingNames";
analyzer[] = "Php/OveriddenFunction";
analyzer[] = "Php/TooManyNativeCalls";
analyzer[] = "Php/UpperCaseFunction";
analyzer[] = "Structures/ArrayMapPassesByValue";

IsExt for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'IsExt':
- 'Classes/AccessProtected'
- 'Classes/CantExtendFinal'
- 'Classes/DefinedConstants'
- 'Classes/IsInterfaceMethod'
- 'Classes/LoweredAccessLevel'
- 'Classes/NonStaticMethodsCalledStatic'
- 'Classes/RedefinedPrivateProperty'
- 'Classes/StaticMethodsCalledFromObject'
- 'Enums/UndefinedEnumcase'
- 'Functions/DontUseVoid'
- 'Functions/OnlyVariablePassedByReference'
- 'Functions/UsesDefaultArguments'
- 'Functions/WrongArgumentNameWithPhpFunction'
- 'Functions/WrongNumberOfArguments'
- 'Namespaces/OverloadExistingNames'
- 'Php/OveriddenFunction'
- 'Php/TooManyNativeCalls'
- 'Php/UpperCaseFunction'
- 'Structures/ArrayMapPassesByValue'

10.5.30 IsPHP

IsPHP for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[IsPHP]
analyzer[] = "Classes/AccessProtected";
analyzer[] = "Classes/CantExtendFinal";
analyzer[] = "Classes/DefinedConstants";
analyzer[] = "Classes/IsInterfaceMethod";
analyzer[] = "Classes/LoweredAccessLevel";
analyzer[] = "Classes/NonStaticMethodsCalledStatic";

(continues on next page)

10.5. Predefined config files 405

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Classes/RedefinedPrivateProperty";
analyzer[] = "Classes/StaticMethodsCalledFromObject";
analyzer[] = "Enums/UndefinedEnumcase";
analyzer[] = "Functions/DontUseVoid";
analyzer[] = "Functions/OnlyVariablePassedByReference";
analyzer[] = "Functions/UsesDefaultArguments";
analyzer[] = "Functions/WrongArgumentNameWithPhpFunction";
analyzer[] = "Functions/WrongNumberOfArguments";
analyzer[] = "Namespaces/OverloadExistingNames";
analyzer[] = "Php/OveriddenFunction";
analyzer[] = "Php/TooManyNativeCalls";
analyzer[] = "Php/UpperCaseFunction";
analyzer[] = "Structures/ArrayMapPassesByValue";

IsPHP for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'IsPHP':
- 'Classes/AccessProtected'
- 'Classes/CantExtendFinal'
- 'Classes/DefinedConstants'
- 'Classes/IsInterfaceMethod'
- 'Classes/LoweredAccessLevel'
- 'Classes/NonStaticMethodsCalledStatic'
- 'Classes/RedefinedPrivateProperty'
- 'Classes/StaticMethodsCalledFromObject'
- 'Enums/UndefinedEnumcase'
- 'Functions/DontUseVoid'
- 'Functions/OnlyVariablePassedByReference'
- 'Functions/UsesDefaultArguments'
- 'Functions/WrongArgumentNameWithPhpFunction'
- 'Functions/WrongNumberOfArguments'
- 'Namespaces/OverloadExistingNames'
- 'Php/OveriddenFunction'
- 'Php/TooManyNativeCalls'
- 'Php/UpperCaseFunction'
- 'Structures/ArrayMapPassesByValue'

406 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

10.5.31 IsStub

IsStub for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[IsStub]
analyzer[] = "Classes/AccessProtected";
analyzer[] = "Classes/CantExtendFinal";
analyzer[] = "Classes/DefinedConstants";
analyzer[] = "Classes/IsInterfaceMethod";
analyzer[] = "Classes/LoweredAccessLevel";
analyzer[] = "Classes/NonStaticMethodsCalledStatic";
analyzer[] = "Classes/RedefinedPrivateProperty";
analyzer[] = "Classes/StaticMethodsCalledFromObject";
analyzer[] = "Enums/UndefinedEnumcase";
analyzer[] = "Functions/DontUseVoid";
analyzer[] = "Functions/OnlyVariablePassedByReference";
analyzer[] = "Functions/UsesDefaultArguments";
analyzer[] = "Functions/WrongArgumentNameWithPhpFunction";
analyzer[] = "Functions/WrongNumberOfArguments";
analyzer[] = "Namespaces/OverloadExistingNames";
analyzer[] = "Php/OveriddenFunction";
analyzer[] = "Structures/ArrayMapPassesByValue";

IsStub for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'IsStub':
- 'Classes/AccessProtected'
- 'Classes/CantExtendFinal'
- 'Classes/DefinedConstants'
- 'Classes/IsInterfaceMethod'
- 'Classes/LoweredAccessLevel'
- 'Classes/NonStaticMethodsCalledStatic'
- 'Classes/RedefinedPrivateProperty'
- 'Classes/StaticMethodsCalledFromObject'
- 'Enums/UndefinedEnumcase'
- 'Functions/DontUseVoid'
- 'Functions/OnlyVariablePassedByReference'
- 'Functions/UsesDefaultArguments'
- 'Functions/WrongArgumentNameWithPhpFunction'
- 'Functions/WrongNumberOfArguments'
- 'Namespaces/OverloadExistingNames'
- 'Php/OveriddenFunction'
- 'Structures/ArrayMapPassesByValue'

10.5. Predefined config files 407

Exakat Documentation, Release 1

10.5.32 LintButWontExec

LintButWontExec for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[LintButWontExec]
analyzer[] = "Classes/AbstractOrImplements";
analyzer[] = "Classes/CantOverwriteFinalConstant";
analyzer[] = "Classes/CloneWithNonObject";
analyzer[] = "Classes/CouldBeStringable";
analyzer[] = "Classes/Finalclass";
analyzer[] = "Classes/Finalmethod";
analyzer[] = "Classes/ImplementedMethodsArePublic";
analyzer[] = "Classes/IncompatibleSignature";
analyzer[] = "Classes/InheritedPropertyMustMatch";
analyzer[] = "Classes/MethodSignatureMustBeCompatible";
analyzer[] = "Classes/MismatchProperties";
analyzer[] = "Classes/MutualExtension";
analyzer[] = "Classes/NoMagicWithArray";
analyzer[] = "Classes/NoPSSOutsideClass";
analyzer[] = "Classes/NoSelfReferencingConstant";
analyzer[] = "Classes/RaisedAccessLevel";
analyzer[] = "Classes/ThisIsForClasses";
analyzer[] = "Classes/UndefinedConstants";
analyzer[] = "Classes/UsingThisOutsideAClass";
analyzer[] = "Classes/WrongTypedPropertyInit";
analyzer[] = "Enums/NoMagicMethod";
analyzer[] = "Exceptions/CantThrow";
analyzer[] = "Functions/DeprecatedCallable";
analyzer[] = "Functions/DuplicateNamedParameter";
analyzer[] = "Functions/MismatchTypeAndDefault";
analyzer[] = "Functions/MustReturn";
analyzer[] = "Functions/OnlyVariableForReference";
analyzer[] = "Functions/TypehintMustBeReturned";
analyzer[] = "Functions/WrongReturnedType";
analyzer[] = "Interfaces/AvoidSelfInInterface";
analyzer[] = "Interfaces/CantImplementTraversable";
analyzer[] = "Interfaces/CantOverloadConstants";
analyzer[] = "Interfaces/IsNotImplemented";
analyzer[] = "Interfaces/RepeatedInterface";
analyzer[] = "Interfaces/UndefinedInterfaces";
analyzer[] = "Php/CloneConstant";
analyzer[] = "Php/FalseToArray";
analyzer[] = "Php/JsonSerializeReturnType";
analyzer[] = "Php/OnlyVariablePassedByReference";
analyzer[] = "Structures/ImplicitConversionToInt";
analyzer[] = "Structures/InvalidCast";
analyzer[] = "Traits/MethodCollisionTraits";
analyzer[] = "Traits/TraitNotFound";
analyzer[] = "Traits/UndefinedInsteadof";
analyzer[] = "Traits/UndefinedTrait";
analyzer[] = "Traits/UselessAlias";

(continues on next page)

408 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Typehints/WrongTypeWithDefault";

LintButWontExec for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'LintButWontExec':
- 'Classes/AbstractOrImplements'
- 'Classes/CantOverwriteFinalConstant'
- 'Classes/CloneWithNonObject'
- 'Classes/CouldBeStringable'
- 'Classes/Finalclass'
- 'Classes/Finalmethod'
- 'Classes/ImplementedMethodsArePublic'
- 'Classes/IncompatibleSignature'
- 'Classes/InheritedPropertyMustMatch'
- 'Classes/MethodSignatureMustBeCompatible'
- 'Classes/MismatchProperties'
- 'Classes/MutualExtension'
- 'Classes/NoMagicWithArray'
- 'Classes/NoPSSOutsideClass'
- 'Classes/NoSelfReferencingConstant'
- 'Classes/RaisedAccessLevel'
- 'Classes/ThisIsForClasses'
- 'Classes/UndefinedConstants'
- 'Classes/UsingThisOutsideAClass'
- 'Classes/WrongTypedPropertyInit'
- 'Enums/NoMagicMethod'
- 'Exceptions/CantThrow'
- 'Functions/DeprecatedCallable'
- 'Functions/DuplicateNamedParameter'
- 'Functions/MismatchTypeAndDefault'
- 'Functions/MustReturn'
- 'Functions/OnlyVariableForReference'
- 'Functions/TypehintMustBeReturned'
- 'Functions/WrongReturnedType'
- 'Interfaces/AvoidSelfInInterface'
- 'Interfaces/CantImplementTraversable'
- 'Interfaces/CantOverloadConstants'
- 'Interfaces/IsNotImplemented'
- 'Interfaces/RepeatedInterface'
- 'Interfaces/UndefinedInterfaces'
- 'Php/CloneConstant'
- 'Php/FalseToArray'
- 'Php/JsonSerializeReturnType'
- 'Php/OnlyVariablePassedByReference'
- 'Structures/ImplicitConversionToInt'
- 'Structures/InvalidCast'
- 'Traits/MethodCollisionTraits'

(continues on next page)

10.5. Predefined config files 409

Exakat Documentation, Release 1

(continued from previous page)

- 'Traits/TraitNotFound'
- 'Traits/UndefinedInsteadof'
- 'Traits/UndefinedTrait'
- 'Traits/UselessAlias'
- 'Typehints/WrongTypeWithDefault'

10.5.33 NoDoc

NoDoc for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[NoDoc]
analyzer[] = "Complete/CreateCompactVariables";
analyzer[] = "Complete/CreateDefaultValues";
analyzer[] = "Complete/CreateForeachDefault";
analyzer[] = "Complete/CreateMagicMethod";
analyzer[] = "Complete/CreateMagicProperty";
analyzer[] = "Complete/ExtendedTypehints";
analyzer[] = "Complete/FollowClosureDefinition";
analyzer[] = "Complete/IsExtStructure";
analyzer[] = "Complete/IsPhpStructure";
analyzer[] = "Complete/IsStubStructure";
analyzer[] = "Complete/MakeAllStatics";
analyzer[] = "Complete/MakeClassConstantDefinition";
analyzer[] = "Complete/MakeClassMethodDefinition";
analyzer[] = "Complete/MakeFunctioncallWithReference";
analyzer[] = "Complete/OverwrittenConstants";
analyzer[] = "Complete/OverwrittenMethods";
analyzer[] = "Complete/OverwrittenProperties";
analyzer[] = "Complete/PhpExtStubPropertyMethod";
analyzer[] = "Complete/PhpNativeReference";
analyzer[] = "Complete/PropagateConstants";
analyzer[] = "Complete/ReturnTypehint";
analyzer[] = "Complete/SetArrayClassDefinition";
analyzer[] = "Complete/SetClassAliasDefinition";
analyzer[] = "Complete/SetClassMethodRemoteDefinition";
analyzer[] = "Complete/SetClassPropertyDefinitionWithTypehint";
analyzer[] = "Complete/SetClassRemoteDefinitionWithGlobal";
analyzer[] = "Complete/SetClassRemoteDefinitionWithInjection";
analyzer[] = "Complete/SetClassRemoteDefinitionWithLocalNew";
analyzer[] = "Complete/SetClassRemoteDefinitionWithParenthesis";
analyzer[] = "Complete/SetClassRemoteDefinitionWithReturnTypehint";
analyzer[] = "Complete/SetClassRemoteDefinitionWithTypehint";
analyzer[] = "Complete/SetCloneLink";
analyzer[] = "Complete/SetParentDefinition";
analyzer[] = "Complete/SolveTraitMethods";
analyzer[] = "Complete/VariableTypehint";
analyzer[] = "Variables/IsLocalConstant";

410 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

NoDoc for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'NoDoc':
- 'Complete/CreateCompactVariables'
- 'Complete/CreateDefaultValues'
- 'Complete/CreateForeachDefault'
- 'Complete/CreateMagicMethod'
- 'Complete/CreateMagicProperty'
- 'Complete/ExtendedTypehints'
- 'Complete/FollowClosureDefinition'
- 'Complete/IsExtStructure'
- 'Complete/IsPhpStructure'
- 'Complete/IsStubStructure'
- 'Complete/MakeAllStatics'
- 'Complete/MakeClassConstantDefinition'
- 'Complete/MakeClassMethodDefinition'
- 'Complete/MakeFunctioncallWithReference'
- 'Complete/OverwrittenConstants'
- 'Complete/OverwrittenMethods'
- 'Complete/OverwrittenProperties'
- 'Complete/PhpExtStubPropertyMethod'
- 'Complete/PhpNativeReference'
- 'Complete/PropagateConstants'
- 'Complete/ReturnTypehint'
- 'Complete/SetArrayClassDefinition'
- 'Complete/SetClassAliasDefinition'
- 'Complete/SetClassMethodRemoteDefinition'
- 'Complete/SetClassPropertyDefinitionWithTypehint'
- 'Complete/SetClassRemoteDefinitionWithGlobal'
- 'Complete/SetClassRemoteDefinitionWithInjection'
- 'Complete/SetClassRemoteDefinitionWithLocalNew'
- 'Complete/SetClassRemoteDefinitionWithParenthesis'
- 'Complete/SetClassRemoteDefinitionWithReturnTypehint'
- 'Complete/SetClassRemoteDefinitionWithTypehint'
- 'Complete/SetCloneLink'
- 'Complete/SetParentDefinition'
- 'Complete/SolveTraitMethods'
- 'Complete/VariableTypehint'
- 'Variables/IsLocalConstant'

10.5. Predefined config files 411

Exakat Documentation, Release 1

10.5.34 One Liners

One Liners for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[One Liners]
analyzer[] = "Functions/UseArrowFunctions";
analyzer[] = "Php/Coalesce";
analyzer[] = "Php/ShortTernary";
analyzer[] = "Php/ThrowWasAnExpression";
analyzer[] = "Php/UseNullSafeOperator";

One Liners for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'One Liners':
- 'Functions/UseArrowFunctions'
- 'Php/Coalesce'
- 'Php/ShortTernary'
- 'Php/ThrowWasAnExpression'
- 'Php/UseNullSafeOperator'

10.5.35 PHP recommendations

PHP recommendations for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[PHP recommendations]
analyzer[] = "Attributes/MissingAttributeAttribute";
analyzer[] = "Classes/CouldBeStringable";
analyzer[] = "Classes/ThrowInDestruct";
analyzer[] = "Constants/BadConstantnames";
analyzer[] = "Interfaces/NoConstructorInInterface";
analyzer[] = "Namespaces/UseWithFullyQualifiedNS";
analyzer[] = "Performances/AvoidArrayPush";
analyzer[] = "Php/Crc32MightBeNegative";
analyzer[] = "Php/ImplodeOneArg";
analyzer[] = "Php/NoCastToInt";
analyzer[] = "Php/NotScalarType";
analyzer[] = "Php/ReservedMethods";
analyzer[] = "Php/ReturnWithParenthesis";
analyzer[] = "Structures/DanglingArrayReferences";
analyzer[] = "Structures/EvalUsage";
analyzer[] = "Structures/NoIssetWithEmpty";
analyzer[] = "Structures/ShortTags";
analyzer[] = "Structures/StrposCompare";

(continues on next page)

412 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/UnsupportedOperandTypes";
analyzer[] = "Structures/UseConstant";
analyzer[] = "Structures/UselessCasting";
analyzer[] = "Type/NoRealComparison";

PHP recommendations for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'PHP recommendations':
- 'Attributes/MissingAttributeAttribute'
- 'Classes/CouldBeStringable'
- 'Classes/ThrowInDestruct'
- 'Constants/BadConstantnames'
- 'Interfaces/NoConstructorInInterface'
- 'Namespaces/UseWithFullyQualifiedNS'
- 'Performances/AvoidArrayPush'
- 'Php/Crc32MightBeNegative'
- 'Php/ImplodeOneArg'
- 'Php/NoCastToInt'
- 'Php/NotScalarType'
- 'Php/ReservedMethods'
- 'Php/ReturnWithParenthesis'
- 'Structures/DanglingArrayReferences'
- 'Structures/EvalUsage'
- 'Structures/NoIssetWithEmpty'
- 'Structures/ShortTags'
- 'Structures/StrposCompare'
- 'Structures/UnsupportedOperandTypes'
- 'Structures/UseConstant'
- 'Structures/UselessCasting'
- 'Type/NoRealComparison'

10.5.36 Performances

Performances for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[Performances]
analyzer[] = "Arrays/GettingLastElement";
analyzer[] = "Arrays/SliceFirst";
analyzer[] = "Classes/MakeMagicConcrete";
analyzer[] = "Classes/UseClassOperator";
analyzer[] = "Functions/Closure2String";
analyzer[] = "Performances/ArrayKeyExistsSpeedup";
analyzer[] = "Performances/ArrayMergeInLoops";
analyzer[] = "Performances/Autoappend";

(continues on next page)

10.5. Predefined config files 413

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Performances/AvoidArrayPush";
analyzer[] = "Performances/CacheVariableOutsideLoop";
analyzer[] = "Performances/ClassOperator";
analyzer[] = "Performances/CountToAppend";
analyzer[] = "Performances/CsvInLoops";
analyzer[] = "Performances/DoInBase";
analyzer[] = "Performances/DoubleArrayFlip";
analyzer[] = "Performances/EllipsisMerge";
analyzer[] = "Performances/FetchOneRowFormat";
analyzer[] = "Performances/IssetWholeArray";
analyzer[] = "Performances/JoinFile";
analyzer[] = "Performances/MakeOneCall";
analyzer[] = "Performances/MbStringInLoop";
analyzer[] = "Performances/NoConcatInLoop";
analyzer[] = "Performances/NoGlob";
analyzer[] = "Performances/NotCountNull";
analyzer[] = "Performances/OptimizeExplode";
analyzer[] = "Performances/PHP7EncapsedStrings";
analyzer[] = "Performances/Php74ArrayKeyExists";
analyzer[] = "Performances/PreCalculateUse";
analyzer[] = "Performances/PrePostIncrement";
analyzer[] = "Performances/RegexOnArrays";
analyzer[] = "Performances/RegexOnCollector";
analyzer[] = "Performances/ShouldCacheLocal";
analyzer[] = "Performances/SimpleSwitch";
analyzer[] = "Performances/SimplifyForeach";
analyzer[] = "Performances/SkipEmptyArray";
analyzer[] = "Performances/SlowFunctions";
analyzer[] = "Performances/StaticCallDontNeedObjects";
analyzer[] = "Performances/SubstrFirst";
analyzer[] = "Performances/SubstrInLoops";
analyzer[] = "Performances/TooManyExtractions";
analyzer[] = "Performances/UseBlindVar";
analyzer[] = "Performances/timeVsstrtotime";
analyzer[] = "Php/ShouldUseArrayColumn";
analyzer[] = "Php/ShouldUseFunction";
analyzer[] = "Php/UsePathinfoArgs";
analyzer[] = "Structures/CouldUseShortAssignation";
analyzer[] = "Structures/CouldUseYieldFrom";
analyzer[] = "Structures/EchoWithConcat";
analyzer[] = "Structures/EvalUsage";
analyzer[] = "Structures/ForWithFunctioncall";
analyzer[] = "Structures/GlobalOutsideLoop";
analyzer[] = "Structures/NestedLoops";
analyzer[] = "Structures/NoArrayUnique";
analyzer[] = "Structures/NoAssignationInFunction";
analyzer[] = "Structures/NoSubstrOne";
analyzer[] = "Structures/Noscream";
analyzer[] = "Structures/RecalledCondition";
analyzer[] = "Structures/SimplePreg";
analyzer[] = "Structures/Unpreprocessed";
analyzer[] = "Structures/WhileListEach";

414 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

Performances for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'Performances':
- 'Arrays/GettingLastElement'
- 'Arrays/SliceFirst'
- 'Classes/MakeMagicConcrete'
- 'Classes/UseClassOperator'
- 'Functions/Closure2String'
- 'Performances/ArrayKeyExistsSpeedup'
- 'Performances/ArrayMergeInLoops'
- 'Performances/Autoappend'
- 'Performances/AvoidArrayPush'
- 'Performances/CacheVariableOutsideLoop'
- 'Performances/ClassOperator'
- 'Performances/CountToAppend'
- 'Performances/CsvInLoops'
- 'Performances/DoInBase'
- 'Performances/DoubleArrayFlip'
- 'Performances/EllipsisMerge'
- 'Performances/FetchOneRowFormat'
- 'Performances/IssetWholeArray'
- 'Performances/JoinFile'
- 'Performances/MakeOneCall'
- 'Performances/MbStringInLoop'
- 'Performances/NoConcatInLoop'
- 'Performances/NoGlob'
- 'Performances/NotCountNull'
- 'Performances/OptimizeExplode'
- 'Performances/PHP7EncapsedStrings'
- 'Performances/Php74ArrayKeyExists'
- 'Performances/PreCalculateUse'
- 'Performances/PrePostIncrement'
- 'Performances/RegexOnArrays'
- 'Performances/RegexOnCollector'
- 'Performances/ShouldCacheLocal'
- 'Performances/SimpleSwitch'
- 'Performances/SimplifyForeach'
- 'Performances/SkipEmptyArray'
- 'Performances/SlowFunctions'
- 'Performances/StaticCallDontNeedObjects'
- 'Performances/SubstrFirst'
- 'Performances/SubstrInLoops'
- 'Performances/TooManyExtractions'
- 'Performances/UseBlindVar'
- 'Performances/timeVsstrtotime'
- 'Php/ShouldUseArrayColumn'
- 'Php/ShouldUseFunction'
- 'Php/UsePathinfoArgs'
- 'Structures/CouldUseShortAssignation'

(continues on next page)

10.5. Predefined config files 415

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/CouldUseYieldFrom'
- 'Structures/EchoWithConcat'
- 'Structures/EvalUsage'
- 'Structures/ForWithFunctioncall'
- 'Structures/GlobalOutsideLoop'
- 'Structures/NestedLoops'
- 'Structures/NoArrayUnique'
- 'Structures/NoAssignationInFunction'
- 'Structures/NoSubstrOne'
- 'Structures/Noscream'
- 'Structures/RecalledCondition'
- 'Structures/SimplePreg'
- 'Structures/Unpreprocessed'
- 'Structures/WhileListEach'

10.5.37 Preferences

Preferences for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[Preferences]
analyzer[] = "Arrays/ArrayBracketConsistence";
analyzer[] = "Arrays/EmptyFinal";
analyzer[] = "Classes/NewOnFunctioncallOrIdentifier";
analyzer[] = "Classes/PPPDeclarationStyle";
analyzer[] = "Constants/ConstDefinePreference";
analyzer[] = "Constants/DefineInsensitivePreference";
analyzer[] = "Constants/InconsistantCase";
analyzer[] = "Exceptions/CatchE";
analyzer[] = "Functions/NullTypeFavorite";
analyzer[] = "Namespaces/ConstantWithUseFavorite";
analyzer[] = "Php/CloseTagsConsistency";
analyzer[] = "Php/DeclareEncoding";
analyzer[] = "Php/DeclareStrict";
analyzer[] = "Php/DeclareStrictType";
analyzer[] = "Php/DeclareTicks";
analyzer[] = "Php/GlobalsVsGlobal";
analyzer[] = "Php/LetterCharsLogicalFavorite";
analyzer[] = "Php/ShellFavorite";
analyzer[] = "Php/UnsetOrCast";
analyzer[] = "Structures/ArrayCountTripleEqual";
analyzer[] = "Structures/CastFavorite";
analyzer[] = "Structures/ComparisonFavorite";
analyzer[] = "Structures/ConcatenationInterpolationFavorite";
analyzer[] = "Structures/ConstantComparisonConsistance";
analyzer[] = "Structures/DateTimePreference";
analyzer[] = "Structures/DieExitConsistance";
analyzer[] = "Structures/DifferencePreference";
analyzer[] = "Structures/EchoPrintConsistance";
analyzer[] = "Structures/GtOrLtFavorite";

(continues on next page)

416 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/HeredocDelimiterFavorite";
analyzer[] = "Structures/IfThenReturnFavorite";
analyzer[] = "Structures/IsAVersusInstanceof";
analyzer[] = "Structures/NewLineStyle";
analyzer[] = "Structures/NotOrNot";
analyzer[] = "Structures/OneExpressionBracketsConsistency";
analyzer[] = "Structures/RegexDelimiter";
analyzer[] = "Structures/ShortOrCompleteComparison";
analyzer[] = "Structures/StrictInArrayFavorite";
analyzer[] = "Structures/StringInterpolationFavorite";
analyzer[] = "Structures/strOrMbFavorite";

Preferences for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'Preferences':
- 'Arrays/ArrayBracketConsistence'
- 'Arrays/EmptyFinal'
- 'Classes/NewOnFunctioncallOrIdentifier'
- 'Classes/PPPDeclarationStyle'
- 'Constants/ConstDefinePreference'
- 'Constants/DefineInsensitivePreference'
- 'Constants/InconsistantCase'
- 'Exceptions/CatchE'
- 'Functions/NullTypeFavorite'
- 'Namespaces/ConstantWithUseFavorite'
- 'Php/CloseTagsConsistency'
- 'Php/DeclareEncoding'
- 'Php/DeclareStrict'
- 'Php/DeclareStrictType'
- 'Php/DeclareTicks'
- 'Php/GlobalsVsGlobal'
- 'Php/LetterCharsLogicalFavorite'
- 'Php/ShellFavorite'
- 'Php/UnsetOrCast'
- 'Structures/ArrayCountTripleEqual'
- 'Structures/CastFavorite'
- 'Structures/ComparisonFavorite'
- 'Structures/ConcatenationInterpolationFavorite'
- 'Structures/ConstantComparisonConsistance'
- 'Structures/DateTimePreference'
- 'Structures/DieExitConsistance'
- 'Structures/DifferencePreference'
- 'Structures/EchoPrintConsistance'
- 'Structures/GtOrLtFavorite'
- 'Structures/HeredocDelimiterFavorite'
- 'Structures/IfThenReturnFavorite'
- 'Structures/IsAVersusInstanceof'

(continues on next page)

10.5. Predefined config files 417

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/NewLineStyle'
- 'Structures/NotOrNot'
- 'Structures/OneExpressionBracketsConsistency'
- 'Structures/RegexDelimiter'
- 'Structures/ShortOrCompleteComparison'
- 'Structures/StrictInArrayFavorite'
- 'Structures/StringInterpolationFavorite'
- 'Structures/strOrMbFavorite'

10.5.38 Rector

Rector for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[Rector]
analyzer[] = "Arrays/MultipleIdenticalKeys";
analyzer[] = "Functions/Closure2String";
analyzer[] = "Functions/NeverUsedParameter";
analyzer[] = "Php/IsAWithString";
analyzer[] = "Structures/AddZero";
analyzer[] = "Structures/CouldUseShortAssignation";
analyzer[] = "Structures/CouldUseStrContains";
analyzer[] = "Structures/ElseIfElseif";
analyzer[] = "Structures/ForWithFunctioncall";
analyzer[] = "Structures/ImpliedIf";
analyzer[] = "Structures/MultipleDefinedCase";
analyzer[] = "Structures/MultiplyByOne";
analyzer[] = "Structures/NoChoice";
analyzer[] = "Structures/ShouldPreprocess";
analyzer[] = "Type/ShouldTypecast";

Rector for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'Rector':
- 'Arrays/MultipleIdenticalKeys'
- 'Functions/Closure2String'
- 'Functions/NeverUsedParameter'
- 'Php/IsAWithString'
- 'Structures/AddZero'
- 'Structures/CouldUseShortAssignation'
- 'Structures/CouldUseStrContains'
- 'Structures/ElseIfElseif'
- 'Structures/ForWithFunctioncall'
- 'Structures/ImpliedIf'
- 'Structures/MultipleDefinedCase'

(continues on next page)

418 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/MultiplyByOne'
- 'Structures/NoChoice'
- 'Structures/ShouldPreprocess'
- 'Type/ShouldTypecast'

10.5.39 Security

Security for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[Security]
analyzer[] = "Functions/HardcodedPasswords";
analyzer[] = "Php/BetterRand";
analyzer[] = "Security/AnchorRegex";
analyzer[] = "Security/AvoidThoseCrypto";
analyzer[] = "Security/CompareHash";
analyzer[] = "Security/ConfigureExtract";
analyzer[] = "Security/CryptoKeyLength";
analyzer[] = "Security/CurlOptions";
analyzer[] = "Security/DirectInjection";
analyzer[] = "Security/DontEchoError";
analyzer[] = "Security/DynamicDl";
analyzer[] = "Security/EncodedLetters";
analyzer[] = "Security/FilterInputSource";
analyzer[] = "Security/FilterNotRaw";
analyzer[] = "Security/IncompatibleTypesWithIncoming";
analyzer[] = "Security/IndirectInjection";
analyzer[] = "Security/IntegerConversion";
analyzer[] = "Security/KeepFilesRestricted";
analyzer[] = "Security/MinusOneOnError";
analyzer[] = "Security/MkdirDefault";
analyzer[] = "Security/MoveUploadedFile";
analyzer[] = "Security/NoEntIgnore";
analyzer[] = "Security/NoNetForXmlLoad";
analyzer[] = "Security/NoSleep";
analyzer[] = "Security/NoWeakSSLCrypto";
analyzer[] = "Security/RegisterGlobals";
analyzer[] = "Security/SafeHttpHeaders";
analyzer[] = "Security/SessionCachedData";
analyzer[] = "Security/SessionLazyWrite";
analyzer[] = "Security/SetCookieArgs";
analyzer[] = "Security/ShouldUsePreparedStatement";
analyzer[] = "Security/ShouldUseSessionRegenerateId";
analyzer[] = "Security/Sqlite3RequiresSingleQuotes";
analyzer[] = "Security/UnserializeSecondArg";
analyzer[] = "Security/UploadFilenameInjection";
analyzer[] = "Security/parseUrlWithoutParameters";
analyzer[] = "Structures/EvalUsage";
analyzer[] = "Structures/EvalWithoutTry";
analyzer[] = "Structures/Fallthrough";

(continues on next page)

10.5. Predefined config files 419

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/NoHardcodedHash";
analyzer[] = "Structures/NoHardcodedIp";
analyzer[] = "Structures/NoHardcodedPort";
analyzer[] = "Structures/NoReturnInFinally";
analyzer[] = "Structures/PhpinfoUsage";
analyzer[] = "Structures/RandomWithoutTry";
analyzer[] = "Structures/VardumpUsage";
analyzer[] = "Structures/pregOptionE";

Security for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'Security':
- 'Functions/HardcodedPasswords'
- 'Php/BetterRand'
- 'Security/AnchorRegex'
- 'Security/AvoidThoseCrypto'
- 'Security/CompareHash'
- 'Security/ConfigureExtract'
- 'Security/CryptoKeyLength'
- 'Security/CurlOptions'
- 'Security/DirectInjection'
- 'Security/DontEchoError'
- 'Security/DynamicDl'
- 'Security/EncodedLetters'
- 'Security/FilterInputSource'
- 'Security/FilterNotRaw'
- 'Security/IncompatibleTypesWithIncoming'
- 'Security/IndirectInjection'
- 'Security/IntegerConversion'
- 'Security/KeepFilesRestricted'
- 'Security/MinusOneOnError'
- 'Security/MkdirDefault'
- 'Security/MoveUploadedFile'
- 'Security/NoEntIgnore'
- 'Security/NoNetForXmlLoad'
- 'Security/NoSleep'
- 'Security/NoWeakSSLCrypto'
- 'Security/RegisterGlobals'
- 'Security/SafeHttpHeaders'
- 'Security/SessionCachedData'
- 'Security/SessionLazyWrite'
- 'Security/SetCookieArgs'
- 'Security/ShouldUsePreparedStatement'
- 'Security/ShouldUseSessionRegenerateId'
- 'Security/Sqlite3RequiresSingleQuotes'
- 'Security/UnserializeSecondArg'
- 'Security/UploadFilenameInjection'

(continues on next page)

420 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Security/parseUrlWithoutParameters'
- 'Structures/EvalUsage'
- 'Structures/EvalWithoutTry'
- 'Structures/Fallthrough'
- 'Structures/NoHardcodedHash'
- 'Structures/NoHardcodedIp'
- 'Structures/NoHardcodedPort'
- 'Structures/NoReturnInFinally'
- 'Structures/PhpinfoUsage'
- 'Structures/RandomWithoutTry'
- 'Structures/VardumpUsage'
- 'Structures/pregOptionE'

10.5.40 Semantics

Semantics for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[Semantics]
analyzer[] = "Arrays/AmbiguousKeys";
analyzer[] = "Arrays/WeirdIndex";
analyzer[] = "Classes/AmbiguousStatic";
analyzer[] = "Classes/AmbiguousVisibilities";
analyzer[] = "Classes/MethodPropertyConfusion";
analyzer[] = "Classes/PropertyMethodSameName";
analyzer[] = "Classes/StrangeName";
analyzer[] = "Constants/ConstantStrangeNames";
analyzer[] = "Constants/CouldBeConstant";
analyzer[] = "Constants/StrangeName";
analyzer[] = "Functions/FnArgumentVariableConfusion";
analyzer[] = "Functions/FunctionCalledWithOtherCase";
analyzer[] = "Functions/MismatchParameterAndType";
analyzer[] = "Functions/OneLetterFunctions";
analyzer[] = "Functions/ParameterHiding";
analyzer[] = "Functions/PrefixToType";
analyzer[] = "Functions/SemanticTyping";
analyzer[] = "Functions/WrongTypehintedName";
analyzer[] = "Namespaces/AliasConfusion";
analyzer[] = "Namespaces/OverloadExistingNames";
analyzer[] = "Php/ClassFunctionConfusion";
analyzer[] = "Php/ReservedNames";
analyzer[] = "Structures/ArrayAccessOnLiteralArray";
analyzer[] = "Structures/DontUseTheTypeAsVariable";
analyzer[] = "Structures/PropertyVariableConfusion";
analyzer[] = "Structures/SGVariablesConfusion";
analyzer[] = "Structures/TooManyChainedCalls";
analyzer[] = "Structures/WrongLocale";
analyzer[] = "Type/DuplicateLiteral";
analyzer[] = "Type/SimilarIntegers";
analyzer[] = "Variables/AmbiguousTypes";

(continues on next page)

10.5. Predefined config files 421

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Variables/NoInitialS";
analyzer[] = "Variables/NoVariableNeeded";
analyzer[] = "Variables/StrangeName";
analyzer[] = "Variables/VariableOneLetter";

Semantics for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'Semantics':
- 'Arrays/AmbiguousKeys'
- 'Arrays/WeirdIndex'
- 'Classes/AmbiguousStatic'
- 'Classes/AmbiguousVisibilities'
- 'Classes/MethodPropertyConfusion'
- 'Classes/PropertyMethodSameName'
- 'Classes/StrangeName'
- 'Constants/ConstantStrangeNames'
- 'Constants/CouldBeConstant'
- 'Constants/StrangeName'
- 'Functions/FnArgumentVariableConfusion'
- 'Functions/FunctionCalledWithOtherCase'
- 'Functions/MismatchParameterAndType'
- 'Functions/OneLetterFunctions'
- 'Functions/ParameterHiding'
- 'Functions/PrefixToType'
- 'Functions/SemanticTyping'
- 'Functions/WrongTypehintedName'
- 'Namespaces/AliasConfusion'
- 'Namespaces/OverloadExistingNames'
- 'Php/ClassFunctionConfusion'
- 'Php/ReservedNames'
- 'Structures/ArrayAccessOnLiteralArray'
- 'Structures/DontUseTheTypeAsVariable'
- 'Structures/PropertyVariableConfusion'
- 'Structures/SGVariablesConfusion'
- 'Structures/TooManyChainedCalls'
- 'Structures/WrongLocale'
- 'Type/DuplicateLiteral'
- 'Type/SimilarIntegers'
- 'Variables/AmbiguousTypes'
- 'Variables/NoInitialS'
- 'Variables/NoVariableNeeded'
- 'Variables/StrangeName'
- 'Variables/VariableOneLetter'

422 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

10.5.41 Suggestions

Suggestions for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[Suggestions]
analyzer[] = "Arrays/RandomlySortedLiterals";
analyzer[] = "Arrays/ShouldPreprocess";
analyzer[] = "Arrays/SliceFirst";
analyzer[] = "Classes/CancelCommonMethod";
analyzer[] = "Classes/CheckAfterNullSafeOperator";
analyzer[] = "Classes/CouldBeAbstractMethod";
analyzer[] = "Classes/CouldBeIterable";
analyzer[] = "Classes/CouldBeReadonly";
analyzer[] = "Classes/CouldBeReadonlyProperty";
analyzer[] = "Classes/CouldSetPropertyDefault";
analyzer[] = "Classes/CouldUseClassOperator";
analyzer[] = "Classes/LoweredAccessLevel";
analyzer[] = "Classes/MagicMethodReturntypes";
analyzer[] = "Classes/ParentFirst";
analyzer[] = "Classes/ShouldDeepClone";
analyzer[] = "Classes/ShouldHaveDestructor";
analyzer[] = "Classes/ShouldUseSelf";
analyzer[] = "Classes/TooManyChildren";
analyzer[] = "Classes/UnitializedProperties";
analyzer[] = "Classes/UselessTypehint";
analyzer[] = "Constants/CouldUseConstant";
analyzer[] = "Enums/CouldBeEnum";
analyzer[] = "Exceptions/CouldDropVariable";
analyzer[] = "Exceptions/CouldUseTry";
analyzer[] = "Exceptions/LargeTryBlock";
analyzer[] = "Exceptions/LongPreparation";
analyzer[] = "Exceptions/OverwriteException";
analyzer[] = "Exceptions/ThrowRawExceptions";
analyzer[] = "Exceptions/UnusedExceptionVariable";
analyzer[] = "Functions/AddDefaultValue";
analyzer[] = "Functions/Closure2String";
analyzer[] = "Functions/CouldBeStaticClosure";
analyzer[] = "Functions/CouldCentralize";
analyzer[] = "Functions/NeverUsedParameter";
analyzer[] = "Functions/NoReturnUsed";
analyzer[] = "Functions/TooManyParameters";
analyzer[] = "Functions/TooMuchIndented";
analyzer[] = "Functions/UselessDefault";
analyzer[] = "Interfaces/AlreadyParentsInterface";
analyzer[] = "Interfaces/UnusedInterfaces";
analyzer[] = "Namespaces/AliasConfusion";
analyzer[] = "Namespaces/CouldUseAlias";
analyzer[] = "Namespaces/CouldUseMagicConstant";
analyzer[] = "Patterns/AbstractAway";
analyzer[] = "Performances/ArrayKeyExistsSpeedup";
analyzer[] = "Performances/IssetWholeArray";

(continues on next page)

10.5. Predefined config files 423

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Performances/SubstrFirst";
analyzer[] = "Php/AvoidReal";
analyzer[] = "Php/CompactInexistant";
analyzer[] = "Php/CouldUseIsCountable";
analyzer[] = "Php/CouldUsePromotedProperties";
analyzer[] = "Php/DetectCurrentClass";
analyzer[] = "Php/ImplodeOneArg";
analyzer[] = "Php/IssetMultipleArgs";
analyzer[] = "Php/LogicalInLetters";
analyzer[] = "Php/NewExponent";
analyzer[] = "Php/PregMatchAllFlag";
analyzer[] = "Php/ReturnWithParenthesis";
analyzer[] = "Php/ShouldPreprocess";
analyzer[] = "Php/ShouldUseArrayColumn";
analyzer[] = "Php/ShouldUseArrayFilter";
analyzer[] = "Php/ShouldUseCoalesce";
analyzer[] = "Php/UseDateTimeImmutable";
analyzer[] = "Php/UseGetDebugType";
analyzer[] = "Php/UseSessionStartOptions";
analyzer[] = "Php/UseStrContains";
analyzer[] = "Structures/ArraySearchMultipleKeys";
analyzer[] = "Structures/BasenameSuffix";
analyzer[] = "Structures/BlindVariableUsedBeyondLoop";
analyzer[] = "Structures/BooleanStrictComparison";
analyzer[] = "Structures/CouldBeArrayCombine";
analyzer[] = "Structures/CouldBeSpaceship";
analyzer[] = "Structures/CouldBeTernary";
analyzer[] = "Structures/CouldCastToArray";
analyzer[] = "Structures/CouldUseArrayFillKeys";
analyzer[] = "Structures/CouldUseArraySum";
analyzer[] = "Structures/CouldUseArrayUnique";
analyzer[] = "Structures/CouldUseCompact";
analyzer[] = "Structures/CouldUseDir";
analyzer[] = "Structures/CouldUseMatch";
analyzer[] = "Structures/CouldUseNullableOperator";
analyzer[] = "Structures/CouldUseStrContains";
analyzer[] = "Structures/DeclareStaticOnce";
analyzer[] = "Structures/DirectlyUseFile";
analyzer[] = "Structures/DontCompareTypedBoolean";
analyzer[] = "Structures/DontLoopOnYield";
analyzer[] = "Structures/DropElseAfterReturn";
analyzer[] = "Structures/EchoWithConcat";
analyzer[] = "Structures/EmptyWithExpression";
analyzer[] = "Structures/FunctionPreSubscripting";
analyzer[] = "Structures/JsonEncodeExceptions";
analyzer[] = "Structures/JsonWithOption";
analyzer[] = "Structures/ListOmissions";
analyzer[] = "Structures/LongBlock";
analyzer[] = "Structures/MismatchedTernary";
analyzer[] = "Structures/MultilineExpressions";
analyzer[] = "Structures/MultipleSimilarCalls";
analyzer[] = "Structures/MultipleUnset";

(continues on next page)

424 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/NamedRegex";
analyzer[] = "Structures/NoNeedGetClass";
analyzer[] = "Structures/NoParenthesisForLanguageConstruct";
analyzer[] = "Structures/NoSubstrOne";
analyzer[] = "Structures/OneIfIsSufficient";
analyzer[] = "Structures/PHP7Dirname";
analyzer[] = "Structures/PossibleIncrement";
analyzer[] = "Structures/RepeatedPrint";
analyzer[] = "Structures/ReuseVariable";
analyzer[] = "Structures/SGVariablesConfusion";
analyzer[] = "Structures/SetAside";
analyzer[] = "Structures/ShouldUseForeach";
analyzer[] = "Structures/ShouldUseMath";
analyzer[] = "Structures/ShouldUseOperator";
analyzer[] = "Structures/SubstrLastArg";
analyzer[] = "Structures/SubstrToTrim";
analyzer[] = "Structures/TooManyElseif";
analyzer[] = "Structures/UnreachableCode";
analyzer[] = "Structures/UseArrayFunctions";
analyzer[] = "Structures/UseCaseValue";
analyzer[] = "Structures/UseCountRecursive";
analyzer[] = "Structures/UseFileAppend";
analyzer[] = "Structures/UseListWithForeach";
analyzer[] = "Structures/UseStrEndsWith";
analyzer[] = "Structures/UseStrStartsWith";
analyzer[] = "Structures/UseUrlQueryFunctions";
analyzer[] = "Structures/WhileListEach";
analyzer[] = "Traits/MultipleUsage";
analyzer[] = "Variables/ComplexDynamicNames";
analyzer[] = "Variables/NoStaticVarInMethod";

Suggestions for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'Suggestions':
- 'Arrays/RandomlySortedLiterals'
- 'Arrays/ShouldPreprocess'
- 'Arrays/SliceFirst'
- 'Classes/CancelCommonMethod'
- 'Classes/CheckAfterNullSafeOperator'
- 'Classes/CouldBeAbstractMethod'
- 'Classes/CouldBeIterable'
- 'Classes/CouldBeReadonly'
- 'Classes/CouldBeReadonlyProperty'
- 'Classes/CouldSetPropertyDefault'
- 'Classes/CouldUseClassOperator'
- 'Classes/LoweredAccessLevel'
- 'Classes/MagicMethodReturntypes'

(continues on next page)

10.5. Predefined config files 425

Exakat Documentation, Release 1

(continued from previous page)

- 'Classes/ParentFirst'
- 'Classes/ShouldDeepClone'
- 'Classes/ShouldHaveDestructor'
- 'Classes/ShouldUseSelf'
- 'Classes/TooManyChildren'
- 'Classes/UnitializedProperties'
- 'Classes/UselessTypehint'
- 'Constants/CouldUseConstant'
- 'Enums/CouldBeEnum'
- 'Exceptions/CouldDropVariable'
- 'Exceptions/CouldUseTry'
- 'Exceptions/LargeTryBlock'
- 'Exceptions/LongPreparation'
- 'Exceptions/OverwriteException'
- 'Exceptions/ThrowRawExceptions'
- 'Exceptions/UnusedExceptionVariable'
- 'Functions/AddDefaultValue'
- 'Functions/Closure2String'
- 'Functions/CouldBeStaticClosure'
- 'Functions/CouldCentralize'
- 'Functions/NeverUsedParameter'
- 'Functions/NoReturnUsed'
- 'Functions/TooManyParameters'
- 'Functions/TooMuchIndented'
- 'Functions/UselessDefault'
- 'Interfaces/AlreadyParentsInterface'
- 'Interfaces/UnusedInterfaces'
- 'Namespaces/AliasConfusion'
- 'Namespaces/CouldUseAlias'
- 'Namespaces/CouldUseMagicConstant'
- 'Patterns/AbstractAway'
- 'Performances/ArrayKeyExistsSpeedup'
- 'Performances/IssetWholeArray'
- 'Performances/SubstrFirst'
- 'Php/AvoidReal'
- 'Php/CompactInexistant'
- 'Php/CouldUseIsCountable'
- 'Php/CouldUsePromotedProperties'
- 'Php/DetectCurrentClass'
- 'Php/ImplodeOneArg'
- 'Php/IssetMultipleArgs'
- 'Php/LogicalInLetters'
- 'Php/NewExponent'
- 'Php/PregMatchAllFlag'
- 'Php/ReturnWithParenthesis'
- 'Php/ShouldPreprocess'
- 'Php/ShouldUseArrayColumn'
- 'Php/ShouldUseArrayFilter'
- 'Php/ShouldUseCoalesce'
- 'Php/UseDateTimeImmutable'
- 'Php/UseGetDebugType'
- 'Php/UseSessionStartOptions'

(continues on next page)

426 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

- 'Php/UseStrContains'
- 'Structures/ArraySearchMultipleKeys'
- 'Structures/BasenameSuffix'
- 'Structures/BlindVariableUsedBeyondLoop'
- 'Structures/BooleanStrictComparison'
- 'Structures/CouldBeArrayCombine'
- 'Structures/CouldBeSpaceship'
- 'Structures/CouldBeTernary'
- 'Structures/CouldCastToArray'
- 'Structures/CouldUseArrayFillKeys'
- 'Structures/CouldUseArraySum'
- 'Structures/CouldUseArrayUnique'
- 'Structures/CouldUseCompact'
- 'Structures/CouldUseDir'
- 'Structures/CouldUseMatch'
- 'Structures/CouldUseNullableOperator'
- 'Structures/CouldUseStrContains'
- 'Structures/DeclareStaticOnce'
- 'Structures/DirectlyUseFile'
- 'Structures/DontCompareTypedBoolean'
- 'Structures/DontLoopOnYield'
- 'Structures/DropElseAfterReturn'
- 'Structures/EchoWithConcat'
- 'Structures/EmptyWithExpression'
- 'Structures/FunctionPreSubscripting'
- 'Structures/JsonEncodeExceptions'
- 'Structures/JsonWithOption'
- 'Structures/ListOmissions'
- 'Structures/LongBlock'
- 'Structures/MismatchedTernary'
- 'Structures/MultilineExpressions'
- 'Structures/MultipleSimilarCalls'
- 'Structures/MultipleUnset'
- 'Structures/NamedRegex'
- 'Structures/NoNeedGetClass'
- 'Structures/NoParenthesisForLanguageConstruct'
- 'Structures/NoSubstrOne'
- 'Structures/OneIfIsSufficient'
- 'Structures/PHP7Dirname'
- 'Structures/PossibleIncrement'
- 'Structures/RepeatedPrint'
- 'Structures/ReuseVariable'
- 'Structures/SGVariablesConfusion'
- 'Structures/SetAside'
- 'Structures/ShouldUseForeach'
- 'Structures/ShouldUseMath'
- 'Structures/ShouldUseOperator'
- 'Structures/SubstrLastArg'
- 'Structures/SubstrToTrim'
- 'Structures/TooManyElseif'
- 'Structures/UnreachableCode'
- 'Structures/UseArrayFunctions'

(continues on next page)

10.5. Predefined config files 427

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/UseCaseValue'
- 'Structures/UseCountRecursive'
- 'Structures/UseFileAppend'
- 'Structures/UseListWithForeach'
- 'Structures/UseStrEndsWith'
- 'Structures/UseStrStartsWith'
- 'Structures/UseUrlQueryFunctions'
- 'Structures/WhileListEach'
- 'Traits/MultipleUsage'
- 'Variables/ComplexDynamicNames'
- 'Variables/NoStaticVarInMethod'

10.5.42 Surprising

Surprising for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[Surprising]
analyzer[] = "Structures/SequenceInFor";
analyzer[] = "Structures/StrposLessThanOne";

Surprising for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'Surprising':
- 'Structures/SequenceInFor'
- 'Structures/StrposLessThanOne'

10.5.43 Top10

Top10 for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[Top10]
analyzer[] = "Classes/DontUnsetProperties";
analyzer[] = "Classes/UnitializedProperties";
analyzer[] = "Classes/UnresolvedInstanceof";
analyzer[] = "Constants/ConstRecommended";
analyzer[] = "Functions/ShouldYieldWithKey";
analyzer[] = "Performances/ArrayMergeInLoops";
analyzer[] = "Performances/CsvInLoops";
analyzer[] = "Performances/NoConcatInLoop";
analyzer[] = "Performances/SubstrFirst";

(continues on next page)

428 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Php/AvoidReal";
analyzer[] = "Php/ConcatAndAddition";
analyzer[] = "Php/LetterCharsLogicalFavorite";
analyzer[] = "Php/LogicalInLetters";
analyzer[] = "Php/MissingSubpattern";
analyzer[] = "Structures/CouldUseStrrepeat";
analyzer[] = "Structures/DanglingArrayReferences";
analyzer[] = "Structures/FailingSubstrComparison";
analyzer[] = "Structures/ForWithFunctioncall";
analyzer[] = "Structures/NextMonthTrap";
analyzer[] = "Structures/NoChoice";
analyzer[] = "Structures/NoSubstrOne";
analyzer[] = "Structures/ObjectReferences";
analyzer[] = "Structures/QueriesInLoop";
analyzer[] = "Structures/RepeatedPrint";
analyzer[] = "Structures/StrposCompare";
analyzer[] = "Structures/UseListWithForeach";
analyzer[] = "Type/NoRealComparison";
analyzer[] = "Variables/VariableUsedOnce";

Top10 for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'Top10':
- 'Classes/DontUnsetProperties'
- 'Classes/UnitializedProperties'
- 'Classes/UnresolvedInstanceof'
- 'Constants/ConstRecommended'
- 'Functions/ShouldYieldWithKey'
- 'Performances/ArrayMergeInLoops'
- 'Performances/CsvInLoops'
- 'Performances/NoConcatInLoop'
- 'Performances/SubstrFirst'
- 'Php/AvoidReal'
- 'Php/ConcatAndAddition'
- 'Php/LetterCharsLogicalFavorite'
- 'Php/LogicalInLetters'
- 'Php/MissingSubpattern'
- 'Structures/CouldUseStrrepeat'
- 'Structures/DanglingArrayReferences'
- 'Structures/FailingSubstrComparison'
- 'Structures/ForWithFunctioncall'
- 'Structures/NextMonthTrap'
- 'Structures/NoChoice'
- 'Structures/NoSubstrOne'
- 'Structures/ObjectReferences'
- 'Structures/QueriesInLoop'
- 'Structures/RepeatedPrint'

(continues on next page)

10.5. Predefined config files 429

Exakat Documentation, Release 1

(continued from previous page)

- 'Structures/StrposCompare'
- 'Structures/UseListWithForeach'
- 'Type/NoRealComparison'
- 'Variables/VariableUsedOnce'

10.5.44 Typechecks

Typechecks for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[Typechecks]
analyzer[] = "Classes/ChildRemoveTypehint";
analyzer[] = "Classes/CouldBeIterable";
analyzer[] = "Classes/FossilizedMethod";
analyzer[] = "Exceptions/PossibleTypeError";
analyzer[] = "Functions/BadTypehintRelay";
analyzer[] = "Functions/InsufficientTypehint";
analyzer[] = "Functions/MismatchTypeAndDefault";
analyzer[] = "Functions/MismatchedDefaultArguments";
analyzer[] = "Functions/MismatchedTypehint";
analyzer[] = "Functions/MissingTypehint";
analyzer[] = "Functions/NoClassAsTypehint";
analyzer[] = "Functions/ShouldBeTypehinted";
analyzer[] = "Functions/WrongArgumentType";
analyzer[] = "Functions/WrongTypeWithCall";
analyzer[] = "Interfaces/UselessInterfaces";
analyzer[] = "Php/NotScalarType";
analyzer[] = "Typehints/CouldBeCallable";
analyzer[] = "Typehints/CouldBeFloat";
analyzer[] = "Typehints/CouldBeGenerator";
analyzer[] = "Typehints/CouldBeInt";
analyzer[] = "Typehints/CouldBeIterable";
analyzer[] = "Typehints/CouldBeNever";
analyzer[] = "Typehints/CouldBeNull";
analyzer[] = "Typehints/CouldBeParent";
analyzer[] = "Typehints/CouldBeResource";
analyzer[] = "Typehints/CouldBeSelf";
analyzer[] = "Typehints/CouldBeString";
analyzer[] = "Typehints/CouldBeVoid";

430 Chapter 10. Scoping analysis

Exakat Documentation, Release 1

Typechecks for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'Typechecks':
- 'Classes/ChildRemoveTypehint'
- 'Classes/CouldBeIterable'
- 'Classes/FossilizedMethod'
- 'Exceptions/PossibleTypeError'
- 'Functions/BadTypehintRelay'
- 'Functions/InsufficientTypehint'
- 'Functions/MismatchTypeAndDefault'
- 'Functions/MismatchedDefaultArguments'
- 'Functions/MismatchedTypehint'
- 'Functions/MissingTypehint'
- 'Functions/NoClassAsTypehint'
- 'Functions/ShouldBeTypehinted'
- 'Functions/WrongArgumentType'
- 'Functions/WrongTypeWithCall'
- 'Interfaces/UselessInterfaces'
- 'Php/NotScalarType'
- 'Typehints/CouldBeCallable'
- 'Typehints/CouldBeFloat'
- 'Typehints/CouldBeGenerator'
- 'Typehints/CouldBeInt'
- 'Typehints/CouldBeIterable'
- 'Typehints/CouldBeNever'
- 'Typehints/CouldBeNull'
- 'Typehints/CouldBeParent'
- 'Typehints/CouldBeResource'
- 'Typehints/CouldBeSelf'
- 'Typehints/CouldBeString'
- 'Typehints/CouldBeVoid'

10.5.45 php-cs-fixable

php-cs-fixable for INI

INI configuration for built-in rulesets. Copy them in config/rulesets.ini, and edit them to your owns.

[php-cs-fixable]
analyzer[] = "Classes/DontUnsetProperties";
analyzer[] = "Namespaces/UnusedUse";
analyzer[] = "Php/ImplodeOneArg";
analyzer[] = "Php/IsnullVsEqualNull";
analyzer[] = "Php/IssetMultipleArgs";
analyzer[] = "Php/LogicalInLetters";
analyzer[] = "Php/NewExponent";
analyzer[] = "Structures/CouldUseDir";
analyzer[] = "Structures/ElseIfElseif";

(continues on next page)

10.5. Predefined config files 431

Exakat Documentation, Release 1

(continued from previous page)

analyzer[] = "Structures/MultipleUnset";
analyzer[] = "Structures/PHP7Dirname";
analyzer[] = "Structures/UseConstant";

php-cs-fixable for .exakat.yaml

YAML configuration for built-in rulesets. Copy them in your code, with the name .exakat.yaml, and edit them to your
owns.

rulesets:
'php-cs-fixable':
- 'Classes/DontUnsetProperties'
- 'Namespaces/UnusedUse'
- 'Php/ImplodeOneArg'
- 'Php/IsnullVsEqualNull'
- 'Php/IssetMultipleArgs'
- 'Php/LogicalInLetters'
- 'Php/NewExponent'
- 'Structures/CouldUseDir'
- 'Structures/ElseIfElseif'
- 'Structures/MultipleUnset'
- 'Structures/PHP7Dirname'
- 'Structures/UseConstant'

432 Chapter 10. Scoping analysis

CHAPTER

ELEVEN

RULE

11.1 Rules

Exakat provides unique 1650 rules to detect BUGS, CODE SMELLS, SECURITY OR QUALITY ISSUES in your
PHP code.

Each rule is documented with : * a PHP version : The version of PHP to wich the rule apply * Short Name or Identifier :
The Id of the rule necessary in all configuration files * Code example : The illustrative way to explain the issue detected
by the rule and the targeted example of the remediated code * Time to Fix : a estimated duration to remediate the code
* Severity : the impact level of the issue generated by the rule * Exakat Since : The version of Exakat Engine after
which the rule is applicable

Note: The detail of Rules is available in our REFERENCE GUIDE.

11.2 Rulesets

A Ruleset is configurable with the -T option, when running exakat in command line. For example :

php exakat.phar analyze -p <project> -T <Security>

Note: The detail of Rulesets is available in our REFERENCE GUIDE.

433

Exakat Documentation, Release 1

434 Chapter 11. Rule

CHAPTER

TWELVE

REPORT

12.1 Configuring a report before the audit

By default, Exakat builds the ‘Ambassador’ report for any project. If you want another report, or want to ignore the
build of Ambassador, configure it before running the audit.

To do so, open the projects/<project>/config.ini file, and mention the list of report like that :

project_reports[] = 'Owasp';
project_reports[] = 'Weekly';

By configuring the reports before the audit, Exakat processes only the needed analysis, and produces all the reports for
each audit.

12.2 Generating a report after the audit

If you have run an audit, but wants to extract another report for a piece of code, you can use the following command :

php exakat.phar report -p <project> -format <format> -file <filename>

Where <format> is one of the format listed in the following section, and <filename> is the target file.

Note that some format requires some specific audits to be run : they will fail if those results are not available. Then,
run the audit again, and mention the desired audit in the configuration.

12.3 Common behavior

Default format is Text. Each report has a default filename, that may be configured with the -file option. Each report
adds a file extension to the provided filename.

A special value for -file is ‘stdout’. Some formats may be output to stdout, such as Text or Json. Not all format are
accepting that value : some format, like Ambassador or Sqlite, may only be written to directories.

Each report is stored in its <project> folder, under the requested name.

Reports may be generated at any time, during execution of the analysis (partial results) or later, even if another audit is
running.

435

Exakat Documentation, Release 1

436 Chapter 12. Report

CHAPTER

THIRTEEN

COBBLER

13.1 What are cobblers

Cobblers mend PHP code. They apply a transformation to it.

Cobblers are a complement to code analysis : the analysis spot code to be fixed, the cobbler mends the code. Later, the
analysis doesn’t find those issues anymore.

13.2 Cobbler command

To run a cobbler, use the cobble command.

php exakat cobble -p <project> <write-options> -P <Cobbler/Name>

The <project> parameter is the project on which the cobbler is run. It must have been init-ed with Exakat.

<Cobbler/Name> is the name of the cobbler to run. The list of available cobblers are in the documentation.

<write-options> configure the destination of the updated code. The available options are :

• –branch <branch> : the modified code is written in a new branch, called <branch>. The branch may be configured
for each cobbler.

• –inplace : the analyzed code is replaced by the modified code. This cannot be reverted

• -f <filename> : the modified code is written in the <filename> file. Only one file is written.

• -d <dirname> : the modified codes are written in the <directory> folder. Files are written with the original name
and path from the root of the repository.

• default behavior : –branch Exakat/Cobbler/Name.

13.3 Analysis and Cobblers

The analysis come first, and then the cobbler. The analysis reads the code, assess the situation and report patterns in
the code that should be fixed. Then, the results from the analysis are given to the Cobbler, as a starting point. The
cobbler applies various modifications in the code, and then, produce a new code. That code is now free of issues that
the analysis found.

437

Exakat Documentation, Release 1

13.4 One analysis, one cobbler

For example, Performances/PrePostIncrement is the analysis that reports post-increment that should be converted into
pre-increments. This is the base analysis for the Structure/PostToPre cobbler. This cobbler updates the code and turns
$a++ into ++$a, and $b-- into --$b. The resulting code is then stored into a new VCS branch, so that it may be
reviewed before PR.

Cobblers are often created to apply one of the possible fixes related to one analysis. For example, Perfor-
mances/PrePostIncrement might be fixed by turning the Post increment into a pre-increment, but it may also be replaced
by a constant, instead of a literal.

<?php

$a++;

// Speed up the code with pre-increment
// ++$a;

// Make the ++ operation configurable
// const C = 1;
// $a = $a + C;

?>

It is not possible to apply the two cobblers at the same time, since they do not pursue the same goals. One is a
performance improvement, the other one make the code configurable.

13.5 One analysis, multiple cobblers

When one analysis produces results that may be fixed with multiple cobbler, apply the following strategy : + Run
the different cobblers, and write the results in different branches + Do a PR with each branch, and cherry pick the
transformations

13.6 Multiple analysis, one cobbler

It is possible to apply the same cobbler to the results of multiple analysis : for example, the Structures/RemoveCode may
be applied simultaneously to the analysis Structures/UselessExpressions and Classes/UnusedClasses. Both analysis
spot unused code, that may well be removed.

13.7 Cobbler configuration

Cobblers take the following configuration directives :

• Source analysis : the analysis which should be resolved by the cobbler. One or more analysis may be provided.
Default values are provided, and available in the documentation.

• Branch name : the branch used in the current VCS, to store the mended code.

• Specific configuration : some cobblers accept customs configuration. They are detailled in the documentation
of the cobbler.

438 Chapter 13. Cobbler

Exakat Documentation, Release 1

13.8 INI configuration example:

[Structures/RemoveCode]
analysis[] = "Structures/UselessExpression"
analysis[] = "Classes/UnusedClass"
branch = "code-cleaning"

13.9 Cobbler tutorial

13.10 Pre-requisite

We assume that Exakat has been install-ed, and that an exakat project is already inited.

The way to run a cobbler is to call the cobble command. In this example, exakat removes the noscream @ operator,
based on the Structures/NoScream analysis, and store the results in the target-branch for the project name.

> php exakat init -p phulp -R <URL> -git
> php exakat cobble -p <project name> -b <target_branch> -P Structures/RemoveNoScream

13.8. INI configuration example: 439

Exakat Documentation, Release 1

440 Chapter 13. Cobbler

CHAPTER

FOURTEEN

RULES

14.1 Introduction

Exakat provides unique 1650 rules to detect BUGS, CODE SMELLS, SECURITY OR QUALITY ISSUES in your
PHP code.

Each rule is documented with code example to allow you to remediate your code. If you want to automate remediation,
ours cobblers can are there to fix the issues in your code for your.

14.2 List of Rules

14.2.1 $FILES full_path

A new index ‘full_path’ was added to the $_FILES to handle directory <https://www.php.net/`directory>`_
uploads. This was added in PHP 8.1, and is not available before.

<?php

// list uploaded files in a directory
print_r($_FILES['full_path']);

?>

See also PHP 8.1: $_FILES: New full_path value for directory-uploads.

441

https://www.php.net/directory
https://php.watch/versions/8.1/\protect \T1\textdollar _FILES-full-path

Exakat Documentation, Release 1

Specs

Short
name

Php/FilesFullPath

Rule-
sets

All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compatibili-
tyPHP56, CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73, Com-
patibilityPHP74

Ex-
akat
since

2.2.4

PHP
Ver-
sion

With PHP 8.1 and older

Sever-
ity

Minor

Time
To
Fix

Quick (30 mins)

Preci-
sion

High

Fea-
tures

$_files

Avail-
able
in

Entreprise Edition, Exakat Cloud

14.2.2 $GLOBALS Or global

Usually, PHP projects make a choice between the global keyword, and the $GLOBALS variable. Some-
times, the project has no recommendations.

When your project use a vast majority of one of the convention, then the analyzer will report all remaining inconsistently
cased constant.

<?php

global $a, $b, $c, $d, $e, $f, $g, $h, $i, $j, $k, $l, $m;

// This access is inconsistent with the previous usage
$GLOBALS['a'] = 2;

?>

442 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Php/GlobalsVsGlobal
Rulesets All, Changed Behavior, Preferences
Exakat since 0.9.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features global
Available in Entreprise Edition, Exakat Cloud

14.2.3 $HTTP_RAW_POST_DATA Usage

$HTTP_RAW_POST_DATA is deprecated, and should be replaced by php://input.

$HTTP_RAW_POST_DATA is deprecated since PHP 5.6.

It is possible to prepare code to this lack of feature by setting always_populate_raw_post_data to -1.

<?php

// PHP 5.5 and older
$postdata = $HTTP_RAW_POST_DATA;

// PHP 5.6 and more recent
$postdata = file_get_contents(php://input);

?>

See also $HTTP_RAW_POST_DATA variable.

Suggestions

• Use php://input with fopen() instead.

Specs

Short name Php/RawPostDataUsage
Rulesets All, Appinfo, CE, CompatibilityPHP56
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features $HTTP_RAW_POST_DATA
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 443

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/reserved.variables.httprawpostdata.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.4 $php_errormsg Usage

$php_errormsg is removed since PHP 8.0. $php_errormsg tracks the last error message, with the directive
track_errors. All was removed in PHP 8.0, and shall be replaced with error_get_last().

<?php

function foo() {
global $php_errormsg;

echo 'Last error: '.$php_errormsg;

echo 'Also, last error: '.error_get_last();
}

?>

Suggestions

• Use error_get_last() instead.

Specs

Short name Php/PhpErrorMsgUsage
Rulesets All, CE, Changed Behavior, CompatibilityPHP80
Exakat since 2.1.8
PHP Version With PHP 8.0 and older
Severity Minor
Time To Fix Quick (30 mins)
Changed Behavior PHP 8.0 - More
Precision High
Features $php_errormsg
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.5 $this Belongs To Classes Or Traits

The pseudo-variable $this must be used inside a class or trait, or bound closures.

$this variable represents the current object, inside a class or trait scope

It is a pseudo-variable, and should be used within class’s or trait’s methods and not outside. It should also not be used
in static methods.

PHP 7.1 is stricter and check for $this at several situations.

<?php

// as an argument
function foo($this) {

// Using global
global $this;

(continues on next page)

444 Chapter 14. Rules

https://www.php.net/error
https://www.php.net/error_get_last
https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.basic.php

Exakat Documentation, Release 1

(continued from previous page)

// Using static (not a property)
static $this;

// Can't unset it
unset($this);

try {
// inside a foreach
foreach($a as $this) { }
foreach($a as $this => $b) { }
foreach($a as $b => $this) { }

} catch (Exception $this) {
// inside a catch

}

// with Variable Variable
$a = this;
$$a = 42;

}

class foo {
function bar() {

// Using references
$a =& $this;
$a = 42;

// Using extract(), parse_str() or similar functions
extract([this => 42]); // throw new Error(Cannot re-assign $this)
var_dump($this);

}

static function __call($name, $args) {
// Using __call
var_dump($this); // prints object(C)#1 (0) {}, php-7.0 printed NULL
$this->test(); // prints ops

}

}
?>

See also class.

14.2. List of Rules 445

https://www.php.net/manual/en/language.oop5.basic.php#language.oop5.basic.class

Exakat Documentation, Release 1

Suggestions

• Do not use $this as a variable name, except for the current object, in a class, trait or closure.

Specs

Short name Classes/ThisIsForClasses
Rulesets All, Analyze, Changed Behavior, LintButWontExec
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features $this, self, parent, static
Examples OpenEMR
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.6 $this Is Not An Array

$this variable represents the current object and it is not an array.

This is unless the class (or its parents) has the ArrayAccess interface, or extends ArrayObject or
SimpleXMLElement.

<?php

// $this is an array
class Foo extends ArrayAccess {

function bar() {
++$this[3];

}
}

// $this is not an array
class Foo2 {

function bar() {
++$this[3];

}
}

?>

See also ArrayAccess, ArrayObject and The Basics.

446 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/class.arrayaccess.php
https://www.php.net/manual/en/class.arrayobject.php
https://www.php.net/manual/en/language.oop5.basic.php

Exakat Documentation, Release 1

Suggestions

• Extends ArrayObject, or a class that extends it, to use $this as an array too.

• Implements ArrayAccess to use $this as an array too.

• Use a property in the current class to store the data, instead of $this directly.

Specs

Short name Classes/ThisIsNotAnArray
Rulesets All, Analyze, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features $this
Available in Entreprise Edition, Exakat Cloud

14.2.7 $this Is Not For Static Methods

Static methods shouldn’t use $this variable.

$this variable represents an object, the current object. It is not compatible with a static method, which may operate
without any object.

While executing a static method, $this is actually set to NULL.

<?php

class foo {
static $staticProperty = 1;

// Static methods should use static properties
static public function count() {

return self::$staticProperty++;
}

// Static methods can't use $this
static public function bar() {

return $this->a; // No $this usage in a static method
}

}

?>

See also Static Keyword.

14.2. List of Rules 447

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/manual/en/language.types.null.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

Suggestions

• Remove the static keyword on the method, and update all calls to this method to use $this

• Remove the usage of $this in the method, replacing it with static properties

• Make $this an argument (and change its name) : then, make the method a function

Specs

Short name Classes/ThisIsNotForStatic
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features static, method
ClearPHP no-static-this
Available in Entreprise Edition, Exakat Cloud

14.2.8 ** For Exponent

The operator ** calculates exponents, also known as power.

Use it instead of the slower function pow(). This operator was introduced in PHP 5.6. Be aware the the ‘-’ operator has
lower priority than the ** operator : this leads to the following confusing result. This is due to the parser that processes
separately - and the following number. Since ** has priority, the power operation happens first.

Being an operator, ** is faster than pow(). This is a microoptimisation.

<?php
$cube = pow(2, 3); // 8

$cubeInPHP56 = 2 ** 3; // 8
?>

See also Arithmetic Operators.

Suggestions

• Use the ** operator

• For powers of 2, use the bitshift operators

• For literal powers of 2, consider using the 0xFFFFFFFFF syntax.

448 Chapter 14. Rules

https://github.com/dseguy/clearPHP/tree/master/rules/no-static-this.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/pow
https://www.php.net/manual/en/language.operators.arithmetic.php
https://www.php.net/result
https://www.php.net/pow
https://www.php.net/manual/en/language.operators.arithmetic.php

Exakat Documentation, Release 1

Specs

Short name Php/NewExponent
Rulesets All, Changed Behavior, Suggestions, php-cs-fixable
Exakat since 0.8.4
PHP Version With PHP 5.6 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features exponential
Examples Traq, TeamPass
Available in Entreprise Edition, Exakat Cloud

14.2.9 ::class

PHP has a special class constant to hold the name of the class : class keyword. It represents the class
name that is used in the left part of the operator.

Using \:\:class is safer than relying on a string. It does adapt if the class’s name or its namespace is changed’. It is
also faster, though it is a micro-optimisation.

It is introduced in PHP 5.5. Be aware that \:\:class is a replacement for __CLASS__ magic constant.

<?php

use A\B\C as UsedName;

class foo {
public function bar() {

echo ClassName::class;
echo UsedName::class;

}
}

$f = new Foo();
$f->bar();
// displays ClassName
// displays A\B\C

?>

See also Class Constant.

14.2. List of Rules 449

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.constants.predefined.php
https://www.php.net/manual/en/language.oop5.constants.php

Exakat Documentation, Release 1

Suggestions

• Use ::class whenever possible. That exclude any dynamic call.

Specs

Short name Php/StaticclassUsage
Rulesets All, CompatibilityPHP53, CompatibilityPHP54
Exakat since 0.8.4
PHP Version With PHP 5.5 and more recent
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features coalesce
Available in Entreprise Edition, Exakat Cloud

14.2.10 @ Operator

@ is the ‘no scream’ operator : it suppresses error output.

This operator is very slow : it processes the error, and finally decides not to display it. It is often faster to check the
conditions first, then run the method without @.

You may also set display_error to 0 in the php.ini : this avoids user’s error display, and keeps the error in the PHP
logs, for later processing.

The only situation where @ is useful is when a native PHP function displays errors messages and there is no way to
check it from the code beforehand.

This was the case with fopen(), stream_socket_server(), token_get_all(). As of PHP 7.0, they are all hiding errors when
@ is active.

<?php

// Set x with incoming value, or else null.
$x = @$_GET['x'];

?>

Name Default Type Description
authorizedFunctions noscream_functions.json data Functions that are authorized to sports a @.

See also I scream, you scream, we all scream for @, Error Control Operators and Five reasons why the shut-op operator
should be avoided.

450 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.operators.errorcontrol.php
https://www.php.net/error
https://www.php.net/error
https://www.php.net/error
https://www.php.net/error
https://www.php.net/fopen
https://www.php.net/stream_socket_server
https://www.php.net/token_get_all
https://www.exakat.io/en/i-scream-you-scream-we-all-scream-for/
https://www.php.net/manual/en/language.operators.errorcontrol.php
https://derickrethans.nl/five-reasons-why-the-shutop-operator-should-be-avoided.html
https://derickrethans.nl/five-reasons-why-the-shutop-operator-should-be-avoided.html

Exakat Documentation, Release 1

Suggestions

• Remove the @ operator by default

Specs

Short name Structures/Noscream
Rulesets All, Analyze, Appinfo, CE, CI-checks, Performances
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features class
ClearPHP no-noscream
Examples Phinx, PhpIPAM
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.11 Abstract Away

Avoid using PHP native functions that produce data directly in the code. For example, date() or ran-
dom_int(). They should be abstracted away in a method, that will be replaced later for testing purposes, or
even debugging.

To abstract such calls, place them in a method, and add an interface to this method. Then, create and use those objects.
This analysis targets two API for abstraction : time and random values. Time and date related functions may be replaced
by Carbon, Clock, Chronos. Random values may be replaced with RandomLib or a custom interface.

<?php

// abstracted away date
$today = new MyDate();
echo 'Date : '.$today->date('r');

// hard coded date of today : it changes all the time.
echo 'Date : '.date('r');

interface MyCalendar{
function date($format) : string ;

}

class MyDate implements MyCalendar {
function date($format) : string { return date('r'); }

}

// Valid implementation, reserved for testing purpose
// This prevents from waiting 4 years for a test.
class MyDateForTest implements MyCalendar {

function date($format) : string { return date('r', strtotime('2016-02-29 12:00:00'));
→˓ }
}

(continues on next page)

14.2. List of Rules 451

https://github.com/dseguy/clearPHP/tree/master/rules/no-noscream.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/date
https://www.php.net/random_int
https://www.php.net/random_int
https://carbon.nesbot.com/docs/
https://github.com/lcobucci/clock
https://github.com/cakephp/chronos
https://github.com/ircmaxell/RandomLib/

Exakat Documentation, Release 1

(continued from previous page)

?>

Name Default Type Description
abstractableCalls ini_hash Functions that shouldn’t be called directly, unless in a method.
abstractableClasses ini_hash Classes that shouldn’t be instantiated directly, unless in a method.

See also Being in control of time in PHP and How to test non-deterministic code.

Suggestions

• Abstract away the calls to native PHP functions, and upgrade the unit tests

Specs

Short name Patterns/AbstractAway
Rulesets All, Changed Behavior, Suggestions
Exakat since 2.1.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Available in Entreprise Edition, Exakat Cloud

14.2.12 Abstract Class Constants

Those are class constants which are defined in multiple children, but not in the parent class.

If this class is a feature of the parent class, or shall and must be defined in the children classes, it is recommended to
add them in the parent class, and let them overloaded in the children class.

In the illustration below, CONSTA is defined in all two children, but not in the parent class. A third children would miss
the constants definitions, until an error has been reported.

<?php

class A {
// no constant

}

class A1 extends A {
public const CONSTA = 1;

}

class A2 extends A {
public const CONSTA = 2;

}
(continues on next page)

452 Chapter 14. Rules

https://blog.frankdejonge.nl/being-in-control-of-time-in-php/
https://www.orbitale.io/2019/12/24/how-to-test-non-deterministic-code.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/error

Exakat Documentation, Release 1

(continued from previous page)

?>

Name De-
fault

Type Description

mini-
mum

2 inte-
ger

Minimal number of constant found in children to report this as a potential abstract
class.

See also I often find myself wishing for abstract constants in PHP.

Suggestions

• Define the constants in the parent class, with some neutral value

Specs

Short name Classes/AbstractConstants
Rulesets All, Changed Behavior, Class Review
Exakat since 2.3.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features class-constant, abstract
Available in Entreprise Edition, Exakat Cloud

14.2.13 Abstract Class Usage

List of all abstract classes defined in the code.

<?php

abstract class foo {
function foobar();

}

class bar extends foo {
// extended method
function foobar() {

// doSomething()
}

// extra method
function barbar() {

// doSomething()
}

(continues on next page)

14.2. List of Rules 453

https://twitter.com/coderabbi/status/1480193789834760193
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

}
?>

See also Classes abstraction.

Specs

Short name Classes/Abstractclass
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features class, abstract
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.14 Abstract Methods Usage

List of all abstract methods being used.

<?php

// abstract class
abstract class foo {

// abstract method
function foobar();

}

class bar extends foo {
// extended abstract method
function foobar() {

// doSomething()
}

// extra method
function barbar() {

// doSomething()
}

}
?>

See also Classes abstraction.

454 Chapter 14. Rules

https://www.php.net/abstract
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/abstract

Exakat Documentation, Release 1

Specs

Short name Classes/Abstractmethods
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features class, abstract
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.15 Abstract Or Implements

A class must implements all abstract methods of it parents, or be abstract too.

PHP detect such error when all classes are loaded: in a code source where classes are split by files, such error it won’t
be detected until execution, where PHP stops with a Fatal Error : Class BA contains 1 abstract method and
must therefore be declared abstract or implement the remaining methods (A\:\:aFoo).

<?php

abstract class Foo {
abstract function FooBar();

}

// This is in another file : php -l would detect it right away

class FooFoo extends Foo {
// The method is not defined.
// The class must be abstract, just like Foo

}

?>

See also Class Abstraction.

14.2. List of Rules 455

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/error
https://www.php.net/error
https://www.php.net/abstract

Exakat Documentation, Release 1

Suggestions

• Implements all the abstract methods of the class

• Make the class abstract

Specs

Short name Classes/AbstractOrImplements
Rulesets All, Analyze, Changed Behavior, LintButWontExec
Exakat since 1.3.3
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features abstract, implements, lazy-loading
Examples Zurmo
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.16 Abstract Static Methods

Methods cannot be both abstract and static. Static methods belong to a class, and will not be overridden
by the child class. For normal methods, PHP will start at the object level, then go up the hierarchy to find
the method. With static, it is necessary to mention the name, or use Late Static Binding, with self or static.
Hence, it is useless to have an abstract static method : it should be a static method.

A child class is able to declare a method with the same name than a static method in the parent, but those two methods
will stay independent.

This is not the case anymore in PHP 7.0+.

<?php

abstract class foo {
// This is not possible
static abstract function bar() ;

}

?>

See also Why does PHP 5.2+ disallow abstract static class methods?.

456 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://stackoverflow.com/questions/999066/why-does-php-5-2-disallow-abstract-static-class-methods

Exakat Documentation, Release 1

Suggestions

• Remove abstract keyword from the method

• Remove static keyword from the method

• Remove the method

Specs

Short name Classes/AbstractStatic
Rulesets All, Analyze, Changed Behavior
Exakat since 0.8.4
PHP Version With PHP 7.0 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features method, abstract, constant
Available in Entreprise Edition, Exakat Cloud

14.2.17 Access Protected Structures

It is not allowed to access protected properties, methods or constants from outside the class or its relatives.

<?php

class foo {
protected $bar = 1;

}

$foo = new Foo();
$foo->bar = 2;

?>

See also Visibility. and Understanding The Concept Of Visibility In Object Oriented PHP.

Suggestions

• Change ‘protected’ to ‘public’ to relax the constraint

• Add a getter method to reach the target value

• Remove the access to the protected value and find it another way

14.2. List of Rules 457

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.visibility.php
https://torquemag.io/2016/05/understanding-concept-visibility-object-oriented-php/

Exakat Documentation, Release 1

Specs

Short name Classes/AccessProtected
Rulesets All, Analyze, IsExt, IsPHP, IsStub
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features visibility
Available in Entreprise Edition, Exakat Cloud

14.2.18 Accessing Private

List of calls to private properties/methods that will compile but yield some fatal error upon execution.

<?php

class a {
private $a;

}

class b extends a {
function c() {

$this->a;
}

}

?>

Specs

Short name Classes/AccessPrivate
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features class, private
Available in Entreprise Edition, Exakat Cloud

458 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.19 Add Default Value

Parameter in methods definition may receive a default value. This allows the called method to set a value
when the parameter is omitted.

<?php

function foo($i) {
if (!is_integer($i)) {

$i = 0;
}

}

?>

See also Function arguments.

Suggestions

• Add a default value for parameters

Specs

Short name Functions/AddDefaultValue
Rulesets All, Changed Behavior, Suggestions
Exakat since 1.4.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features default-value
Examples Zurmo, Typo3
Available in Entreprise Edition, Exakat Cloud

14.2.20 Add Return Typehint

Add returntype to methods, functions, closures and arrow functions. The return types are read from the
code and deduced, based on literal values, local types and operations.

<?php

// This has no type, but could use int
function foo() {

return 1;
}

// This has no type, but could use string
function goo(string $a) {

return $a;
}

(continues on next page)

14.2. List of Rules 459

https://www.php.net/manual/en/functions.arguments.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// This has no type, but could use string
function hoo($a) {

return $a - 2;
}

?>

Specs

Short name Complete/ReturnTypehint
Rulesets All, Changed Behavior, First, NoDoc
Exakat since 2.3.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.21 Adding Zero

Adding 0 is useless, as 0 is the neutral element for addition. Besides, when one of the operands is an
integer, PHP silently triggers a cast to integer for the other operand.

This rule also report using + with variables, proeprties, etc. which triggers an automated conversion to integer.

It is recommended to make the cast explicit with (int).

<?php

// Explicit cast
$a = (int) foo();

// Useless addition
$a = foo() + 0;
$a = 0 + foo();

// Also works with minus
$b = 0 - $c; // drop the 0, but keep the minus
$b = $c - 0; // drop the 0 and the minus

$a += 0;
$a -= 0;

$z = '12';
print +$z + 1;

?>

460 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Remove the +/- 0, may be the whole assignation

• Use an explicit type casting operator (int)

Specs

Short name Structures/AddZero
Rulesets All, Analyze, CE, CI-checks, Rector
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features addition, short-assignation
ClearPHP no-useless-math
Examples Thelia, OpenEMR
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.22 Aliases

This rule lists all aliases. Aliases are used file by file, although some classes may have different aliases
depending on the context.

<?php

// This is an alias
use stdClass as aClass;

// This is not an alias : it is not explicit
use stdClass;

trait t {
// This is not an alias, it's a trait usage
use otherTrait;

}

?>

See also Using namespaces: Aliasing/Importing and A Complete Guide to PHP Namespaces.

14.2. List of Rules 461

https://github.com/dseguy/clearPHP/tree/master/rules/no-useless-math.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.namespaces.importing.php
https://www.thoughtfulcode.com/a-complete-guide-to-php-namespaces/

Exakat Documentation, Release 1

Specs

Short name Namespaces/Alias
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features namespace
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.23 All Uppercase Variables

Usually, global variables are all in uppercase, so as to differentiate them easily. Though, this is not always
the case, with examples like $argc, $argv or $http_response_header.

When using custom variables, try to use lowercase $variables, $camelCase, $sturdyCase or $snake_case.

<?php

// PHP super global, also identified by the initial _
$localVariable = $_POST;

// PHP globals
$localVariable = $GLOBALS['HTTPS'];

?>

See also Predefined Variables.

Specs

Short name Variables/VariableUppercase
Rulesets All, Coding conventions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features variable
Available in Entreprise Edition, Exakat Cloud

462 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/reserved.variables.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.24 All strings

Strings, heredocs and nowdocs in one place.

<?php

$string = 'string';

$query = <<<SQL
Heredoc
SQL;

?>

Specs

Short name Type/CharString
Rulesets All, Changed Behavior, Inventory
Exakat since 0.10.1
PHP Version All
Severity
Time To Fix
Precision Very high
Features string, heredoc, nowdoc
Available in Entreprise Edition, Exakat Cloud

14.2.25 Already Parents Interface

The same interface is implemented by a class and one of its children.

That way, the child doesn’t need to implement the interface, nor define its methods to be an instance of the interface.
This analysis may report classes which do not explicitly implements any interfaces : the issue is then coming from the
parents.

<?php

interface i {
function i();

}

class A implements i {
function i() {

return __METHOD__;
}

}

// This implements is useless.
class AB extends A implements i {

// No definition for function i()
}

(continues on next page)

14.2. List of Rules 463

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// Implements i is understated
class AB extends A {

// redefinition of the i method
function i() {

return __METHOD__.' ';
}

}

$x = new AB;
var_dump($x instanceof i);
// true

$x = new AC;
var_dump($x instanceof i);
// true

?>

Suggestions

• Keep the implements call in the class that do implements the methods. Remove it from the children classes.

Specs

Short name Interfaces/AlreadyParentsInterface
Rulesets All, Analyze, Changed Behavior, Suggestions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features implements, inheritance
Examples WordPress, Thelia
Available in Entreprise Edition, Exakat Cloud

14.2.26 Already Parents Trait

Trait is already used a parent’s class or trait. There is no use to include it a second time, so one of them
can be removed.

<?php

trait ta {
use tb;

}

trait t1 {
(continues on next page)

464 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

(continued from previous page)

use ta;
use tb; // also used by ta

}

class b {
use t1; // also required by class c
use ta; // also required by trait t1

}

class c extends b {
use t1;

}

?>

See also Traits.

Suggestions

• Eliminate the trait in the parent class

• Eliminate the trait in the child class

Specs

Short name Traits/AlreadyParentsTrait
Rulesets All, Analyze
Exakat since 1.8.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features trait
Available in Entreprise Edition, Exakat Cloud

14.2.27 Altering Foreach Without Reference

Foreach() loop that could use a reference as value.

When using a foreach loop that modifies the original source, it is recommended to use referenced variables, rather than
access the original value with $source[$index].

Using references is then must faster, and easier to read.

array_walk() and array_map() are also alternative to prevent the use of foreach(), when $key is not used.

<?php

// Using references in foreach
foreach($source as $key => &$value) {

(continues on next page)

14.2. List of Rules 465

https://www.php.net/manual/en/language.oop5.traits.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.foreach.php
https://www.php.net/array_walk
https://www.php.net/array_map
https://www.php.net/manual/en/control-structures.foreach.php

Exakat Documentation, Release 1

(continued from previous page)

$value = newValue($value, $key);
}

// Avoid foreach : use array_map
$source = array_walk($source, 'newValue');

// Here, $key MUST be the second argument or newValue

// Slow version to update the array
foreach($source as $key => &$value) {

$source[$key] = newValue($value, $key);
}
?>

See also foreach.

Suggestions

• Add the reference on the modified blind variable, and avoid accessing the source array

Specs

Short name Structures/AlteringForeachWithoutReference
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features foreach, loop
ClearPHP use-reference-to-alter-in-foreach
Examples Contao, WordPress
Related rule Dangling Array References
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.28 Alternative Syntax Consistence

PHP allows for two syntax : the alternative syntax, and the classic syntax.

The classic syntax is almost always used. When used, the alternative syntax is used in templates.

This analysis reports files that are using both syntax at the same time. This is confusing.

<?php

// Mixing both syntax is confusing.
foreach($array as $item) :

if ($item > 1) {
print "$item elementsn";

} else {
(continues on next page)

466 Chapter 14. Rules

https://www.php.net/manual/en/control-structures.foreach.php
https://github.com/dseguy/clearPHP/tree/master/rules/use-reference-to-alter-in-foreach.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

print "$item elementn";
}

endforeach;

?>

Specs

Short name Structures/AlternativeConsistenceByFile
Rulesets All, Analyze
Exakat since 0.11.2
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features alternative-syntax
Available in Entreprise Edition, Exakat Cloud

14.2.29 Always Anchor Regex

Unanchored regex finds the requested pattern, and leaves room for malicious content.

Without ^ and $, the regex searches for any pattern that satisfies the criteria, leaving any unused part of the string
available for arbitrary content. It is recommended to use both anchor Note that $ may be a line ending, still leaving
room after it for injection. This analysis reports false positive when the regex is used to search a pattern in a much
larger string. Check if this rule doesn’t apply, though.

<?php

$birthday = getSomeDate($_GET);

// Permissive version : $birthday = '1970-01-01<script>xss();</script>';
if (!preg_match('/\d{4}-\d{2}-\d{2}/', $birthday) {

error('Wrong data format for your birthday!');
}

// Restrictive version : $birthday = '1970-01-01';
if (!preg_match('/^\d{4}-\d{2}-\d{2}$/', $birthday) {

error('Wrong data format for your birthday!');
}

echo 'Your birthday is on '.$birthday;

?>

See also CWE-625: Permissive Regular Expression.

14.2. List of Rules 467

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://cwe.mitre.org/data/definitions/625.html

Exakat Documentation, Release 1

Suggestions

• Add an anchor to the beginning and ending of the string

Specs

Short name Security/AnchorRegex
Rulesets All, Security
Exakat since 0.12.15
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision High
Features regex
Available in Entreprise Edition, Exakat Cloud

14.2.30 Always Positive Comparison

Some PHP native functions, such as count(), strlen(), or abs() only returns positive or null values.

When comparing them to 0, the following expressions are always true and should be avoided.

<?php

$a = [1, 2, 3];

var_dump(count($a) >= 0);
var_dump(count($a) < 0);

?>

Suggestions

• Compare count() to non-zero values

• Use empty()

Specs

Short name Structures/NeverNegative
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Examples Magento
Available in Entreprise Edition, Community Edition, Exakat Cloud

468 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/count
https://www.php.net/strlen
https://www.php.net/abs
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.31 Always Use Function With array_key_exists()

array_key_exists() has been granted a special virtual machine opcode, and is much faster. This applies to
PHP 7.4 and more recent.

It requires that array_key_exists() is statically resolved, either with an initial \, or a use function expression. This
doesn’t affect the global namespace. This analysis is related to Php/ShouldUseFunction, and is a special case, that only
concerns array_key_exists().

<?php

namespace my/name/space;

// do not forget the 'function' keyword, or it will apply to classes.
use function array_key_exists as foo; // the alias is not necessary, and may be omitted.

// array_key_exists is aliased to foo :
$c = foo($a, $b);

// This call requires a fallback to global, and will be slow.
$c = array_key_exists($a, $b);

?>

See also Add array_key_exists to the list of specially compiled functions.

Suggestions

• Use the use command for arrray_key_exists(), at the beginning of the script

• Use an initial before array_key_exists()

• Remove the namespace

Specs

Short name Performances/Php74ArrayKeyExists
Rulesets All, Changed Behavior, Performances
Exakat since 1.8.4
PHP Version With PHP 7.4 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features vm, opcode
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 469

https://www.php.net/array_key_exists
https://www.php.net/array_key_exists
https://www.php.net/array_key_exists
https://bugs.php.net/bug.php?id=76148
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.32 Ambiguous Array Index

Indexes should not be defined with different types than int or string.

Array indices only accept integers and strings, so any other type of literal is reported. In fact, null is turned into an
empty string, booleans are turned into an integer, and real numbers are truncated (not rounded).

They are indeed distinct, but may lead to confusion.

<?php

$x = [1 => 1,
'1' => 2,
1.0 => 3,
true => 4];

// $x only contains one element : 1 => 4

// Still wrong, immediate typecast to 1
$x[1.0] = 5;
$x[true] = 6;

?>

See also array.

Suggestions

• Only use string or integer as key for an array.

• Use transtyping operator (string) and (int) to make sure of the type

Specs

Short name Arrays/AmbiguousKeys
Rulesets All, Analyze, Changed Behavior, Semantics
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features array
Examples PrestaShop, Mautic
Available in Entreprise Edition, Exakat Cloud

470 Chapter 14. Rules

https://www.php.net/manual/en/language.types.array.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.33 Ambiguous Static

Methods or properties with the same name, are defined static in one class, and not static in another. This
is error prone, as it requires a good knowledge of the code to make it static or not.

Try to keep the methods simple and unique. Consider renaming the methods and properties to distinguish them easily.
A method and a static method have probably different responsibilities.

<?php

class a {
function mixedStaticMethod() {}

}

class b {
static function mixedStaticMethod() {}

}

/... a lot more code later .../

$c->mixedStaticMethod();
// or
$c::mixedStaticMethod();

?>

Specs

Short name Classes/AmbiguousStatic
Rulesets All, Analyze, Semantics
Exakat since 1.0.3
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features static
Available in Entreprise Edition, Exakat Cloud

14.2.34 Ambiguous Types With Variables

The same variable is assigned various types, in different methods. This means that one may expect the
same named variable to behave differently in different context.

<?php

function foo() {
$i = 1;
$user = new User();

}

(continues on next page)

14.2. List of Rules 471

https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/error
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

function goo() {
$i = 2; // $i is always an integer
$user = new Propect(); // Sometimes $user is a User, and sometimes it is a Propect

}

?>

Specs

Short name Variables/AmbiguousTypes
Rulesets All, Changed Behavior, Semantics
Exakat since 2.5.0
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.35 Ambiguous Visibilities

The properties have the same name, but have different visibilities, across different classes.

While it is legit to have a property with the same name in different classes, it may easily lead to confusion. As soon as
the context is need to understand if the property is accessible or not, the readability suffers.

It is recommended to handle the same properties in the same way across classes, even when the classes are not related.

<?php

class person {
public $name;
private $address;

}

class gangster {
private $name;
public $nickname;
private $address;

}

$someone = Human::load(123);
echo 'Hello, '.$someone->name;

?>

472 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Sync visibilities for both properties, in the different classes

• Use different names for properties with different usages

Specs

Short name Classes/AmbiguousVisibilities
Rulesets All, Analyze, Changed Behavior, Semantics
Exakat since 1.3.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features class, visibility
Examples Typo3
Related rule Missing Visibility
Available in Entreprise Edition, Exakat Cloud

14.2.36 An OOP Factory

A method or function that implements a factory. A factory is a class that handles the creation of an object,
based on parameters. The factory hides the logic that leads to the creation of the object.

<?php
class AutomobileFactory {

public static function create($make, $model) {
$className = "\Automaker\Brand$make";
return new $className($model);

}
}

// The factory is able to build any car, based on their
$fuego = AutomobileFactory::create('Renault', 'Fuego');

print_r($fuego->getMakeAndModel()); // outputs "Renault Fuego"
?>

See also Factory (object-oriented programming) and Factory.

14.2. List of Rules 473

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)
https://phptherightway.com/pages/Design-Patterns.html#factory

Exakat Documentation, Release 1

Specs

Short name Patterns/Factory
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 1.6.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features pattern
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.37 Anonymous Classes

Anonymous classes.

<?php

// Anonymous class, available since PHP 7.0
$object = new class { function __construct() { echo __METHOD__; } };

?>

See also Anonymous classes.

Specs

Short name Classes/Anonymous
Rulesets All, Appinfo, CE, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compatibility-

PHP56
Exakat
since

0.8.4

PHP Ver-
sion

With PHP 7.0 and more recent

Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features class, anonymous-class, abstract
Available in Entreprise Edition, Community Edition, Exakat Cloud

474 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.anonymous.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.38 Append And Assign Arrays

This rule reports arrays that are used both with append and direct index assignation. Read access are not
considered here.

Array append and direct index assignation have different impact one on the other. In particular, assign a value explicitely
and later append values may have an impact on one another.

<?php

$arrayAppend = array();
$arrayAppend[] = 1;

?>

Specs

Short name Arrays/AppendAndAssignArrays
Rulesets All, Analyze, Changed Behavior
Exakat since 2.6.1
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.39 Argon2 Usage

Argon2 is an optionally compiled password hashing API.

Argon2 has been added to the password hashing API in PHP 7.2.

It is not available in older version. It also requires PHP to be compiled with the –with-password-argon2 option.

<?php

// Hashing a password with argon2
$hash = password_hash('password', PASSWORD_ARGON2I, ['memory_cost' => 1<<17,

'time_cost' => PASSWORD_ARGON2_
→˓DEFAULT_TIME_COST,

'threads' => PASSWORD_ARGON2_
→˓DEFAULT_THREADS]);

?>

See also Argon2 Password Hash.

14.2. List of Rules 475

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://wiki.php.net/rfc/argon2_password_hash

Exakat Documentation, Release 1

Specs

Short name Php/Argon2Usage
Rulesets All, Appinfo, CE
Exakat since 1.0.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features argon2
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.40 Argument Counts Per Calls

Collects the number of arguments passed to PHP functions.

This is focused on PHP native functions, with optional characters. This helps detect unused or lesser know arguments.

<?php

// One entry, in_array 2 arguments
$c = in_array($array, $needle);

// One entry, in_array 3 arguments
$c = in_array($array, $needle, true);

?>

Specs

Short name Dump/ArgumentCountsPerCalls
Rulesets All, Dump
Exakat since 2.5.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.41 Argument Should Be Typehinted

When a method expects objects as argument, those arguments should be typehinted. This way, it provides
early warning that a wrong object is being sent to the method.

The analyzer will detect situations where a class, or the keywords ‘array’ or ‘callable’. Closure
<https://www.php.net/manual/en/class.`closure.php>`_ arguments are omitted.

476 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/closure
https://www.php.net/closure

Exakat Documentation, Release 1

<?php

// What are the possible classes that have a 'foo' method?
function foo($bar) {

return $bar->foo();
}

?>

See also Type declarations.

Suggestions

• Add the typehint to the function arguments

Specs

Short name Functions/ShouldBeTypehinted
Rulesets All, Typechecks
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features typehint
ClearPHP always-typehint
Examples Dolphin, Mautic
Available in Entreprise Edition, Exakat Cloud

14.2.42 Array Access On Literal Array

Accessing an element on a literal array makes that array non-reusable.

It is recommended to make this array a constant or a property, for easier reusage. It also make that content more
visiblem in the class definitions.

<?php

class Suit {
const NAMES = ['Club' => 1, 'Spade' => 2, 'Heart' => 3, 'Diamond' => 4];

function __construct($name) {
if (!isset(self::NAMES[$name]) {

throw new Exception('Not a suit color');
}

}
}

class HiddenSuitList {
function __construct($name) {

(continues on next page)

14.2. List of Rules 477

https://www.php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration
https://github.com/dseguy/clearPHP/tree/master/rules/always-typehint.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

if (!isset(['Club' => 1, 'Spade' => 2, 'Heart' => 3, 'Diamond' => 4][
→˓$name]) {

throw new Exception('Not a suit color');
}

}
}

?>

Specs

Short name Structures/ArrayAccessOnLiteralArray
Rulesets All, Analyze, Changed Behavior, Semantics
Exakat since 2.5.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.43 Array Addition

Addition where one of the operands are arrays.

<?php
$a = [1] + [2 ,3];

?>

See also Combining arrays using + versus array_merge in PHP and Array operators.

Specs

Short name Structures/ArrayAddition
Rulesets All, Appinfo
Exakat since 2.4.2
Severity
Time To Fix
Precision High
Available in Entreprise Edition, Exakat Cloud

478 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.texelate.co.uk/blog/combining-arrays-using-plus-versus-array-merge-in-php
https://www.php.net/manual/en/language.operators.array.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.44 Array Index

List of all indexes used in arrays. The indexes are strings or integers. They are accessed with different
syntaxes: either the square brackets, or the => operator.

<?php

// Index
$x['index'] = 1;

// in array creation
$a = array('index2' => 1);
$a2 = ['index3' => 2];

?>

Specs

Short name Arrays/Arrayindex
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Features array
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.45 Array With String Initialization

It used to be possible to initialize a variable with an string, and use it as an array. It is not the case anymore
in PHP 7.1.

<?php

// Initialize arrays with array()
$a = array();
$a[3] = "4";

// Don't start with a string
$a = '';
$a[3] = "4";
print $a;

// Don't start with a string
if (is_numeric($a)) {

$a[] = $a;
}

?>

14.2. List of Rules 479

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

See also PHP 7.1 no longer converts string to arrays the first time a value is assigned with square bracket notation.

Suggestions

• Always initialize arrays with an empty array(), not a string.

Specs

Short name Arrays/StringInitialization
Rulesets All, CompatibilityPHP71
Exakat since 1.6.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.46 Array() / [] Consistence

array() or [] is the favorite.

array() and [] have the same functional use.

The analyzed code has less than 10% of one of them : for consistency reasons, it is recommended to make them all the
same.

It happens that array() or [] are used depending on coding style and files. One file may be consistently using array(),
while the others are all using [].

The only drawback to use [] over array() is backward incompatibility.

<?php

$a = array(1, 2);
$b = array(array(3, 4), array(5, 6));
$c = array(array(array(7, 8), array(9, 10)), array(11, 12), array(13, 14)));

// be consistent
$d = [1, 3];
?>

Name De-
fault

Type Description

ar-
ray_ratio

10 inte-
ger

Percentage of arrays in one of the syntaxes, to trigger the other syntax as a viola-
tion.

480 Chapter 14. Rules

https://www.drupal.org/project/adaptivetheme/issues/2832900
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array
https://www.php.net/array
https://www.php.net/array
https://www.php.net/array
https://www.php.net/array

Exakat Documentation, Release 1

Suggestions

• Use one syntax consistently.

Specs

Short name Arrays/ArrayBracketConsistence
Rulesets All, Preferences
Exakat since 0.8.9
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features array
Available in Entreprise Edition, Exakat Cloud

14.2.47 Array_Fill() With Objects

array_fill() fills an array with identical objects, not copies nor clones. This means that all the filled objects
are a reference to the same object. Changing one of them will change any of them.

Make sure this is the intended effect in the code.

This applies to array_pad() too. It doesn’t apply to array_fill_keys(), as objects will be cast to a string before usage in
this case.

<?php

$x = new StdClass();
$array = array_fill(0, 10, $x);

$array[3]->y = "Set in object #3";

// displays "Set in object #3"
echo $array[5]->y;

?>

Suggestions

• Use a loop to fill in the array with cloned() objects.

14.2. List of Rules 481

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_fill
https://www.php.net/array_pad
https://www.php.net/array_fill_keys

Exakat Documentation, Release 1

Specs

Short name Structures/ArrayFillWithObjects
Rulesets All, Analyze
Exakat since 2.1.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features array, object
Available in Entreprise Edition, Exakat Cloud

14.2.48 Array_Map() Passes By Value

array_map() requires the callback to receive elements by value. Unlike array_walk(), which accepts by
value or by reference, depending on the action taken.

PHP 8.0 and more recent emits a Warning

<?php
// Example, courtery of Juliette Reinders Folmer
function trimNewlines(&$line, $key) {

$line = str_replace(array("\n", "\r"), '', $line);
}

$original = [
"text\n\n",
"text\n\r"

];

$array = $original;
array_walk($array, 'trimNewlines');

var_dump($array);

array_map('trimNewlines', $original, [0, 1]);

?>

See also array_map.

Suggestions

• Make the callback first argument a reference

482 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_map
https://www.php.net/array_walk
https://www.php.net/array_map

Exakat Documentation, Release 1

Specs

Short name Structures/ArrayMapPassesByValue
Rulesets All, Analyze, CE, CompatibilityPHP80, IsExt, IsPHP, IsStub
Exakat since 2.2.0
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Medium
Features array, map, by-value, by-reference
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.49 Array_merge Needs Array Of Arrays

When collecting data to feed array_merge(), use an array of array as default value. `array(`array())
<https://www.php.net/array>`_` is the neutral value for array_merge();

This analysis also reports when the used types are not an array : array_merge() does not accept scalar values, but only
arrays.

Since PHP 7.4, it is possible to call array_merge() without an argument : this means the default value may an empty
array.

<?php

// safe default value
$a = array(array());

// when $list is empty, this will trigger an error during array_merge()
foreach($list as $l) {

$a[] = $l;
}
$b = array_merge(...$a);

?>

See also array_merge.

Suggestions

• Use `array(array())` or `[[]]` as default value for array_merge()

• Remove any non-array value from the values in the default array

14.2. List of Rules 483

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_merge
https://www.php.net/array_merge
https://www.php.net/array_merge
https://www.php.net/array_merge
https://www.php.net/array_merge

Exakat Documentation, Release 1

Specs

Short name Structures/ArrayMergeArrayArray
Rulesets All, Analyze, Changed Behavior
Exakat since 2.1.4
PHP Version With PHP 7.4 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features array
Available in Entreprise Edition, Exakat Cloud

14.2.50 Assert Function Is Reserved

Avoid defining an assert function in namespaces.

While they work fine when the assertions are active (zend.assertions=1), calls to unqualified assert are optimized
away when assertions are not active.

Since PHP 7.3, a fatal error is emitted : Defining a custom `assert() <https://www.php.net/assert>`_
function is deprecated, as the function has special semantics.

<?php
// Run this with zend.assertions=1 and
// Then run this with zend.assertions=0

namespace Test {
function assert() {

global $foo;

$foo = true;
}

}

namespace Test {
assert();

var_dump(isset($foo));
}

?>

See also assert and User-defined assert function is optimized away with zend.assertions=-1.

484 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/assert
https://bugs.php.net/bug.php?id=75445

Exakat Documentation, Release 1

Suggestions

• Rename the custom function with another name

Specs

Short name Php/AssertFunctionIsReserved
Rulesets All, Analyze, Changed Behavior, CompatibilityPHP73, Deprecated
Exakat since 1.3.9
PHP Version All
Severity Critical
Time To Fix Slow (1 hour)
Changed Behavior PHP 7.2 - More
Precision Very high
Features assertion
Available in Entreprise Edition, Exakat Cloud

14.2.51 Assertions

Usage of assertions, to add checks within PHP code.

Assertions should be used as a debugging feature only. You may use them for sanity-checks that test for conditions
that should always be TRUE and that indicate some programming errors if not or to check for the presence of certain
features like extension functions or certain system limits and features.

<?php

function foo($string) {
assert(!empty($string), 'An empty string was provided!');

echo '['.$string.']';
}

?>

See also assert.

Specs

Short name Php/AssertionUsage
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features assertion
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 485

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/TRUE
https://www.php.net/assert
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.52 Assign And Compare

Assignation has a lower precedence than comparison. As such, the assignation always happens after the
comparison. This leads to the comparison being stored in the variable, and not the value being compared.

<?php

if ($id = strpos($string, $needle) !== false) {
// $id now contains a boolean (true or false), but not the position of the $needle.

}

// probably valid comparison, as $found will end up being a boolean
if ($found = strpos($string, $needle) === false) {

doSomething();
}

// always valid comparison, with parenthesis
if (($id = strpos($string, $needle)) !== false) {

// $id now contains a boolean (true or false), but not the position of the $needle.
}

// Being a lone instruction, this is always valid : there is no double usage with if␣
→˓condition
$isFound = strpos($string, $needle) !== false;

?>

See also Operator Precedence.

Suggestions

• Use parenthesis

• Separate assignation and comparison

• Drop assignation or comparison

Specs

Short name Structures/AssigneAndCompare
Rulesets All, Analyze, CE, CI-checks
Exakat since 1.6.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features assignation, comparison
Available in Entreprise Edition, Community Edition, Exakat Cloud

486 Chapter 14. Rules

https://www.php.net/manual/en/language.operators.precedence.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.53 Assign And Lettered Logical Operator Precedence

The lettered logical operators and, or and xor have lower precedence than assignation. It collects less
information than expected.

When that precedence is taken into account, this is valid and useful code. Yet, as it is rare and surprising to many
developers, it is recommended to avoid it.

It is recommended to use the &&, ^ and || operators, instead of and, or and xor, to prevent confusion.

<?php

// The expected behavior is
// The following are equivalent
$a = $b && $c;
$a = ($b && $c);

// The unexpected behavior is
// The following are equivalent
$a = $b and $c;
($a = $b) and $c;

// Here, the result is collected. That result would not make use of the result of the␣
→˓throw expression
$a = doSomething() or throw new Exception('Error happened');

?>

See also Operator Precedence.

Suggestions

• Use symbolic operators rather than letter ones

• To be safe, add parenthesis to enforce priorities

Specs

Short name Php/AssignAnd
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.12.4
PHP Version All
Severity Critical
Time To Fix Quick (30 mins)
Precision Very high
Features precedence, operator, logical-operator
Examples xataface
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 487

https://www.php.net/manual/en/language.operators.precedence.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.54 Assign Default To Properties

Properties may be assigned default values at declaration time. Such values may be later modified, if needed.

Default values will save some instructions in the constructor, and makes the value obvious in the code.

<?php

class foo {
private $propertyWithDefault = 1;
private $propertyWithoutDefault;
private $propertyThatCantHaveDefault;

public function __construct() {
// Skip this extra line, and give the default value above
$this->propertyWithoutDefault = 1;

// Static expressions are available to set up simple computation at definition␣
→˓time.

$this->propertyWithoutDefault = OtherClass::CONSTANT + 1;

// Arrays, just like scalars, may be set at definition time
$this->propertyWithoutDefault = [1,2,3];

// Objects or resources can't be made default. That is OK.
$this->propertyThatCantHaveDefault = fopen('/path/to/file.txt');
$this->propertyThatCantHaveDefault = new Fileinfo();

}
}

?>

See also PHP Default parameters.

Suggestions

• Add a default value whenever possible. This is easy for scalars, and array()

Specs

Short name Classes/MakeDefault
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features default-value
ClearPHP use-properties-default-values
Examples LiveZilla, phpMyAdmin
Available in Entreprise Edition, Exakat Cloud

488 Chapter 14. Rules

https://www.phptutorial.net/php-tutorial/php-default-parameters/
https://github.com/dseguy/clearPHP/tree/master/rules/use-properties-default-values.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.55 Assigned In One Branch

Report variables that are assigned in one branch, and not in the other.

<?php

if ($condition) {
// $assigned_in_this_branch is assigned in only one of the branches
$assigned_in_this_branch = 1;
$also_assigned = 1;

} else {
// $also_assigned is assigned in the two branches
$also_assigned = 1;

}

?>

Suggestions

• Assign in the second branch

• Assign outside the condition

Specs

Short name Structures/AssignedInOneBranch
Rulesets All
Exakat since 1.0.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features assignation
Available in Entreprise Edition, Exakat Cloud

14.2.56 Assigned Twice

The same variable is assigned twice in the same function.

While this is possible and quite common, it is also a good practice to avoid changing a value from one literal to another.
It is far better to assign the new value to

Incremental changes to a variables are not reported here.

<?php

function foo() {
// incremental changes of $a;
$a = 'a';
$a++;
$a = uppercase($a);

(continues on next page)

14.2. List of Rules 489

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$b = 1;
$c = bar($b);
// B changed its purpose. Why not call it $d?
$b = array(1,2,3);

// This is some forgotten debug
$e = $config->getSomeList();
$e = array('OneElement');

}

?>

Suggestions

• Remove the first assignation

• Remove the second assignation

• Change the name of the variable in one or both cases

Specs

Short name Variables/AssignedTwiceOrMore
Rulesets All, Analyze
Exakat since 0.9.8
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features variable
Available in Entreprise Edition, Exakat Cloud

14.2.57 Assumptions

Assumptions in the code, that leads to possible bugs.

Some conditions may be very weak, and lead to errors. For example, the code below checks that the variable $a is not
null, then uses it as an array. There is no relationship between ‘not null’ and ‘being an array’, so this is an assumption.

<?php

// Assumption : if $a is not null, then it is an array. This is not always the case.
function foo($a) {

if ($a !== null) {
echo $a['name'];

}
}

(continues on next page)

490 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// Assumption : if $a is not null, then it is an array. Here, the typehint will ensure␣
→˓that it is the case.
// Although, a more readable test is is_array()
function foo(?array $a) {

if ($a !== null) {
echo $a['name'];

}
}

?>

See also From assumptions to assertions.

Suggestions

• Make the context of the code more explicit

• Use a class to handle specific array index

• Avoid using named index by using foreach()

Specs

Short name Php/Assumptions
Rulesets All, Analyze, Changed Behavior
Exakat since 2.1.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features assumption
Available in Entreprise Edition, Exakat Cloud

14.2.58 Autoappend

Appending a variable to itself leads to enormous usage of memory.

<?php

// Always append a value to a distinct variable
foreach($a as $b) {

$c[] = $b;
}

// This copies the array to itself, and double the size each loop
foreach($a as $b) {

$c[] = $c;
}
?>

14.2. List of Rules 491

https://rskuipers.com/entry/from-assumptions-to-assertions
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Change the variable on the left of the append

• Change the variable on the right of the append

Specs

Short name Performances/Autoappend
Rulesets All, Changed Behavior, Performances
Exakat since 1.8.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.59 Autoloading

Usage of the autoloading feature of PHP.

Defining the __autoload() function is obsolete since PHP 7.2.

<?php

spl_autoload_register('my_autoloader');

// Old way to autoload. Deprecated in PHP 7.2
function __autoload($class) {}

?>

See also __autoload.

Specs

Short name Php/AutoloadUsage
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features autoload
Available in Entreprise Edition, Community Edition, Exakat Cloud

492 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/autoload
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.60 Avoid Compare Typed Boolean

There is no need to compare explicitly a function call to a boolean, when the definition has a boolean return
type.

The analysis checks for equality and identity comparisons. It doesn’t check for the not operator usage.

<?php

// Sufficient check
if (foo()) {

doSomething();
}

// Superfluous check
if (foo() === true) {

doSomething();
}

function foo() : bool {}

?>

Suggestions

• Simplify the code and make it short

Specs

Short name Structures/DontCompareTypedBoolean
Rulesets All, Suggestions
Exakat since 2.1.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.61 Avoid Concat In Loop

Concatenations inside a loop generate a lot of temporary variables. They are accumulated and tend to raise
the memory usage, leading to slower performances.

It is recommended to store the values in an array, and then use implode() on that array to make the concatenation at
once. The effect is positive when the source array has at least 50 elements. The same doesn’t apply to addition and
multiplication, with array_sum() and array_multiply(), as those operations work on the current memory allocation, and
don’t need to allocate new memory at each step.

<?php

(continues on next page)

14.2. List of Rules 493

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/implode
https://www.php.net/array_sum

Exakat Documentation, Release 1

(continued from previous page)

// Concatenation in one operation
$tmp = array();
foreach(data_source() as $data) {

$tmp[] = $data;
}
$final = implode('', $tmp);

// Concatenation in many operations
foreach(data_source() as $data) {

$final .= $data;
}

?>

See also PHP 7 performance improvements (3/5): Encapsed strings optimization.

Suggestions

• Collect all pieces in an array, then implode() the array in one call.

Specs

Short name Performances/NoConcatInLoop
Rulesets All, Changed Behavior, Performances, Top10
Exakat since 0.12.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features loop
Examples SuiteCrm, ThinkPHP
Available in Entreprise Edition, Exakat Cloud

14.2.62 Avoid Large Array Assignation

Avoid setting large arrays to local variables. Such operation is done every time the function is called, and
it wastes time.

This rule applies to constant arrays: when the arrays are dynamically build, with variables or properties, they are not
reported here.

There are different ways to avoid this : inject the array, build the array once, use a constant or a global variable.

The effect on small arrays (less than 10 elements) is not significant. Arrays with 10 elements or more are reported here.
The effect is also more important on functions that are called often, or within loops.

<?php

// with constants, for functions
const ARRAY = array(1,2,3,4,5,6,7,8,9,10,11);

(continues on next page)

494 Chapter 14. Rules

https://blog.blackfire.io/php-7-performance-improvements-encapsed-strings-optimization.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

function foo() {
$array = ARRAY;
//more code

}

// with class constants, for methods
class x {

const ARRAY = array(1,2,3,4,5,6,7,8,9,10,11);
function foo() {

$array = self::ARRAY;
//more code

}
}

// with properties, for methods
class x {

private $array = array(1,2,3,4,5,6,7,8,9,10,11);

function foo() {
$array = $this->array;
//more code

}
}

// injection, leveraging default values
function foo($array = array(1,2,3,4,5,6,7,8,9,10,11)) {

//more code
}

// local cache with static
function foo() {

static $array;
if ($array === null) {

$array = array(1,2,3,4,5,6,7,8,9,10,11);
}

//more code
}

// Avoid creating the same array all the time in a function
class x {

function foo() {
// assign to non local variable is OK.
// Here, to a property, though it may be better in a __construct or as default␣

→˓values
$this->s = array(1,2,3,4,5,6,7,8,9,10,11);

// This is wasting resources, as it is done each time.
$array = array(1,2,3,4,5,6,7,8,9,10,11);

}
}

(continues on next page)

14.2. List of Rules 495

Exakat Documentation, Release 1

(continued from previous page)

?>

Suggestions

• Make the literal a global constant or a class constant

• Make the literal an argument, so it can be injected

• Make the literal an property, with the array as default value

• Make the literal an static variable, with the array as default value

Specs

Short name Structures/NoAssignationInFunction
Rulesets All, Performances
Exakat since 0.9.7
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features array
Available in Entreprise Edition, Exakat Cloud

14.2.63 Avoid Optional Properties

Avoid optional properties, to prevent littering the code with existence checks.

When a property has to be checked once for existence, it is safer to check it each time. This leads to a decrease in
readability and a lot of checks added to the code.

Either make sure the property is set with an actual object rather than with null, or use a null object. A null object offers
the same interface than the expected object, but does nothing. It allows calling its methods, without running into a
Fatal error, nor testing it.

<?php

// Example is courtesy 'The Coding Machine' : it has been adapted from its original form.␣
→˓See link below.

class MyMailer {
private $logger;

public function __construct(LoggerInterface $logger = null) {
$this->logger = $logger;

}

private function sendMail(Mail $mail) {
// Since $this->logger may be null, it must be tested anytime it is used.
if ($this->logger) {

(continues on next page)

496 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error

Exakat Documentation, Release 1

(continued from previous page)

$this->logger->info('Mail successfully sent.');
}

}
}

?>

See also Avoid optional services as much as possible, The Null Object Pattern – Polymorphism in Domain Models and
Practical PHP Refactoring: Introduce Null Object.

Suggestions

• Use a null object to fill any missing value

• Make sure the property is set at constructor time

Specs

Short name Classes/AvoidOptionalProperties
Rulesets All, Analyze
Exakat since 0.12.0
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features property, null
Examples ChurchCRM, Dolibarr
Available in Entreprise Edition, Exakat Cloud

14.2.64 Avoid Parenthesis With Language Construct

Avoid Parenthesis for language construct. Languages constructs are a few PHP native elements, that looks
like functions but are not.

Among other distinction, those elements cannot be directly used as variable function call, and they may be used with
or without parenthesis. The usage of parenthesis actually give some feeling of comfort, it won’t prevent PHP from
combining those argument with any later operators, leading to unexpected results.

Even if most of the time, usage of parenthesis is legit, it is recommended to avoid them.

<?php

// normal usage of include
include 'file.php';

// This looks like a function and is not
include('file2.php');

?>

14.2. List of Rules 497

http://bestpractices.thecodingmachine.com/php/design_beautiful_classes_and_methods.html#avoid-optional-services-as-much-as-possible
https://www.sitepoint.com/the-null-object-pattern-polymorphism-in-domain-models/
https://dzone.com/articles/practical-php-refactoring-26
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Remove the parenthesis

Specs

Short name Structures/PrintWithoutParenthesis
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features language-construct
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.65 Avoid Real

PHP has two float data type : real and double. real is rarely used, and might be deprecated in PHP 7.4.

To prepare code, avoid using is_real() and the (real) typecast.

<?php

// safe way to check for float
if (!is_float($a)) {

$a = (float) $a;
}

// Avoid doing that
if (!is_real($a)) {

$a = (real) $a;
}

?>

See also PHP RFC: Deprecations for PHP 7.4.

Suggestions

• Replace is_real() by is_float()

• Replace (real) by (float)

498 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://wiki.php.net/rfc/deprecations_php_7_4

Exakat Documentation, Release 1

Specs

Short name Php/AvoidReal
Rulesets All, Changed Behavior, Suggestions, Top10
Exakat since 1.3.9
PHP Version With PHP 8.0 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features real
Available in Entreprise Edition, Exakat Cloud

14.2.66 Avoid Self In Interface

Self and Parent are tricky when used in an interface.

self refers to the current interface or its extended parents : as long as the constant is defined in the interface family, this
is valid. On the other hand, when self refers to the current class, the resolution of names would happen at execution
time, leading to undefined errors.

self may be used for typing : then, argument types in the host class must use the interface name, and can’t use self
nor the class name, for compatibility reason. self can be used for returntype, as expected.

parent has the same behavior than self, except that it cannot be used inside an interface. This is one of those error
that lint but won’t execute in certain conditions : namely, when a class implements the interface with parent, but has
no parent by itself. This is now a dependency to the host class.

static can’t be used in an interface, as it needs to be resolved at call time.

<?php

interface i extends ii {
// This 'self' is valid : it refers to the interface i
public const I = self::I2 + 2;

// This 'self' is also valid, as it refers to interface ii, which is a part of␣
→˓interface i
public const I2 = self::IP + 4;

// This makes interface i dependant on the host class
public const I3 = parent::A;

// This makes interface i dependant on the host class, where X must be defined.
// It actually yields an error : Undefined class constant 'self::I'
public const I4 = self::X;

}

class x implements k {
const X = 1;

}
?>

See also Scope Resolution Operator (::).

14.2. List of Rules 499

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/error
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

Suggestions

• Use a fully qualified namespace instead of self

• Use a locally defined constant, so self is a valid reference

Specs

Short name Interfaces/AvoidSelfInInterface
Rulesets All, Changed Behavior, Class Review, LintButWontExec
Exakat since 1.5.4
PHP Version All
Severity Critical
Time To Fix Slow (1 hour)
Precision Very high
Features self, interface
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.67 Avoid Substr() One

Use array notation $string[$position] to reach a single byte in a string.

There are two ways to access a byte in a string : substr() and $v[$pos].

The second style is more readable. It may be up to four times faster, though it is a micro-optimization. It is recommended
to use it.

PHP 7.1 also introduces the support of negative offsets as string index : negative offset are also reported. Beware that
substr() and $v[$pos] are similar, while mb_substr() is not. The first function works on bytes, while the latter works
on characters.

<?php

$string = 'abcde';

echo substr($string, $pos, 1);
echo $string[$pos];

echo mb_substr($string, $pos, 1);

// when $pos = 1
// displays bbb
// when $pos = 2
// displays ??

?>

500 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/substr
https://www.php.net/substr
https://www.php.net/mb_substr

Exakat Documentation, Release 1

Suggestions

• Replace substr() with the array notations for strings.

• Replace substr() with a call to mb_substr().

Specs

Short name Structures/NoSubstrOne
Rulesets All, Analyze, CE, CI-checks, CompatibilityPHP71, Performances, Suggestions, Top10
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Examples ChurchCRM, LiveZilla
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.68 Avoid Those Hash Functions

The following cryptography algorithms are considered insecure, and should be replaced with new and
more modern algorithms.

MD2, MD4, MD5, SHA0, SHA1, CRC, DES, 3DES, RC2, RC4.

When possible, avoid using them, may it be as PHP functions, or hashing function configurations (mcrypt, hash. . .).
Weak cryptography is commonly used for hashing values when caching them. In such cases, security is not a primary
concern. However, it may later become such, when hackers get access to the cache folders, or if the cached identifier is
published. As a preventive protection, it is recommended to always use a secure hashing function.

<?php

// Weak cryptographic algorithm
echo md5('The quick brown fox jumped over the lazy dog.');

// Weak cryptographic algorthim, used with a modern PHP extension (easier to update)
echo hash('md5', 'The quick brown fox jumped over the lazy dog.');

// Strong cryptographic algorthim, used with a modern PHP extension
echo hash('sha156', 'The quick brown fox jumped over the lazy dog.');

?>

See also Secure Hash Algorithms.

14.2. List of Rules 501

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/secure
https://en.wikipedia.org/wiki/Secure_Hash_Algorithms

Exakat Documentation, Release 1

Suggestions

• Keep the current crypto, and add a call to a stronger one.

• Change the crypto for a more modern one and update the related databases

Specs

Short name Security/AvoidThoseCrypto
Rulesets All, Security
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features hash
Available in Entreprise Edition, Exakat Cloud

14.2.69 Avoid Using stdClass

stdClass is the default class for PHP. It is instantiated when PHP needs to return a object, but no class is
specifically available.

It is recommended to avoid instantiating this class. Some PHP or frameworks functions, such as json_encode(), do
return them : this is fine, although it is reported here.

If you need a stdClass object, it is faster to build it as an array, then cast it, than instantiate stdClass. This is a
micro-optimisation.

<?php

$json = '{"a":1,"b":2,"c":3}';
$object = json_decode($json);
// $object is a stdClass, as returned by json_decode

// Fast building of $o
$a = [];
$a['a'] = 1;
$a['b'] = 2;
$a['c'] = 3;
json_encode((object) $a);

// Slow building of $o
$o = new stdClass();
$o->a = 1;
$o->b = 2;
$o->c = 3;
json_encode($o);

?>

502 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/json_encode

Exakat Documentation, Release 1

Suggestions

• Create a custom class to handle the properties

Specs

Short name Php/UseStdclass
Rulesets All, Analyze
Exakat since 0.9.1
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features stdclass
Available in Entreprise Edition, Exakat Cloud

14.2.70 Avoid array_push()

array_push() is slower than the append [] operator.

This is also true when the append operator is called several times, while array_push() is be called only once, with an
arbitrary number of argument.

Using count after the push is also faster than collecting array_push() return value. It is a micro-optimisation.

<?php

$a = [1,2,3];
// Fast version
$a[] = 4;

$a[] = 5;
$a[] = 6;
$a[] = 7;
$count = count($a);

// Slow version
array_push($a, 4);
$count = array_push($a, 5,6,7);

// Multiple version :
$a[] = 1;
$a[] = 2;
$a[] = 3;
array_push($a, 1, 2, 3);

?>

14.2. List of Rules 503

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_push
https://www.php.net/array_push
https://www.php.net/array_push

Exakat Documentation, Release 1

Suggestions

• Use the [] operator

Specs

Short name Performances/AvoidArrayPush
Rulesets All, Changed Behavior, PHP recommendations, Performances
Exakat since 0.9.1
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.71 Avoid array_unique()

The native function array_unique() is much slower than using other alternatives, such as ar-
ray_count_values(), array_flip()/array_keys(), or even a foreach() loops.

<?php

// using array_unique()
$uniques = array_unique($someValues);

// When values are strings or integers
$uniques = array_keys(array_count_values($someValues));
$uniques = array_flip(array_flip($someValues))

//even some loops are faster.
$uniques = [];
foreach($someValues as $s) {

if (!in_array($uniques, $s)) {
$uniques[] $s;

}
}

?>

See also array_unique..

504 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_unique
https://www.php.net/array_count_values
https://www.php.net/array_count_values
https://www.php.net/array_flip
https://www.php.net/array_keys
https://www.php.net/manual/en/control-structures.foreach.php
https://www.php.net/array_unique

Exakat Documentation, Release 1

Suggestions

• Upgrade to PHP 7.2

• Use an alternative way to make values unique in an array, using array_count_values(), for example.

Specs

Short name Structures/NoArrayUnique
Rulesets All, Performances
Exakat since 0.8.4
PHP Version With PHP 7.2 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features array
Available in Entreprise Edition, Exakat Cloud

14.2.72 Avoid get_class()

get_class() should be replaced with the instanceof operator to check the class of an object.

get_class() only compares the full namespace name of the object’s class, while instanceof actually resolves the
name, using the local namespace and aliases.

<?php

use Stdclass as baseClass;

function foo($arg) {
// Slow and prone to namespace errors
if (get_class($arg) === 'Stdclass') {

// doSomething()
}

}

function bar($arg) {
// Faster, and uses aliases.
if ($arg instanceof baseClass) {

// doSomething()
}

}
?>

See also get_class and Instanceof.

14.2. List of Rules 505

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/get_class
https://www.php.net/manual/en/language.operators.type.php

Exakat Documentation, Release 1

Suggestions

• Replace get_class() with the instanceof operator

Specs

Short name Structures/UseInstanceof
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features class, type
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.73 Avoid get_object_vars()

get_object_vars() changes behavior between PHP 7.3 and 7.4. It also behaves different within and outside
a class.

<?php

// Illustration courtesy of Doug Bierer
$obj = new ArrayObject(['A' => 1,'B' => 2,'C' => 3]);
var_dump($obj->getArrayCopy());
var_dump(get_object_vars($obj));

?>

See also get_object_vars script on 3V4L and The Strange Case of ArrayObject.

Suggestions

• Use ArrayObject and getArrayCopy() method

Specs

Short name Php/AvoidGetobjectVars
Rulesets All, Changed Behavior, CompatibilityPHP74, CompatibilityPHP80
Exakat since 2.2.1
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features class, arrayobject
Available in Entreprise Edition, Exakat Cloud

506 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/get_object_vars
https://3v4l.org/ELVGY
https://phptraining.net/articles/strange_case_of_array_object
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.74 Avoid glob() Usage

glob() and scandir() sorts results by default. When that kind of sorting is not needed, save some time by
requesting NOSORT with those functions.

Besides, whenever possible, use scandir() instead of glob(). Using opendir() and a while loop may be even faster.

This analysis skips scandir() and glob() if they are explicitly configured with flags (aka, sorting is explicitly needed).

glob() accepts wildchar, such as *, that may not easily replaced with scandir() or opendir().

<?php

// Scandir without sorting is the fastest.
scandir('docs/', SCANDIR_SORT_NONE);

// Scandir sorts files by default. Same as above, but with sorting
scandir('docs/');

// glob sorts files by default. Same as below, but no sorting
glob('docs/*', GLOB_NOSORT);

// glob sorts files by default. This is the slowest version
glob('docs/*');

?>

See also Putting glob to the test, How to list files recursively in a directory with PHP iterators and glob://.

Suggestions

• Use FilesystemIterator or DirectoryIterator classes.

• Use RegexIterator to filter any unwanted results from FilesystemIterator.

• Use glob protocol for files : $it = new DirectoryIterator(‘glob://path/to/examples/*.php’);

Specs

Short name Performances/NoGlob
Rulesets All, Changed Behavior, Performances
Exakat since 0.9.6
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features glob, directoryiterator, filesystemiterator
Examples Phinx, NextCloud
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 507

https://www.php.net/glob
https://www.php.net/scandir
https://www.php.net/scandir
https://www.php.net/glob
https://www.php.net/opendir
https://www.php.net/scandir
https://www.php.net/glob
https://www.php.net/glob
https://www.php.net/scandir
https://www.php.net/opendir
https://www.phparch.com/2010/04/putting-glob-to-the-test/
https://dev.to/bdelespierre/how-to-list-files-recursively-in-a-directory-with-php-iterators-5c0m
https://www.php.net/manual/en/wrappers.glob.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.75 Avoid mb_dectect_encoding()

mb_dectect_encoding() is bad at guessing encoding.

For example, UTF-8 and ISO-8859-1 share some common characters : when a string is build with them it is impossible
to differentiate the actual encoding.

<?php

$encoding = mb_encoding_detect($_GET['name']);

?>

See also mb_encoding_detect, PHP vs. The Developer: Encoding Character Sets and DPC2019: Of representation and
interpretation: A unified theory - Arnout Boks.

Suggestions

• Store and transmit the data format

Specs

Short name Php/AvoidMbDectectEncoding
Rulesets All, Analyze, Changed Behavior
Exakat since 1.8.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features mbstring
Available in Entreprise Edition, Exakat Cloud

14.2.76 Avoid option arrays in constructors

Avoid option arrays in constructors. Use one parameter per injected element.

<?php

class Foo {
// Distinct arguments, all typehinted if possible
function __construct(A $a, B $b, C $c, D $d) {

$this->a = $a;
$this->b = $b;
$this->c = $c;
$this->d = $d;

}
}

class Bar {
// One argument, spread over several properties

(continues on next page)

508 Chapter 14. Rules

https://php.net/mb-encoding-detect
https://www.daganhenderson.com/blog/2013/07/php-encoding-character-sets
https://youtu.be/K2zS6vbBb9A?t=1375
https://youtu.be/K2zS6vbBb9A?t=1375
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

function __construct(array $options) {
$this->a = $options['a'];
$this->b = $options['b'];
$this->c = $options['c'];
$this->d = $options['d'];

}
}

?>

See also Avoid option arrays in constructors and PHP RFC: Named Arguments (Type-safe and documented options).

Suggestions

• Spread the options in the argument list, one argument each

• Use a configuration class, that hold all the elements with clear names, instead of an array

• Use named parameters to pass and document the arguments

Specs

Short name Classes/AvoidOptionArrays
Rulesets All, Analyze, Class Review
Exakat since 1.7.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features constructor
Available in Entreprise Edition, Exakat Cloud

14.2.77 Avoid set_error_handler $context Argument

Avoid configuring set_error_handler() with a method that accepts 5 arguments. The last argument,
$errcontext, is deprecated since PHP 7.2, and will be removed later.

<?php

// setting error_handler with an incorrect closure
set_error_handler(function($errno, $errstr, $errfile, $errline) {});

// setting error_handler with an incorrect closure
set_error_handler(function($errno, $errstr, $errfile, $errline, $errcontext) {});

?>

See also set_error_handler().

14.2. List of Rules 509

http://bestpractices.thecodingmachine.com/php/design_beautiful_classes_and_methods.html#avoid-option-arrays-in-constructors
https://wiki.php.net/rfc/named_params#type-safe_and_documented_options
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/set_error_handler

Exakat Documentation, Release 1

Suggestions

• Remove the 6th argument of registered handlers.

Specs

Short name Php/AvoidSetErrorHandlerContextArg
Rulesets All, Changed Behavior, CompatibilityPHP72
Exakat since 1.0.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision High
Features error-handler
Examples shopware, Vanilla
Available in Entreprise Edition, Exakat Cloud

14.2.78 Avoid sleep()/usleep()

sleep() and usleep() help saturate the web server.

Pausing the script for a specific amount of time means that the Web server is also making all related resources sleep,
such as database, sockets, session, etc. This may used to set up a DOS on the server. As much as possible, avoid
delaying the end of the script.

sleep() and usleep() have less impact in commandline (CLI).

<?php

$begin = microtime(true);
checkLogin($user, $password);
$end = microtime(true);

// Making all login checks looks the same
usleep(1000000 - ($end - $begin) * 1000000);

// Any hit on this page now uses 1 second, no matter if load is high or not
// Is it now possible to saturate the webserver in 1 s ?

?>

Suggestions

• Add a deadline of usage in the session, and wait past this deadline to start serving again. Until then, abort
immediately.

• Use element in the GUI to delay or slow usage.

510 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/sleep
https://www.php.net/usleep
https://www.php.net/sleep
https://www.php.net/usleep

Exakat Documentation, Release 1

Specs

Short name Security/NoSleep
Rulesets All, Changed Behavior, Security
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features sleep, cli
Available in Entreprise Edition, Exakat Cloud

14.2.79 Bad Constants Names

PHP’s manual recommends that developer do not use constants with the convention __NAME__. Those are
reserved for PHP future use.

For example, __TRAIT__ recently appeared in PHP, as a magic constant. In the future, other may appear.

The analyzer will report any constant which name is __.*.__, or even _.*_ (only one underscore).

<?php

const __MY_APP_CONST__ = 1;

const __MY_APP_CONST__ = 1;

define('__MY_OTHER_APP_CONST__', 2);

?>

See also Constants.

Suggestions

• Avoid using names that doesn’t comply with PHP’s convention

Specs

Short name Constants/BadConstantnames
Rulesets All, Analyze, PHP recommendations
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features constant
Examples PrestaShop, Zencart
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 511

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.constants.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.80 Bad Type Relay

A bad type relay happens where a types argument is relayed to a parameter with another type. This leads
to a Fatal error, and stops execution. This is possibly a piece of dead code.

It is recommended to harmonize the types, so the two methods are compatible.

<?php

// the $i argument is relayed to bar, which is expecting a string.
function foo(int $i) : string {

return bar($i);
}

// the return value for the bar function is not compatible with the one from foo;
function bar(string $s) : int {

return (int) $string + 1;
}

?>

Suggestions

• Harmonize the type so they match one with the other.

• Remove dead code

• Apply type casting before calling the next function, or return value

Specs

Short name Functions/BadTypehintRelay
Rulesets All, Typechecks
Exakat since 1.6.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features type
Available in Entreprise Edition, Exakat Cloud

14.2.81 Bail Out Early

When using conditions, it is recommended to quit in the current context, and avoid the else clause alto-
gether.

The main benefit is to make clear the method applies a condition, and stop immediately when this condition is not
satisfied. The main sequence is then focused on the important code.

This analysis works with the break, continue, throw and goto keywords too, depending on situations.

512 Chapter 14. Rules

https://www.php.net/error
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

<?php

// Bailing out early, low level of indentation
function foo1($a) {

if ($a > 0) {
return false;

}

$a++;
return $a;

}

// Works with continue too
foreach($array as $a => $b) {

if ($a > 0) {
continue false;

}

$a++;
return $a;

}

// No need for else
function foo2($a) {

if ($a > 0) {
return false;

} else {
$a++;

}

return $a;
}

// No need for else : return goes into then.
function foo3($a) {

if ($a < 0) {
$a++;

} else {
return false;

}

return $a;
}

// Make a return early, and make the condition visible.
function foo3($a) {

if ($a < 0) {
$a++;
methodcall();
functioncall();

}
}

(continues on next page)

14.2. List of Rules 513

Exakat Documentation, Release 1

(continued from previous page)

?>

See also Avoid nesting too deeply and return early (part 1) and Avoid nesting too deeply and return early (part 2).

Suggestions

• Detect errors, and then, return as soon as possible.

• When a if. . . then branches are unbalanced, test for the small branch, finish it with return. Then keep the other
branch as the main code.

Specs

Short name Structures/BailOutEarly
Rulesets All, Analyze
Exakat since 0.8.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features return
Examples OpenEMR, opencfp
Available in Entreprise Edition, Exakat Cloud

14.2.82 Binary Glossary

List of all the integer values using the binary format.

<?php

$a = 0b10;
$b = 0B0101;

?>

See also Integer syntax and Mastering binary and bitwise in PHP.

Specs

Short name Type/Binary
Rulesets All, Appinfo, CE, Changed Behavior, CompatibilityPHP53, Inventory
Exakat since 0.8.4
PHP Version With PHP 5.4 and more recent
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features integer, binary-integer
Available in Entreprise Edition, Community Edition, Exakat Cloud

514 Chapter 14. Rules

https://github.com/jupeter/clean-code-php#avoid-nesting-too-deeply-and-return-early-part-1
https://github.com/jupeter/clean-code-php#avoid-nesting-too-deeply-and-return-early-part-2
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.types.integer.php#language.types.integer.syntax
https://thephp.website/en/issue/bitwise-php/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.83 Blind Variable Used Beyond Loop

Foreach() loops defines variables, which are traditionally used only inside the loop block. Using them
beyond that limit often leads to surprises.

<?php

foreach($a as $b => $c) {
echo "$b : $c\n";

}
// $b is set inside the loop, but used beyond
$max = $b;

?>

Specs

Short name Structures/BlindVariableUsedBeyondLoop
Rulesets All, Suggestions
Exakat since 2.5.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Available in Entreprise Edition, Exakat Cloud

14.2.84 Blind Variables

Blind variables are that are used in foreach or for structure, for managing the loop itself.

<?php
foreach($array as $key => $value) {

// $key and $value are blind values
}

?>

Specs

Short name Variables/Blind
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features blind-variable
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 515

https://www.php.net/manual/en/control-structures.foreach.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.85 Bracketless Blocks

PHP allows one liners as for(), foreach(), while(), do/while() loops, or as then/else expressions.

It is generally considered a bad practice, as readability is lower and there are non-negligible risk of excluding from the
loop the next instruction. switch() and match() cannot be without bracket.

<?php

// Legit one liner
foreach(range('a', 'z') as $letter) ++$letterCount;

// More readable version, even for a one liner.
foreach(range('a', 'z') as $letter) {

++$letterCount;
}

?>

Suggestions

• Assign in the second branch

• Assign outside the condition

Specs

Short name Structures/Bracketless
Rulesets All, Changed Behavior, Coding conventions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.86 Break Outside Loop

Starting with PHP 7, break or continue that are outside a loop (for, foreach(), do. . . `while() <https:
//www.php.net/manual/en/control-structures.while.php>`_, while()) or a switch() statement won’t com-
pile anymore.

It is not possible anymore to include a piece of code inside a loop that will then break.

<?php

// outside a loop : This won't compile
break 1;

foreach($array as $a) {
break 1; // Compile OK

(continues on next page)

516 Chapter 14. Rules

https://www.php.net/manual/en/control-structures.for.php
https://www.php.net/manual/en/control-structures.foreach.php
https://www.php.net/manual/en/control-structures.while.php
https://www.php.net/manual/en/control-structures.while.php
https://www.php.net/manual/en/control-structures.switch.php
https://www.php.net/manual/en/control-structures.match.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.break.php
https://www.php.net/manual/en/control-structures.continue.php
https://www.php.net/manual/en/control-structures.foreach.php
https://www.php.net/manual/en/control-structures.while.php
https://www.php.net/manual/en/control-structures.while.php
https://www.php.net/manual/en/control-structures.while.php
https://www.php.net/manual/en/control-structures.switch.php
https://www.php.net/manual/en/control-structures.break.php

Exakat Documentation, Release 1

(continued from previous page)

break 2; // This won't compile, as this break is in one loop, and not 2
}

foreach($array as $a) {
foreach($array2 as $a2) {

break 2; // OK in PHP 5 and 7
}

}
?>

Specs

Short name Structures/BreakOutsideLoop
Rulesets All, Analyze, CompatibilityPHP70
Exakat since 0.8.4
PHP Version With PHP 7.0 and older
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features break, loop
Available in Entreprise Edition, Exakat Cloud

14.2.87 Break With 0

It is not possible to break 0 : it makes no sense. Break 1 is the minimum, and is the default value.

<?php
// Can't break 0. Must be 1 or more, depending on the level of nesting.
for($i = 0; $i < 10; $i++) {

break 0;
}

for($i = 0; $i < 10; $i++) {
for($j = 0; $j < 10; $j++) {

break 2;
}

}

?>

14.2. List of Rules 517

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.break.php
https://www.php.net/manual/en/control-structures.break.php

Exakat Documentation, Release 1

Suggestions

• Remove 0, or the break

Specs

Short name Structures/Break0
Rulesets All, CompatibilityPHP53
Exakat since 0.8.4
PHP Version With PHP 5.4 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.88 Break With Non Integer

When using a break, the argument of the operator must be a positive non-null integer literal or be omitted.

Other values were acceptable in PHP 5.3 and previous version, but this is now reported as an error.

<?php
// Can't break $a, even if it contains an integer.
$a = 1;
for($i = 0; $i < 10; $i++) {

break $a;
}

// can't break on float
for($i = 0; $i < 10; $i++) {

for($j = 0; $j < 10; $j++) {
break 2.2;

}
}

?>

Suggestions

• Only use integer with break

518 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.break.php
https://www.php.net/error

Exakat Documentation, Release 1

Specs

Short name Structures/BreakNonInteger
Rulesets All, CompatibilityPHP54
Exakat since 0.8.4
PHP Version With PHP 5.4 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.89 Buried Assignation

Those assignations are buried in the code, and placed in unexpected situations.

They are difficult to spot, and may be confusing. It is advised to place them in a more visible place.

<?php

// $b may be assigned before processing $a
$a = $c && ($b = 2);

// Display property p immeiately, but also, keeps the object for later
echo ($o = new x)->p;

// legit syntax, but the double assignation is not obvious.
for($i = 2, $j = 3; $j < 10; $j++) {

}
?>

Suggestions

• Extract the assignation and set it on its own line, prior to the current expression.

• Check if the local variable is necessary

Specs

Short name Structures/BuriedAssignation
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Examples XOOPS, Mautic
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 519

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.90 Cache Variable Outside Loop

Avoid recalculating constant values inside the loop.

Do the calculation once, outside the loop, and then reuse the value in the body of the loop.

One of the classic example if doing count($array) in a for loop : since the source is constant during the loop, the
result of count() is always the same.

Depending on the load of the called method, this may increase the speed of the loop from little to enormously.

This analysis works on all the loops: while, do. . .while, foreach and for.

<?php

$path = '/some/path';
$fullpath = realpath("$path/more/dirs/");
foreach($files as $file) {

// Only moving parts are used in the loop
copy($file, $fullpath.$file);

}

$path = '/some/path';
foreach($files as $file) {

// $fullpath is calculated each loop
$fullpath = realpath("$path/more/dirs/");
copy($file, $fullpath.$file);

}

?>

Suggestions

• Avoid using blind variables outside loops.

• Store blind variables in local variables or properties for later reuse.

Specs

Short name Performances/CacheVariableOutsideLoop
Rulesets All, Changed Behavior, Performances
Exakat since 1.2.8
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Medium
Available in Entreprise Edition, Exakat Cloud

520 Chapter 14. Rules

https://www.php.net/result
https://www.php.net/count
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.91 Call Order

This is a representation of the code. Each node is a function or method, and each link a is call from a
method to another.

The only link is the possible call from a method to the other. All control flow is omitted, including conditional calls
and loops. From the above script, the resulting network will display ‘foo() -> bar(), foo() -> foobar(), bar() -> foobar()’
calls.

<?php

function foo() {
bar();
foobar();

}

function bar() {
foobar();

}

function foobar() {

}
?>

Specs

Short name Dump/CallOrder
Rulesets All, CE, Changed Behavior, Dump
Exakat since 2.1.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.92 Callback Function Needs Return

When used with array_map() functions, the callback must return something. This return may be in the
form of a return statement, a global variable or a parameter with a reference. All those solutions extract
information from the callback.

The following functions are omitted, as they don’t require the return :

• forward_static_call_array()

• forward_static_call()

• register_shutdown_function()

• register_tick_function()

14.2. List of Rules 521

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_map
https://www.php.net/forward_static_call_array
https://www.php.net/forward_static_call
https://www.php.net/register_shutdown_function
https://www.php.net/register_tick_function

Exakat Documentation, Release 1

<?php

// This filters each element
$filtered = array_filter($array, function ($x) {return $x == 2; });

// This return void for every element
$filtered = array_filter($array, function ($x) {return ; });

// costly array_sum()
$sum = 0;
$filtered = array_filter($array, function ($x) use (&$sum) {$sum += $x; });

// costly array_sum()
global $sum = 0;
$filtered = array_filter($array, function () {global $sum; $sum += $x; });

// register_shutown_function() doesn't require any return
register_shutown_function("my_shutdown");

?>

See also array_map.

Suggestions

• Add an explicit return to the callback

• Use null to unset elements in an array without destroying the index

Specs

Short name Functions/CallbackNeedsReturn
Rulesets All, Analyze, CE, CI-checks
Exakat since 1.2.6
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision High
Features callback
Examples Contao, Phpdocumentor
Available in Entreprise Edition, Community Edition, Exakat Cloud

522 Chapter 14. Rules

https://www.php.net/array_map
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.93 Calling Static Trait Method

Calling directly a static method, defined in a trait is deprecated. It emits a deprecation notice in PHP 8.1.

Calling the same method, from the class point of view is valid.

<?php

trait T {
public static function t() {

//
}

}

T::t();

?>

See also PHP RFC: Deprecations for PHP 8.1.

Suggestions

• Call the method from one of the class using the trait

• Move the method to a class

Specs

Short name Php/CallingStaticTraitMethod
Rulesets All, Changed Behavior, CompatibilityPHP81, Deprecated
Exakat since 2.2.5
PHP Version With PHP 8.1 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features trait, static-method
Available in Entreprise Edition, Exakat Cloud

14.2.94 Calltime Pass By Reference

PHP doesn’t allow when a value is turned into a reference at functioncall, since PHP 5.4.

Either the function use a reference in its signature, either the reference won’t pass.

<?php

function foo($name) {
$arg = ucfirst(strtolower($name));
echo 'Hello '.$arg;

}

(continues on next page)

14.2. List of Rules 523

https://www.php.net/manual/en/language.oop5.static.php
https://wiki.php.net/rfc/deprecations_php_8_1
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$a = 'name';
foo(&$a);

?>

See also Passing by Reference.

Suggestions

• Make the signature of the called method accept references

• Remove the reference from the method call

• Use an object instead of a scalar

Specs

Short name Structures/CalltimePassByReference
Rulesets All, CompatibilityPHP54
Exakat since 0.8.4
PHP Version With PHP 5.4 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features by-value, by-reference
Available in Entreprise Edition, Exakat Cloud

14.2.95 Can’t Call Generator

It is not possible to call directly a generator: a generator <https://www.php.net/`generator>`_ is a method
that uses the yield or yield from keyword.

Such structure shall be used directly in a foreach() structure, or with the function iterator_to_array().

<?php

function foo() {
echo __FUNCTION__;
yield 1;

}

// Won't display anything, even 'foo'
foo();

// displays both foo and 1
foreach(foo() as $g) {

print $g;
}

?>

524 Chapter 14. Rules

https://www.php.net/manual/en/language.references.pass.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/generator
https://www.php.net/manual/en/control-structures.foreach.php

Exakat Documentation, Release 1

Specs

Short name Functions/CanCallGenerator
Rulesets All, Analyze
Exakat since 2.6.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features yield, yield-from, generator
Available in Entreprise Edition, Exakat Cloud

14.2.96 Can’t Count Non-Countable

Count() emits an error when it tries to count scalars or objects what don’t implement Countable interface.

<?php

// Normal usage
$a = array(1,2,3,4);
echo count($a)." items\n";

// Error emiting usage
$a = '1234';
echo count($a)." chars\n";

// Error emiting usage
echo count($unsetVar)." elements\n";

?>

See also Warn when counting non-countable types.

Suggestions

• Add a check before using count such as a type check

Specs

Short name Structures/CanCountNonCountable
Rulesets All, CompatibilityPHP72
Exakat since 1.0.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features countable
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 525

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/count
https://www.php.net/error
https://www.php.net/countable
https://www.php.net/manual/en/migration72.incompatible.php#migration72.incompatible.warn-on-non-countable-types
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.97 Can’t Disable Class

This is the list of potentially dangerous PHP class being used in the code, such as `Phar <https://www.php.
net/phar>`_.

This analysis is the base for suggesting values for the disable_classes directive.

<?php

// This script uses ftp_connect(), therefore, this function shouldn't be disabled.
$phar = new Phar();

?>

Specs

Short name Security/CantDisableClass
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features disable-classes
Related rule Can’t Disable Function
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.98 Can’t Disable Function

This is the list of potentially dangerous PHP functions being used in the code, such as exec() or fsockopen().

eval() is not reported here, as it is not a PHP function, but a language construct : it can’t be disabled. This analysis is
the base for suggesting values for the disable_functions directive.

<?php

// This script uses ftp_connect(), therefore, this function shouldn't be disabled.
$ftp = ftp_connect($host, 21);

// This script doesn't use imap_open(), therefore, this function may be disabled.

?>

526 Chapter 14. Rules

https://www.php.net/phar
https://www.php.net/phar
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exec
https://www.php.net/fsockopen

Exakat Documentation, Release 1

Specs

Short name Security/CantDisableFunction
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision High
Features disable-functions
Related rule Can’t Disable Class
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.99 Can’t Extend Final

It is not possible to extend final classes.

Since PHP fails with a fatal error, this means that the extending class is probably not used in the rest of the code. Check
for dead code. In a separate file :

<?php
// File Foo
final class foo {

public final function bar() {
// doSomething

}
}

?>

See also Final Keyword.

Suggestions

• Remove the final keyword

• Remove the extending class

Specs

Short name Classes/CantExtendFinal
Rulesets All, Analyze, Dead code, IsExt, IsPHP, IsStub
Exakat since 0.8.4
PHP Version All
Severity Critical
Time To Fix Instant (5 mins)
Precision Medium
Features final
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 527

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/manual/en/language.oop5.final.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.100 Can’t Implement Traversable

It is not possible to implement the Traversable interface. The alternative is to implement Iterator or
IteratorAggregate, which also implements Traversable.

Traversable may be useful when used with instanceof.

<?php

// This lints, but doesn't run
class x implements Traversable {

}

if($argument instanceof Traversable) {
// doSomething

}

?>

See also Traversable, Iterator and IteratorAggregate.

Suggestions

• Implement Iterator or IteratorAggregate

Specs

Short name Interfaces/CantImplementTraversable
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, LintButWontExec
Exakat since 1.9.8
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features interface
Note This issue may lint but will not run
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.101 Can’t Instantiate Class

When constructor is not public, it is not possible to instantiate such a class. Either this is a conception
choice, or there are factories to handle that. Either way, it is not possible to call new on such class.

<?php

//This is the way to go
$x = X::factory();

//This is not possible
(continues on next page)

528 Chapter 14. Rules

https://www.php.net/manual/en/class.traversable.php
https://www.php.net/manual/en/class.iterator.php
https://www.php.net/manual/en/class.iteratoraggregate.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$x = new X();

class X {
//This is also the case with proctected __construct
private function __construct() {}

static public function factory() {
return new X();

}
}

?>

See also In a PHP5 class, when does a private constructor get called?, Named Constructors in PHP and PHP Constructor
Best Practices And The Prototype Pattern.

Suggestions

• Make the constructor public

• Create a factory, as a static method, in that class, to create objects

• Remove the new call

Specs

Short name Classes/CantInstantiateClass
Rulesets All, Analyze
Exakat since 1.2.8
PHP Version All
Severity Critical
Time To Fix Quick (30 mins)
Precision High
Features constructor, visibility
Examples WordPress
Available in Entreprise Edition, Exakat Cloud

14.2.102 Can’t Overwrite Final Constant

A class constant may be final, and can’t be overwritten in a child class. final is a way to make sure a
constant cannot be changed in children classes.

private constants can’t be made final, as they are not accessible to any other class.

<?php

class y extends x {
const F = 1;
const P = 2;

}
(continues on next page)

14.2. List of Rules 529

https://stackoverflow.com/questions/26079/in-a-php5-class-when-does-a-private-constructor-get-called
http://verraes.net/2014/06/named-constructors-in-php/
http://ralphschindler.com/2012/03/09/php-constructor-best-practices-and-the-prototype-pattern
http://ralphschindler.com/2012/03/09/php-constructor-best-practices-and-the-prototype-pattern
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

class x {
final const F = 3;
private const PRI = 5; // Private can't be final
const P = 4;

}

?>

Suggestions

• Remove the final keyword in the parent class

• Remove the class constant in the child class

• Rename the class constant in the child class

Specs

Short name Classes/CantOverwriteFinalConstant
Rulesets All, Analyze, Class Review, LintButWontExec
Exakat since 2.3.9
PHP Version With PHP 8.1 and more recent
Severity Major
Time To Fix Slow (1 hour)
Precision High
Features final, overwrite
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.103 Can’t Overwrite Final Method

A final method is a method that cannot be overwritten in a child class. This means that no class below the
current class may define a method with the same name.

<?php

class y extends x {
function method() {}

}

class x {
final function method() {}

}

?>

530 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Remove the final keyword in the parent class

• Remove the method in the child class

• Rename the method in the child class

Specs

Short name Classes/CantOverwriteFinalMethod
Rulesets All
Exakat since 2.4.2
PHP Version With PHP 5.0 and more recent
Severity Major
Time To Fix Slow (1 hour)
Precision High
Features final, overwrite
Available in Entreprise Edition, Exakat Cloud

14.2.104 Can’t Throw Throwable

Classes extending Throwable can’t be thrown, unless they also extend Exception. The same applies to
interfaces that extends Throwable.

Although such code lints, PHP throws a Fatal error when executing or including it : Class fooThrowable cannot
implement interface `Throwable <https://www.php.net/manual/en/class.`throwable <https://
www.php.net/throwable>`_.php>`_, extend `Exception <https://www.php.net/exception>`_ or
`Error <https://www.php.net/error>`_ instead.

<?php

// This is the way to go
class fooException extends \Exception { }

// This is not possible and a lot of work
class fooThrowable implements \throwable { }

?>

See also Throwable, Exception and Error.

Suggestions

• Extends the Exception class

• Extends the Error class

14.2. List of Rules 531

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/manual/en/class.throwable.php
https://www.php.net/manual/en/class.exception.php
https://www.php.net/manual/en/class.error.php

Exakat Documentation, Release 1

Specs

Short name Exceptions/CantThrow
Rulesets All, Analyze, Changed Behavior, LintButWontExec
Exakat since 1.3.3
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features throwable
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.105 Cancel Common Method

A parent method’s is too little used in children.

The parent class has a method, which is customised in children classes, though most of the time, those are empty :
hence, cancelled. A threshold of cancelThreshold % of the children methods have to be cancelled to report the
parent class. By default, it is 75 (or 3 out of 4).

<?php

class x {
abstract function foo();
abstract function bar();

}

class y1 extends x {
function foo() { doSomething(); }
function bar() { doSomething(); };

}

class y2 extends x {
// foo is cancelled : it must be written, but has no use.
function foo() { }
function bar() { doSomething(); };

}

?>

Name De-
fault

Type Description

cancelThresh-
old

75 inte-
ger

Minimal number of cancelled methods to suggest the cancellation of the par-
ent.

532 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

Suggestions

• Drop the common method, and the cancelled methods in the children

• Fill the children’s methods with actual code

Specs

Short name Classes/CancelCommonMethod
Rulesets All, Class Review, Suggestions
Exakat since 2.1.8
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features class
Available in Entreprise Edition, Exakat Cloud

14.2.106 Cancelled Parameter

A parameter is cancelled, when its value is hardcoded, and cannot be changed by the calling expression.
The argument is in the signature, but it is later hardcoded to a literal value : thus, it is not usable, from the
caller point of view.

Reference argument are omitted in this rule, as their value changes, however hardcoded, may have an impact on the
calling code.

<?php

function foo($a, $b) {
// $b is cancelled, and cannot be changed.
$b = 3;

// $a is the only parameter here
return $a + $b;

}

function bar($a, $b) {
// $b is actually processed
$c = $b;
$c = process($c);

$b = $c;

// $a is the only parameter here
return $a + $b;

}

?>

14.2. List of Rules 533

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Remove the parameter in the method signature

Specs

Short name Functions/CancelledParameter
Rulesets All, Analyze, Changed Behavior
Exakat since 2.2.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.107 Cannot Call Static Trait Method Directly

From the migration docs : Calling a static method, or accessing a static property directly on a trait is
deprecated. Static methods and properties should only be accessed on a class using the trait.

<?php
trait t { static public function t() {}}
a::t();
// OK
t::t();
//Calling static trait method t::t is deprecated, it should only be called on a class␣
→˓using the trait

class a {
use t;

}

?>

See also Calling a static element on a trait.

Suggestions

• Use the trait in a class, and call the method from the class.

534 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/migration81.deprecated.php#migration81.deprecated.core.static-trait

Exakat Documentation, Release 1

Specs

Short name Traits/CannotCallTraitMethod
Rulesets All, Analyze, CompatibilityPHP81, CompatibilityPHP82
Exakat since 2.3.1
PHP Version With PHP 8.1 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features trait, static-method
Available in Entreprise Edition, Exakat Cloud

14.2.108 Cannot Use Append For Reading

The append operator [] is used to add a value to an array. It doesn’t provide an existing value to read.
Hence, the short assignement operators, or the increment ones should not be used with the append operator.
For example, the coalesce operator yields an error when used with append.

<?php

$x = [];
$x[] = 1; // normal usage
$x[] += 2; // adds a 2, but should yield an error
$x[]++; // adds a 1, but should yield an error
// variations with -= *= &= etc.

$x[] ??= 4; // yields a fatal error

?>

Suggestions

• Remove the short assignement and build a real expression on the right hand of the assignement to append

Specs

Short name Structures/CannotUseAppendForReading
Rulesets All, Analyze
Exakat since 2.6.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 535

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.109 Cannot Use Static For Closure

The reported closures and arrow functions cannot use the static keyword.

Closures that makes use of the $this pseudo-variable cannot use the static keyword, at it prevents the import of the $this
context in the closure <https://www.php.net/`closure>`_. It will fail at execution.

Closures that makes use of the bindTo() method, to change the context of execution, also cannot use the static key-
word. Even if $this is not used in the closure <https://www.php.net/`closure>`_, the static keyword prevents the call to
bindTo().

<?php

class x {
function foo() {

// Not possible, $this is now undefined in the body of the closure
static function () { return $this->a;};

}

function foo2() {
// Not possible, $this is now undefined in the body of the arrow function
static fn () => $this->a;

}

function foo3() {
// Not possible, the closure gets a new context before being called.
$a = static fn () => $ba;
$this->foo4($a);

}

function foo4($c) {
$c->bindTo($this);
$c();

}

}
?>

See also Static anonymous functions.

536 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/closure
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/closure
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/functions.anonymous.php#functions.anonymous-functions.static

Exakat Documentation, Release 1

Suggestions

• Remove the static keyword

• Remove the call to bindTo() method

• Remove the usage of the $this variable

Specs

Short name Functions/CannotUseStaticForClosure
Rulesets All, Analyze, Changed Behavior
Exakat since 2.2.2
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Medium
Features closure, static
Available in Entreprise Edition, Exakat Cloud

14.2.110 Cant Inherit Abstract Method

Inheriting abstract methods was made available in PHP 7.2. In previous versions, it emitted a fatal error.

<?php

abstract class A { abstract function bar(stdClass $x); }
abstract class B extends A { abstract function bar($x): stdClass; }

// Fatal error: Can't inherit abstract function A::bar()
?>

See also PHP RFC: Allow abstract function override.

Suggestions

• Avoid inheriting abstract methods for compatibility beyond 7.2 (and older)

14.2. List of Rules 537

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://wiki.php.net/rfc/allow-abstract-function-override

Exakat Documentation, Release 1

Specs

Short
name

Classes/CantInheritAbstractMethod

Rulesets All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56, Compat-
ibilityPHP70, CompatibilityPHP71

Exakat
since

0.11.8

PHP Ver-
sion

With PHP 7.2 and more recent

Severity Critical
Time To
Fix

Quick (30 mins)

Precision Very high
Features abstract
Available
in

Entreprise Edition, Exakat Cloud

14.2.111 Cant Instantiate Non Class

It is not possible to instantiate anything else than a class. Interfaces, enumerations and traits cannot be
instantiated.

<?php

class c {}

$object = new c;

trait t {}
new t;

?>

Specs

Short name Classes/CantInstantiateNonClass
Rulesets All, Analyze, Class Review
Exakat since 2.6.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

538 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.112 Cant Overload Constants

It was not possible to overload class constants within a class, when the constant was defined in an interface.

<?php

interface i {
const A = 1;

}

//This lints, but doesn't executin in PHP 8.0 and older.
class x implements i {

const A = 1;
}

?>

See also interface constants <https://www.php.net/manual/en/language.oop5.interfaces.php#language.oop5.interfaces.constants>.

Suggestions

• Avoid overloading constants

• Define the constants only in the classes

Specs

Short
name

Interfaces/CantOverloadConstants

Rule-
sets

All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compati-
bilityPHP56, CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73,
CompatibilityPHP74, CompatibilityPHP80, LintButWontExec

Exakat
since

2.3.2

Sever-
ity

Minor

Time
To Fix

Quick (30 mins)

Changed
Behav-
ior

PHP 8.1 - More

Preci-
sion

High

Fea-
tures

interface, class

Note This issue may lint but will not run
Avail-
able in

Entreprise Edition, Exakat Cloud

14.2. List of Rules 539

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/constantFromInterfaceVisibilityCheck.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.113 Cant Use Return Value In Write Context

empty() used to work only on data containers, such as variables. Until PHP 5.5, it was not possible to use
directly expressions, such as functioncalls, inside an empty() function call : they were met with a ‘Can’t
use function return value in write context’ fatal error.

This also applies to methodcalls, static or not.

<?php

function foo($boolean) {
return $boolean;

}

// Valid since PHP 5.5
echo empty(foo(true)) : 'true' : 'false';

?>

See also Cant Use Return Value In Write Context.

Specs

Short name Php/CantUseReturnValueInWriteContext
Rulesets All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54
Exakat since 0.8.4
PHP Version With PHP 5.5 and more recent
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features return
Available in Entreprise Edition, Exakat Cloud

14.2.114 Case Insensitive Constants

PHP constants used to be able to be case insensitive, when defined with define() and the third argument.

This feature is deprecated since PHP 7.3 and is removed since PHP 8.0.

<?php

// case sensitive
define('A', 1);

// case insensitive
define('B', 1, true);

echo A;
// This is not possible
//echo a;

(continues on next page)

540 Chapter 14. Rules

https://www.php.net/error
https://www.php.net/manual/en/language.oop5.static.php
https://stackoverflow.com/questions/1075534/cant-use-method-return-value-in-write-context
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/define

Exakat Documentation, Release 1

(continued from previous page)

// both possible
echo B;
echo b;

?>

See also define.

Specs

Short name Constants/CaseInsensitiveConstants
Rulesets All, Appinfo, CE, CompatibilityPHP73, Deprecated
Exakat since 1.3.9
PHP Version With PHP 8.0 and older
Severity Critical
Time To Fix Slow (1 hour)
Precision Very high
Features dynamic-constant, constant
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.115 Cast To Boolean

This expression may be reduced to casting to a boolean. This makes the code more readable, and adapt
the type of the value to its usage.

<?php

$variable = $condition == 'met' ? 1 : 0;
// Same as
$variable = (bool) $condition == 'met';

$variable = $condition == 'met' ? 0 : 1;
// Same as (Note the condition inversion)
$variable = (bool) $condition != 'met';
// also, with an indentical condition
$variable = !(bool) $condition == 'met';

// This also works with straight booleans expressions
$variable = $condition == 'met' ? true : false;
// Same as
$variable = $condition == 'met';

?>

14.2. List of Rules 541

https://www.php.net/define
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Remove the old expression and use (bool) operator instead

• Change the target values from true/false, or 0/1 to non-binary values, like strings or integers beyond 0 and 1.

• Complete the current branches with other commands

Specs

Short name Structures/CastToBoolean
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features cast
Examples MediaWiki, Dolibarr
Available in Entreprise Edition, Exakat Cloud

14.2.116 Cast Unset Usage

Usage of the (unset) cast operator was removed. The operator was deprecated since PHP 7.2.0.

<?php

$a = 1;
(unset) $a;

// functioncall is OK
unset($a);

?>

See also Unset casting.

Suggestions

• Replace (unset) with a call to unset().

• Remove the unset call altogether.

• Set the value to NULL.

542 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.types.null.php#language.types.null.casting

Exakat Documentation, Release 1

Specs

Short name Php/CastUnsetUsage
Rulesets All, CE, CompatibilityPHP80
Exakat since 2.1.8
PHP Version With PHP 8.0 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features cast, unset
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.117 Cast Usage

List of all cast usage.

PHP does not require (or support) explicit type definition in variable declaration; a variable’s type is determined by
the context in which the variable is used. Until PHP 7.2, a (unset) operator was available. It had the same role as
unset() as a function.

<?php

if (is_int($_GET['x'])) {
$number = (int) $_GET['x'];

} else {
error_display('a wrong value was provided for "x"');

}

?>

See also Type Juggling and unset.

Specs

Short name Php/CastingUsage
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features cast
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 543

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.types.type-juggling.php
https://www.php.net/unset
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.118 Casting Ternary

Type casting has a precedence over ternary operator, and is applied first. When this happens, the condition
is cast, although it is often useless as PHP will do it if needed.

This applies to the ternary operator, the coalesce operator ?: and the null-coalesce operator ??. The last example
generates first an error Undefined variable: b, since $b is first cast to a string. The result is then an empty string, which
leads to an empty string to be stored into $a. Multiple errors cascade.

<?php
$a = (string) $b ? 3 : 4;
$a = (string) $b ?: 4;
$a = (string) $b ?? 4;

?>

See also Operators Precedence.

Suggestions

• Add parenthesis around the ternary operator

• Skip the casting

• Cast in another expression

Specs

Short name Structures/CastingTernary
Rulesets All, Analyze, CE, CI-checks
Exakat since 1.8.0
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features ternary, cast
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.119 Catch Overwrite Variable

The try/catch structure uses some variables that are also in use in this scope. In case of a caught exception,
the exception will be put in the catch variable, and overwrite the current value, loosing some data.

It is recommended to use another name for these catch variables.

<?php

// variables and caught exceptions are distinct
$argument = 1;
try {

methodThatMayRaiseException($argument);
} (Exception $e) {

// here, $e has been changed to an exception.
(continues on next page)

544 Chapter 14. Rules

https://www.php.net/error
https://www.php.net/result
https://www.php.net/manual/en/language.operators.precedence.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception
https://www.php.net/exception

Exakat Documentation, Release 1

(continued from previous page)

}

// variables and caught exceptions are overlapping
$e = 1;
try {

methodThatMayRaiseException();
} (Exception $e) {

// here, $e has been changed to an exception.
}

?>

Suggestions

• Use a standard : only use $e (or else) to catch exceptions. Avoid using them for anything else, parameter, property
or local variable.

• Change the variable, and keep the caught exception

Specs

Short name Structures/CatchShadowsVariable
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features try-catch
ClearPHP no-catch-overwrite
Examples PhpIPAM, SuiteCrm
Available in Entreprise Edition, Exakat Cloud

14.2.120 Catch With Undefined Variable

Always initialize every variable before the try block, when they are used in a catch block. If the exception
is raised before the variable is defined, the catch block may have to handle an undefined variable, leading
to more chaos.

<?php
$a = 1;
try {

mayThrowAnException();
$b = 2;

} catch (\Exception $e) {
// $a is already defined, as it was done before the try block
// $b may not be defined, as it was initialized after the exception-throwing␣

→˓expression
(continues on next page)

14.2. List of Rules 545

https://github.com/dseguy/clearPHP/tree/master/rules/no-catch-overwrite.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception

Exakat Documentation, Release 1

(continued from previous page)

echo $a + $b;
}

?>

See also catch and Non-capturing exception catches in PHP 8.

Suggestions

• Always define the variable used in the catch clause, before the try block.

Specs

Short name Exceptions/CatchUndefinedVariable
Rulesets All, Analyze, Changed Behavior
Exakat since 2.1.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.121 Caught Exceptions

This rule collects the exceptions used in catch clause. Those are the caught exceptions.

Caught exceptions might be thrown from within the code, or from an outside library.

<?php

try {
foo();

} catch (MyException $e) {
fixException();

} catch (MyOtherException1|MyOtherException2) {
fixException();

} finally {
clean();

}

?>

546 Chapter 14. Rules

https://www.php.net/manual/en/language.exceptions.php#language.exceptions.catch
https://www.amitmerchant.com/non-capturing-exception-catches-php8/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Exceptions/CaughtExceptions
Rulesets All, Changed Behavior, Dump
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features catch
Available in Entreprise Edition, Exakat Cloud

14.2.122 Caught Expressions

This rule lists all the caught exceptions.

Exceptions may be caught by a code, while the same code never throw them.

<?php

// This analyzer reports MyException and Exception
try {

doSomething();
} catch (MyException $e) {

fixIt();
} catch (\Exception $e) {

fixIt();
}

?>

See also Exceptions.

Specs

Short name Php/TryCatchUsage
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features catch
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 547

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.exceptions.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.123 Caught Variable

Catch clauses require an exception and a variable name. Often, the variable name is the same, $e, as learnt
from the manual.

There seems to be a choice that is not enforced : one form is dominant, (> 90%) while the others are rare.

The analyzed code has less than 10% of one of the three : for consistency reasons, it is recommended to make them all
the same.

<?php

try {
// do Something()

}
catch (MyException1 $e) { $log->log($e->getMessage();}
catch (MyException2 $e) { $log->log($e->getMessage();}
catch (MyException3 $e) { $log->log($e->getMessage();}
catch (MyException4 $e) { $log->log($e->getMessage();}
catch (MyException5 $e) { $log->log($e->getMessage();}
catch (MyException6 $e) { $log->log($e->getMessage();}
catch (MyException7 $e) { $log->log($e->getMessage();}
catch (MyException8 $e) { $log->log($e->getMessage();}
catch (MyException9 $e) { $log->log($e->getMessage();}
catch (MyException10 $e) { $log->log($e->getMessage();}
catch (\RuntimeException $e) { $log->log($e->getMessage();}
catch (\Error $error) { $log->log($error->getMessage();}
catch (\Exception $exception) { $log->log($exception->getMessage();}
?>

Suggestions

• Make all caught constant consistent, and avoid using them for something else

Specs

Short name Exceptions/CatchE
Rulesets All, Changed Behavior, Preferences
Exakat since 1.7.6
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features exception
Available in Entreprise Edition, Exakat Cloud

548 Chapter 14. Rules

https://www.php.net/exception
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.124 Check After Null Safe Operator

Null-safe operator is ?->, which prevents fatal errors in case the object of the call is NULL. The execution
continues, though the result of the expression is now NULL too.

While it saves some checks in certain cases, the null-safe operator should be followed by a check on the returned value
to process any misfire of the method.

This analysis checks that the result of the expression is collected, and compared to null.

<?php

$result = $object?->foo();

if ($result === null) {
throw new ObjectException(The object could not call $foo\n);

}

?>

Suggestions

• Collect and check the result of the expression to null

• Remove the null-safe operator and check before calling the object’s method or property

Specs

Short name Classes/CheckAfterNullSafeOperator
Rulesets All, Analyze, Changed Behavior, Suggestions
Exakat since 2.6.4
PHP Version With PHP 8.1 and more recent
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features nullsafe-object-operator
Available in Entreprise Edition, Exakat Cloud

14.2.125 Check All Types

When checking for type, avoid using else. Mention explicitly all tested types, and raise an exception when
all available options have been exhausted : after all, this is when the code doesn’t know how to handle the
datatype.

PHP has a short list of scalar types : null, boolean, integer, real, strings, object, resource and array. When a variable is
not holding one the the type, then it may be of any other type.

Most of the time, when using a simple is_string() / else test, this is relying on the conception of the code. By construc-
tion, the arguments may be one of two types : array or string.

What happens often is that in case of failure in the code (database not working, another class not checking its results),
a third type is pushed to the structure, and it ends up breaking the execution.

14.2. List of Rules 549

https://www.php.net/manual/en/language.types.null.php
https://www.php.net/result
https://www.php.net/manual/en/language.types.null.php
https://www.php.net/result
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception
https://www.php.net/is_string

Exakat Documentation, Release 1

The safe way is to check the various types all the time, and use the default case (here, the else) to throw exception() or
test an assertion and handle the special case. Using is_callable(), is_iterable() with this structure is fine : when variable
is callable or not, while a variable is an integer or else.

Using a type test without else is also accepted here. This is a special treatment for this test, and all others are ignored.
This aspect may vary depending on situations and projects.

<?php

// hasty version
if (is_array($argument)) {

$out = $argument;
} else {

// Here, $argument is NOT an array. What if it is an object ? or a NULL ?
$out = array($argument);

}

// Safe type checking : do not assume that 'not an array' means that it is the other␣
→˓expected type.
if (is_array($argument)) {

$out = $argument;
} elseif (is_string($argument)) {

$out = array($argument);
} else {

assert(false, '$argument is not an array nor a string, as expected!');
}

?>

Suggestions

• Include a default case to handle all unknown situations

• Include and process explicit types as much as possible

Specs

Short name Structures/CheckAllTypes
Rulesets All, Analyze
Exakat since 0.10.6
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Medium
Examples Zend-Config, Vanilla
Available in Entreprise Edition, Exakat Cloud

550 Chapter 14. Rules

https://www.php.net/exception
https://www.php.net/is_callable
https://www.php.net/is_iterable
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.126 Check Crypto Key Length

Each cryptography algorithm requires a reasonable length. Make sure an up-to-date length is used.

This rule use the following recommendations :

• OPENSSL_KEYTYPE_RSA => 3072

• OPENSSL_KEYTYPE_DSA => 2048

• OPENSSL_KEYTYPE_DH => 2048

• OPENSSL_KEYTYPE_EC => 512

The values above are used with the openssl PHP extension.

<?php

// Extracted from the documentation

// Generates a new and strong key
$private_key = openssl_pkey_new(array(

"private_key_type" => OPENSSL_KEYTYPE_EC,
"private_key_bits" => 1024,

));

// Generates a new and weak key
$private_key = openssl_pkey_new(array(

"private_key_type" => OPENSSL_KEYTYPE_EC,
"private_key_bits" => 256,

));

?>

See also The Definitive 2019 Guide to Cryptographic Key Sizes and Algorithm Recommendations and Cryptographic
Key Length Recommendation.

Suggestions

• Lengthen the cryptographic key

Specs

Short name Security/CryptoKeyLength
Rulesets All, Security
Exakat since 2.1.1
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features cryptography, openssl
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 551

https://paragonie.com/blog/2019/03/definitive-2019-guide-cryptographic-key-sizes-and-algorithm-recommendations
https://www.keylength.com/
https://www.keylength.com/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.127 Check Division By Zero

Always check before dividing by a value. If that value is cast to 0, PHP might stop the processing with an
exception, or keep processing it with 0 as a result. Both will raise problems.

The best practise is to check the incoming value before attempting the division. On possible alternative is to catch the
DivisionByZeroError <https://www.php.net/manual/en/class.`divisionbyzeroerror.php>`_ exception, that PHP 8.0 and
more recent will raise.

<?php

// Check the value before usage
function foo($a = 1) {

if ($a !== 0) {
return 42 / $a;

} else {
// process an error

}
}

// Check the value after usage (worse than the above)
function foo($a = 1) {

try {
return 42 / $a;

} catch (DivisionByZero) {
// fix the situation now

}
}

// This might fails with a division by 0
function foo($a = 1) {

return 42 / $a;
}

?>

See also DivisionByZeroError.

Specs

Short name Structures/CheckDivision
Rulesets All, Analyze, Changed Behavior
Exakat since 2.3.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features exception, arithmeticerror
Related rule Could Use Try
Available in Entreprise Edition, Exakat Cloud

552 Chapter 14. Rules

https://www.php.net/exception
https://www.php.net/result
https://www.php.net/divisionbyzeroerror
https://www.php.net/exception
https://www.php.net/manual/fr/class.divisionbyzeroerror.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.128 Check JSON

Check errors whenever JSON is encoded or decoded.

In particular, NULL is a valid decoded JSON response. If you want to avoid mistaking NULL for an error, it is recom-
mended to call json_last_error.

<?php

$encoded = json_encode($incoming);
// Unless JSON must contains some non-null data, this mistakes NULL and error
if(json_last_error() != JSON_ERROR_NONE) {

die('Error when encoding JSON');
}

$decoded = json_decode($incoming);
// Unless JSON must contains some non-null data, this mistakes NULL and error
if($decoded === null) {

die('ERROR');
}

?>

See also Option to make json_encode and json_decode throw exceptions on errors and json_last_error.

Suggestions

• Always check after JSON operation : encoding or decoding.

• Add a call to json_last_error()

• Configure operations to throw an exception upon error (JSON_THROW_ON_ERROR), and catch it.

Specs

Short name Structures/CheckJson
Rulesets All, Analyze, CE, CI-checks
Exakat since 1.3.0
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features json
Examples Woocommerce
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 553

https://www.php.net/manual/en/language.types.null.php
https://www.php.net/error
https://ayesh.me/Upgrade-PHP-7.3#json-exceptions
https://www.php.net/json_last_error
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.129 Check On __Call Usage

When using the magic methods __call() and __staticcall(), make sure the method exists before calling it.

If the method doesn’t exists, then the same method will be called again, leading to the same failure. Finally, it will
crash PHP.

<?php

class safeCall {
function __class($name, $args) {

// unsafe call, no checks
if (method_exists($this, $name)) {

$this->$name(...$args);
}

}
}

class unsafeCall {
function __class($name, $args) {

// unsafe call, no checks
$this->$name(...$args);

}
}

?>

See also Method overloading and Magical PHP: __call.

Suggestions

• Add a call to method_exists() before using any method name

• Relay the call to another object that doesn’t handle __call() or __callStatic()

Specs

Short name Classes/CheckOnCallUsage
Rulesets All, Analyze, CE, CI-checks
Exakat since 1.7.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features magic-method
Available in Entreprise Edition, Community Edition, Exakat Cloud

554 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.overloading.php#object.call
https://www.garfieldtech.com/index.php/blog/magical-php-call
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.130 Checks Property Existence

This analysis reports checks property existence.

In PHP 8.2, non-specified properties are discouraged : they should always be defined in the class code. When this
guideline is applied, properties always exists, and a call to property_exists() is now useless.

Some situations are still legit : + When the class is stdClass, where no property is initially defined. This may be the
case of JSON data, or arrays cast to objects. + When the class uses magic methods, in particular __get(), __set() and
__isset(). In this analysis, isset() and property_exists() are both used to detect this checking behavior. property_exists()
is actually the only method to actually check the existence, since isset() will confuse non-existing properties and null.

While the behavior is deprecated in PHP 8.2, it is recommended to review older code and remove it. It will both ensure
forward compatibility and cleaner, faster local code.

<?php

class x {
private $a = 1;

function foo() {
$this->cache = $this->a + 1;

}

}

?>

Specs

Short name Classes/ChecksPropertyExistence
Rulesets All, CompatibilityPHP82
Exakat since 2.3.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features stdclass, property
Related rule Undefined Properties
Available in Entreprise Edition, Exakat Cloud

14.2.131 Child Class Removes Typehint

PHP 7.2 introduced the ability to remove a typehint when overloading a method. This is not valid code for
older versions.

<?php

class foo {
function foobar(foo $a) {}

}
(continues on next page)

14.2. List of Rules 555

https://www.php.net/property_exists
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.www.php.net/isset
https://www.php.net/property_exists
https://www.php.net/property_exists
https://www.www.php.net/isset
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

class bar extends foo {
function foobar($a) {}

}

?>

Specs

Short
name

Classes/ChildRemoveTypehint

Rulesets All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56, Compat-
ibilityPHP70, CompatibilityPHP71, Typechecks

Exakat
since

0.12.4

PHP
Version

With PHP 7.2 and more recent

Severity Major
Time To
Fix

Quick (30 mins)

Preci-
sion

Very high

Features typehint
Avail-
able in

Entreprise Edition, Exakat Cloud

14.2.132 Class Const With Array

This rule lists global and class constant that are defined with an array value. This feature was added in
PHP 5.6.

<?php

const MY_ARRAY = array();

class x {
const MY_OTHER_ARRAY = [1, 2];

}
?>

556 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Store the array in a variable

• Upgrade to PHP 7.0 or more recent

Specs

Short name Php/ClassConstWithArray
Rulesets All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55
Exakat since 0.8.4
PHP Version With PHP 5.5 and more recent
Severity Critical
Time To Fix Slow (1 hour)
Changed Behavior PHP 5.6 - More
Precision Very high
Features constant
Available in Entreprise Edition, Exakat Cloud

14.2.133 Class Could Be Final

Any class that has no extension should be final by default.

As stated by Matthias Noback : If a class is not marked final, it has at least one subclass.

Prevent your classes from being subclassed by making them final. Sometimes, classes are not meant or thought to
be derivable.

<?php

class x {} // This class is extended
class y extends x {} // This class is extended
class z extends y {} // This class is not extended

final class z2 extends y {} // This class is not extended

?>

See also Negative architecture, and assumptions about code and When to declare methods final.

Suggestions

• Make the class final

• Extends the class

14.2. List of Rules 557

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://matthiasnoback.nl/2018/08/negative-architecture-and-assumptions-about-code/
https://slamdunk.github.io/blog/when-to-declare-methods-final/

Exakat Documentation, Release 1

Specs

Short name Classes/CouldBeFinal
Rulesets All, Analyze, Class Review
Exakat since 1.4.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features final
Available in Entreprise Edition, Exakat Cloud

14.2.134 Class Could Be Readonly

When all properties are readonly, it is possible to set the option at the class. This feature was introduced
in PHP 8.2.

<?php

// This class could be readonly
class x {

private readonly A $p;
private readonly A $p2;

}

?>

See also PHP 8.2: readonly Classes.

Suggestions

• Remove readonly from the properties, and add it to the classes.

Specs

Short name Classes/CouldBeReadonly
Rulesets All, Class Review, Suggestions
Exakat since 2.5.1
PHP Version With PHP 8.2 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features readonly
Available in Entreprise Edition, Exakat Cloud

558 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://php.watch/versions/8.2/readonly-classes
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.135 Class Function Confusion

Avoid classes and functions bearing the same name.

When functions and classes bear the same name, calling them may be confusing. This may also lead to forgotten ‘new’
keyword.

<?php

class foo {}

function foo() {}

// Forgetting the 'new' operator is easy
$object = new foo();
$object = foo();

?>

Suggestions

• Use a naming convention to distinguish functions and classes

• Rename the class or the function (or both)

• Use an alias with a use expression

Specs

Short name Php/ClassFunctionConfusion
Rulesets All, Changed Behavior, Semantics
Exakat since 0.10.2
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features function, class
Available in Entreprise Edition, Exakat Cloud

14.2.136 Class Has Fluent Interface

Mark a class as such when it contains at least one fluent method. A fluent method is a method that returns
$this, for chaining.

<?php

class foo {
private $count = 0;

function a() {
++$this->count;

(continues on next page)

14.2. List of Rules 559

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.basic.php

Exakat Documentation, Release 1

(continued from previous page)

return $this;
}

function b() {
$this->count += 2;
return $this;

}

function c() {
return $this->count;

}
}

$bar = new foo();
print $bar->a()

->b()
->c();

// display 3 (1 + 2).

?>

See also Fluent interface are evil, The basics of Fluent interfaces in PHP and FluentInterface.

Specs

Short name Classes/HasFluentInterface
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Features fluent-interface
Available in Entreprise Edition, Exakat Cloud

14.2.137 Class Injection Count

Counts the number of arguments in the constructor. Variadic arguments are counted as one. The more
injections in a constructor, the harder it is to use it. Although, the threshold for difficulty is probably quite
high.

<?php

class x {
function __constructor(A $a, B, $b) {

}
}

(continues on next page)

560 Chapter 14. Rules

https://ocramius.github.io/blog/fluent-interfaces-are-evil/
https://tournasdimitrios1.wordpress.com/2011/04/11/the-basics-of-fluent-interfaces-in-php/
https://martinfowler.com/bliki/FluentInterface.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

?>

Specs

Short name Dump/ClassInjectionCount
Rulesets All, Changed Behavior, Dump
Exakat since 2.5.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.138 Class Invasion

Class invasion happens when an object access another object’s private methods or properties.

This is possible from the scope of the class itself. For example, an cloned object, or a parameter with the same type as
the current class.

Class invasion is a PHP feature. This applies to properties, constants and methods, static or not.

<?php

class x {
private $p = 1;

function foo(X $x) {
// This is the normal access to private properties.
$this->p = 3;
// This is class invasion, as $x is a distinct object.
$x->p = 2;

}
}

?>

14.2. List of Rules 561

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

Specs

Short name Classes/ClassInvasion
Rulesets All, Class Review
Exakat since 2.5.1
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features class-invasion
Available in Entreprise Edition, Exakat Cloud

14.2.139 Class Overreach

An object of class A may reach any private or protected properties, constants or methods in another object
of the same class. This is a PHP feature, though seldom known.

This feature is also called class invasion.

<?php

class A {
private $p = 1;

public function foo(A $a) {
return $a->p + 1;

}
}

echo (new A)->foo(new A);

?>

See also Visibility from other objects and spatie/invade.

Suggestions

• Use a getter to reach inside the other object private properties

Specs

Short name Classes/ClassOverreach
Rulesets All, Appinfo
Exakat since 2.2.2
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Medium
Features visibility, class-invasion
Available in Entreprise Edition, Exakat Cloud

562 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.visibility.php#language.oop5.visibility-other-objects
https://github.com/spatie/invade
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.140 Class Should Be Final By Ocramius

‘Make your classes always final, if they implement an interface, and no other public methods are defined’.

When a class should be final, as explained by Ocramius (Marco Pivetta).

<?php

interface i1 {
function i1() ;

}

// Class should final, as its public methods are in an interface
class finalClass implements i1 {

// public interface
function i1 () {}

// private method
private function a1 () {}

}

?>

See also Final classes by default, why? and When to declare classes final.

Specs

Short name Classes/FinalByOcramius
Rulesets All, Class Review
Exakat since 0.9.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features final
Available in Entreprise Edition, Exakat Cloud

14.2.141 Class Usage

List of classes in use in the code source.

<?php

// Class may be used in a use expression
use MyClass as MyAliasedClass;

// class may be aliased with class_alias
class_alias('MyOtherAliasedClass', 'MyClass');

// Class may be instanciated
$o = new MyClass();

(continues on next page)

14.2. List of Rules 563

https://matthiasnoback.nl/2018/09/final-classes-by-default-why/
http://ocramius.github.io/blog/when-to-declare-classes-final/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// Class may be used with instanceof
var_dump($o instanceof \MyClass);

// Class may be used in static calls
MyClass::aConstant;
echo MyClass::$aProperty;
echo MyClass::aMethod($o);

// Class may be extended
class MyOtherClass {

}

class MyClass extends MyOtherClass {
const aConstant = 1;

public static $aProperty = 2;

// also used as a typehint
public static function aMethod(MyClass $object) {

return __METHOD__;
}

}

?>

Specs

Short name Classes/ClassUsage
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features class
Available in Entreprise Edition, Exakat Cloud

14.2.142 Class Without Parent

Classes should not refer to parent when it is not extending another class.

In PHP 7.4, it is a Deprecated warning. In PHP 7.3, it was a Fatal error, when the code was eventually executed. In PHP
8.0, PHP detects this error at compile time, except for parent keyword in a closure <https://www.php.net/`closure>`_.

parent usage in trait is detected. It is only reported when the trait is used inside a class without parent, as the trait may
also be used in another class, which has a parent.

564 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/error
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/closure
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

<?php

class x {
function foo() {

parent::foo();
}

}
?>

Suggestions

• Update the class and make it extends another class

• Change the parent mention with a fully qualified name

• Remove the call to the parent altogether

Specs

Short name Classes/NoParent
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, Class Review
Exakat since 1.9.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Changed Behavior PHP 8.0 - More
Precision Very high
Features parent
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.143 Class, Interface, Enum Or Trait With Identical Names

The following names are used at the same time for classes, interfaces or traits. For example,

Even if they are in different namespaces, identical names makes classes easy to confuse. This is often solved by using
alias at import time : this leads to more confusion, as a class suddenly changes its name.

Internally, PHP use the same list for all classes, interfaces and traits. As such, it is not allowed to have both a trait and
a class with the same name.

In PHP 4, and PHP 5 before namespaces, it was not possible to have classes with the same name. They were simply
included after a check.

<?php
class a { /* some definitions */ }
interface a { /* some definitions */ }
trait a { /* some definitions */ }
enum a { /* some definitions */ } // PHP 8.1

?>

14.2. List of Rules 565

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Use distinct names for every class, trait and interface.

• Keep eponymous classes, traits and interfaces in distinct files, for definition but also for usage. When this hap-
pens, rename one of them.

Specs

Short name Classes/CitSameName
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features class
Examples shopware, NextCloud
Available in Entreprise Edition, Exakat Cloud

14.2.144 Class-typed References

Class-typee arguments have no need for references. Since they are representing an object, they are already
a reference.

In fact, adding the & on the argument definition may lead to error like Only variables should be passed by
reference.

This applies to the object type hint, but not the the others, such as int or bool.

<?php
// a class
class X {

public $a = 3;
}

// typehinted reference
//function foo(object &$x) works too
function foo(X &$x) {

$x->a = 1;

return $x;
}

// Send an object
$y = foo(new X);

// This prints 1;
print $y->a;

?>

See also Passing by reference and Objects and references.

566 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/manual/en/language.references.pass.php
https://www.php.net/manual/en/language.oop5.references.php

Exakat Documentation, Release 1

Suggestions

• Remove reference for typehinted arguments, unless the typehint is a scalar typehint.

Specs

Short name Functions/TypehintedReferences
Rulesets All, Analyze, CE, CI-checks
Exakat since 1.2.8
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features reference
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.145 Classes Mutually Extending Each Other

Those classes are extending each other, creating an extension loop. PHP will yield a fatal error at running
time, even if it is compiling the code.

<?php

// This code is lintable but won't run
class Foo extends Bar { }
class Bar extends Foo { }

// The loop may be quite large
class Foo extends Bar { }
class Bar extends Bar2 { }
class Bar2 extends Foo { }

?>

Specs

Short name Classes/MutualExtension
Rulesets All, Class Review, LintButWontExec
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features extends
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 567

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.146 Classes Names

List of all classes, as defined in the application.

<?php

// foo is in the list
class foo {}

// Anonymous classes are not in the list
$o = class { function foo(){} }

?>

See also class.

Specs

Short name Classes/Classnames
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features class
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.147 Clone Constant

Cloning constant is only possible since PHP 8.1. Until that version, constants could not be an object, and
as such, could not be cloned.

This is also valid with default values, however they are assigned to a variable, which falls back to the classic clone
usage.

Backward compatibility is OK, since PHP compile such code, and only checks at execution time that the constant is an
object.

<?php

// new is available in constant definition, since PHP 8.2
const A = new B();
$c = clone A;

?>

See also New in initializers.

568 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.basic.php#language.oop5.basic.class
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/releases/8.1/en.php#new_in_initializers

Exakat Documentation, Release 1

Specs

Short
name

Php/CloneConstant

Rule-
sets

All, Analyze, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56,
CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73, Compatibility-
PHP74, CompatibilityPHP80, LintButWontExec

Ex-
akat
since

2.4.7

PHP
Ver-
sion

All

Sever-
ity

Minor

Time
To
Fix

Quick (30 mins)

Pre-
ci-
sion

Very high

Fea-
tures

new, constant

Note This issue may lint but will not run
Avail-
able
in

Entreprise Edition, Exakat Cloud

14.2.148 Clone Usage

List of all clone situations.

<?php
$dateTime = new DateTime();
echo (clone $dateTime)->format('Y');

?>

See also Object cloning.

Specs

Short name Classes/CloningUsage
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features clone
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 569

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.cloning.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.149 Clone With Non-Object

The clone keyword must be used on variables, properties or results from a function or method call.

clone cannot be used with constants or literals. Cloning a non-object lint but won’t execute.

<?php

class x { }
$x = new x();

// Valid clone
$y = clone $x;

// Invalid clone
$y = clone x;

?>

See also Object cloning.

Suggestions

• Only clone containers (like variables, properties. . .)

• Add typehint to injected properties, so they are checked as objects.

Specs

Short name Classes/CloneWithNonObject
Rulesets All, Analyze, LintButWontExec
Exakat since 1.7.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features clone
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.150 Close Tags Consistency

PHP scripts may omit the final closing tag.

This is a convention, used to avoid the infamous ‘headers already sent’ error message, that appears when a script with
extra invisible spaces is included before actually emitting the headers.

The PHP manual recommends : “If a file is pure PHP code, it is preferable to omit the PHP closing tag at the end of
the file.”. (See PHP Tags):

570 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.cloning.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/manual/en/language.basic-syntax.phptags.php

Exakat Documentation, Release 1

.. code-block:: php

<?php

class foo {

}

Specs

Short name Php/CloseTagsConsistency
Rulesets All, Changed Behavior, Preferences
Exakat since 0.9.3
PHP Version All
Severity
Time To Fix
Precision Very high
Features close-tag
Available in Entreprise Edition, Exakat Cloud

14.2.151 Closing Tags

PHP manual recommends that script should be left open, without the final closing ?>. This way, one will
avoid the infamous bug 'Header already sent', associated with left-over spaces, that are lying after
this closing tag.

<?php

// some code

// no closing tag

See also PHP Closing Tag.

Suggestions

• Always leave the last closing tag out

Specs

Short name Php/CloseTags
Rulesets All, Coding conventions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features close-tag
ClearPHP leave-last-closing-out
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 571

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://codeigniter.com/userguide3/general/styleguide.html#php-closing-tag
https://github.com/dseguy/clearPHP/tree/master/rules/leave-last-closing-out.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.152 Closure Could Be A Callback

Closure <https://www.php.net/manual/en/class.`closure.php>`_ and arrow function may be simplified to a
callback. Callbacks are strings or arrays.

A simple closure <https://www.php.net/`closure>`_ that only returns arguments relayed to another function or method,
could be reduced to a simpler expression.

Closure <https://www.php.net/manual/en/class.`closure.php>`_ may be simplified with a string, for functioncall, with
an array for methodcalls and static methodcalls.

Performances : simplifying a closure <https://www.php.net/`closure>`_ tends to reduce the call time by 50%.

<?php

// Simple and faster call to strtoupper
$filtered = array_map('strtoupper', $array);

// Here the closure doesn't add any feature over strtoupper
$filtered = array_map(function ($x) { return strtoupper($x);}, $array);

// Methodcall example : no fix
$filtered = array_map(function ($x) { return $x->strtoupper() ;}, $array);

// Methodcall example : replace with array($y, 'strtoupper')
$filtered = array_map(function ($x) use ($y) { return $y->strtoupper($x) ;}, $array);

// Static methodcall example
$filtered = array_map(function ($x) { return $x::strtoupper() ;}, $array);

// Static methodcall example : replace with array('A', 'strtoupper')
$filtered = array_map(function ($x) { return A::strtoupper($x) ;}, $array);

?>

See also Closure class and Callbacks / Callables.

Suggestions

• Replace the closure by a string, with the name of the called function

• Replace the closure by an array, with the name of the called method and the object as first element

572 Chapter 14. Rules

https://www.php.net/closure
https://www.php.net/closure
https://www.php.net/closure
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/closure
https://www.php.net/closure
https://www.php.net/manual/en/language.types.callable.php

Exakat Documentation, Release 1

Specs

Short name Functions/Closure2String
Rulesets All, Changed Behavior, Performances, Rector, Suggestions
Exakat since 1.4.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features closure, callback
Examples Tine20, NextCloud
Available in Entreprise Edition, Exakat Cloud

14.2.153 Closure May Use $this

$this is automatically accessible to closures.

When closures were introduced in PHP, they couldn’t use the $this variable, making is cumbersome to access local prop-
erties when the closure <https://www.php.net/`closure>`_ was created within an object. This is not the case anymore
since PHP 5.4.

<?php

// Invalid code in PHP 5.4 and less
class Test
{

public function testing()
{

return function() {
var_dump($this);

};
}

}

$object = new Test;
$function = $object->testing();
$function();

?>

See also Anonymous functions.

14.2. List of Rules 573

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/closure
https://www.php.net/manual/en/functions.anonymous.php

Exakat Documentation, Release 1

Specs

Short name Php/ClosureThisSupport
Rulesets All, Changed Behavior, CompatibilityPHP53
Exakat since 0.8.4
PHP Version With PHP 5.4 and older
Severity Minor
Time To Fix Quick (30 mins)
Changed Behavior PHP 5.4 - More
Precision Very high
Features closure, $this
Available in Entreprise Edition, Exakat Cloud

14.2.154 Closures Glossary

List of all the closures in the code.

<?php

// A closure is also a unnamed function
$closure = function ($arg) { return 'A'.strtolower($arg); }

?>

See also The Closure Class.

Specs

Short name Functions/Closures
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features closure
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.155 Coalesce

Usage of coalesce operator.

Note that the coalesce operator is a special case of the ternary operator.

<?php

// Coalesce operator, since PHP 5.3
$a = $b ?: 'default value';

(continues on next page)

574 Chapter 14. Rules

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/class.closure.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// Equivalent to $a = $b ? $b : 'default value';

?>

See also Ternary Operator.

Specs

Short name Php/Coalesce
Rulesets All, Appinfo, CE, Changed Behavior, One Liners
Exakat since 0.8.4
PHP Version With PHP 5.3 and more recent
Severity
Time To Fix
Precision Very high
Features closure, $this
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.156 Coalesce And Concat

The concatenation operator . has precedence over the coalesce operator ??.

It is recommended to add parenthesis to make this expression explicit.

<?php

// Parenthesis are the right solution when in doubt
echo a . ($b ?? 'd') . $e;

// 'a' . $b is evaluated first, leading ot a useless ?? operator
'a' . $b ?? $c;

// 'd' . 'e' is evaluated first, leading to $b OR 'de'.
echo $b ?? 'd' . 'e';

?>

Suggestions

• Add parenthesis around ?? operator to avoid misbehavior

• Add parenthesis around the else condition to avoid misbehavior (?? ($a . $b))

• Do not use dot and ?? together in the same expression

14.2. List of Rules 575

https://www.php.net/manual/en/language.operators.comparison.php#language.operators.comparison.ternary
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Structures/CoalesceAndConcat
Rulesets All, Analyze, CE, CI-checks
Exakat since 1.9.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features coalesce, concat, precedence, parenthesis
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.157 Coalesce And Ternary Operators Order

The ternary operator and the null-coalesce operator cannot be used in any order. The ternary operator is
wider, so ot should be used last.

In particular, the ternary operator works on truthy values, and NULL is a falsy one. So, NULL might be captured by
the ternary operator, and the following coalesce operator has no chance to process it.

On the other hand, the coalesce operator only process NULL, and will leave the false (or any other falsy value) to
process to the ternary operator.

<?php

// Good order : NULL is processed first, otherwise, false will be processed.
$b = $a ?? 'B' ?: 'C';

// Wrong order : this will never use the ??
$b = $a ?: 'C' ?? 'B';

?>

Suggestions

• Use the good order of operator : most specific first, then less specific.

Specs

Short name Structures/CoalesceNullCoalesce
Rulesets All, Analyze, Changed Behavior
Exakat since 2.5.0
PHP Version With PHP 7.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features ternary, null, coalesce
Available in Entreprise Edition, Exakat Cloud

576 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.types.null.php
https://www.php.net/manual/en/language.types.null.php
https://www.php.net/manual/en/language.types.null.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.158 Coalesce Equal

Usage of coalesce assignment operator. The operator is available in PHP since PHP 7.4.

<?php

// Coalesce operator, since PHP 5.3
$a ??= 'default value';

// Equivalent to the line above
$a = $a ?? 'default value';

?>

See also Ternary Operator.

Suggestions

• Use the short assignment syntax

Specs

Short
name

Php/CoalesceEqual

Rule-
sets

All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compatibili-
tyPHP56, CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73

Ex-
akat
since

2.0.4

PHP
Ver-
sion

With PHP 7.4 and more recent

Sever-
ity

Minor

Time
To Fix

Quick (30 mins)

Preci-
sion

Very high

Fea-
tures

coalesce, short-syntax

Avail-
able in

Entreprise Edition, Exakat Cloud

14.2. List of Rules 577

https://www.php.net/manual/en/language.operators.comparison.php#language.operators.comparison.ternary
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.159 Codeigniter usage

This analysis reports usage of the Codeigniter 4 framework.

Note : Code igniter 3 and older are not reported.

<?php

// A code igniter controller
class Blog extends \App\Controllers\Home {

public function index()
{

echo 'Hello World!';
}

}

?>

See also Codeigniter.

Specs

Short name Vendors/Codeigniter
Rulesets All, Appinfo, CE
Exakat since 0.11.8
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features framework
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.160 Collect Atom Counts

Collects the list of each atom detected in the code by the engine, and the number of occurrences. This
gives a good overview of the PHP features in use by that source code.

Specs

Short name Dump/CollectAtomCounts
Rulesets All, CE, Dump
Exakat since 2.1.8
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

578 Chapter 14. Rules

https://codeigniter.com/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/engine
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.161 Collect Block Size

Collect block size for instructions such as for, foreach, while, do. . .while, ifthen.

This is a starting point for reviewing large blocks of code and extract methods.

<?php

foreach($array as $key => $value) {
// This is a one line block for the foreach
doSomething();

}

if($a === $b) {
$a++;
// This is a two lines block for the ifthen
doSomething($a, $b);

}

?>

Specs

Short name Dump/CollectBlockSize
Rulesets All, Dump
Exakat since 2.2.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features inclusion, ifthen, foreach, while, dowhile
Available in Entreprise Edition, Exakat Cloud

14.2.162 Collect Calls

Collects calls to methods, and functions, and mentions the calling method or function.

The code above produces a link : foo => goo.

For methods, the results depends on type detection. Interface types might also limit this analysis.

Closures and arrow functions are omitted, so far.

<?php

function foo() {
goo();

}
?>

14.2. List of Rules 579

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Dump/CollectCalls
Rulesets All, Changed Behavior, Dump
Exakat since 2.5.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Available in Entreprise Edition, Exakat Cloud

14.2.163 Collect Catch Calls

This analysis collects all catch command usage, along with the exception caught and the calling method.

<?php

function foo() {
try {

// more code
} catch (Exception $e) {

}
}

?>

See also Catch.

Specs

Short name Dump/CollectCatch
Rulesets All, Changed Behavior, Dump
Exakat since 2.5.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features catch, try
Available in Entreprise Edition, Exakat Cloud

580 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception
https://www.php.net/manual/en/language.exceptions.php#language.exceptions.catch
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.164 Collect Class Children Count

Count the number of class children for a class. The more children a class has, the harder it is to update it,
as it might impact more other classes.

<?php

// 2 children
class a {}

// 1 children
class b extends a {}

// no children
class c extends b {}

// no children
class d extends a {}
?>

Specs

Short name Dump/CollectClassChildren
Rulesets All, CE, Changed Behavior, Dump
Exakat since 2.0.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features inclusion
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.165 Collect Class Constant Counts

This analysis collects the number of class constants per class or interface.

The count applies to classes, anonymous classes and interfaces. They are considered distinct one from another.

<?php

class foo {
// 3 constant
const A =1, B =2;

}

interface bar {
// 3 properties
const A=1, B=2, C=3;

}

?>

14.2. List of Rules 581

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Dump/CollectClassConstantCounts
Rulesets All, CE, Dump
Exakat since 2.1.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.166 Collect Class Depth

This rule count the number of level of extends in classes. Each level is a depth level: the last child has that
number of direct parent, which are dependencies.

<?php

class a {}

class b extends a {}

class c extends b {}

class d extends a {}
?>

Specs

Short name Dump/CollectClassDepth
Rulesets All, CE, Changed Behavior, Dump
Exakat since 2.0.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features inclusion
Available in Entreprise Edition, Community Edition, Exakat Cloud

582 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.167 Collect Class Interface Counts

Collect the number of interfaces implemented per class. A class with more interfaces includes has more
responsabilities.

<?php

// This class implements 3 interfaces
class x implements i, j, k {

// Some code
}

?>

Specs

Short name Dump/CollectClassInterfaceCounts
Rulesets All, CE, Changed Behavior, Dump
Exakat since 2.0.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features inclusion
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.168 Collect Class Traits Counts

This rule counts the number of trait used in a class. The direct traits are counted, not the traits of the traits.

<?php

// Use no traits
class x {}

// Use one trait
class y {

use TraitT;
}

?>

14.2. List of Rules 583

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Dump/CollectClassTraitsCounts
Rulesets All, CE, Changed Behavior, Dump
Exakat since 2.1.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features trait
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.169 Collect Classes Dependencies

This rule collects class dependencies. Each call to one or the other resource put forward by a class creates
a link between two points in the code.

Class dependencies are based on typehint, calls (static or normal), instanceof, catch, attributes, extends.

The result is a graph of dependencies : some classes depends on others, and vice-versa.

Specs

Short name Dump/CollectClassesDependencies
Rulesets All, CE, Classdependencies, Dump
Exakat since 2.1.8
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.170 Collect Compared Literals

This collects the different literals (null, integers, floats, strings) that are used in comparisons.

Comparisons include all the comparison operators : <, >, <=, >=, !=, <>, ==.

This analysis also covers switch(), array_keys() and in_array().

Strict searches are omitted. So, ===, !==, match(), in_array() and array_keys() with 3rd parameter are omitted.

Some comparisons are not covered yet : sort().

<?php

// Collects '>' and 3
if ($x > 3) {

// doSomething()
}
?>

584 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.operators.type.php
https://www.php.net/result
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.switch.php
https://www.php.net/array_keys
https://www.php.net/in_array
https://www.php.net/manual/en/control-structures.match.php
https://www.php.net/in_array
https://www.php.net/array_keys
https://www.php.net/sort

Exakat Documentation, Release 1

Specs

Short name Dump/DumpComparedLiterals
Rulesets All, Dump
Exakat since 2.5.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.171 Collect Definitions Statistics

Collect counts of various structures, such a static constants, static method calls, static properties, method
calls and properties.

Specs

Short name Dump/CollectDefinitionsStats
Rulesets All, CE, Dump
Exakat since 2.1.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.172 Collect Dependency Extension

This analysis lists the interfaces and classes that are not defined in the current code, yet extended.

This yields a list of external dependencies. It is useful for anyone who would like to update those root classes and
interfaces.

<?php

class MyClass implements \Composer\EventDispatcher\EventSubscriberInterface {
//..

}
?>

14.2. List of Rules 585

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Dump/CollectDependencyExtension
Rulesets All, Changed Behavior, Dump
Exakat since 2.3.5
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features interface
Available in Entreprise Edition, Exakat Cloud

14.2.173 Collect Files Dependencies

Collect all dependencies between files, based on definitions and usage.

For example, file A.php, which defines de class A, is a dependence to a file B.php, which makes a call to a method from
A, or use A as a typehint, etc..

Specs

Short name Dump/CollectFilesDependencies
Rulesets All, CE, Dump
Exakat since 2.1.8
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.174 Collect Global Variables

This rule collects the names of the global variables. The global variables are collected from $GLOBALS
usage, global keyword usage and variables in the global space.

<?php

global $x;

$GLOBALS['y'] = 3;

?>

586 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Dump/CollectGlobalVariables
Rulesets All, CE, Dump
Exakat since 2.1.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features global
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.175 Collect Graph Triplets

Collects the triplets (origin, link, destination) in the graph.

The goal is to provide visibility on the type of used relationship in the code.

Specs

Short name Dump/CollectGraphTriplets
Rulesets All, Changed Behavior, Dump
Exakat since 2.6.1
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.176 Collect Literals

Collects all literals in the application. Strings, integer, float are collected. Booleans, null and arrays are
not.

<?php

$a = 1;

// The array is not collected, but the C and 4 are.
$b = ['C' => 4];
?>

14.2. List of Rules 587

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Dump/CollectLiterals
Rulesets All, CE, Dump
Exakat since 1.9.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.177 Collect Local Variable Counts

This analysis collects the number of local variables used in a method or a function.

The count applies to functions, methods, closures and arrow functions.

Arguments and global variables are not counted. Static variables are.

<?php

function foo($arg) {
global $w;

// This is a local variable
$x = rand(1, 2);

return $x + $arg + $w;
}

?>

Specs

Short name Dump/CollectLocalVariableCounts
Rulesets All, CE, Changed Behavior, Dump
Exakat since 2.1.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features inclusion
Available in Entreprise Edition, Community Edition, Exakat Cloud

588 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.178 Collect Mbstring Encodings

This analysis collects the encoding names, used by ext/mb functions.

<?php

mb_stotolower('PHP', 'iso-8859-1');

mb_stotolower('PHP', 'iso-8859-1');

?>

Specs

Short name Dump/CollectMbstringEncodings
Rulesets All, CE, Dump
Exakat since 1.9.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features inclusion
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.179 Collect Method Counts

This analysis collects the number of methods per class, trait or interface.

The count applies to classes, anonymous classes, traits and interfaces. They are considered distinct one from another.

<?php

class foo {
// 2 methods
function __construct() {}
function foo() {}

}

interface bar {
// 1 method
function a() ;

}

class barbar {
// 3 methods
function __construct() {}
function foo() {}
function a() {}

}

?>

14.2. List of Rules 589

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Dump/CollectMethodCounts
Rulesets All, CE, Changed Behavior, Dump
Exakat since 2.1.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features inclusion
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.180 Collect Methods Throwing Exceptions

This is a list of all the methods and functions that throw exception.

This rule reports explicit throw’s, and doesn’t list exceptions passing through : for example, when the exception is
thrown in a sub-call, but not caught yet.

<?php

function foo($a) {
if ($a % 2) {

throw new Exception('This is not an even number');
}

}

?>

Specs

Short name Dump/CollectMethodsThrowingExceptions
Rulesets All, Dump
Exakat since 2.5.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Available in Entreprise Edition, Exakat Cloud

590 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception
https://www.php.net/exception
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.181 Collect Native Calls Per Expressions

This rule collects the number of PHP native call per expression. The more calls in an expression, the more
complex the code.

<?php

// 2 calls to PHP native functions in the same expression
$a = hexdec($a) + hexdec($b);

?>

Specs

Short name Dump/CollectNativeCallsPerExpressions
Rulesets All, CE, Changed Behavior, Dump
Exakat since 2.1.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.182 Collect Parameter Counts

This analysis collects the number of parameter per method.

The count applies to functions, methods, closures and arrow functions.

<?php

// parameter count on function : 1
function foo($a) { }

// parameter count on closure : 2
function ($b, $c = 2) {}

// parameter count on method : 0 (none)
class x {

function moo() { }
}
?>

14.2. List of Rules 591

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Dump/CollectParameterCounts
Rulesets All, CE, Changed Behavior, Dump
Exakat since 1.9.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features inclusion
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.183 Collect Parameter Names

This analysis collects the names of all parameters. It also counts the number of occurrences of each name.

The names are collected from functions, methods, closures and arrow functions. Compulsory and optional parameters
are all processed.

<?php

// parameter $a
function foo($a) { }

// parameter $b, $c
function ($b, $c = 2) {}

// parameters in interfaces are counted too.
// Here, $a will be counted with the one above.
interfaces x {

function moo($a);
}
?>

Specs

Short name Dump/CollectParameterNames
Rulesets All, CE, Dump
Exakat since 2.1.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features inclusion
Available in Entreprise Edition, Community Edition, Exakat Cloud

592 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.184 Collect Php Structures

Collect Php Structures. Constants, functions, classes, traits and interfaces.

Specs

Short name Dump/CollectPhpStructures
Rulesets All, CE, Dump
Exakat since 2.1.8
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.185 Collect Property Counts

This analysis collects the number of properties per class or trait.

The count applies to classes, anonymous classes and traits. They are considered distinct one from another.

Properties may be static or not. Visibility, default values and typehints are omitted.

<?php

class foo {
// 3 properties
private $p1, $p2, $p3;

}

trait foo {
// 3 properties
protected $p1;
public $p2 = 1, $p3;

}

?>

Specs

Short name Dump/CollectPropertyCounts
Rulesets All, CE, Changed Behavior, Dump
Exakat since 2.1.2
PHP Version All
Severity
Time To Fix
Precision Very high
Features property
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 593

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.186 Collect Property Usage

Collect the level of usage of a property. A property is used in distinct methods. The level of usage is
the ratio between the number of methods in which the property is used, divided by the number of total
methods.

In the example below, $p is used once. $q is used in two methods, while being used three times in total.

The level of usage of $p is now 1 / 2 = 0.5; The level of usage of $q is now 2 / 2 = 1.

<?php

class x {
private $p, $q;

function foo() {
$this->p = 1;
$this->q = 1;

}

function goo() {
$this->q = 2;
$this->q = 3;

}
}

?>

Specs

Short name Dump/CollectPropertyUsage
Rulesets All, Changed Behavior, Dump
Exakat since 2.5.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

594 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.187 Collect Readability

Measure readability for methods, functions and closures, then collect them.

Specs

Short name Dump/CollectReadability
Rulesets All, CE, Changed Behavior, Dump
Exakat since 2.1.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features readability
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.188 Collect SetLocale

This rule collects the second argument to all the calls to setlocale(). This gives an overview of the which
special locales are used in the code.

<?php

setlocale(LC_MONEY, 'nl_nl');

?>

Specs

Short name Dump/CollectSetLocale
Rulesets All, Changed Behavior, Dump
Exakat since 2.5.1
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.189 Collect Static Class Changes

Collects changes to constants, methods and properties, within a class hierarchy. It reports changes in
visibility, type and values for constants; visibility, type and values for properties.

<?php

class x {
protected $property = 1;

(continues on next page)

14.2. List of Rules 595

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/setlocale
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

protected function method() {}
}

class y extends x {
// $property is changed
protected $property = 2;

// method is not changed
protected function method() {}

}

?>

Specs

Short name Dump/CollectClassChanges
Rulesets All, CE, Changed Behavior, Dump
Exakat since 2.1.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.190 Collect Structures

This rule collects all defined structures in the source code, with their details.

• Classes

• Enums

• Traits

• Interfaces

• Functions

• Constants

<?php

const X = 1;

class Y {
private function foo() {}

}

?>

596 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Dump/CollectStructures
Rulesets All, Changed Behavior, Dump
Exakat since 2.5.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.191 Collect Stub Structures

Collect all called structures that are marked as stubs. Functions, constants, interfaces, enums, traits and
classes.

Specs

Short name Dump/CollectStubStructures
Rulesets All, Dump
Exakat since 2.4.1
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.192 Collect Throw Calls

This rule collects all throw command usage, along with the exception thrown and the calling method.

<?php

function foo() {
throw Exception();

}

?>

14.2. List of Rules 597

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception

Exakat Documentation, Release 1

Specs

Short name Dump/CollectThrow
Rulesets All, Dump
Exakat since 2.5.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.193 Collect Use Counts

This rule counts the number of use` expression in a file. use expressions import external classes, inter-
faces, enums, constant, functions and traits.

A high number of imports may signal a class that is doing to much.

<?php

// This count 4 uses
use A as B;
use F\C, F\D, F\E;

?>

Specs

Short name Dump/CollectUseCounts
Rulesets All, CE, Changed Behavior, Dump
Exakat since 2.1.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features use
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.194 Collect Vendor Structures

Collect the structures (constant, function, classes, interfaces, traits, enums, . . .) that are defined as stubs
in the configuration.

Name De-
fault

Type Description

pdf-
fList

[] json List of vendors, their version and related PDFF. {‘ven-
dor’:[‘wordpress.5.9.pdff’,’wordpress.5.8.pdff’]}

598 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/functions.arguments.php#functions.variable-arg-list

Exakat Documentation, Release 1

Specs

Short name Dump/CollectVendorStructures
Rulesets All, Dump
Exakat since 2.4.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.195 Collects Names

Collects the names used in the code. Names are extracted from namespaces, classes, interfaces, traits,
enumerations, variables (parameter and local variable), properties, constants, methods, functions, use ex-
pression (with as).

Variables names are trimmed of their $ sign. Namespaces are kept as a whole. Each name has the type from the code.

The following code provides 3 values ; parameter, foo and local.

<?php

function foo($parameter) {
$local = $parameter;

}

?>

Specs

Short name Dump/CollectsNames
Rulesets All, Dump
Exakat since 2.5.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 599

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.196 Collects Variables

This rule collects all variables from the code. Their type is mentionned, as variable, object or array,
depending on their usage.

<?php

// variable : array
$array[1] = 2;

// variable : variable
$value = 3;

// variable : object
$object->property;

?>

Specs

Short name Dump/CollectVariables
Rulesets All, CE, Dump
Exakat since 2.1.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features variable
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.197 Combined Calls

This collects all the combined function or method calls. Those are methods that are called in succession.

<?php

$a = ucfirst(strtolower($name));

?>

600 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Dump/CombinedCalls
Rulesets All, Changed Behavior, Dump
Exakat since 2.6.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.198 Common Alternatives

In the following conditional structures, expressions were found that are common to both ‘then’ and ‘else’.
It may be interesting, though not always possible, to put them both out of the conditional, and reduce line
count.

may be rewritten in :

<?php
if ($c == 5) {

$b = strtolower($b[2]);
$a++;

} else {
$b = strtolower($b[2]);
$b++;

}
?>

Suggestions

• Collect common expressions, and move them before of after the if/then expression.

• Move a prefix and suffixes to a third-party method

Specs

Short name Structures/CommonAlternatives
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Examples Dolibarr, NextCloud
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 601

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.199 Compare Hash

When comparing hash values, it is important to use the strict comparison : hash_equals(), === or !==.

In a number of situations, the hash value will start with 0e, and PHP will understand that the comparison involves
integers : it will then convert the strings into numbers, and it may end up converting them to 0.

Here is an example : You may also use password_hash() and password_verify() : they work together without integer
conversion problems, and they can’t be confused with a number.

<?php

// The two following passwords hashes matches, while they are not the same.
$hashed_password = 0e462097431906509000000000000;
if (hash('md5','240610708',false) == $hashed_password) {
print 'Matched.'.PHP_EOL;

}

// hash returns a string, that is mistaken with 0 by PHP
// The strength of the hashing algorithm is not a problem
if (hash('ripemd160','20583002034',false) == '0') {
print 'Matched.'.PHP_EOL;

}

if (hash('md5','240610708',false) !== $hashed_password) {
print 'NOT Matched.'.PHP_EOL;

}

// Display true
var_dump(md5('240610708') == md5('QNKCDZO'));

?>

See also Magic Hashes , What is the best way to compare hashed strings? (PHP) and md5(‘240610708’) ==
md5(‘QNKCDZO’).

Suggestions

• Use dedicated functions for hash comparisons

• Use identity operators (===), and not equality operators (==) to compare hashes

• Compare hashes in the database (or external system), where such confusion is not possible

602 Chapter 14. Rules

https://www.php.net/hash_equals
https://www.php.net/password_hash
https://www.php.net/password_verify
https://blog.whitehatsec.com/magic-hashes/
https://stackoverflow.com/questions/5211132/what-is-the-best-way-to-compare-hashed-strings-php/23959696#23959696
https://news.ycombinator.com/item?id=9484757
https://news.ycombinator.com/item?id=9484757

Exakat Documentation, Release 1

Specs

Short name Security/CompareHash
Rulesets All, Security
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features cryptography, hash
ClearPHP strict-comparisons
Examples Traq, LiveZilla
Available in Entreprise Edition, Exakat Cloud

14.2.200 Compared But Not Assigned Strings

Those strings are compared to variables in the code, but those values are never assigned.

<?php

// some assigned strings in the code
$a = 'b';

// some compared strings in the code
// Depending on the origin of $b, is this possible?
if ($b === 'c') {

}

?>

Specs

Short name Structures/ComparedButNotAssignedStrings
Rulesets All
Exakat since 1.3.2
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 603

https://github.com/dseguy/clearPHP/tree/master/rules/strict-comparisons.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.201 Compared Comparison

Usually, comparison are sufficient, and it is rare to have to compare the result of comparison. Check if this
two-stage comparison is really needed.

<?php

if ($a === strpos($string, $needle) > 2) {}

// the expression above apply precedence :
// it is equivalent to :
if (($a === strpos($string, $needle)) > 2) {}

?>

See also Operators Precedence.

Specs

Short name Structures/ComparedComparison
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features comparison
Available in Entreprise Edition, Exakat Cloud

14.2.202 Comparison Is Always The Same

Based on the incoming type of arguments, the comparison always yields the same value. The whole
condition might be useless.

<?php

function foo(array $a) {
// This will always fail
if ($a === 1) {

} elseif (is_int($a)) {

}

// This will always succeed
if ($a !== null) {

} elseif (is_null($a)) {

}
(continues on next page)

604 Chapter 14. Rules

https://www.php.net/result
https://www.php.net/manual/en/language.operators.precedence.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

}

?>

Suggestions

• Remove the constant condition and its corresponding blocks

• Make the constant condition variable

Specs

Short name Structures/AlwaysFalse
Rulesets All, Analyze, Changed Behavior
Exakat since 1.9.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features comparison
Available in Entreprise Edition, Exakat Cloud

14.2.203 Comparison On Different Types

This rule reports comparisons and spaceship operator that are used with distinct types. When the types
are distinct, PHP apply silent type juggling, and it may result in unexpected results.

<?php

1 == 'a';

?>

Suggestions

• Ensure both operands are using the same type.

14.2. List of Rules 605

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/result

Exakat Documentation, Release 1

Specs

Short name Php/ComparisonOnDifferentTypes
Rulesets All, Changed Behavior, Dump
Exakat since 2.5.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Available in Entreprise Edition, Exakat Cloud

14.2.204 Comparisons Orientation

Maths has two comparisons styles : > or <. Both may include equality : <= and >=.

The analyzed code has less than 10% of one of them : for consistency reasons, it is recommended to make them all the
same.

It is recommended to always use the same comparison style.

<?php

// Always compare in the same direction
if ($a > $c) {

} elseif ($c > $b) {

} else {
// equality case

}

// Alterning comparison style lead to harder to read code
if ($b > 3) {

} elseif ($b < 3) {

}

?>

See also Comparison Operators.

606 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.operators.comparison.php

Exakat Documentation, Release 1

Specs

Short name Structures/GtOrLtFavorite
Rulesets All, Changed Behavior, Preferences
Exakat since 1.3.2
PHP Version All
Severity
Time To Fix
Precision High
Features comparison
Available in Entreprise Edition, Exakat Cloud

14.2.205 Complex Dynamic Names

Avoid using expressions as names for variables or methods.

There are no place for checks or flow control, leading to any rogue value to be used as is. Besides, the expression is
often overlooked, and not expected there : this makes the code less readable.

It is recommended to build the name in a separate variable, apply the usual checks for existence and validity, and then
use the name. This analysis only accept simple containers, such as variables, properties.

<?php

$a = new foo();

// Code is more readable
$name = strolower($string);
if (!property_exists($a, $name)) {

throw new missingPropertyexception($name);
}
echo $a->$name;

// This is not check
echo $a->{strtolower($string)};

?>

See also Dynamically Access PHP Object Properties with $this.

Suggestions

• Extract the expression from the variable syntax, and make it a separate variable.

14.2. List of Rules 607

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://drupalize.me/blog/201508/dynamically-access-php-object-properties

Exakat Documentation, Release 1

Specs

Short name Variables/ComplexDynamicNames
Rulesets All, Suggestions
Exakat since 1.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features dynamic-variable
Available in Entreprise Edition, Exakat Cloud

14.2.206 Composer Usage

Mark the usage of composer, mostly by having a composer.json file.

See also Composer.

Specs

Short name Composer/UseComposer
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features composer
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.207 Composer’s autoload

Report if this code is using the autoload from Composer.

Specs

Short name Composer/Autoload
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features autoload, composer
Available in Entreprise Edition, Community Edition, Exakat Cloud

608 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://getcomposer.org/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.208 Concat And Addition

Precedence between addition and concatenation has changed. In PHP 7.4, addition has precedence, and
before, addition and concatenation had the same precedence.

From the RFC : Currently the precedence of '.', '+' and '-' operators are equal. Any
combination of these operators are simply evaluated left-to-right.

This is counter-intuitive though: you rarely want to add or subtract concatenated strings which in general are not
numbers. However, given PHP’s capability of seamlessly converting an integer to a string, concatenation of these
values is desired.`` This analysis reports any addition and concatenation that are mixed, without parenthesis. Addition
also means substraction here, aka using + or -.

The same applies to bitshift operations, << and >>. There is no RFC for this change.

<?php
// Extracted from the RFC
echo "sum: " . $a + $b;

// current behavior: evaluated left-to-right
echo ("sum: " . $a) + $b;

// desired behavior: addition and subtraction have a higher precendence
echo "sum :" . ($a + $b);

?>

See also Change the precedence of the concatenation operator.

Suggestions

• Add parenthesis around the addition to ensure its expected priority

• Move the addition outside the concatenation

14.2. List of Rules 609

https://wiki.php.net/rfc/concatenation_precedence

Exakat Documentation, Release 1

Specs

Short
name

Php/ConcatAndAddition

Rule-
sets

All, Analyze, CE, CI-checks, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, Compat-
ibilityPHP55, CompatibilityPHP56, CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72,
CompatibilityPHP73, CompatibilityPHP74, CompatibilityPHP80, Top10

Exakat
since

1.8.0

PHP
Ver-
sion

All

Sever-
ity

Minor

Time
To Fix

Quick (30 mins)

Changed
Be-
havior

PHP 8.0 - More

Preci-
sion

Very high

Fea-
tures

addition, concatenation

Avail-
able in

Entreprise Edition, Community Edition, Exakat Cloud

14.2.209 Concat Empty String

Using a concatenation to make a value a string should be replaced with a type cast.

Type cast to a string is done with (string) operator. There is also the function strval(), although it is less recom-
mended.

<?php

$a = 3;

// explicite way to cast a value
$b = (string) $a; // $b is a string with the content 3

// Wrong way to cast a value
$c = $a . ''; // $c is a string with the content 3
$c = '' . $a; // $c is a string with the content 3
$a .= ''; // $a is a string with the content 3

// Wrong way to cast a value
$c = $a . '' . $b; // This is not reported. The empty string is useless, but not meant␣
→˓to type cast

?>

See also Type Casting and PHP Type Casting.

610 Chapter 14. Rules

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/strval
https://php.net/manual/en/language.types.type-juggling.php#language.types.typecasting
https://developer.hyvor.com/tutorials/php/type-casting

Exakat Documentation, Release 1

Suggestions

• Avoid concatenating with empty strings

• Use (string) operator to cast to string

• Remove any concatenated empty string

Specs

Short name Structures/ConcatEmpty
Rulesets All, Analyze
Exakat since 1.8.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features string
Available in Entreprise Edition, Exakat Cloud

14.2.210 Concatenation Interpolation Consistence

Concatenations are done with the . operator or by interpolation inside a string.

Interpolation is a clean way to write concatenation, though it gets messy with long dereferences or with constants.
Concatenations are longer to write.

The analyzed code has less than 10% of one of them : for consistency reasons, it is recommended to make them all the
same.

<?php

// be consistent
$a = "$b $c";
$d = "$b $e";
$e = "$b $e";
$d = "$b $f";
$f = "$b $z";
$h = "$b $e";
$y = "$b $e";
$d = "$b $x";
$j = "$b $c";
$d = "$b $g";
$d = "$b $h";

// Be consistent, always use the same syntax
$z = $w.' '.$e;

?>

14.2. List of Rules 611

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Structures/ConcatenationInterpolationFavorite
Rulesets All, Preferences
Exakat since 0.11.6
PHP Version All
Severity
Time To Fix
Precision Very high
Features concatenation
Available in Entreprise Edition, Exakat Cloud

14.2.211 Concrete5 usage

This analysis reports usage of the Concrete 5 framework.

<?php
namespace Application\Controller\PageType;

use Concrete\Core\Page\Controller\PageTypeController;

class BlogEntry extends PageTypeController
{

public function view()
{
}

}
?>

See also Concrete 5.

Specs

Short name Vendors/Concrete5
Rulesets All, Appinfo, CE
Exakat since 1.9.9
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features framework
Available in Entreprise Edition, Community Edition, Exakat Cloud

612 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.concrete5.org/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.212 Conditional Structures

Structures that are defined, but only executed conditionally.

It is possible to create conditioned functions, classes, interfaces, traits and enumerations. Constants have to be defined
with define() and can’t use the const keyword.

Classes elements, such as methods, can’t be conditional.

<?php

if (!function_exists('array_column')) {
function array_column($a) {

// some PHP
}

}

if (!class_exists('foo')) {
class foo {

}
}

?>

Suggestions

• Use different names, and apply autoloader.

Specs

Short name Structures/ConditionalStructures
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features conditional-structure
Available in Entreprise Edition, Exakat Cloud

14.2.213 Conditioned Constants

This rule indicates when a constant is defined if a condition is met. Several definitions of a global constant
are possible in the code: using conditions, it is possible to have only one defined during execution.

<?php

if (time() > 1519629617) {
define('MY_CONST', false);

(continues on next page)

14.2. List of Rules 613

https://www.php.net/define
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

} else {
define('MY_CONST', time() - 1519629617);

}

?>

Specs

Short name Constants/ConditionedConstants
Rulesets All, Appinfo
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features conditioned
Available in Entreprise Edition, Exakat Cloud

14.2.214 Conditioned Function

Indicates if a function is defined only if a condition is met.

<?php

// This is a conditioned function.
// it only exists if the PHP binary doesn't have it already.
if (!function_exists('join')) {

function join($glue, $array) {
return implode($glue, $array);

}

}
?>

Specs

Short name Functions/ConditionedFunctions
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features function
Available in Entreprise Edition, Community Edition, Exakat Cloud

614 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.215 Configure Extract

The extract() function overwrites local variables when left unconfigured.

Extract imports variables from an array into the local scope. In case of a conflict, that is when a local variable already
exists, it overwrites the previous variable.

In fact, extract() may be configured to handle the situation differently : it may skip the conflicting variable, prefix it,
prefix it only if it exists, only import overwriting variables. . . It may also import them as references to the original
values.

This analysis reports extract() when it is not configured explicitly. If overwriting is the intended objective, it is not
reported. Always avoid using extract() on untrusted sources, such as $_GET, $_POST, $_FILES, or even databases
records.

<?php

// ignore overwriting variables
extract($array, EXTR_SKIP);

// prefix all variables explicitly variables with 'php_'
extract($array, EXTR_PREFIX_ALL, 'php_');

// overwrites explicitly variables
extract($array, EXTR_OVERWRITE);

// overwrites implicitely variables : do we really want that?
extract($array, EXTR_OVERWRITE);

?>

See also extract.

Suggestions

• Always use the second argument of extract(), and avoid using EXTR_OVERWRITE

Specs

Short name Security/ConfigureExtract
Rulesets All, Security
Exakat since 1.2.9
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features extract, variable
Examples Zurmo, Dolibarr
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 615

https://www.php.net/extract
https://www.php.net/extract
https://www.php.net/extract
https://www.php.net/extract
https://www.php.net/extract
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.216 Confusing Names

The following variables’s name are very close and may lead to confusion.

Variables are 3 letters long (at least). Variables names build with an extra s are omitted. Variables may be scattered
across the code, or close to each other.

Variables which differ only by case, or by punctuation or by numbers are reported here.

<?php

// Variable names with one letter difference
$fWScale = 1;
$fHScale = 1;
$fScale = 2;

$oFrame = 3;
$iFrame = new Foo();

$v2_norm = array();
$v1_norm = 'string';

$exept11 = 1;
$exept10 = 2;
$exept8 = 3;

// Variables that differ by punctation
$locale = 'fr';
$_locate = 'en';

// Variables that differ by numbers
$x11 = 'a';
$x12 = 'b';

// Variables that differ by numbers
$songMP3 = 'a';
$Songmp3 = 'b';

// This even looks like a typo
$privileges = 1;
$privilieges = true;

// This is not reported : Adding extra s is tolerated.
$rows[] = $row;

?>

See also How to pick bad function and variable names.

616 Chapter 14. Rules

http://mojones.net/how-to-pick-bad-function-and-variable-names.html

Exakat Documentation, Release 1

Suggestions

• Rename the variables

Specs

Short name Variables/CloseNaming
Rulesets All, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features variable, semantics
Available in Entreprise Edition, Exakat Cloud

14.2.217 Const Or Define

const and define() have the same functional use : create constants.

The analyzed code has less than 10% of one of them : for consistency reasons, it is recommended to make them all the
same.

They are almost interchangeable, though not totally : define() allows the creation of case-insensitive constants, while
Const won't.

<?php

// be consistent
const A1 = 1 ;
const A2 = 2 ;
const A3 = 3 ;
const A4 = 4 ;
const A5 = 5 ;
const A6 = 6 ;
const A7 = 7 ;
const A8 = 8 ;
const A9 = 9 ;
const A10 = 10;
const A11 = 11;

define('A12', 12); // Be consistent, always use the same.

?>

See also define and const.

14.2. List of Rules 617

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/function.define.php
http://www.php.net/manual/en/language.constants.php

Exakat Documentation, Release 1

Specs

Short name Structures/ConstDefineFavorite
Rulesets All, Appinfo, CE
Exakat since 0.12.1
PHP Version All
Severity
Time To Fix
Precision Very high
Features constant
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.218 Const Or Define Preference

Const and define() have almost the same functional use : they create constants.

The analyzed code has less than 10% of one of them : for consistency reasons, it is recommended to make constant
definition consistent.

It is recommended to use const for global constants, as this keyword is processed at compile time, while define() is
executed.

Note that define() used to allow the creation of case-insensitive constants, but this is deprecated since PHP 7.3 and will
be removed in PHP 8.0.

<?php

define('A1', 1);
define('A2', 1);
define('A3', 1);
define('A4', 1);
define('A5', 1);
define('A6', 1);
define('A7', 1);
define('A8', 1);
define('A9', 1);
define('A10',1);

const B = 3;

?>

See also Constant definition and Define.

618 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/define
https://www.php.net/define
https://www.php.net/define
https://www.php.net/const
https://www.php.net/define

Exakat Documentation, Release 1

Specs

Short name Constants/ConstDefinePreference
Rulesets All, Changed Behavior, Preferences
Exakat since 1.3.9
PHP Version All
Severity
Time To Fix
Precision Very high
Features define, const, constant
Available in Entreprise Edition, Exakat Cloud

14.2.219 Const Visibility Usage

Visibility for class constant controls the accessibility to class constant.

A public constant may be used anywhere in the code; a protected constant usage is restricted to the class and its relatives;
a private constant is restricted to itself.

This feature was introduced in PHP 7.1. It is recommended to use explicit visibility, and, whenever possible, make the
visibility private.

<?php

class x {
public const a = 1;
protected const b = 2;
private const c = 3;
const d = 4;

}

interface i {
public const a = 1;
const d = 4;

}

?>

See also Class Constants and PHP RFC: Support Class Constant Visibility.

Suggestions

• Add constant visibility, at least ‘public’.

14.2. List of Rules 619

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.constants.php
https://wiki.php.net/rfc/class_const_visibility

Exakat Documentation, Release 1

Specs

Short
name

Classes/ConstVisibilityUsage

Rulesets All, Appinfo, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compatibility-
PHP56, CompatibilityPHP70

Exakat
since

1.3.0

PHP Ver-
sion

With PHP 7.1 and more recent

Severity Minor
Time To
Fix

Slow (1 hour)

Precision Very high
Features class-constant-visibility
Available
in

Entreprise Edition, Exakat Cloud

14.2.220 Const With Array

The const keyword supports array. This feature was added in PHP 5.6.

The array must be filled with other constants. It may also be build using the ‘+’ operator.

<?php

const PRIMES = [2, 3, 5, 7];

class X {
const TWENTY_THREE = 23;
const MORE_PRIMES = PRIMES + [11, 13, 17, 19];
const EVEN_MORE_PRIMES = self::MORE_PRIMES + [self::TWENTY_THREE];

}

?>

See also Class Constants and Constants Syntax.

Specs

Short name Php/ConstWithArray
Rulesets All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55
Exakat since 0.8.4
PHP Version With PHP 5.5 and more recent
Severity Major
Time To Fix Slow (1 hour)
Precision High
Features random
Available in Entreprise Edition, Exakat Cloud

620 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.constants.php
https://www.php.net/manual/en/language.constants.syntax.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.221 Constant : With Or Without Use

This analysis collects the ways constants are called in the code : with a local import, alias or not, or with
their fully qualified name.

The analyzed code has less than 10% of one of them : for consistency reasons, it is recommended to make them all the
same.

<?php

use const AA as BB;

// This is the fully qualified name.
echo \AA;

// If this is used 10 times or more, then it is the standard.
echo BB;

?>

Specs

Short name Namespaces/ConstantWithUseFavorite
Rulesets All, Preferences
Exakat since 2.3.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features fully-qualified-name, constant, use
Available in Entreprise Edition, Exakat Cloud

14.2.222 Constant Case Preference

Define() creates constants which are case sensitive or not.

The analyzed code has less than 10% of one of them : for consistency reasons, it is recommended to make constant
sensitivity definition consistent.

Note that define() used to allow the creation of case-sensitive constants, but this is deprecated since PHP 7.3 and will
be removed in PHP 8.0.

<?php

define('A1', 1);
define('A2', 1);
define('A3', 1);
define('A4', 1);
define('A5', 1);
define('A6', 1);
define('A7', 1);

(continues on next page)

14.2. List of Rules 621

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/define
https://www.php.net/define

Exakat Documentation, Release 1

(continued from previous page)

define('A8', 1);
define('A9', 1);
define('A10',1);

define('A10',1, true);

?>

See also PHP Constants and Constant definition.

Specs

Short name Constants/DefineInsensitivePreference
Rulesets All, Changed Behavior, Preferences
Exakat since 1.3.8
PHP Version With PHP 7.0 and older
Severity
Time To Fix
Precision Very high
Features constant
Available in Entreprise Edition, Exakat Cloud

14.2.223 Constant Class

A class or an interface only made up of constants. Constants usually have to be used in conjunction of
some behavior (methods, class. . .) and never alone.

As such, they should be PHP constants (build with define or const), or included in a class with other methods and
properties.

<?php

class ConstantClass {
const KBIT = 1000;
const MBIT = self::KBIT * 1000;
const GBIT = self::MBIT * 1000;
const PBIT = self::GBIT * 1000;

}

?>

See also PHP Classes containing only constants.

622 Chapter 14. Rules

https://www.php.net/manual/en/language.constants.php
https://www.php.net/const
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://stackoverflow.com/questions/16838266/php-classes-containing-only-constants

Exakat Documentation, Release 1

Suggestions

• Make the class an interface

• Make the class an abstract class, to avoid its instantiation

Specs

Short name Classes/ConstantClass
Rulesets All, CE, Class Review
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features class-constant
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.224 Constant Comparison

Constant to the left or right is a favorite.

Comparisons are commutative : they may be $a == B or B == $a. The analyzed code show less than 10% of one of the
two : for consistency reasons, it is recommended to make them all the same.

Putting the constant on the left is also called ‘Yoda Comparison’, as it mimics the famous characters style of speech. It
prevents errors like ‘B = $a’ where the comparison is turned into an assignation.

The natural way is to put the constant on the right. It is often less surprising.

Every comparison operator is used when finding the favorite.

<?php

//
if ($a === B) { doSomething(); }
if ($c > D) { doSomething(); }
if ($e !== G) { doSomething(); }
do { doSomething(); } while ($f === B);
while ($a === B) { doSomething(); }

// be consistent
if (B === $a) {}

// Compari
if (B <= $a) {}

?>

14.2. List of Rules 623

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Structures/ConstantComparisonConsistance
Rulesets All, Coding conventions, Preferences
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features comparison
Available in Entreprise Edition, Exakat Cloud

14.2.225 Constant Conditions

If/then structures that have constant condition.

The condition doesn’t change during execution, and the following blocks are always executed or not. This may also
lead to an infinite or a null loop.

When this is the case, the condition may be removed, and dead code may be removed. It is advised to remove them, or
to make them depend on configuration.

<?php

// static if
if (0.8) {

$a = $x;
} else {

$a = $y;
}

// static while
while (1) {

$a = $x;
}

// static do..while
do {

$a = $x;
} while ('b'. 'c');

// constant for() : No increment
for ($i = 0; $i < 10;) {

$a = $x;
}

// constant for() : No final check
for ($i = 0; ; ++$i) {

$a = $x;
}

(continues on next page)

624 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// static ternary
$a = TRUE ? $x : $y;

?>

Specs

Short name Structures/ConstantConditions
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features condition
Available in Entreprise Edition, Exakat Cloud

14.2.226 Constant Definition

List of class constants being defined.

<?php

// traditional way of making constants
define('aConstant', 1);

// modern way of making constants
const anotherConstant = 2;

class foo {
// Not a constant, a class constant.
const aClassConstant = 3;

}

?>

See also PHP Constants and PHP OOP Constants.

14.2. List of Rules 625

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.constants.php
https://tutorials.supunkavinda.blog/php/oop-constants

Exakat Documentation, Release 1

Specs

Short name Classes/ConstantDefinition
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features class, class-constant
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.227 Constant Dynamic Creation

Registering constant with dynamic values. Dynamic values include values read in external sources (files,
databases, remote API, . . .), random sources (time, rand(), . . .)

Dynamic constants are not possible with the const keyword, though static constant expression allows for a good range
of combinations, including conditions.

<?php

$a = range(0, 4);
foreach($array as $i) {

define("A$i", $i);
define("N$i", true);

}

define("C", 5);

?>

See also PHP Constants.

Specs

Short name Constants/DynamicCreation
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 1.6.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features constant
Available in Entreprise Edition, Community Edition, Exakat Cloud

626 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/functions.arguments.php#functions.variable-arg-list
https://www.php.net/rand
https://www.php.net/manual/en/functions.arguments.php#functions.variable-arg-list
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.constants.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.228 Constant Order

Order of dependency of constants.

Constants, either global or class, may be built using static expression. In turn, this means that constants have now a
build order. For example : The code above leads to the following order : A - B, C. A can be built without constraints,
while B and C must be build when A is available. Note that B and C are both dependant on A, but are not dependant on
each other.

The resulting tree displays the different relationship between the constants.

Note : define``constants are not considered here. Only ``const constants, global or class.

<?php

// A is an independant global constant
const A = 1;
// B is an dependant global constant : it is built with A
const B = A + 1;

class x {
// x::C is an dependant class constant : it is built with A
const C = A + 3;

}

?>

Specs

Short name Dump/ConstantOrder
Rulesets All, CE, Dump
Exakat since 2.0.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.229 Constant Scalar Expression

Since PHP 5.6, it is possible to use expression with Constants and default values. One may only use simple
operators.

<?php

const THREE = 1 + 2;
const ARRAY = array(1,2,3);

// dynamic version
define('ARRAY', array(1,2,3));

(continues on next page)

14.2. List of Rules 627

https://www.php.net/manual/en/language.oop5.static.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// constant scalar expression are available for default values
function foo($a = 1 + M_PI) {

}

?>

See also New features..

Suggestions

• Upgrade to PHP 7.0

• Use a special value as the default value, and turn it into the actual value at constructor time

Specs

Short
name

Php/ConstantScalarExpression

Rulesets All, Appinfo, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55,
CompatibilityPHP56

Exakat
since

0.8.4

PHP Ver-
sion

With PHP 5.6 and older

Severity Major
Time To
Fix

Slow (1 hour)

Precision Very high
Features constant-scalar-expression
Available
in

Entreprise Edition, Exakat Cloud

14.2.230 Constant Scalar Expressions

Define constant with the result of static expressions. This means that constants may be defined with the
const keyword, with the help of various operators but without any functioncalls.

This feature was introduced in PHP 5.6. It also supports array(), and expressions in arrays.

Those expressions (using simple operators) may only manipulate other constants, and all values must be known at
compile time.

<?php

// simple definition
const A = 1;

// constant scalar expression
const B = A * 3;

(continues on next page)

628 Chapter 14. Rules

https://www.php.net/manual/en/migration56.new-features.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/result
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/array

Exakat Documentation, Release 1

(continued from previous page)

// constant scalar expression
const C = [A ** 3, '3' => B];

?>

See also Constant Scalar Expressions.

Specs

Short name Structures/ConstantScalarExpression
Rulesets All, Appinfo, CE, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, Compatibil-

ityPHP55
Exakat since 0.8.4
PHP Version With PHP 5.6 and more recent
Severity Major
Time To Fix Quick (30 mins)
Changed Behav-
ior

PHP 5.6 - More

Precision Very high
Features constant-scalar-expression
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.231 Constant Typo Looks Like A Variable

A constant bears the same name as a variable. This might be a typo.

When the constant doesn’t exist, PHP 8.0 yields a Fatal Error and stops execution. PHP 7.4 turns the undefined constant
into its string equivalent. This analysis is case sensitive.

<?php

// Get an object or null
$object = foo();

// PHP 8.0 stops here, with a Fatal Error
// PHP 7.4 makes this a string, and the condition is always true
if (!empty(object)) {

// In PHP 7.4, this is not protected by the condition, and may yield an error.
$object->doSomething();

}

?>

14.2. List of Rules 629

https://wiki.php.net/rfc/const_scalar_exprs
https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error

Exakat Documentation, Release 1

Suggestions

• Add a $ sign to the constant

• Use a different name for the variable, or the constant

Specs

Short name Variables/ConstantTypo
Rulesets All, Analyze
Exakat since 2.2.0
PHP Version With PHP 8.0 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features constant, variable
Related rule Undefined Constants
Available in Entreprise Edition, Exakat Cloud

14.2.232 Constant Used Below

Mark class constants that are used in children classes.

This analysis marks constants at their definition, not the current class, nor the (grand-)`parent <https://www.php.net/
manual/en/language.oop5.paamayim-nekudotayim.php>`_.

<?php

class foo {
// This constant is used in children
protected PROTECTEDPROPERTY = 1;

// This constant is not used in children
protected LOCALPROTECTEDPROPERTY = 1;

private function foobar() {
// PROTECTEDPROPERTY is used here, but defined in parent
echo self::LOCALPROTECTEDPROPERTY;

}
}

class foofoo extends foo {
private function bar() {

// protectedProperty is used here, but defined in parent
print self::PROTECTEDPROPERTY;

}
}

?>

630 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

Specs

Short name Classes/ConstantUsedBelow
Rulesets All
Exakat since 0.12.10
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features class-constant
Available in Entreprise Edition, Exakat Cloud

14.2.233 Constant Used Only Once

This rule reports constants that are used only once. Constants that are used only once may be replaced by
they literal value, unless future use is expected.

This rule works on global and class constants.

<?php

const ONCE = 1;

echo ONCE;

?>

Suggestions

• Use the constant more than once.

• Replace the constant with a literal value.

Specs

Short name Constants/ConstantUsedOnce
Rulesets All, Analyze
Exakat since 2.6.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features constants
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 631

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.234 Constants Created Outside Its Namespace

Constants Created Outside Its Namespace.

Using the define() function, it is possible to create constant outside their namespace, but using the fully qualified
namespace.

However, this makes the code confusing and difficult to debug. It is recommended to move the constant definition to
its namespace.

<?php

namespace A\B {
// define A\B\C as 1
define('C', 1);

}

namespace D\E {
// define A\B\C as 1, while outside the A\B namespace
define('A\B\C', 1);

}

?>

Suggestions

• Declare the constant in its namespace

Specs

Short name Constants/CreatedOutsideItsNamespace
Rulesets All, Analyze, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features constant
Available in Entreprise Edition, Exakat Cloud

14.2.235 Constants In Traits

Traits may have their own constants. This feature was introduced in PHP 8.2 and is not backward compat-
ible.

<?php

trait t {
const A = 1;

}
(continues on next page)

632 Chapter 14. Rules

https://www.php.net/define
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

?>

See also PHP RFC: Constants in Traits and Ability to use Constants in Traits in PHP 8.2.

Specs

Short
name

Traits/ConstantsInTraits

Rulesets All, Changed Behavior, CompatibilityPHP74, CompatibilityPHP80, CompatibilityPHP81, Compati-
bilityPHP82, CompatibilityPHP83

Exakat
since

2.5.3

Severity Minor
Time To
Fix

Quick (30 mins)

Precision Very high
Features constant, trait
Available
in

Entreprise Edition, Exakat Cloud

14.2.236 Constants Names

List of PHP defined global constants in the source code. Constants are defined with the define() func-
tioncall or const command.

<?php

// with const
const X = 1;

// with define()
define ('Y', 2);

?>

See also PHP Constants.

14.2. List of Rules 633

https://wiki.php.net/rfc/constants_in_traits
https://www.amitmerchant.com/traits-constants-php-82/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.constants.php

Exakat Documentation, Release 1

Specs

Short name Constants/Constantnames
Rulesets All, CE, Inventory
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features constant
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.237 Constants Usage

List of constants in use in the source code. Constants are T_STRING, localised in specific part of the code.

For example, they can’t be followed by a parenthesis, as this is a function call; nor preceded by a new operator, as this
is an object instantiation.

<?php

const MY_CONST = 'Hello';

// PHP_EOL (native PHP Constant)
// MY_CONST (custom constant)
echo PHP_EOL . MY_CONST;

// Here, MY_CONST is actually a function name, and is omitted in this analysis
MY_CONST();

?>

Specs

Short name Constants/ConstantUsage
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features constant
Available in Entreprise Edition, Community Edition, Exakat Cloud

634 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/T_STRING
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.238 Constants With Strange Names

List of constants being defined with names that are incompatible with PHP standards.

Constants names are valid when they satisfy the following regex : ^[a-zA-Z_\x80-\xff][a-zA-Z0-9_\x80-\
xff]*$

<?php

// Define a valid PHP constant
define('ABC', 1);
const ABCD = 2;

// Define an invalid PHP constant
define('ABC!', 1);
echo defined('ABC!') ? constant('ABC!') : 'Undefined';

// Const doesn't allow illegal names

?>

See also PHP Constants.

Suggestions

• Rename constants to be valid constants

• Adopt a naming conversion scheme, to translate names from an incompatible source to PHP’s standard (and
back).

Specs

Short name Constants/ConstantStrangeNames
Rulesets All, CE, CI-checks, Semantics
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features constant
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 635

https://www.php.net/manual/en/language.constants.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.239 Constants/RelayConstant

Specs

Short name Constants/RelayConstant
Rulesets All, Inventory
Exakat since 2.6.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Unknown
Available in

14.2.240 Constructors

Mark methods as constructors.

<?php

class x {
// Normal constructor
function __construct() {}

}

class y {
// Old style constructor, obsolete since PHP 7.1
function y() {}

}

class z {
// Normal constructor
function __construct() {}

// Old style constructor, but with lower priority
function z() {}

}

?>

See also Constructors and Destructors.

636 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.decon.php

Exakat Documentation, Release 1

Specs

Short name Classes/Constructor
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features class, constructor
Available in Entreprise Edition, Exakat Cloud

14.2.241 Continents

List of all the continents mentioned in the code.

Specs

Short name Type/Continents
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.242 Continue Is For Loop

break and continue are very similar in PHP : they both break out of loop or switch. Yet, continue should
be reserved for loops.

Since PHP 7.3, the execution emits a warning when finding a continue inside a switch : ‘”continue” targeting switch
is equivalent to “break”. Did you mean to use “continue 2”?’

<?php

while ($foo) {
switch ($bar) {

case 'baz':
continue; // In PHP: Behaves like 'break;'

// In C: Behaves like 'continue 2;'
}

}

?>

See also Deprecate and remove continue targeting switch.

14.2. List of Rules 637

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.break.php
https://www.php.net/manual/en/control-structures.continue.php
https://www.php.net/manual/en/control-structures.break.php
https://www.php.net/manual/en/control-structures.continue.php
https://www.php.net/manual/en/control-structures.continue.php
https://www.php.net/manual/en/control-structures.break.php
https://www.php.net/manual/en/control-structures.continue.php
https://wiki.php.net/rfc/continue_on_switch_deprecation

Exakat Documentation, Release 1

Suggestions

• Replace continue by break

Specs

Short
name

Structures/ContinueIsForLoop

Rule-
sets

All, Analyze, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56,
CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73

Exakat
since

1.3.9

PHP
Ver-
sion

With PHP 7.3 and more recent

Sever-
ity

Minor

Time
To Fix

Quick (30 mins)

Preci-
sion

Very high

Fea-
tures

continue, loop

Exam-
ples

XOOPS

Avail-
able in

Entreprise Edition, Exakat Cloud

14.2.243 Converted Exceptions

Converted exceptions is when an exception is caught, then immediately converted into another one and
thrown again.

Sometimes, extra operations take place, such as logging or error couting.

<?php

try {
doSomething();

} catch (MyException $e) {
log($e->getMessage());
throw new BadRequestException();

}

?>

638 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception
https://www.php.net/error

Exakat Documentation, Release 1

Specs

Short name Exceptions/ConvertedExceptions
Rulesets All, Analyze
Exakat since 2.5.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features exception, try
Available in Entreprise Edition, Exakat Cloud

14.2.244 Cookies Variables

Cookies names, used across the application.

<?php

if (isset($_COOKIE['myCookie'])) {
// Usual method for reading and setting cookies
$_COOKIE['myCookie']++;

}

// Usual method for writing cookies
setcookie('myCookie', $value);

?>

See also setcookie.

Specs

Short name Php/CookiesVariables
Rulesets All, Changed Behavior, Inventory
Exakat since 0.12.16
PHP Version All
Severity
Time To Fix
Precision Very high
Features cookie
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 639

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
http://www.php.net/setcookie
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.245 Could Be A Constant

This analysis detects literal values that make good candidate for constants.

Candidates needs two characteristics :

• Be assigned as a whole to a container (variable, properties, etc.)

• Be later (or somewhere else) compared to a container.

Such literal is used as a token, to handle a state. It is set, then read later. Then, a constant, may it be global or
class, is important, so that the relationship between the setting and the reading is maintained throughout the life of the
application.

Once the literal is converted into a constant, the value of the literal is not important. It could even be turned into an
object. Not all literals that are set then read may be turned into a constant : there might be overlap in features by
frequently used values (such as true, false, 0, 1,) or simple confusion with a local literal. Also, literals that are used
for their value (like 1 in a $a + 1 expression) are not good candidates.

<?php

const SOME_TOKEN = 'abc';

$a = 'some-token';
$b = SOME_TOKEN; // same as above, as a constant

function foo($arg) {
if ($arg === 'some-token') {

}

if ($arg === SOME_TOKEN) {

}
}

?>

Name Default Type Description
minOccurences 1 integer Minimal number of occurrences of the literal.
skipString ,.php array List of omitted string values. For example, the empty string.
skipInteger 1,-0,-1 array List of omitted integer values. By default, 0, 1 and -1.

Suggestions

• Create the constant and replace all connected literals with it.

640 Chapter 14. Rules

Exakat Documentation, Release 1

Specs

Short name Dump/CouldBeAConstant
Rulesets All, Dump
Exakat since 2.4.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features constant
Available in Entreprise Edition, Exakat Cloud

14.2.246 Could Be A Static Variable

This global is only used in one function or method. It may be transformed into a ‘static’ variable, instead
of global. This allows you to keep the value between call to the function, but will not be accessible outside
this function.

<?php
function foo() {

static $variableIsReservedForX; // only accessible within foo(), even between calls.
global $variableIsGlobal; // accessible everywhere in the application

}
?>

Specs

Short name Structures/CouldBeStatic
Rulesets All, Analyze, Changed Behavior, Class Review
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features static, static-variable
Examples Dolphin, Contao
Available in Entreprise Edition, Exakat Cloud

14.2.247 Could Be Abstract Class

An abstract class is never instantiated, and has children class that are. As such, a ‘parent’ class that is never
instantiated by itself, but has its own children instantiated could be marked as abstract.

That will prevent new code to try to instantiate it.

<?php

// Example code would actually be split over multiple files.
(continues on next page)

14.2. List of Rules 641

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

(continued from previous page)

// That class could be abstract
class motherClass {}

// Those classes shouldn't be abstract
class firstChildren extends motherClass {}
class secondChildren extends motherClass {}
class thirdChildren extends motherClass {}

new firstChildren();
new secondChildren();
new thirdChildren();

//Not a single : new motherClass()

?>

See also Class Abstraction and Abstract classes and methods.

Suggestions

• Make this class an abstract class

Specs

Short name Classes/CouldBeAbstractClass
Rulesets All, Analyze, Class Review
Exakat since 1.3.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features abstract
Examples Edusoho, shopware
Available in Entreprise Edition, Exakat Cloud

14.2.248 Could Be Abstract Method

A method can be made abstract, when all the class’s children implement it.

Since the method will also loose its body, it should not be refered in any calls.

<?php

class a {
function foo() {}

function bar() {}
(continues on next page)

642 Chapter 14. Rules

https://www.php.net/abstract
https://phpenthusiast.com/object-oriented-php-tutorials/abstract-classes-and-methods
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

}

// * for several distinct names
class a* extends a {

function foo() {}
}

// a0 only creates foo(), not bar.
class a0 extends a {

function foo() {}
}

?>

Suggestions

• Add the abstract keyword

Specs

Short name Classes/CouldBeAbstractMethod
Rulesets All, Suggestions
Exakat since 2.4.9
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features abstract
Available in Entreprise Edition, Exakat Cloud

14.2.249 Could Be Array Typehint

This rule spots arguments, class constants, properties or return values that may be labeled with the array
scalar typehint.

<?php

// $arg is used as an array in this function, so it may be typed : array
functions foo($arg) {

// the returned value is always an array, so this function might be typed as : array
return array($arg[3]);

}

?>

See also Type declarations.

14.2. List of Rules 643

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration

Exakat Documentation, Release 1

Suggestions

• Add array typehint to the code.

Specs

Short name Typehints/CouldBeArray
Rulesets All, CE
Exakat since 2.1.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features array
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.250 Could Be Boolean

Reports arguments, properties, return types and class constants that can be typed boolean.

<?php

// Accept a boolean as input
function foo($b) {

// Returns a boolean
return $b === true;

}

?>

See also class.

Suggestions

• Add bool typehint to the code.

Specs

Short name Typehints/CouldBeBoolean
Rulesets All, CE
Exakat since 2.1.2
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features class
Available in Entreprise Edition, Community Edition, Exakat Cloud

644 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.basic.php#language.oop5.basic.class
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.251 Could Be CIT

Mark arguments and return types that can be set to a class, interface definition.

<?php

// Accept an object as input
function foo($b) {

// Returns new object
return new ($b->classname);

}

?>

Suggestions

• Add the class or interface typehint to the code.

Specs

Short name Typehints/CouldBeCIT
Rulesets All, CE
Exakat since 2.1.2
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features class
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.252 Could Be Callable

Mark arguments and return types that can be set to callable.

The analysis also reports properties that could be ‘callable’, although PHP doesn’t allow that configuration. Note that
properties cannot be callable. It reports a compilation error.

<?php

// Accept a callable as input
function foo($b) {

// Returns value as return
return $b();

}

?>

See also Callbacks / callables.

14.2. List of Rules 645

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/manual/en/language.types.callable.php

Exakat Documentation, Release 1

Suggestions

• Add callable typehint to arguments or returntypes.

Specs

Short name Typehints/CouldBeCallable
Rulesets All, Typechecks
Exakat since 2.1.2
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features callback, callable
Available in Entreprise Edition, Exakat Cloud

14.2.253 Could Be Class Constant

When a property is defined, with a default value, then read, but never modified, it could be turned into a
constant.

Such a property may initially be intended to have a value update, but that never turned out in the code.

By making the property a constant, it makes visible its constant nature, and reduce the complexity of the code.

<?php

class foo {
// $this->bar is never modified.
private $bar = 1;

// $this->foofoo is modified, at least once
private $foofoo = 2;

function method($a) {
$this->foofoo = $this->bar + $a + $this->foofoo;

return $this->foofoo;
}

}

?>

See also Class Constants https://www.php.net/manual/en/language.oop5.constants.php.

646 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.constants.php

Exakat Documentation, Release 1

Suggestions

• Turn the property into a class constant

Specs

Short name Classes/CouldBeClassConstant
Rulesets All, Class Review
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features class-constant, visibility
Related rule Never Called Parameter
Available in Entreprise Edition, Exakat Cloud

14.2.254 Could Be Constant

Literals may be replaced by an existing constant.

Constants makes the code easier to read, as they may bear a meaningful name. They also hide implementation values,
with a readable name, such as const READABLE= true;. Later, upgrading constant values is easier than scouring the
code with a new literal.

Not all literal can be replaced by a constant values : sometimes, literal may have the same literal value, but different
meanings. Check with your application semantics before changing any literal with a constant.

This analysis currently doesn’t support arrays.

This analysis also skips very common values, such as boolean, 0 and 1. This prevents too many false positive.

<?php

const A = 'abc';
define('B', 'ab');

class foo {
const X = 'abcd';

}

// Could be replaced by B;
$a = 'ab';

// Could be replaced by A;
$a = 'abc';

// Could be replaced by foo::X;
$a = 'abcd';

?>

14.2. List of Rules 647

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Turn the literal into an existing constant

Specs

Short name Constants/CouldBeConstant
Rulesets All, Semantics
Exakat since 1.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features constant
Available in Entreprise Edition, Exakat Cloud

14.2.255 Could Be Else

Merge opposite conditions into one if/then structure.

When two if/then structures follow each other, using a condition and its opposite, they may be merged into one.

<?php

// Short version
if ($a == 1) {

$b = 2;
} else {

$b = 1;
}

// Long version
if ($a == 1) {

$b = 2;
}

if ($a != 1) {
$b = 3;

}

?>

648 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Merge the two conditions into one structure

• Check if the second condition is still applicable

Specs

Short name Structures/CouldBeElse
Rulesets All, Analyze
Exakat since 1.0.1
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features if-then
Examples SugarCrm, OpenEMR
Available in Entreprise Edition, Exakat Cloud

14.2.256 Could Be Enumeration

This rule detects a potential enumeration. When a property is only and ever assigned a finite number of
literals, it may be turned into an enumeration.

Currently, the analysis focuses on properties that may have 2 or more values (parameter minElements). The property
should only be assigned literals, or constants.

<?php

class x {
private $p = 0;

function foo() {
if ($this->p === 0) {

$this->p = 1;
} else {

$this->p = 0;
}

}
}

?>

Name De-
fault

Type Description

minEle-
ments

2 inte-
ger

Minimal number of elements to consider that a property may be an enumeration.

14.2. List of Rules 649

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Enums/CouldBeEnum
Rulesets All, Suggestions
Exakat since 2.4.4
PHP Version 8.1
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Available in Entreprise Edition, Exakat Cloud

14.2.257 Could Be Float

Mark arguments, class constants, properties and return types that can be set to float.

<?php

// Accept an int as input
function foo($b) {

// Returns a float (cubic root of $b);
return pow($b, 1 / 3);

}

?>

Suggestions

• Add float typehint to the code.

Specs

Short name Typehints/CouldBeFloat
Rulesets All, CE, Typechecks
Exakat since 2.1.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features float
Available in Entreprise Edition, Community Edition, Exakat Cloud

650 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.258 Could Be Generator

This rule reports methods, functions. . . where the return value may be typed Generator. This is the case
when the body of the function uses the yield and yield from keyword.

<?php

// Yield makes foo() a generator
function foo() {

yield 1;
// Returns an int
return $b + 8;

}

?>

See also class.

Suggestions

• Add Generator typehint to the method.

Specs

Short name Typehints/CouldBeGenerator
Rulesets All, Typechecks
Exakat since 2.2.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features class, yield, yield-from
Available in Entreprise Edition, Exakat Cloud

14.2.259 Could Be Null

Mark arguments, properties, class constants and return types that can be null. Null was introduced as a
standlone type in PHP 8.2. Before that, null had to be paired with another type.

<?php

// Accept null as input, when used as third argument of file_get_contents
function foo($b) {

$s = file_get_contents(URL, false, $b);

// Returns a string
return shell_exec($s);

}

?>

14.2. List of Rules 651

https://www.php.net/manual/en/language.oop5.basic.php#language.oop5.basic.class
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Add null typehint to the code (PHP 8.0+).

• Add ? typehint to the code.

Specs

Short name Typehints/CouldBeNull
Rulesets All, CE, Typechecks
Exakat since 2.1.2
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features null, typehint, nullable
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.260 Could Be Parent

Mark arguments, return types and properties that can be set to parent.

This analysis works when typehints have already been configured.

<?php

class x extends w {
// Accept a w object as input
function foo(w $b) : w {

// Returns a w object
return $b;

}
}

?>

Suggestions

• Add parent typehint to the code.

• Add the literal class/type typehint to the code.

652 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Typehints/CouldBeParent
Rulesets All, Typechecks
Exakat since 2.1.2
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features typehint
Available in Entreprise Edition, Exakat Cloud

14.2.261 Could Be Parent Method

A method is defined in several children, but not in a the parent class. It may be worth checking if this
method doesn’t belong the parent class, as an abstraction.

Only the name of the method is used is for gathering purposes. If the code has grown organically, the signature (default
values, typehint, argument names) may have followed different path, and will require a refactorisation.

<?php

// The parent class
class x { }

// The children class
class y1 extends x {

// foo is common to y1 and y2, so it shall be also a method in x
function foo() {}
// fooY1 is specific to y1
function fooY1() {}

}

class y2 extends x {
function foo() {}
// fooY2 is specific to y1
function fooY2() {}

}

?>

Name Default Type Description
minChildren 4 integer Minimal number of children using this method.

14.2. List of Rules 653

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

Suggestions

• Create an abstract method in the parent

• Create an concrete method in the parent, and move default behavior there by removing it in children classes

Specs

Short name Classes/CouldBeParentMethod
Rulesets All, Class Review
Exakat since 2.1.7
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features class, parent
Available in Entreprise Edition, Exakat Cloud

14.2.262 Could Be Private Class Constant

Class constant may use private visibility.

Since PHP 7.1, constants may also have a public/protected/private visibility. This restrict their usage to anywhere, class
and children or class.

As a general rule, it is recommended to make constant private by default, and to relax this restriction as needed. PHP
makes them public by default. Constant shall stay public when the code has to be compatible with PHP 7.0 and older.

They also have to be public in the case of component : some of those constants have to be used by external actors, in
order to configure the component.

<?php

class foo {
// pre-7.1 style
const PRE_71_CONSTANT = 1;

// post-7.1 style
private const PRIVATE_CONSTANT = 2;
public const PUBLIC_CONSTANT = 3;

function bar() {
// PRIVATE CONSTANT may only be used in its class
echo self::PRIVATE_CONSTANT;

}
}

// Other constants may be used anywhere
function x($a = foo::PUBLIC_CONSTANT) {

echo $a.' '.foo:PRE_71_CONSTANT;
}

?>

654 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

See also Class Constants.

Specs

Short name Classes/CouldBePrivateConstante
Rulesets All, Class Review
Exakat since 0.12.10
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features visibility
Examples Phinx
Available in Entreprise Edition, Exakat Cloud

14.2.263 Could Be Protected Class Constant

Class constant may use ‘protected’ visibility.

Since PHP 7.1, constants may also have a public/protected/private visibility. This restrict their usage to anywhere, class
and children or class.

As a general rule, it is recommended to make constant ‘private’ by default, and to relax this restriction as needed. PHP
makes them public by default.

<?php

class foo {
// pre-7.1 style
const PRE_71_CONSTANT = 1;

// post-7.1 style
protected const PROTECTED_CONSTANT = 2;
public const PUBLIC_CONSTANT = 3;

}

class foo2 extends foo {
function bar() {

// PROTECTED_CONSTANT may only be used in its class or its children
echo self::PROTECTED_CONSTANT;

}
}

class foo3 extends foo {
function bar() {

// PROTECTED_CONSTANT may only be used in its class or any of its children
echo self::PROTECTED_CONSTANT;

}
}

// Other constants may be used anywhere
(continues on next page)

14.2. List of Rules 655

https://www.php.net/manual/en/language.oop5.constants.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

function x($a = foo::PUBLIC_CONSTANT) {
echo $a.' '.foo:PRE_71_CONSTANT;

}

?>

Suggestions

• Use protected visibility with the reported constants.

Specs

Short name Classes/CouldBeProtectedConstant
Rulesets All, Changed Behavior, Class Review
Exakat since 0.12.11
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features visibility, class-constant
Available in Entreprise Edition, Exakat Cloud

14.2.264 Could Be Protected Method

Those methods are declared ‘public’, but are never used publicly. They may be made ‘protected’.

These properties may even be made private.

<?php

class foo {
// Public, and used publicly
public publicMethod() {}

// Public, but never used outside the class or its children
public protectedMethod() {}

private function bar() {
$this->protectedMethod();

}
}

$foo = new Foo();
$foo->publicMethod();

?>

656 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Use protected visibility with these methods.

Specs

Short name Classes/CouldBeProtectedMethod
Rulesets All, Changed Behavior, Class Review
Exakat since 0.12.11
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features visibility, method
Available in Entreprise Edition, Exakat Cloud

14.2.265 Could Be Protected Property

Those properties are declared public, but are never used publicly. They may be made protected.

This property may even be made private.

<?php

class foo {
// Public, and used publicly
public $publicProperty;
// Public, but never used outside the class or its children
public $protectedProperty;

function bar() {
$this->protectedProperty = 1;

}
}

$foo = new Foo();
$foo->publicProperty = 3;

?>

Suggestions

• Use protected visibility with these properties.

14.2. List of Rules 657

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Classes/CouldBeProtectedProperty
Rulesets All, Changed Behavior, Class Review
Exakat since 0.9.7
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features visibility
Available in Entreprise Edition, Exakat Cloud

14.2.266 Could Be Readonly Property

This property could be made readonly. For that, the property is set in the constructor, and optionally in the
__clone magic method, and never modified otherwise.

<?php

class x {
private int $ok, $ok2;

function __construct() {
$this->ok = 1;
$this->ok2 = 1;

}

function getOk2() {
return $this->ko;

}

function __clone() {
$this->ok2 = 1;

}
}
?>

658 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Add the readonly option to the property definition

Specs

Short name Classes/CouldBeReadonlyProperty
Rulesets All, Changed Behavior, Class Review, Suggestions
Exakat since 2.6.4
PHP Version With PHP 8.1 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.267 Could Be Self

Mark arguments, return types and properties that can be set to self. This applies only to methods.

This analysis works when typehints have already been configured.

<?php

class x {
// Accept a x object as input
function foo(x $b) : x {

// Returns a x object
return $b;

}
}

?>

Suggestions

• Add self typehint to the code.

• Add the literal class/type typehint to the code.

14.2. List of Rules 659

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Typehints/CouldBeSelf
Rulesets All, Typechecks
Exakat since 2.1.2
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features self
Available in Entreprise Edition, Exakat Cloud

14.2.268 Could Be Spaceship

The spaceship operator compares values and returns 0 for equality, 1 for superior and -1 for inferior.

It is the same as below, and prevents lots of code.

<?php

if ($a) {
return 1;

} elseif ($b) {
return 0;

} else {
return -1;

}
?>

See also spaceship operator and Remembering what spaceship operator do on comparison in PHP.

Suggestions

• Adopt the spaceship operator

Specs

Short name Structures/CouldBeSpaceship
Rulesets All, Analyze, Suggestions
Exakat since 2.4.0
PHP Version With PHP 7.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features spaceship
Available in Entreprise Edition, Exakat Cloud

660 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/migration70.new-features.php#migration70.new-features.spaceship-op
https://www.amitmerchant.com/remembering-what-spaceship-operator-do-comparison-php/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.269 Could Be Static Closure

Closure <https://www.php.net/manual/en/class.`closure.php>`_ and arrow functions may be static, and
prevent the import of $this.

By preventing the useless import of $this, you avoid useless work.

This also has the added value to prevent the usage of $this from the closure <https://www.php.net/`closure>`_. This
is a good security practice. This is a micro-optimisation. Apply it in case of intensive usage.

<?php

class Foo
{

function __construct()
{

// Not possible to use $this
$func = static function() {

var_dump($this);
};
$func();

// Normal import of $this
$closure = function() {

var_dump($this);
};

}
};
new Foo();

?>

See also Anonymous functions, GeneratedHydrator and Static anonymous functions.

Suggestions

• Add the static keyword to the closure.

• Make actual usage of $this in the closure.

Specs

Short name Functions/CouldBeStaticClosure
Rulesets All, Changed Behavior, Suggestions
Exakat since 1.3.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features class
Examples Piwigo
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 661

https://www.php.net/closure
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/closure
https://www.php.net/manual/en/functions.anonymous.php
https://github.com/Ocramius/GeneratedHydrator/releases/tag/3.0.0
https://www.php.net/manual/en/functions.anonymous.php#functions.anonymous-functions.static
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.270 Could Be String

Mark arguments, properties, constants and return types that can be set to string.

<?php

// Accept a string as input
function foo($a) {

// Returns a string
return $a . 'string';

}

?>

Suggestions

• Choose the string typehint, and add it to the code.

Specs

Short name Typehints/CouldBeString
Rulesets All, CE, Typechecks
Exakat since 2.1.2
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features string
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.271 Could Be Stringable

Stringable is an interface that marks classes with a custom method to cast the object as a string. It was
introduced in PHP 8.0.

Classes that defined a __toString() magic method may be turned into a string when the typehint, argument, return or
property, requires it. This is not the case when strict_types is activated. Yet, until PHP 8.0, there was nothing to identify
a class as such.

<?php

// This class may implement Stringable
class x {

function __tostring() {
return 'asd';

}
}

echo (new x);
(continues on next page)

662 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.magic.php

Exakat Documentation, Release 1

(continued from previous page)

?>

See also PHP RFC: Add Stringable interface and The Stringable interface.

Suggestions

• Add implements stringable to the class definition

• Add extends stringable to the interface definition

Specs

Short name Classes/CouldBeStringable
Rulesets All, Class Review, LintButWontExec, PHP recommendations
Exakat since 2.1.9
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features stringable, string, magic-method
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.272 Could Be Ternary

This control structure may be replaced by a ternary operator.

Th ternary operator may be shorter and easier to read than the full blown if-then-else structure. Depending on the
situation, the null-ternary and the coalesce operator may also be a good alternative.

<?php

// original structure
if (empty($a)) {

$b = 1;
} else {

$b = foo();
}

// ternary version :
$b = empty($a) ? 1 : foo();

?>

See also PHP Shorthand If/Else Using Ternary Operators (?:) https://davidwalsh.name/
php-shorthand-if-else-ternary-operators and Shorthand comparisons in PHP https://stitcher.io/blog/
shorthand-comparisons-in-php.

14.2. List of Rules 663

https://wiki.php.net/rfc/stringable
https://www.php.net/manual/en/class.stringable.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://davidwalsh.name/php-shorthand-if-else-ternary-operators
https://davidwalsh.name/php-shorthand-if-else-ternary-operators
https://stitcher.io/blog/shorthand-comparisons-in-php
https://stitcher.io/blog/shorthand-comparisons-in-php

Exakat Documentation, Release 1

Suggestions

• Update the syntax to use the ternary operator

Specs

Short name Structures/CouldBeTernary
Rulesets All, Suggestions
Exakat since 2.3.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features ternary, coalesce, null-ternary, short-assignation
Available in Entreprise Edition, Exakat Cloud

14.2.273 Could Be Type

This is a generic analysis, that applies common patterns when searching for types. It should not be used
directly.

Specs

Short name Typehints/CouldBeType
Rulesets none
Exakat since 2.1.2
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.274 Could Be Typehinted Callable

Those arguments may use the callable Typehint.

‘callable’ is a PHP keyword that represents callback functions. Those may be used in dynamic function call, like
$function(); or as callback functions, like with array_map();

callable may be a string representing a function name or a static call (including ::), an array with two elements, (a class
or object, and a method), or a closure <https://www.php.net/`closure>`_.

When arguments are used to call a function, but are not marked with ‘callable’, they are reported by this analysis.

<?php

function foo(callable $callable) {
// very simple callback
return $callable();

(continues on next page)

664 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_map
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/closure

Exakat Documentation, Release 1

(continued from previous page)

}

function foo2($array, $callable) {
// very simple callback
return array_map($array, $callable);

}

?>

See also Callback / callable.

Suggestions

• Add the typehint callable

• Use the function is_callable() inside the method if ‘callable’ is too strong.

Specs

Short name Functions/CouldBeCallable
Rulesets All, Changed Behavior
Exakat since 0.10.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features callable
Examples Magento, PrestaShop
Available in Entreprise Edition, Exakat Cloud

14.2.275 Could Be Void

Mark return types that can be set to void.

All abstract methods (in classes or in interfaces) are omitted here.

<?php

// No return, this should be void.
function foo() {

++$a; // Not useful
}

?>

14.2. List of Rules 665

https://www.php.net/manual/en/language.types.callable.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Add the void typehint to the code.

Specs

Short name Typehints/CouldBeVoid
Rulesets All, Typechecks
Exakat since 2.1.2
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features void
Available in Entreprise Edition, Exakat Cloud

14.2.276 Could Be array_combine()

This rule suggests using the native function array_combine() to merge two arrays into a hash. ar-
ray_combine() takes the keys and the values from two distinct arrays, and merge them into one.

<?php

$keys = [1, 2, 3];
$values = ['a', 'b', 'c'];
$destination = [];
foreach($keys as $k => $v) {

$destination[$v] = $values[$k];
}

$destination = [1 => 'a', 2 => 'b', 3 => 'c'];

$destination = array_combine($keys, $values);

?>

See also How to use array_merge() and array_combine() in PHP ?.

Suggestions

• Use array_combine().

666 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_combine
https://www.php.net/array_combine
https://www.php.net/array_combine
https://www.geeksforgeeks.org/how-to-use-array_merge-and-array_combine-in-php/

Exakat Documentation, Release 1

Specs

Short name Structures/CouldBeArrayCombine
Rulesets All, Changed Behavior, Suggestions
Exakat since 2.5.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Available in Entreprise Edition, Exakat Cloud

14.2.277 Could Cast To Array

The array cast operator transform a scalar into an array with that scalar. It also keeps an array as an array,
so a single call to (array) is able to convert scalars to array, while keeping values already in array form
intact.

<?php

//
if (!is_array($a)) {

$a = [$a];
}

// equivalent to
$a = (array) $a;

// same, with the else
if (is_array($a)) {
} else {

$a = array($a);
}

?>

See also Mastering the (array) Cast Operator in PHP.

14.2. List of Rules 667

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/en/mastering-the-array-cast-operator-in-php-a-comprehensive-guide/

Exakat Documentation, Release 1

Suggestions

• Use a direct cast to array

Specs

Short name Structures/CouldCastToArray
Rulesets All, Changed Behavior, Suggestions
Exakat since 2.6.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features array, cast
Available in Entreprise Edition, Exakat Cloud

14.2.278 Could Drop Variable

Suggest removing the variable in catch clause where the variable is not used. The type of the exception
is sufficient to make the catch clause work. Although, it is recommended to use the caught exception, for
chaining or logging, for example.

<?php

try {
doSomething();

} catch(Exception1 $e) {
// No usage of $e : just drop it from the clause

} catch(Exception2 $e2) {
// $e2 is caught and used.
echo $e2->getMessage();

}

?>

Suggestions

• Remove the unused variable

668 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception
https://www.php.net/exception

Exakat Documentation, Release 1

Specs

Short name Exceptions/CouldDropVariable
Rulesets All, Changed Behavior, Dead code, Suggestions
Exakat since 2.6.4
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features catch
Available in Entreprise Edition, Exakat Cloud

14.2.279 Could Inject Parameter

The parameter is immediately used to create an object. It could be interesting to replace it with an injection
of that object’s type to keep the method generic.

<?php

class x {

// The directory is immediately injected
function foo(Directory $dir) {

$this->dir = $dir;
}

// Path is injected, then turned into a directory
function bar(string $path) {

$this->dir = new Directory($path);
}

}
?>

Suggestions

• Use the instantiation as the type of the parameter.

Specs

Short name Classes/CouldInjectParam
Rulesets All, Analyze, Changed Behavior, Class Review
Exakat since 2.4.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features injection, typehint
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 669

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.280 Could Make A Function

When a function is called across the code with the same arguments often enough, it should be turned into
a local API.

This approach is similar to turning literals into constants : it centralize the value, it helps refactoring by updating it. It
also makes the code more readable. Moreover, it often highlight common grounds between remote code locations.

The analysis looks for functions calls, and checks the arguments. When the calls occurs more than 4 times, it is reported.

<?php

// str_replace is used to clean '&' from strings.
// It should be upgraded to a central function
function foo($arg) {

$arg = str_replace('&', '', $arg);
// do something with $arg

}

class y {
function bar($database) {

$value = $database->queryName();
$value = str_replace('&', '', $value);
// $value = removeAmpersand($value);
// do something with $arg2

}
}

// helper function
function removeAmpersand($string) {

return str_replace('&', '', $string);
}

?>

Name Default Type Description
centralizeThreshold 8 integer Minimal number of calls of the function with one common argument.

See also Don’t repeat yourself (DRY).

Suggestions

• Create a constant for common pieces of data

• Create a function based on context-free repeated elements

• Create a class based on repeated elements with dependent values

670 Chapter 14. Rules

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Exakat Documentation, Release 1

Specs

Short name Functions/CouldCentralize
Rulesets All, Analyze, Changed Behavior, Suggestions
Exakat since 0.11.6
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features class
Available in Entreprise Edition, Exakat Cloud

14.2.281 Could Not Type

Mark arguments, return types and properties that could not be typed.

Arguments, return types and properties that have no explicit typehint, and that could yield no guess from the following
analysis, are deemed unable to receive a type.

• Typehints/CouldBeCIT

• Typehints/CouldBeString

• Typehints/CouldBeArray

• Typehints/CouldBeBoolean

• Typehints/CouldBeVoid

• Typehints/CouldBeCallable

mixed typehint, which acts as the universal typehint, is not processed here.

There are situation which cannot be typed, and legit : the example below is an illustration. array_fill() is a native PHP
example, where the second argument may be of any type. __get() and __set() are also notoriously difficult to type,
given the broad usage of arguments.

<?php

// Accepts any input, and returns any input
// This may be used, but not typed.
function foo($b) {

return $b;
}

?>

14.2. List of Rules 671

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_fill
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php

Exakat Documentation, Release 1

Specs

Short name Typehints/CouldNotType
Rulesets All
Exakat since 2.1.2
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Medium
Features typehint
Available in Entreprise Edition, Exakat Cloud

14.2.282 Could Set Property Default

When a property is set to a literal in the constructor, the assignation may be moved to the property defini-
tion.

It is a micro-optimisation.

<?php

class x {
private $p;
private $p2;

function __construct($d) {
// dynamic default value.
$this->p = $d;

$this->p2 = "2";
}

}

?>

Suggestions

• Set the default value to the property declaration, and remove the assignation in the constructor

672 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Classes/CouldSetPropertyDefault
Rulesets All, Changed Behavior, Class Review, Suggestions
Exakat since 2.4.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.283 Could Type With Array

That argument may be typed with array. Based on usage, it was determined that the only type possible
is a array.

<?php

// $a is used with a function which requires an int.
function foo($a) {

return array_keys($a);
}

?>

See also Type declarations.

Suggestions

• Add the array typehint to the function.

• Add the iterable typehint to the function.

• Add the traversable typehint to the function.

Specs

Short name Functions/CouldTypeWithArray
Rulesets All
Exakat since 1.9.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features class
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 673

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.284 Could Type With Boolean

That argument, property or method may be typed with bool. Based on usage, it was determined that the
only type possible is a boolean.

<?php

// $a is used with a function which requires a boolean.
function foo($code, $a) {

return var_dump($code, $a);
}

?>

See also Type declarations.

Suggestions

• Add the bool typehint to the function.

Specs

Short name Functions/CouldTypeWithBool
Rulesets All
Exakat since 1.9.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features typehint
Available in Entreprise Edition, Exakat Cloud

14.2.285 Could Type With Int

That argument may be typed with int.

<?php

// $a is used with a function which requires an int.
function foo($a) {

return chr($a);
}

?>

See also Type declarations.

674 Chapter 14. Rules

https://www.php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration

Exakat Documentation, Release 1

Suggestions

• Add the int typehint to the function.

Specs

Short name Functions/CouldTypeWithInt
Rulesets All
Exakat since 1.9.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features integer, typehint
Available in Entreprise Edition, Exakat Cloud

14.2.286 Could Type With Iterable

Suggest using iterable typehint for arguments.

iterable represents both array and objects that implements Iterator interface. Both types are coerced, and usable
here.

<?php

// $s may be both an array or an iterator
function foo($s) : int {

$t = 0;
foreach($s as $v) {

$t += (int) $v;
}

return $t;
}

?>

See also Iterables.

Suggestions

• Add the iterable type

14.2. List of Rules 675

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.types.iterable.php

Exakat Documentation, Release 1

Specs

Short name Functions/CouldTypeWithIterable
Rulesets All
Exakat since 1.9.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features iterable
Available in Entreprise Edition, Exakat Cloud

14.2.287 Could Type With String

That argument may be typed with string.

<?php

// $a is used with a function which requires a string.
function foo($a) {

return strtolower($a);
}

?>

See also Type declarations.

Suggestions

• Add the string typehint to the function.

Specs

Short name Functions/CouldTypeWithString
Rulesets All
Exakat since 1.9.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features string
Available in Entreprise Edition, Exakat Cloud

676 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.288 Could Typehint

Arguments that are tested with instanceof, is_array(), is_string(), etc. could be modernized with a typehint.

<?php

function foo($a, $b) {
// $a is tested for B with instanceof.
if (!$a instanceof B) {

return;
}

// More code
}

function foo(B $a, $b) {
// May omit the initial test

// More code
}

?>

Suggestions

• Add the typehint, remove the test on the type

Specs

Short name Functions/CouldTypehint
Rulesets All, Changed Behavior
Exakat since 0.11.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features typehint
Available in Entreprise Edition, Exakat Cloud

14.2.289 Could Use Alias

This long name may be reduced by using an available alias.

This applies to classes (as full name or prefix), and to constants and functions.

<?php

use a\b\c;
use function a\b\c\foo;
use const a\b\c\D;

(continues on next page)

14.2. List of Rules 677

https://www.php.net/manual/en/language.operators.type.php
https://www.php.net/is_array
https://www.php.net/is_string
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// This may be reduced with the above alias to c\d()
new a\b\c\d();

// This may be reduced to c\d\e\f
new a\b\c\d\e\f();

// This may be reduced to c()
new a\b\c();

// This may be reduced to D
echo a\b\c\D;

// This may be reduced to D
a\b\c\foo();

// This can't be reduced : it is an absolute name
\a\b\c\foo();

// This can't be reduced : it is no an alias nor a prefix
a\b\d\foo();

?>

See also Using namespaces: Aliasing/Importing ¶.

Suggestions

• Use all your aliases so as to make the code shorter and more readable

• Add new aliases for missing path

• Make class names absolute and drop the aliases

Specs

Short name Namespaces/CouldUseAlias
Rulesets All, Changed Behavior, Suggestions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features namespace, use-alias
Available in Entreprise Edition, Exakat Cloud

678 Chapter 14. Rules

https://www.php.net/manual/en/language.namespaces.importing.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.290 Could Use Class Operator

The class operator is ::class. With a class name as left operator, it provides the full class name.

Classes may also be identified with a string, as a fully qualified name. Using the class operator is a more explicit way
to do it.

The ::class operator works with the local use expressions. It also provides a string, which may be further processed.
The class operator is also called the ‘scope resolution operator’.

<?php

use A\B\C;

$a = C::class;
$a = \A\B\C::class; // also valid
$object = new $a(); // object of A\B\C.

// string version
$a = '\a\b\c';
$object = new $a(); // object of A\B\C.

?>

See also Scope Resolution Operator (::).

Suggestions

• Replace the string with the class operator

Specs

Short name Classes/CouldUseClassOperator
Rulesets All, Changed Behavior, Suggestions
Exakat since 2.5.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features class-operator
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 679

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.291 Could Use Compact

Compact() turns a group of variables into an array. It may be used to simplify expressions.

Note that compact accepts any string, and any undefined variable is not set, without a warning.

<?php

$a = 1;
$b = 2;

// Compact call
$array = compact('a', 'b');

$array === [1, 2];

// Detailing all the keys and their value
$array = ['a' => $a, 'b' => $b];

?>

See also compact.

Suggestions

• Replace the array() call with a compact() call.

Specs

Short name Structures/CouldUseCompact
Rulesets All, Suggestions
Exakat since 1.1.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features variable
Examples WordPress
Available in Entreprise Edition, Exakat Cloud

14.2.292 Could Use Existing Constant

This rule reports literals that have the same value as a constant, and, as such, might be used as a constant,
instead of a literal.

Floats are not considered by this rule, for comparison reasons. Also, true, false, null, 0 and 1 are also automatically
excluded.

<?php

const A = 1;
(continues on next page)

680 Chapter 14. Rules

https://www.php.net/compact
http://www.php.net/compact
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$a = 1;

?>

Name De-
fault

Type Description

omitted-
Values

ar-
ray

Comma-separated list of values that have to be ignored with this analysis. They replace
the default values of 0 and 1.

Suggestions

• Use the constant instead of the literal

• Create a new constant for that literal

Specs

Short name Constants/CouldUseConstant
Rulesets All, Changed Behavior, Suggestions
Exakat since 2.3.5
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Medium
Features constant
Available in Entreprise Edition, Exakat Cloud

14.2.293 Could Use Match

The switch() syntax use may be replaced by a match() call.

The simplest case for such refactoring is when each of the switch’s case (including default), assign one value to the
same variable. See this below : Match() was introduced in PHP 8. It is not valid with older PHP versions.

<?php
switch($a) {

case 1:
$b = '1';
break;

case 2:
$b = '3';
break;

default:
$b = '0';
break;

}

(continues on next page)

14.2. List of Rules 681

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.switch.php
https://www.php.net/manual/en/control-structures.match.php
https://www.php.net/manual/en/control-structures.match.php

Exakat Documentation, Release 1

(continued from previous page)

/*
$b = match($a) {

1 => '1',
2 => '3',
default => '0'

};
*/

?>

See also Match().

Suggestions

• Replace switch() with match()

Specs

Short name Structures/CouldUseMatch
Rulesets All, Suggestions
Exakat since 2.2.2
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features match, switch
Available in Entreprise Edition, Exakat Cloud

14.2.294 Could Use Namespace Magic Constant

Use the __NAMESPACE__ magic constant, instead of hardcoding the current namespace. That way, the
namespace is easier to read, and it will change with the namespace expression.

<?php

namespace A\B\C {
class D {}
$className = 'D';

// hardcoded namespace, needed to instantiate dynamically the class
// Don't forget the extra \

print $fullclassName = '\'.__NAMESPACE__.'\'.$className;
$object = new $fullclassName;

// hardcoded namespace, needed to instantiate dynamically the class
$path = "\A\B\C";
$fullclassName = $path.$className;
$object = new $fullclassName;

(continues on next page)

682 Chapter 14. Rules

https://www.php.net/manual/en/control-structures.match.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.constants.predefined.php

Exakat Documentation, Release 1

(continued from previous page)

}
?>

Suggestions

• Replace the hardcoded namespace with the __NAMESPACE__ constant, and extra separators.

Specs

Short name Namespaces/CouldUseMagicConstant
Rulesets All, Changed Behavior, Suggestions
Exakat since 2.5.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features magic-constant
Available in Entreprise Edition, Exakat Cloud

14.2.295 Could Use Null-Safe Object Operator

When the preceding function call has the potential to return null, employing the null-safe object operator
can help mitigate fatal errors.

One approach is to assess the returned value prior to utilization, ensuring it is not null, and refraining from invoking
methods on a null reference. Alternatively, the null-safe operator can be employed, allowing verification of the end
result. If the result is null, it indicates an error.

Another approach is to use the null-safe operator when the intermediate methods returns an object or a null. When
chained, the null-safe operator will prevent Fatal Error.

<?php

// direct usage, with a check on the final value
$a = foo()?->b() ?? throw new exception('something went wrong when calculating $a');
// throw as an expression is a PHP 8.0 code

// direct usage, may yield a Fatal error
foo()->b();

// indirect usage, with a check on the returned value
$a = foo();
$c = $a ? $a->b() : null;

function foo() : ?A {
return rand(0, 1) ? new A() : null;

(continues on next page)

14.2. List of Rules 683

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/result
https://www.php.net/result
https://www.php.net/error
https://www.php.net/error

Exakat Documentation, Release 1

(continued from previous page)

}

class A {
function b() : string { return '';}

}

?>

See also PHP 8.0 feature focus: nullsafe methods and Nullsafe methods and properties.

Suggestions

• Add a check on NULL before using the returned value

• Update the previous method to prevent it from returning null

• Use the null-safe object operator and test the result afterward

Specs

Short name Structures/CouldUseNullableOperator
Rulesets All, Suggestions
Exakat since 2.3.3
PHP Version With PHP 8.0 and more recent
Severity Major
Time To Fix Slow (1 hour)
Precision Medium
Features nullsafe-object-operator, nullable
Available in Entreprise Edition, Exakat Cloud

14.2.296 Could Use Promoted Properties

Promoted properties are a syntax notation where the properties are declared as arguments of the construc-
tor.

They reduce PHP code at __construct() time. This feature is available in PHP 8.0.

<?php

class x {
function __construct($a, $b) {

// $a argument may be promoted to property $c
$this->c = $a;

// $b argument cannot be upgraded to property, as it is updated.
// Move the addition to the new call, or keep the syntax below
$this->d = $b + 2;

}
}

(continues on next page)

684 Chapter 14. Rules

https://platform.sh/blog/2020/php-80-feature-focus-type-nullsafe-methods/
https://www.php.net/manual/en/language.oop5.basic.php#language.oop5.basic.nullsafe
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.decon.php

Exakat Documentation, Release 1

(continued from previous page)

?>

See also PHP 8: Constructor property promotion and PHP RFC: Constructor Property Promotion.

Suggestions

• Update the constructor syntax, and remove the property specification.

Specs

Short name Php/CouldUsePromotedProperties
Rulesets All, Suggestions
Exakat since 2.1.9
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features promoted-property
Available in Entreprise Edition, Exakat Cloud

14.2.297 Could Use Short Assignation

Use short assignment operator, to speed up code, and keep syntax clear.

Some operators, like * or +, have a compact and fast ‘do-and-assign’ version. They looks like a compacted version for
= and the operator. This syntax is good for readability, and saves some memory in the process.

Depending on the operator, not all permutations of arguments are possible. For example, $a = $a - 2 can use the
-= short operator, but $a = 2 - $a doesn’t.

Addition and short assignation of addition have a different set of features when applied to arrays. Do not exchange one
another in that case.

Short operators are faster than the extended version, though it is a micro-optimization.

<?php

$a = 10 + $a;
$a += 10;

$b = $b - 1;
$b -= 1;

$c = $c * 2;
$c *= 2;

$d = $d / 3;
$d /= 3;

(continues on next page)

14.2. List of Rules 685

https://stitcher.io/blog/constructor-promotion-in-php-8
https://wiki.php.net/rfc/constructor_promotion
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$e = $e % 4;
$e %= 4;

$f = $f | 5;
$f |= 5;

$g = $g & 6;
$g &= 6;

$h = $h ^ 7;
$h ^= 7;

$i = $i >> 8;
$i >>= 8;

$j = $j << 9;
$j <<= 9;

// PHP 7.4 and more recent
$l = $l ?? 'value';
$l ??= 'value';

?>

See also Assignation Operators.

Suggestions

• Change the expression to use the short assignation

Specs

Short name Structures/CouldUseShortAssignation
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, Performances, Rector
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features short-assignation
ClearPHP use-short-assignations
Examples ChurchCRM, Thelia
Available in Entreprise Edition, Community Edition, Exakat Cloud

686 Chapter 14. Rules

https://www.php.net/manual/en/language.operators.assignment.php
https://github.com/dseguy/clearPHP/tree/master/rules/use-short-assignations.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.298 Could Use Trait

The following classes have been found implementing all of a trait’s methods : it could use this trait, and
remove duplicated code.

The comparison between the class methods’ and the trait’s methods are based on token. They may yield some false-
positives.

<?php

trait t {
function t1() {}
function t2() {}
function t3() {}

}

// t1, t2, t3 method could be dropped, and replaced with 'use t'
class foo1 {

function t1() {}
function t2() {}
function t3() {}

function j() {}
}

// foo2 is just the same as foo1
class foo2 {

use t;

function j() {}
}

?>

See also Forgotten Interface.

Suggestions

• Use trait, and remove duplicated code

Specs

Short name Traits/CouldUseTrait
Rulesets All, Changed Behavior
Exakat since 1.8.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features trait
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 687

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.299 Could Use Try

Some commands may raise exceptions. It is recommended to use the try/catch block to intercept those
exceptions, and process them.

• / : DivisionByZeroError

• % : DivisionByZeroError

• intdiv() : DivisionByZeroError, ArithmeticError

• << : ArithmeticError

• >> : ArithmeticError

• Phar\:\:mungserver : PharException

• Phar\:\:webphar : PharException

Some exceptions have an extra analysis, due to special detection condition : ParseError, with eval() and
DivisionByZeroError.

<?php

function division(int $a, int $b) {
// This expression might generate a DivisionByZeroError, and require a try/catch␣

→˓for error handling purposes.
return $a / $b;

}

?>

See also Predefined Exceptions and PharException.

Suggestions

• Add a try/catch clause around those commands

• Add a check on the values used with those operator : for example, check a dividend is not 0, or a bitshift is not
negative

688 Chapter 14. Rules

https://www.php.net/intdiv
https://www.php.net/manual/en/reserved.exceptions.php
https://www.php.net/manual/en/class.pharexception.php

Exakat Documentation, Release 1

Specs

Short
name

Exceptions/CouldUseTry

Rule-
sets

All, Suggestions

Ex-
akat
since

1.5.0

PHP
Ver-
sion

All

Sever-
ity

Minor

Time
To
Fix

Quick (30 mins)

Pre-
ci-
sion

High

Fea-
tures

try-catch, exception, arithmeticerror, divisionbyzeroerror, imagickexception, imagickpixelexception, inval-
idargumentexception, jsonexception, mysqli_sql_exception, pdoexception, pharexception, reflectionexcep-
tion, svmexception, typerror, unexpectedvalueexception

Ex-
am-
ples

Mautic

Re-
lated
rule

eval() Without Try, Check Division By Zero

Avail-
able
in

Entreprise Edition, Exakat Cloud

14.2.300 Could Use Yield From

Yield from can be applied to an array or another generator <https://www.php.net/`generator>`_. It re-
places a loop and a yield call. The resulting syntax is shorter and faster.

<?php

foreach(foo() as $f) {
doSomething($f);

}

// using yield and a loop to yield all elements
function foo() {

foreach(goo() as $g) {
yield $g;

}
}

(continues on next page)

14.2. List of Rules 689

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/generator

Exakat Documentation, Release 1

(continued from previous page)

// using yield from to yield all elements
function foo2() {

yield from goo();
}

function goo() : array {
return [1,2,3];

}

?>

Suggestions

• Use yield from keyword and shorten the syntax

Specs

Short name Structures/CouldUseYieldFrom
Rulesets All, Analyze, Changed Behavior, Performances
Exakat since 2.5.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features yield-from
Available in Entreprise Edition, Exakat Cloud

14.2.301 Could Use __DIR__

Use __DIR__ constant to access the current file’s parent directory <https://www.php.net/`directory>`_.

Avoid using dirname() on __FILE__. __DIR__ has been introduced in PHP 5.3.0.

<?php

// Better way
$fp = fopen(__DIR__.'/myfile.txt', 'r');

// compatible, but slow way
$fp = fopen(dirname(__FILE__).'/myfile.txt', 'r');

// Since PHP 5.3
assert(dirname(__FILE__) == __DIR__);

?>

See also Magic Constants.

690 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.constants.predefined.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/directory
https://www.php.net/dirname
https://www.php.net/manual/en/language.constants.predefined.php
https://www.php.net/manual/en/language.constants.predefined.php
https://www.php.net/manual/en/language.constants.predefined.php

Exakat Documentation, Release 1

Suggestions

• Use __DIR__ instead of dirname(__FILE__);

Specs

Short name Structures/CouldUseDir
Rulesets All, Analyze, CE, CI-checks, Suggestions, php-cs-fixable
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features magic-constant
Examples Woocommerce, Piwigo
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.302 Could Use array_fill_keys

array_fill_keys() is a native PHP function that creates an array from keys. It gets the list of keys, and a
constant value to assign to each keys.

This is twice faster than doing the same with a loop.

Note that is possible to use an object as initializing value : every element of the final array will be pointing to the same
value. And, also, using an object as initializing value means that the same object will be used for each key : the object
will not be cloned for each value.

<?php

$array = range('a', 'z');

// Fast way to build the array
$b = array_fill_keys($a, 0);

// Fast way to build the array, but every element will be the same object
$b = array_fill_keys($a, new Stdclass());

// Slow way to build the array
foreach($array as $a) {

$b[$a] = 0;
}

// Setting everything to null, slowly
$array = array_map(function() {}, $array);

?>

See also array_fill_keys.

14.2. List of Rules 691

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_fill_keys
https://www.php.net/array_fill_keys

Exakat Documentation, Release 1

Suggestions

• Use array_fill_keys()

Specs

Short name Structures/CouldUseArrayFillKeys
Rulesets All, Suggestions
Exakat since 1.1.7
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Examples ChurchCRM, PhpIPAM
Available in Entreprise Edition, Exakat Cloud

14.2.303 Could Use array_sum()

These loops could use array_sum(). array_sum() loops over the array and sum all of its elements. It is a
native PHP function, faster to execute and easier to read.

When the added elements are, in fact, arrays, use array_merge() instead of array_sum().

This is a micro-optimisation : it will speed up the code, but won’t bring large improvements.

<?php

$total = 0;
foreach($array as $b) {

$total = $total + $b;
}

?>

Suggestions

• Replace the loop with a call to array_sum().

Specs

Short name Structures/CouldUseArraySum
Rulesets All, Suggestions
Exakat since 2.3.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features array
Available in Entreprise Edition, Exakat Cloud

692 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_sum
https://www.php.net/array_sum
https://www.php.net/array_merge
https://www.php.net/array_sum
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.304 Could Use array_unique

Use array_unique() to collect unique elements from an array.

Always try to use native PHP functions, instead of rebuilding them with custom PHP code.

<?php

$unique = array();
foreach ($array as $b) {

if (!in_array($b, $unique)) {
/* May be more code */
$unique[] = $b;

}
}

?>

See also array_unique.

Suggestions

• Turn the foreach() and its condition into a call to array_unique()

• Extract the condition from the foreach() and add a separate call to array_unique()

Specs

Short name Structures/CouldUseArrayUnique
Rulesets All, Suggestions
Exakat since 1.2.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Examples Dolibarr, OpenEMR
Available in Entreprise Edition, Exakat Cloud

14.2.305 Could Use self

self keyword refers to the current class, or any of its parents. Using it is just as fast as the full class name,
it is as readable and it is will not be changed upon class or namespace change.

It is also routinely used in traits : there, self represents the class in which the trait is used, or the trait itself.

<?php

class x {
const FOO = 1;

public function bar() {
return self::FOO;

(continues on next page)

14.2. List of Rules 693

https://www.php.net/array_unique
https://www.php.net/array_unique
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// same as return x::FOO;
}

}

?>

See also Scope Resolution Operator (::).

Suggestions

• Replace the explicit name with self

Specs

Short name Classes/ShouldUseSelf
Rulesets All, Analyze, Class Review, Suggestions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features self, class
Examples WordPress, LiveZilla
Available in Entreprise Edition, Exakat Cloud

14.2.306 Could Use str_repeat()

Use str_repeat() or str_pad() instead of making a loop.

Making a loop to repeat the same concatenation is actually much longer than using str_repeat(). As soon as the loop
repeats more than twice, str_repeat() is much faster. With arrays of 30, the difference is significant, though the whole
operation is short by itself.

<?php

// This adds 7 'e' to $x
$x .= str_repeat('e', 7);

// This is the same as above,
for($a = 3; $a < 10; ++$a) {

$x .= 'e';
}

// here, $default must contains 7 elements to be equivalent to the previous code
foreach($default as $c) {

$x .= 'e';
}

?>

694 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/str_repeat
https://www.php.net/str_pad
https://www.php.net/str_repeat
https://www.php.net/str_repeat

Exakat Documentation, Release 1

Suggestions

• Use strrepeat() whenever possible

Specs

Short name Structures/CouldUseStrrepeat
Rulesets All, Analyze, CE, CI-checks, Top10
Exakat since 0.11.0
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features string
Examples Zencart
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.307 Could Use strcontains()

PHP 8 introduced the strcontains() function, which is a replacement for strpos(). strcontains() checks if a
string is found inside a string, and returns a boolean.

When strpos() is used as a boolean, or compared to a boolean, strcontains() is a good replacement. When strpos() is
actually used to calculate a position inside a string, it should not be replaced.

strcontains() is not backward compatible, so it should be be used before PHP 8.0. Polyfills are available.

<?php

// Could use strcontains()
if (strpos($haystack, $needle) !== false) { }

// Not a possible replacement
$position = strpos($haystack, $needle);
$haystack[$position + 1] = 'A';

?>

Suggestions

• Replace strpos() by strcontains()

14.2. List of Rules 695

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/strpos
https://www.php.net/strpos
https://www.php.net/strpos

Exakat Documentation, Release 1

Specs

Short name Structures/CouldUseStrContains
Rulesets All, Changed Behavior, Rector, Suggestions
Exakat since 2.6.4
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.308 Count() Is Not Negative

This rule reports when the Countable method count is poised to return a negative value.

It also reports when a call to count() is compared to a value that might be negative.

<?phpVersion

// count() shall not be below 0, so === is preferable here
if (count($array) <= 0) { }

?>

Specs

Short name Structures/CountIsNotNegative
Rulesets All, Analyze, Changed Behavior
Exakat since 2.6.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.309 Count() To Array Append

The array append operator is able to generate a sane index, without relying on the count() function. This
is faster, and safer.

<?php

$newArray = [];
foreach($array as $value) {

// count is overkill here
$newArray[count($newArray)] = $value;

}

?>

696 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/countable
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/count

Exakat Documentation, Release 1

Suggestions

• Remove the call to count()

Specs

Short name Performances/CountToAppend
Rulesets All, Changed Behavior, Performances
Exakat since 2.6.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features append
Available in Entreprise Edition, Exakat Cloud

14.2.310 Courier Anti-Pattern

The courier anti-pattern is the storage of a dependency by a class, in order to create an instance that requires
this dependency.

The class itself doesn’t actually need this dependency, but has a dependency to a class that requires it. The alternative
here is to inject Foo instead of Bar.

<?php

// The foo class requires bar
class Foo {

public function __construct(Bar $b) {
}

}

// Class A doesn't depends on Bar, but depends on Foo
// Class A never uses Bar, but only uses Foo.
class A {

private $courier;

public function __construct(Bar $courier) {
$this->courier = $courier;

}

public function Afoo() {
$b = new Foo($this->courier);

}

}

?>

See also Courier Anti-pattern.

14.2. List of Rules 697

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://r.je/oop-courier-anti-pattern.html

Exakat Documentation, Release 1

Specs

Short name Patterns/CourrierAntiPattern
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.11.6
PHP Version All
Severity
Time To Fix
Precision Very high
Features pattern
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.311 Crc32() Might Be Negative

crc32() may return a negative number, on 32 bits platforms.

According to the manual : Because PHP's integer type is signed many CRC32 checksums will result in negative integers
on 32 bits platforms. On 64 bits installations, all crc32() results will be positive integers though.

<?php

// display the checksum with %u, to make it unsigned
echo sprintf('%u', crc32($str));

// turn the checksum into an unsigned hexadecimal
echo dechex(crc32($str));

// avoid concatenating crc32 to a string, as it may be negative on 32bits platforms
echo 'prefix'.crc32($str);

?>

See also crc32().

Specs

Short name Php/Crc32MightBeNegative
Rulesets All, Analyze, Changed Behavior, PHP recommendations
Exakat since 0.11.0
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features crc32
Available in Entreprise Edition, Exakat Cloud

698 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/crc32
https://www.php.net/result
https://www.php.net/crc32
https://www.php.net/crc32
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.312 Create Compact Variables

This command creates Variable definitions, based on usage of compact().

This only works when compact() is used with literal values, or with constants. Dynamic values are not reported.

<?php

function foo() {
$a = 1;
return compact('a');

}
?>

Specs

Short name Complete/CreateCompactVariables
Rulesets All, CE, Changed Behavior, NoDoc
Exakat since 1.9.2
PHP Version All
Severity
Time To Fix
Precision Very high
Features compact, dynamic-variable
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.313 Create Default Values

This commands adds a link between variables, property definitions and any assignation to this container.

Variables have no definition expression in PHP. Exakat holds their definition with the Variabledefinition node.

Properties have definitions, and non-compulsory default values. This command creates multiple DEFINITION link for
them.

DEFAULT is convenient in the case of null value, which will be assigned an object at execution time. Short assignations,
such as += are not considered default value. It needs to be a full assignation

<?php

function foo() {
// local Variabledefinition links to this expression
$a = 1;

}

class x {
// 1 is a default value
private $p = 1;

function __construct() {
// 2 is also a default value for this.
// This default value is different from the above as it is a part of an␣

(continues on next page)

14.2. List of Rules 699

https://www.php.net/compact
https://www.php.net/compact
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

→˓assignation
$this->p = 2;

}
}

?>

Specs

Short name Complete/CreateDefaultValues
Rulesets All, Changed Behavior, NoDoc
Exakat since 1.9.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.314 Create Foreach Default

This command adds DEFAULT link from the blind variables to the literal definitions, when they are avail-
able. This adds sources for static loops, which are based on hardcoded list of data. Dynamic loops are not
affected.

<?php

// $a may b e 1, 2 or 3
foreach([1,2,3] as $a) {

echo $a;
}

?>

Specs

Short name Complete/CreateForeachDefault
Rulesets All, Changed Behavior, NoDoc
Exakat since 1.9.9
PHP Version All
Severity
Time To Fix
Precision Medium
Available in Entreprise Edition, Exakat Cloud

700 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.315 Create Magic Method

This command creates a link DEFINITION between a __call() and __callStatic() calls, and its
equivalent magic method.

This command may not detect all possible link for the __get() and __set() call. It may be missing information about
the nature of the object. Self, static, parent and simple variables are detected.

<?php

class x {
function foo() {

// This is linked to __call
$this->c();

// This is linked to __callStatic
return $this::C();

}

function __call($name, $args) {
// Normal method call

}

function __callStatic($name, $args) {
// Static method call

}
}

?>

See also Magic Methods.

Specs

Short name Complete/CreateMagicMethod
Rulesets All, Changed Behavior, NoDoc
Exakat since 1.9.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features magic-method
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 701

https://www.php.net/manual/en/language.oop5.magic.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.316 Create Magic Property

This command creates a link DEFINITION between a __get and __set calls, and its equivalent magic
method.

It also adds links between __invoke and __toString in adapted situations. This command may not detect all possible
link for the __get and __set call. It may be missing information about the nature of the object.

<?php

class x {
function foo() {

// This is linked to __set
$this->a = 1;

// This is linked to __get
return $this->b;

}

function __get($name) {
return 1;

}

function __set($name, $value) {
// Store the value

}
}

?>

Specs

Short name Complete/CreateMagicProperty
Rulesets All, CE, Changed Behavior, NoDoc
Exakat since 1.9.2
PHP Version All
Severity
Time To Fix
Precision High
Features magic-property
Available in Entreprise Edition, Community Edition, Exakat Cloud

702 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.317 Crypto Usage

Usage of cryptography and hashes functions.

The functions listed are the native PHP functions, and do not belong to a specific extension, like OpenSSL, mcrypt or
mhash.

Cryptography and hashes are mainly used for storing sensitive data, such as passwords, or to verify authenticity of data.
They may also be used for name-randomization with cache.

<?php

if (md5($_POST['password']) === $row['password_hash']) {
user_login($user);

} else {
error('Wrong password');

}
?>

See also Cryptography Extensions.

Specs

Short name Php/CryptoUsage
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 1.0.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features crypto
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.318 Custom Class Usage

List of usage of custom classes throughout the code. This might be important when it is time to refactor
or remove such usage, before removing the class itself.

<?php

class x {}

// This is a class usage
$a = new X();

?>

Name Default Type Description
forbiddenClasses ini_hash List of classes to be avoided

14.2. List of Rules 703

https://www.php.net/manual/en/refs.crypto.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Classes/AvoidUsing
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features class
Available in Entreprise Edition, Exakat Cloud

14.2.319 Custom Constant Usage

The code is using constants that are not defined in PHP extensions or PHP itself. This may lead to a fatal
error.

<?php

// display MY_CONSTANT : MY_CONSTANT is a user constant.
echo MY_CONSTANT;

// display PHP version : PHP_VERSION is a native PHP constant.
echo PHP_VERSION;

// MY_CONSTANT definition.
const MY_CONSTANT;

?>

See also PHP Constants.

Specs

Short name Constants/CustomConstantUsage
Rulesets All, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features constant
Available in Entreprise Edition, Community Edition, Exakat Cloud

704 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/manual/en/language.constants.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.320 Cyclic References

Avoid cyclic references.

Cyclic references happen when an object points to another object, which reciprocate. This is particularly possible with
classes, when the child class has to keep a reference to the parent class. Cyclic references, or circular references, are
memory intensive : only the garbage collector can understand when they may be flushed from memory, which is a
costly operation. On the other hand, in an acyclic reference code, the reference counter will know immediately know
that an object is free or not.

<?php

class a {
private $p = null;

function foo() {
$this->p = new b();
// the current class is stored in the child class
$this->p->m($this);

}
}

class b {
private $pb = null;

function n($a) {
// the current class keeps a link to its parent
$this->pb = $a;

}
}
?>

See also About circular references in PHP and A Journey to find a memory leak.

Suggestions

• Use a different object when calling the child objects.

• Refactor your code to avoid the cyclic reference.

Specs

Short name Classes/CyclicReferences
Rulesets All, Analyze, Class Review
Exakat since 2.1.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features class, extends
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 705

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://johann.pardanaud.com/blog/about-circular-references-in-php
https://jolicode.com/blog/a-journey-to-find-a-memory-leak/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.321 Cyclomatic Complexity

This rules calculates cyclomatic complexity for each method, function, and closures.

<?php

// cyclomatic complexity of 2
function foo() {

if ($a) {

} else {

}
}

?>

See also Cyclomatic complexity.

Specs

Short name Dump/CyclomaticComplexity
Rulesets All, CE, Changed Behavior, Dump
Exakat since 1.9.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features cyclomatic-complexity
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.322 DI Cyclic Dependencies

When injecting dependencies, classes that mutually depend on each other is a code smell.

Dependency injection should be organized as an acyclic tree-like structure

<?php

// Classes A and B depends on each other.
class A {

protected $b;

public function __construct(B $b) {
$this->b = $b;

}
}

class B {
public $a;

(continues on next page)

706 Chapter 14. Rules

https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

protected function setA(A $a) {
$this->a = $a;

}
}
?>

See also Dependency Injection Smells.

Specs

Short name Classes/TypehintCyclicDependencies
Rulesets All, Changed Behavior
Exakat since 0.11.6
PHP Version All
Severity
Time To Fix
Precision Very high
Features injection
Available in Entreprise Edition, Exakat Cloud

14.2.323 Dangling Array References

Always unset a referenced-variable used in a loop.

It is highly recommended to unset blind variables when they are set up as references after a loop. When omitting this
step, the next loop that will also require this variable will deal with garbage values, and produce unexpected results.

<?php

$array = array(1,2,3,4);

foreach($array as &$a) {
$a += 1;

}
// This only unset the reference, not the value
unset($a);

// Dangling array problem
foreach($array as &$a) {

$a += 1;
}
//$array === array(3,4,5,6);

// This does nothing (apparently)
// $a is already a reference, even if it doesn't show here.
foreach($array as $a) {}
//$array === array(3,4,5,5);

?>

14.2. List of Rules 707

http://seregazhuk.github.io/2017/05/04/di-smells/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

See also No Dangling Reference, PHP foreach pass-by-reference: Do it right, or better not at all, How does PHP
‘foreach’ actually work? and References and foreach.

Suggestions

• Avoid using the reference altogether : sometimes, the reference is not needed.

• Add unset() right after the loop, to avoid reusing the reference.

Specs

Short name Structures/DanglingArrayReferences
Rulesets All, Analyze, CE, CI-checks, PHP recommendations, Top10
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Features loop
ClearPHP no-dangling-reference
Examples Typo3, SugarCrm
Related rule Altering Foreach Without Reference
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.324 Date Formats

Inventory of date formats used in the code.

Date format are detected with calls to date(), strftime(), gmstrftime(), date_format() functions and to the format()
method on Datetime and DatetimeImmutable.

<?php

$time = time();
// This is a formated date
echo date('r', $time);

?>

See also Date and Time.

708 Chapter 14. Rules

https://github.com/dseguy/clearPHP/blob/master/rules/no-dangling-reference.md
https://coderwall.com/p/qx3fpa/php-foreach-pass-by-reference-do-it-right-or-better-not-at-all
https://stackoverflow.com/questions/10057671/how-does-php-foreach-actually-work/14854568#14854568
https://stackoverflow.com/questions/10057671/how-does-php-foreach-actually-work/14854568#14854568
https://schlueters.de/blog/archives/141-references-and-foreach.html
https://github.com/dseguy/clearPHP/tree/master/rules/no-dangling-reference.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/date
https://www.php.net/strftime
https://www.php.net/gmstrftime
https://www.php.net/date_format
https://www.php.net/manual/en/book.datetime.php

Exakat Documentation, Release 1

Specs

Short name Php/DateFormats
Rulesets All, Changed Behavior, Inventory
Exakat since 0.12.16
PHP Version All
Severity
Time To Fix
Precision Very high
Features date
Available in Entreprise Edition, Exakat Cloud

14.2.325 DateTimeImmutable Is Not Immutable

DateTimeImmutable is not really immutable because its internal state can be modified after instantiation.

Inspired by the article from Matthias Noback.

<?php

$dt = new DateTimeImmutable('now');
echo $dt->getTimestamp() . "\n";

$dt->__construct('tomorrow');
echo $dt->getTimestamp() . "\n";

?>

See also Effective immutability with PHPStan.

Suggestions

• Remove the call to the constructor after instantation of a DateTimeImmutable object

Specs

Short name Php/DateTimeNotImmutable
Rulesets All, Analyze
Exakat since 2.4.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 709

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://matthiasnoback.nl/2022/07/effective-immutability-with-phpstan/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.326 Declare Global Early

Static and global keywords should be used as early as possible in a method.

Performance wise, it is better to call global or static only before using the variable.

Human-wise, it is recommended to put global or static at the beginning of the method, for better readability.

<?php

function foo() {
// $a is not global yet. It is a local variable
$a = 1;
// Same for static variables
$s = 5;

// Now $a is global
global $a;
$a = 3;

// Now $s is static
static $s;
$s = 55;

}

?>

See also Using static variables and The global keyword.

Suggestions

• Use static and global at the beginning of the method

• Move static and global to the first usage of the variable

• Remove any access to the variable before static and global

Specs

Short name Structures/VariableMayBeNonGlobal
Rulesets All
Exakat since 1.5.3
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features static-variable, global-variable
Available in Entreprise Edition, Exakat Cloud

710 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.variables.scope.php#language.variables.scope.static
https://www.php.net/manual/en/language.variables.scope.php#language.variables.scope.global
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.327 Declare Static Once

Global and static variables should be declared only once in a method. It is also recommended to configure it
at the beginning of the method. This could be refined by defining the variable at the last common moment,
though it lacks readability.

Defining static or global methods late is a micro-optimisation.

<?php

function foo() {
if (rand(0, 1)) {

static $x;

++$x;
} else {

static $x;

--$x;
}

}

?>

Suggestions

• Remove duplicate static and global calls

• Move the static and global calls to the beginning of the method

• Refactor the static and global variable to properties

Specs

Short name Structures/DeclareStaticOnce
Rulesets All, Suggestions
Exakat since 2.2.1
PHP Version With PHP 8.3 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features static
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 711

https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.328 Declare strict_types Usage

Usage of strict_types. By default, PHP attempts to change the original type to match the type specified
by the type-declaration. With an explicit strict_types declaration, PHP ensures that the incoming
argument has the exact type.

strict_types were introduced in PHP 7.0.

<?php

// Setting strict_types;
declare(strict_types = 1);

function foo(int $i) {
echo $i;

}

// Always valid : displays 1
foo(1);
// with strict types, this emits an error
// without strict types, this displays 1
foo(1.7);

?>

See also declare.

Specs

Short name Php/DeclareStrictType
Rulesets All, Appinfo, CE, Changed Behavior, Preferences
Exakat since 0.12.1
PHP Version With PHP 7.0 and more recent
Severity
Time To Fix
Precision Very high
Features declare
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.329 Deep Definitions

Structures, such as functions, classes, interfaces, traits, enum, etc. may be defined anywhere in the code,
including inside functions. This is legit code for PHP.

Since the availability of autoload, with spl_register_autoload(), there is no need for that kind of code. Structures should
be defined, and accessible to the autoloading. Inclusions and deep definitions should be avoided, as they compel code
to load some definitions, while autoloading will only load them if needed. Functions are excluded from autoload, but
shall be gathered in libraries, and not hidden inside other code.

Constants definitions are tolerated inside functions : they may be used for avoiding repeat, or noting the usage of such
function.

Definitions inside a if/then statement, that include PHP version check are accepted here.

712 Chapter 14. Rules

https://www.php.net/manual/en/control-structures.declare.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

<?php

class X {
function init() {

// myFunction is defined when and only if X::init() is called.
if (!function_exists('myFunction'){

function myFunction($a) {
return $a + 1;

}
})

}
}

?>

See also Autoloading Classes.

Suggestions

• Move function definitions to the global space : outside structures, and method.

Specs

Short name Functions/DeepDefinitions
Rulesets All, Analyze, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features class
Examples Dolphin
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.330 Default Then Discard

Discard the value before assigning it.

In the code below, the variable is assigned a default value. Then, this value is immediately tested and discarded.

It is more readable to test the value, and discard it, or assign it later, rather than assign first then discard it later.

<?php

$a = $a ?? null;
if ($a === null) {

throw new Exception();
}
doSomething();

(continues on next page)

14.2. List of Rules 713

https://www.php.net/manual/en/language.oop5.autoload.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// Alternative code

if (!isset($a) || $a === null) {
throw new Exception();

}
// $a has a valid value for the purpose

doSomething();

?>

Suggestions

• Test the value and bail out if it is not valid before assigning it

Specs

Short name Structures/DefaultThenDiscard
Rulesets All, Analyze
Exakat since 2.5.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features default
Available in Entreprise Edition, Exakat Cloud

14.2.331 Define Constants With Array

PHP has the ability to define an array as a constant, using the define() native call. This was not possible
until that version, only with the const keyword.

This was introduced in PHP 7.0. It also applies to the const keyword and to class constants.

<?php

//Defining an array as a constant
define('MY_PRIMES', [2, 3, 5, 7, 11]);

const MY_OTHER_NUMBERS = [12, 13, 15, 17, 111];

?>

714 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/define

Exakat Documentation, Release 1

Specs

Short name Php/DefineWithArray
Rulesets All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56
Exakat since 0.8.4
PHP Version With PHP 7.0 and more recent
Severity Critical
Time To Fix Slow (1 hour)
Precision Very high
Features define, const, static-constant-expression
Available in Entreprise Edition, Exakat Cloud

14.2.332 Defined Class Constants

Checks if class constants are defined. This includes class constants, one level of parent (extended) or
interfaces (implemented).

This analysis takes into account native PHP, extension and stubs class definitions.

<?php

class X {
const Y = 2;

function foo() {
// This is defined on the line above
echo self::Y;

// This is not defined in the current code
echo X::X;

}
}

?>

Specs

Short name Classes/DefinedConstants
Rulesets All, CE, IsExt, IsPHP, IsStub
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features class-constant
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 715

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.333 Defined Exceptions

This is the list of defined exceptions. Those exceptions are custom to the code, and shall be thrown at one
point or more in the code.

<?php

class myException extends \Exception {}

// A defined exception
throw new myException();

// not a defined exception : it is already defined.
throw new \RuntimeException();

?>

See also Predefined Exceptions and Exceptions.

Specs

Short name Exceptions/DefinedExceptions
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features predefined-exception, exception
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.334 Defined Parent MP

This rule reports when a static call with parent, where the parent has an actual definition.

<?php

class foo {
protected function parentDefined() {}
protected function unusedParentMethod() {}

// visibility is checked too
protected function unusuableParentMethod() {}

}

class bar extends foo {

private function someMethod() {
// reported
parent::parentDefined();

(continues on next page)

716 Chapter 14. Rules

https://www.php.net/manual/en/reserved.exceptions.php
https://www.php.net/manual/en/language.exceptions.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

(continued from previous page)

// not reported, as method is unreachable in parent
parent::unusuableParentMethod();

// not reported, as method is undefined in parent
parent::parentUndefined();

}

protected function parentDefined2() {}
}

?>

Specs

Short name Classes/DefinedParentMP
Rulesets All, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.335 Defined Properties

List of properties that are explicitly defined in the class, its parents or traits.

<?php

class foo {
// property definition
private bar = 2;

}

?>

See also Properties.

14.2. List of Rules 717

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.properties.php

Exakat Documentation, Release 1

Specs

Short name Classes/DefinedProperty
Rulesets All, CE
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.336 Defined static:: Or self::

List of all defined static and self properties and methods.

<?php

class x {
static public function definedStatic() {}
private definedStatic = 1;

public function method() {
self::definedStatic();
self::undefinedStatic();

static::definedStatic;
static::undefinedStatic;

}
}

?>

Specs

Short name Classes/DefinedStaticMP
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Exakat Cloud

718 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.337 Definitions Only

File is definition only.

Definition-only files only include structure definitions : class, functions, traits, interfaces, constants, global, declare(),
use and include().

Some functioncalls are also considered definition only, as they configure PHP, but don’t process data : * ini_set() * er-
ror_reporting * register_shutdown_function() * set_session_handler() * set_error_handler() * spl_autoload_register()
File A : File B :

<?php

// This file has only definitions
function foo() {}

define('a', 1);

class bar {}

?>

Specs

Short name Files/DefinitionsOnly
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features definition
Available in Entreprise Edition, Exakat Cloud

14.2.338 Dependant Abstract Classes

Abstract classes should be autonomous. It is recommended to avoid depending on methods, constant or
properties that should be made available in inheriting classes, without explicitly abstracting them.

The following abstract classes make usage of constant, methods and properties, static or not, that are not defined in the
class. This means the inheriting classes must provide those constants, methods and properties, but there is no way to
enforce this.

This may also lead to dead code : when the abstract class is removed, the host class have unused properties and methods.

<?php

// autonomous abstract class : all it needs is within the class
abstract class c {

private $p = 0;

function foo() {
(continues on next page)

14.2. List of Rules 719

https://www.php.net/ini_set
https://www.php.net/register_shutdown_function
https://www.php.net/set_error_handler
https://www.php.net/spl_autoload_register
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

(continued from previous page)

return ++$this->p;
}

}

// dependant abstract class : the inheriting classes needs to provide some properties or␣
→˓methods
abstract class c2 {

function foo() {
// $p must be provided by the extending class
return ++$this->p;

}
}

class c3 extends c2 {
private $p = 0;

}
?>

See also Dependant Trait.

Suggestions

• Make the class only use its own resources

• Split the class in autonomous classes

• Add local property definitions to make the class independent

Specs

Short name Classes/DependantAbstractClass
Rulesets All, Analyze, Class Review
Exakat since 1.8.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features abstract
Available in Entreprise Edition, Exakat Cloud

14.2.339 Dependant Trait

Traits should be autonomous. It is recommended to avoid depending on methods or properties that should
be in the using class.

The following traits make usage of methods and properties, static or not, that are not defined in the trait. This means
the host class must provide those methods and properties, but there is no way to enforce this.

This may also lead to dead code : when the trait is removed, the host class have unused properties and methods.

720 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

<?php

// autonomous trait : all it needs is within the trait
trait t {

private $p = 0;

function foo() {
return ++$this->p;

}
}

// dependant trait : the host class needs to provide some properties or methods
trait t2 {

function foo() {
return ++$this->p;

}
}

class x {
use t2;

private $p = 0;
}
?>

See also Dependant Abstract Classes.

Suggestions

• Add local property definitions to make the trait independent

• Make the trait only use its own resources

• Split the trait in autonomous traits

Specs

Short name Traits/DependantTrait
Rulesets All, Analyze, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features trait
Examples Zencart
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 721

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.340 Dependency Injection

A dependency injection is a typehinted argument, that is stored in a property by the constructor.

<?php

// Classic dependency injection
class foo {

private $bar;

public function __construct(Bar $bar) {
$this->bar = $bar;

}

public function doSomething($args) {
return $this->bar->barbar($args);

}
}

// Without typehint, this is not a dependency injection
class foo {

private $bar;

public function __construct($bar) {
$this->bar = $bar;

}
}

?>

See also Understanding Dependency Injection.

Specs

Short name Patterns/DependencyInjection
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.11.6
PHP Version All
Severity
Time To Fix
Precision Very high
Features dependency-injection, pattern
Available in Entreprise Edition, Community Edition, Exakat Cloud

722 Chapter 14. Rules

http://php-di.org/doc/understanding-di.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.341 Deprecated Attribute

The Deprecated attribute marks a class, method, property, class constants and functions that should not
be used anymore. The element is still usable in the current version, and it might be removed in a future
version.

The full description of the deprecation include #[Deprecated(reason: '', replacement: '')]. The reason
parameter is a human readable reason for the change; the replacement parameter is a replacement suggestion. Only the
attribute is used in this rule.

<?php

class x {
#[Deprecated]
function foo() {}

}

$x = new x;
$x->foo();

?>

See also #[Deprecated].

Suggestions

• Replace this call to another call, that is future proof.

Specs

Short name Attributes/Deprecated
Rulesets All, Attributes
Exakat since 2.6.8
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.342 Deprecated Callable

Callable functions that are supported by call_user_func($callable), but not with the $callable()
syntax are deprecated.

One important aspect is the loss of context : ‘self::method’ may be created anywhere in the code, while self::class can
only be used inside a class, and, in that case, inside the target class. It is recommended to update the code with any
PHP version, to prepare for the future removal of the feature.

<?php

class x {
(continues on next page)

14.2. List of Rules 723

https://www.php.net/attribute
https://www.php.net/attribute
https://blog.jetbrains.com/phpstorm/2020/10/phpstorm-2020-3-eap-4/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// This will fail
function foo(callable $callable) {

$callable();
}

function method() {

}
}

$x = new x;
$x->foo('self::method');
?>

See also PHP RFC: Deprecate partially supported callables.

Suggestions

• Replace the keyword (such as self) by the full class name, with self::class.

• Use a variable and the $s(. . .) syntax.

Specs

Short name Functions/DeprecatedCallable
Rulesets All, CompatibilityPHP82, LintButWontExec
Exakat since 2.3.1
PHP Version With PHP 8.2 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features callable
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.343 Deprecated Mb_string Encodings

Some encodings, available in the mb_string extensions, are deprecated. Starting with PHP 8.2, the follow-
ing encodings emits a warning:

• BASE64

• UUENCODE

• HTML-ENTITIES

• html

• Quoted-Printable

• qprint

This applies to the mb_detect_encoding() and mb_convert_encoding() functions.

724 Chapter 14. Rules

https://wiki.php.net/rfc/deprecate_partially_supported_callables
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/mb_detect_encoding
https://www.php.net/mb_convert_encoding

Exakat Documentation, Release 1

<?php

// recommended version
$base64Encoded = base64_encode('test'));

// Deprecated version
mb_convert_encoding('test', 'base64'));

?>

See also PHP 8.2: Mbstring: Base64, Uuencode, QPrint, and HTML Entity encodings are deprecated.

Suggestions

• Use uuencode() and uudecode() functions.

Specs

Short name Structures/DeprecatedMbEncoding
Rulesets All, Changed Behavior, CompatibilityPHP82
Exakat since 2.5.2
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features encoding
Available in Entreprise Edition, Exakat Cloud

14.2.344 Deprecated PHP Functions

The following functions are deprecated. It is recommended to stop using them now and replace them with
a durable equivalent.

Note that these functions may be still usable : they generate warning that help tracking their usage in the log. To
eradicate their usage, watch the logs, and update any deprecated warning. This way, the code won’t be stuck when the
function is actually removed from PHP.

<?php

// This is the current function
list($day, $month, $year) = explode('/', '08/06/1995');

// This is deprecated
list($day, $month, $year) = split('/', '08/06/1995');

?>

14.2. List of Rules 725

https://php.watch/versions/8.2/mbstring-qprint-base64-uuencode-html-entities-deprecated
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Replace those deprecated with modern syntax

• Stop using deprecated syntax

Specs

Short name Php/Deprecated
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features crypto
ClearPHP no-deprecated
Examples Dolphin
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.345 Dereferencing Levels

This is the counts of level of dereferencing.

Every time a -> object operator or ?-> null-safe object operator are used, this count as one level of dereferencing.

Fluent interfaces tends to have very high levels of deferencing.

<?php

// one level of dereferencing
$a->b;
$c->d();

// four levels of dereferencing
$a->b->c()->d->e();

// also four levels of dereferencing
$a->b?->c()->d->e();

?>

726 Chapter 14. Rules

https://github.com/dseguy/clearPHP/tree/master/rules/no-deprecated.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Dump/DereferencingLevels
Rulesets All, CE, Dump
Exakat since 1.9.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features dereferencing
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.346 Dereferencing String And Arrays

PHP allows the direct dereferencing of strings and arrays, from array literals and returned array.

This was added in PHP 5.5. There is no need anymore for an intermediate variable between a string and array (or any
expression generating such value) and accessing an index.

<?php
$x = array(4,5,6);
$y = $x[2] ; // is 6

//May be replaced by
$y = array(4,5,6)[2];
$y = [4,5,6][2];
?>

Specs

Short name Structures/DereferencingAS
Rulesets All, Appinfo, CE, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54
Exakat since 0.8.4
PHP Version With PHP 5.3 and older
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features dereferencing
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 727

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.347 Detect Current Class

Detecting the current class should be done with self::class or static::class operator.

__CLASS__ may be replaced by self\:\:class. get_called_class() may be replaced by static\:\:class.

__CLASS__ and get_called_class() are set to be deprecated in PHP 7.4.

<?php

class X {
function foo() {

echo __CLASS__."\n"; // X
echo self::class."\n"; // X

echo get_called_class()."\n"; // Y
echo static::class."\n"; // Y

}
}

class Y extends X {}

$y = new Y();
$y->foo();

?>

See also PHP RFC: Deprecations for PHP 7.4.

Suggestions

• Use the self::class operator to detect the current class name, instead of __CLASS__ and get_class().

• Use the static::class operator to detect the current called class name, instead of get_called_class().

Specs

Short name Php/DetectCurrentClass
Rulesets All, CE, Changed Behavior, CompatibilityPHP74, Suggestions
Exakat since 1.3.8
PHP Version With PHP 8.0 and older
Severity
Time To Fix
Precision Very high
Features class
Available in Entreprise Edition, Community Edition, Exakat Cloud

728 Chapter 14. Rules

https://www.php.net/manual/en/language.constants.predefined.php
https://www.php.net/get_called_class
https://www.php.net/manual/en/language.constants.predefined.php
https://www.php.net/get_called_class
https://wiki.php.net/rfc/deprecations_php_7_4
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.348 Die Exit Consistence

Die and Exit have the same functional use.

The analyzed code has less than 10% of one of them : for consistency reasons, it is recommended to make them all the
same.

It happens that die or exit are used depending on coding style and files. One file may be consistently using exit, while
the others are all using exit.

Using die or exit is also the target of other analysis.

<?php

// be consistent
switch ($a) {

case 1 :
exit;

case 2 :
exit;

case 3 :
exit;

case 4 :
exit;

case 5 :
exit;

case 6 :
exit;

case 7 :
exit;

case 8 :
exit;

case 9 :
exit;

case 10 :
exit;

default :
die(); // Be consistent, always use the same.

}

?>

14.2. List of Rules 729

https://www.php.net/die
https://www.www.php.net/exit
https://www.php.net/die
https://www.www.php.net/exit
https://www.www.php.net/exit
https://www.www.php.net/exit
https://www.php.net/die
https://www.www.php.net/exit

Exakat Documentation, Release 1

Suggestions

• Adopt one of the two syntaxes

Specs

Short name Structures/DieExitConsistance
Rulesets All, Preferences
Exakat since 0.8.9
PHP Version All
Severity
Time To Fix
Precision Very high
Features die
Available in Entreprise Edition, Exakat Cloud

14.2.349 Difference Consistence

There are two operators to check a difference : <> and !=.

The analyzed code has less than 10% of one of them : for consistency reasons, it is recommended to make them all the
same.

It happens that != and <> are used depending on coding style and files. One file may be consistently using <>, while
the others are all using !=. <> and != are the two only comparison operators that are identical.

<?php

// Both != and <> are used in the code
// When one of them is used less than 10%, it is reported as a consistence issue.
if ($a != $b) {

} elseif ($c <> $d) {

}

?>

See also Comparison Operators.

730 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.operators.comparison.php

Exakat Documentation, Release 1

Specs

Short name Structures/DifferencePreference
Rulesets All, Preferences
Exakat since 0.11.1
PHP Version All
Severity
Time To Fix
Precision Very high
Features operator
Available in Entreprise Edition, Exakat Cloud

14.2.350 Different Argument Counts

Two methods with the same name shall have the same number of compulsory argument. PHP accepts
different number of arguments between two methods, if the extra arguments have default values. Basically,
they shall be called interchangeably with the same number of arguments.

The number of compulsory arguments is often mistaken for the same number of arguments. When this is the case, it
leads to confusion between the two signatures. It will also create more difficulties when refactoring the signature.

While this code is legit, it is recommended to check if the two signatures could be synchronized, and reduce future
surprises.

<?php

class x {
function foo($a) {}

}

class y extends x {
// This method is compatible with the above, its signature is different
function foo($a, $b = 1) {}

}

?>

Suggestions

• Extract the extra arguments into other methods

• Remove the extra arguments

• Add the extra arguments to all the signatures

14.2. List of Rules 731

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Classes/DifferentArgumentCounts
Rulesets All, Analyze, Class Review
Exakat since 2.1.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features method
Available in Entreprise Edition, Exakat Cloud

14.2.351 Different Constructors

PHP allows different signatures for constructors. This is a legacy feature.

Only constructors are allowed to have different signatures : all other methods must be compatible with the parent
methods.

<?php

class x {
function __construct($a) {
}

}

class y extends x {
function __construct($a, $b) {

$this->b = $a;
parent::__construct($a);

}
}

?>

Suggestions

• Synchronize the methods signatures

• Make use of named constructors to have different signatures when building objects

732 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

Specs

Short name Classes/IncompatibleConstructor
Rulesets All, Changed Behavior, Class Review
Exakat since 2.5.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Available in Entreprise Edition, Exakat Cloud

14.2.352 Direct Call To __clone()

Direct call to magic method __clone() was forbidden. It is allowed since PHP 7.0.

From the RFC : Doing calls like $obj->`__clone(<https://www.php.net/manual/en/
language.oop5.magic.php>`_) is now allowed. This was the only magic method that had a
compile-time check preventing some calls to it, which doesn't make sense. If we allow all
other magic methods to be called, there's no reason to forbid this one.

<?php

class Foo {
function __clone() {}

}

$a = new Foo;
$a->__clone();

?>

See also Directly calling __clone is allowed.

Suggestions

• Use the clone operator to call the __clone magic method

Specs

Short name Php/DirectCallToClone
Rulesets All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56
Exakat since 1.4.8
PHP Version With PHP 7.0 and more recent
Severity Critical
Time To Fix Slow (1 hour)
Precision High
Features clone, magic-method
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 733

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://wiki.php.net/rfc/abstract_syntax_tree#directly_calling_clone_is_allowed
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.353 Direct Injection

The following code act directly upon PHP incoming variables like $_GET and $_POST. This makes those
snippets very unsafe.

<?php

// Direct injection
echo "Hello ".$_GET['user'].", welcome.";

// less direct injection
foo($_GET['user']);
function foo($user) {

echo "Hello ".$user.", welcome.";
}

?>

See also Cross-Site Scripting (XSS).

Suggestions

• Validate input : make sure the incoming data are what you expect from them.

• Escape output : prepare outgoing data for the next system to use.

Specs

Short name Security/DirectInjection
Rulesets All, Changed Behavior, Security
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features injection
Available in Entreprise Edition, Exakat Cloud

14.2.354 Directives Usage

This rule lists the directives mentioned in the code. When the directives are accessed in the code, it signals
that they must be configured in PHP.ini first.

<?php

//accessing the configuration to change it
ini_set('timelimit', -1);

//accessing the configuration to check it
ini_get('safe_mode');

(continues on next page)

734 Chapter 14. Rules

https://phpsecurity.readthedocs.io/en/latest/Cross-Site-Scripting-(XSS).html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

?>

See also ini_set().

Specs

Short name Php/DirectivesUsage
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features directive
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.355 Directly Use File

Some PHP functions have a close cousin that work directly on files. This is faster and less code to write.

• md5() => md5_file()

• highlight_string() => highlight_file(), show_source()

• parsekit_compile_string() => parsekit_compile_file()

• parse_ini_string() => parse_ini_file()

• sha1() => sha1_file()

• simplexml_load_string() => simplexml_load_file()

• yaml_parse() => yaml_parse_file()

• hash() => hash_file()

• hash_hmac() => hash_mac_file()

• hash_update() => hash_update_file()

• recode() => recode_file()

• recode_string() => recode_file()

<?php

// Good way
$file_hash = hash_file('sha512', 'example.txt');

// Slow way
$file_hash = hash('sha512', file_get_contents('example.txt'));

?>

14.2. List of Rules 735

https://www.php.net/ini_set
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/md5
https://www.php.net/md5_file
https://www.php.net/highlight_string
https://www.php.net/highlight_file
https://www.php.net/show_source
https://www.php.net/parse_ini_string
https://www.php.net/parse_ini_file
https://www.php.net/sha1
https://www.php.net/sha1_file
https://www.php.net/simplexml_load_string
https://www.php.net/simplexml_load_file
https://www.php.net/hash
https://www.php.net/hash_file
https://www.php.net/hash_hmac
https://www.php.net/hash_update
https://www.php.net/hash_update_file

Exakat Documentation, Release 1

Suggestions

• hash_file

Specs

Short name Structures/DirectlyUseFile
Rulesets All, Suggestions
Exakat since 1.5.5
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.356 Disconnected Classes

One class is extending the other, but they do not use any features from one another. Basically, those two
classes are using extends, but they are completely independent and may be separated.

When using the ‘extends’ keyword, the newly created classes are now acting together and making one. This should be
visible in calls from one class to the other, or simply by property usage : they can’t live without each other.

On the other hand, two completely independent classes that are merged, although they should be kept separated.

<?php

class A {
private $pa = 1;

function fooA() {
$this->pa = 2;

}
}

// class B and Class A are totally independent
class B extends A {

private $pb = 1;

function fooB() {
$this->pb = 2;

}
}

// class C makes use of class A : it is dependent on the parent class
class C extends A {

private $pc = 1;

function fooB() {
$this->pc = 2 + $this->fooA();

(continues on next page)

736 Chapter 14. Rules

https://www.php.net/manual/en/function.hash-file.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

}
}
?>

Suggestions

• Remove the extension

• Make actual usage of the classes, at least from one of them

Specs

Short name Classes/DisconnectedClasses
Rulesets All, Class Review
Exakat since 1.8.9
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features class
Examples WordPress
Available in Entreprise Edition, Exakat Cloud

14.2.357 Displays Text

Function calls that displays something to the output.

<?php

// Displays de the content of $a
print $a;

// Displays de the content of $b
print_r($b);

// Returns de the content of $b, no display.
$c = var_export($b, true);

?>

14.2. List of Rules 737

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Php/Prints
Rulesets All, Changed Behavior
Exakat since 0.10.9
PHP Version All
Severity
Time To Fix
Precision Very high
Features print
Available in Entreprise Edition, Exakat Cloud

14.2.358 Dl() Usage

Dynamically load PHP extensions with dl().

<?php

// dynamically loading ext/vips
dl('vips.' . PHP_SHLIB_SUFFIX);

?>

See also dl.

Specs

Short name Php/DlUsage
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 1.0.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features extension, dynamic-loading
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.359 Do In Base

Use SQL expression to compute aggregates in the database. By doing so, the data don’t have to be trans-
fered from the database to PHP, which saves a lot of operations. Such operations are also often faster in
the database, because of optimized code.

<?php

// Efficient way
$res = $db->query('SELECT sum(e) AS sumE FROM table WHERE condition');

(continues on next page)

738 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/dl
http://www.php.net/dl
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// The sum is already done
$row = $res->fetchArray();
$c += $row['sumE'];

// Slow way
$res = $db->query('SELECT e FROM table WHERE condition');

// This aggregates the column e in a slow way
while($row = $res->fetchArray()) {

$c += $row['e'];
}

?>

Suggestions

• Rework the query to move the calculations in the database

Specs

Short name Performances/DoInBase
Rulesets All, Changed Behavior, Performances
Exakat since 1.2.8
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features csv
Available in Entreprise Edition, Exakat Cloud

14.2.360 Do Not Cast To Int

Do not cast floats values to int. Uses conversion functions like intval(), round(), floor() or ceil() to convert
the value to integer, with known behavior.

Use functions like floor(), round() or ceil() : they use an explicit method for rounding, that helps keeping the side effects
under control.

<?php

// echoes 7!
echo (int) ((0.1 + 0.7) * 10);

?>

See also Integers.

14.2. List of Rules 739

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/intval
https://www.php.net/round
https://www.php.net/floor
https://www.php.net/ceil
https://www.php.net/floor
https://www.php.net/round
https://www.php.net/ceil
https://www.php.net/manual/en/language.types.integer.php

Exakat Documentation, Release 1

Suggestions

• Upgrade PHP version to 8.0, as those behavior are now the same

• Use one of the dedicated function : intval(), round(), floor() or ceil()

Specs

Short name Php/NoCastToInt
Rulesets All, Analyze, Changed Behavior, PHP recommendations
Exakat since 0.10.6
PHP Version With PHP 8.0 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features cast, integer, float
Available in Entreprise Edition, Exakat Cloud

14.2.361 Dollar Curly Interpolation Is Deprecated

Among the different variable interpolation is strings, ```` is deprecated. It is made obsolete in PHP 8.2,
and should disappear in PHP 9.0.

There are still several interpolation ways : variables, array elements (one index-level) and curly brackets. It is also
possible to use string concatenation.

<?php

$a = 'a';
$a2 = 'surprise!';

$b = "\$\{$a . 2}";

echo $b;
// display 'surprise!'

?>

See also https://wiki.php.net/rfc/deprecate_dollar_brace_string_interpolation.

Suggestions

• Use another interpolation style

• Use string concatenation

• Use a templating engine

• Use string replacement tool, such as str_replace()

740 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://wiki.php.net/rfc/deprecate_dollar_brace_string_interpolation

Exakat Documentation, Release 1

Specs

Short name Php/DeprecateDollarCurly
Rulesets All, CompatibilityPHP82
Exakat since 2.4.1
PHP Version With PHP 8.2 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features string, string-interpolation
Available in Entreprise Edition, Exakat Cloud

14.2.362 Don’t Add Seconds

Avoid adding seconds to a date, and use DateTime\:\:modify to add an interval.

This method will handle situations like daylight savings, leap seconds and even leap days.

<?php

// Tomorrow, same time
$tomorrow = new DateTime('now')->modify('+1 day');

// Tomorrow, but may be not at the same hour
$tomorrow = date('now') + 86400;

?>

See also DateTime::modify and datetime.

Specs

Short name Structures/DontAddSeconds
Rulesets All, Analyze
Exakat since 2.3.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features date
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 741

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/fr/datetimeimmutable.modify.php
https://www.php.net/manual/fr/intro.datetime.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.363 Don’t Be Too Manual

Adapt the examples from the PHP manual to the code. Don’t reuse directly the same names in the source:
be more specific about what to expect in those variables.

Here are the variables names that are classic with specific functions:

• for($i = 0; $i < 10; ++$i) {}, $j, $k`

• catch(`Exception <https://www.php.net/exception>`_ $e)

• $fp = fopen(`...) <https://www.php.net/manual/en/functions.arguments.php#functions.
variable-arg-list>`_, $fh

• $conn = new `PDO(<https://www.php.net/pdo>`_...):, $dbh, $fh, $conn, $link

• $stmt = mysql_prepare(`...) <https://www.php.net/manual/en/functions.arguments.
php#functions.variable-arg-list>`_, $sth

• $row = $`pdo <https://www.php.net/pdo>`_->fetchArray(`...) <https://www.php.net/
manual/en/functions.arguments.php#functions.variable-arg-list>`_, $`result <https://
www.php.net/result>`_, $line, $record

• preg_match(`... <https://www.php.net/manual/en/functions.arguments.php#functions.
variable-arg-list>`_, `... <https://www.php.net/manual/en/functions.arguments.
php#functions.variable-arg-list>`_, $r), $matches`

• str_contains($haystack, $needle) and strpos

<?php

// Search for phone numbers in a text
preg_match_all('/((\d{3})-(\d{3})-(\d{4}))/', $string, $phoneNumber);

// Search for phone numbers in a text
preg_match_all('/(\d{3})-(\d{3})-(\d{4})/', $string, $matches);

?>

Suggestions

• Use precise and adapted name with your variables

Specs

Short name Structures/DontBeTooManual
Rulesets All, Coding conventions
Exakat since 1.6.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

742 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.364 Don’t Change Incomings

PHP hands over a lot of information using special variables like $_GET, $_POST, etc. . . Modifying those
variables and those values inside variables means that the original content is lost, while it will still look
like raw data, and, as such, will be untrustworthy.

It is recommended to put the modified values in another variable, and keep the original one intact.

<?php

// filtering and keeping the incoming value.
$_DATA'id'] = (int) $_GET['id'];

// filtering and changing the incoming value.
$_GET['id'] = strtolower($_GET['id']);

?>

Suggestions

• Set the value to another variable and apply modifications to that variable

Specs

Short name Structures/NoChangeIncomingVariables
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features incoming-data, outgoing-data
Available in Entreprise Edition, Exakat Cloud

14.2.365 Don’t Change The Blind Var

When using a foreach(), the blind variables hold a copy of the original value. It is confusing to modify
them, as it seems that the original value may be changed.

When actually changing the original value, use the reference in the foreach definition to make it obvious, and save the
final reassignation.

When the value has to be prepared before usage, then save the filtered value in a separate variable. This makes the
clean value obvious, and preserve the original value for a future usage.

<?php

// $bar is duplicated and kept
$foo = [1, 2, 3];
foreach($foo as $bar) {

// $bar is updated but its original value is kept
(continues on next page)

14.2. List of Rules 743

https://www.php.net/manual/en/reserved.variables.get.php
https://www.php.net/manual/en/reserved.variables.post.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.foreach.php

Exakat Documentation, Release 1

(continued from previous page)

$nextBar = $bar + 1;
print $bar . ' => ' . ($nextBar) . PHP_EOL;
foobar($nextBar);

}

// $bar is updated and lost
$foo = [1, 2, 3];
foreach($foo as $bar) {

// $bar is updated but its final value is lost
print $bar . ' => ' . (++$bar) . PHP_EOL;
// Now that $bar is reused, it is easy to confuse its value
foobar($bar);

}

// $bar is updated and kept
$foo = [1, 2, 3];
foreach($foo as &$bar) {

// $bar is updated and keept
print $bar . ' => ' . (++$bar) . PHP_EOL;
foobar($bar);

}

?>

Specs

Short name Structures/DontChangeBlindKey
Rulesets All, Analyze
Exakat since 0.8.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features loop, blind-key
Available in Entreprise Edition, Exakat Cloud

14.2.366 Don’t Collect Void

When a method returns void, there is no need to collect the result. The collected value is always null.

With a void return type, the method is intented to be without return value. This analysis also include methods which
are not returning anything, and could be completed with a void returntype.

<?php

function foo() : void {
// doSomething()

}

(continues on next page)

744 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/result

Exakat Documentation, Release 1

(continued from previous page)

// This is useless
$result = foo();

// This is useless. It looks like this is a left over from code refactoring
echo foo();

?>

Suggestions

• Move the call to the function to its own expression with a semi-colon.

• Remove assignation of the result of such calls.

Specs

Short name Functions/DontUseVoid
Rulesets All, Analyze, IsExt, IsPHP, IsStub
Exakat since 2.0.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features void
Available in Entreprise Edition, Exakat Cloud

14.2.367 Don’t Echo Error

It is recommended to avoid displaying error messages directly to the browser.

PHP’s uses the display_errors directive to control display of errors to the browser. This must be kept to off when
in production. Error messages should be logged, but not displayed.

<?php

// Inside a 'or' test
mysql_connect('localhost', $user, $pass) or die(mysql_error());

// Inside a if test
$result = pg_query($db, $query);
if(!$result)
{

echo Erreur SQL: . pg_error();
exit;

}

// Changing PHP configuration
ini_set('display_errors', 1);
// This is also a security error : 'false' means actually true.

(continues on next page)

14.2. List of Rules 745

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/error

Exakat Documentation, Release 1

(continued from previous page)

ini_set('display_errors', 'false');

?>

See also Error reporting and List of php.ini directives.

Suggestions

• Remove any echo, print, printf() call built with error messages from an exception, or external source.

Specs

Short name Security/DontEchoError
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, Security
Exakat since 0.8.7
PHP Version All
Severity Critical
Time To Fix Instant (5 mins)
Precision High
Examples ChurchCRM, Phpdocumentor
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.368 Don’t Loop On Yield

Use yield from, instead of looping on a generator <https://www.php.net/`generator>`_ with yield.

yield from delegate the yielding to another generator <https://www.php.net/`generator>`_, and keep calling
that generator <https://www.php.net/`generator>`_ until it is finished. It also works with implicit generator
<https://www.php.net/`generator>`_ datastructure, like arrays. There is a performance gain when delegating, over
looping manually on the generator <https://www.php.net/`generator>`_. You may even consider writing the loop to
store all values in an array, then yield from the array.

<?php

function generator() {
for($i = 0; $i < 10; ++$i) {

yield $i;
}

}

function delegatingGenerator() {
yield from generator();

}

// Too much code here
function generator2() {

foreach(generator() as $g) {
yield $g;

}
(continues on next page)

746 Chapter 14. Rules

https://php.earth/docs/security/intro#error-reporting
https://www.php.net/manual/en/ini.list.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/generator
https://www.php.net/generator
https://www.php.net/generator
https://www.php.net/generator
https://www.php.net/generator
https://www.php.net/generator

Exakat Documentation, Release 1

(continued from previous page)

}

?>

See also Generator delegation via yield from.

Suggestions

• Use yield from instead of the whole foreach() loop

Specs

Short name Structures/DontLoopOnYield
Rulesets All, Suggestions
Exakat since 1.5.3
PHP Version With PHP 7.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features yield
Examples Dolibarr, Tikiwiki
Available in Entreprise Edition, Exakat Cloud

14.2.369 Don’t Mix ++

++ operators, pre and post, have two distinct behaviors, and should be used separately.

When mixed in a larger expression, they are difficult to read, and may lead to unwanted behaviors.

<?php

// Clear and defined behavior
$i++;
$a[$i] = $i;

// The index is also incremented, as it is used AFTP the incrementation
// With $i = 2; $a is array(3 => 3)
$a[$i] = ++$i;

// $i is actually modified twice
$i = --$i + 1;

?>

See also EXP30-C. Do not depend on the order of evaluation for side effects.

14.2. List of Rules 747

https://www.php.net/manual/en/language.generators.syntax.php#control-structures.yield.from
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://wiki.sei.cmu.edu/confluence/display/c/EXP30-C.+Do+not+depend+on+the+order+of+evaluation+for+side+effects

Exakat Documentation, Release 1

Suggestions

• Extract the increment from the expression, and put it on a separate line.

Specs

Short name Structures/DontMixPlusPlus
Rulesets All, Analyze
Exakat since 1.3.2
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Examples Contao, Typo3
Available in Entreprise Edition, Exakat Cloud

14.2.370 Don’t Pollute Global Space

Avoid creating definitions in the global name space.

The global namespace is the default namespace, where all functions, classes, constants, traits and interfaces live. The
global namespace is also known as the root namespace.

In particular, PHP native classes usually live in that namespace. By creating functions in that namespace, the code may
encounter naming conflict, when the PHP group decides to use a name that the code also uses. This already happened
in PHP version 5.1.1, where a Date native class was introduced, and had to be disabled in the following minor version.

Nowadays, conflicts appear between components, which claim the same name.

<?php

// This is not polluting the global namespace
namespace My/Namespace {

class X {}
}

// This is polluting the global namespace
// It might be in conflict with PHP classes in the future
namespace {

class X {}
}

?>

See also Using namespaces: fallback to global function/constant.

748 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.namespaces.global.php
https://www.php.net/ChangeLog-5.php#5.1.1
https://www.php.net/manual/en/language.namespaces.fallback.php

Exakat Documentation, Release 1

Suggestions

• Create a namespace for your code, and store your definition there.

Specs

Short name Php/DontPolluteGlobalSpace
Rulesets All, Analyze
Exakat since 2.1.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features global-space
Available in Entreprise Edition, Exakat Cloud

14.2.371 Don’t Read And Write In One Expression

Avoid giving value and using it at the same time, in one expression. This is an undefined behavior of PHP,
and may change without warning.

One of those changes happens between PHP 7.2 and 7.3 :

<?php

$arr = [1];
$ref =& $arr[0];
var_dump($arr[0] + ($arr[0] = 2));
// PHP 7.2: int(4)
// PHP 7.3: int(3)

?>

See also UPGRADING 7.3.

Suggestions

• Split the expression in two separate expressions

Specs

Short name Structures/DontReadAndWriteInOneExpression
Rulesets All, Analyze, CE, CompatibilityPHP73, CompatibilityPHP74
Exakat since 1.4.9
PHP Version All
Severity Critical
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 749

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://github.com/php/php-src/blob/PHP-7.3/UPGRADING#L83-L95
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.372 Don’t Reuse Foreach Source

It is dangerous to reuse the same variable inside a loop that use it as a source.

PHP actually takes a copy of the source, so the foreach() loop is not affected by the modification. On the other hand,
the source of the loop is modified after the loop (and actually, also during), which may come as a surprise to a later
coder.

<?php

$properties = [];
foreach ($values as $i => $vars) {

// $values is used again here, now as a blind variable
foreach ($vars as $class => $values) {

foreach ($values as $name => $v) {
$properties[$class][$name][$i] = $v;

}
}

}

?>

Suggestions

• Do not reuse the source as another variable

• Use different names to disambiguate their purpose

Specs

Short name Structures/DontReuseForeachSource
Rulesets All, Analyze
Exakat since 2.3.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features foreach
Available in Entreprise Edition, Exakat Cloud

14.2.373 Don’t Send $this In Constructor

Don’t use $this as an argument while in the __construct(). Until the constructor is finished, the object is
not finished, and may be in an unstable state. Providing it to another code may lead to error.

This is true when the receiving structure puts the incoming object immediately to work, and don’t store it for later use.

<?php

// $this is only provided when Foo is constructed
(continues on next page)

750 Chapter 14. Rules

https://www.php.net/manual/en/control-structures.foreach.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.decon.php
https://www.php.net/error

Exakat Documentation, Release 1

(continued from previous page)

class Foo {
private $bar = null;
private $data = array();

static public function build($data) {
$foo = new Foo($data);
// Can't build in one call. Must make it separate.
$foo->finalize();

}

private function __construct($data) {
// $this is provided too early
$this->data = $data;

}

function finalize() {
$this->bar = new Bar($this);

}
}

// $this is provided too early, leading to error in Bar
class Foo2 extends Foo {

private $bar = null;
private $data = array();

function __construct($data) {
// $this is provided too early
$this->bar = new Bar($this);
$this->data = $data;

}
}

class Bar {
function __construct(Foo $foo) {

// the cache is now initialized with a wrong
$this->cache = $foo->getIt();

}
}

?>

See also Don’t pass this out of a constructor.

14.2. List of Rules 751

http://www.javapractices.com/topic/TopicAction.do?Id=252

Exakat Documentation, Release 1

Suggestions

• Finish the constructor first, then call an external object.

• Sending $this should be made accessible in a separate method, so external objects may call it.

• Sending the current may be the responsibility of the method creating the object.

Specs

Short name Classes/DontSendThisInConstructor
Rulesets All, Analyze
Exakat since 1.0.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features $this, constructor
Examples Woocommerce, Contao
Available in Entreprise Edition, Exakat Cloud

14.2.374 Don’t Unset Properties

Don’t unset properties. They would go undefined, and raise warnings of undefined properties, even though
the property is explicitly defined in the original class.

When getting rid of a property, assign it to null. This keeps the property defined in the object, yet allows existence
check without errors. This analysis works on properties and static properties. It also reports magic properties being
unset.

Thanks for Benoit Burnichon for the original idea.

<?php

class Foo {
public $a = 1;

}

$a = new Foo();

var_dump((array) $a) ;
// la propriété est reportée, et null
// ['a' => null]

unset($a->a);

var_dump((array) $a) ;
//Empty []

// Check if a property exists
var_dump($a->b === null);

(continues on next page)

752 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://twitter.com/BenoitBurnichon

Exakat Documentation, Release 1

(continued from previous page)

// Same result as above, but with a warning
var_dump($a->c === null);

?>

Suggestions

• Set the property to null or its default value

• Make the property an array, and set/unset its index

Specs

Short name Classes/DontUnsetProperties
Rulesets All, Analyze, CE, CI-checks, Top10, php-cs-fixable
Exakat since 1.2.3
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features property
Examples Vanilla, Typo3
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.375 Don’t Use The Type As Variable Name

When it is difficult to find a good name, it is very tempting to use the type.

Such a name should carry its actual usage, as the type is already hold by the data.

This rule check for parameters and variables which uses the type as name. It also report instantiation which hold the
same name than the instantiated class.

<?php

$sqlite3 = new Sqlite3();

function foo(int $int) : array {
$array = [];
return $array;

}
?>

14.2. List of Rules 753

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Use another name than the class or the type

Specs

Short name Structures/DontUseTheTypeAsVariable
Rulesets All, Changed Behavior, Semantics
Exakat since 2.6.2
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features semantics
Available in Entreprise Edition, Exakat Cloud

14.2.376 Double Assignation

This happens when a container (variable, property, array index) is assigned with values twice in a row.
One of them is probably a debug instruction, that was forgotten.

<?php

// Normal assignation
$a = 1;

// Double assignation
$b = 2;
$b = 3;

?>

Specs

Short name Structures/DoubleAssignation
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features assignation
Available in Entreprise Edition, Exakat Cloud

754 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.377 Double Checks

Double checks happen when data is checked at one point, and then, checked again, with the same test, in
a following call.

Some of the testing may be pushed to the type system, for example is_int() and int type. Others can’t, as the check is
not integrated in the type system, such as is_readable() and string, for a path.

The check may be removed from the method, when the method is not called elsewhere without protection. Cleaning
such structure leads to micro-optimisation.

<?php

if (is_writeable($path)) {
foo($path);

}

function foo(string $path) {
// This was already tested
if (!is_writeable($path)) {

return;
}

}

?>

Suggestions

• Remove the check in the method

• Remove the check in the caller code

• Use type system

Specs

Short name Structures/DoubleChecks
Rulesets All, Analyze
Exakat since 2.5.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 755

https://www.php.net/is_int
https://www.php.net/is_readable
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.378 Double Instructions

Twice the same call in a row. This might be a typo, and the second call is useless.

It may also be an non-idempotent method: that is, a method which has a different result when called with the same
arguments. For example, rand() or fgets().

<?php

// repetition of the same command, with the same effect each time.
$a = array_merge($b, $c);
$a = array_merge($b, $c);

// false positive : commands are identical, but the effect is compounded
$a = array_merge($a, $c);
$a = array_merge($a, $c);

?>

Suggestions

• Remove double work

• Avoid repetition by using loops, variadic or quantifiers (dirname($path, 2))

Specs

Short name Structures/DoubleInstruction
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features idempotent
Available in Entreprise Edition, Exakat Cloud

14.2.379 Double Object Assignation

The same object is assigned to two distinct variables. Given that objects are actually references to the same
data, this is usually not necessary. Make sure that this is the intended purpose.

<?php

// $x and $y are the same object, as they both hold a reference to the same object.
// This means that changing $x, also changes $y.
$x = $y = new Z();

// $a and $b are distinct values, by default
$a = $b = 1;

(continues on next page)

756 Chapter 14. Rules

https://www.php.net/result
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

?>

See also class.

Suggestions

• Split the double assignation to two distinct instantiations.

• Split the double assignation to two distinct lines.

Specs

Short name Structures/DoubleObjectAssignation
Rulesets All, Analyze, Changed Behavior, Class Review
Exakat since 2.1.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features class
Available in Entreprise Edition, Exakat Cloud

14.2.380 Double array_flip()

Avoid double array_flip() to gain speed. While array_flip() alone is usually useful, a double call to ar-
ray_flip() is made to make values and keys unique.

<?php

// without array_flip
function foo($array, $value) {

$key = array_search($array, $value);

if ($key !== false) {
unset($array[$key]);

}

return $array;
}

// double array_flip
// array_flip() usage means that $array's values are all unique
function foo($array, $value) {

$flipped = array_flip($value);
unset($flipped[$value]);
return array_flip($flipped);

}
(continues on next page)

14.2. List of Rules 757

https://www.php.net/manual/en/language.oop5.basic.php#language.oop5.basic.class
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_flip
https://www.php.net/array_flip
https://www.php.net/array_flip
https://www.php.net/array_flip

Exakat Documentation, Release 1

(continued from previous page)

?>

Suggestions

• Use array_unique() or array_count_values().

• Use array_flip() once, and let PHP garbage collect it later.

• Keep the original values in a separate variable.

Specs

Short name Performances/DoubleArrayFlip
Rulesets All, Changed Behavior, Performances
Exakat since 1.1.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Examples NextCloud
Available in Entreprise Edition, Exakat Cloud

14.2.381 Drop Else After Return

Avoid else clause when the then clause returns, but not the else. And vice-versa.

This way, the else block disappears, and is now the main sequence of the function.

This is also true if else has a return, and then not. When doing so, don’t forget to reverse the condition.

<?php

// drop the else
if ($a) {

return $a;
} else {

doSomething();
}

// drop the then
if ($b) {

doSomething();
} else {

return $a;
}

// return in else and then
if ($a3) {

return $a;
(continues on next page)

758 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

} else {
$b = doSomething();
return $b;

}

?>

Suggestions

• Remove the else clause and move its code to the main part of the method

Specs

Short name Structures/DropElseAfterReturn
Rulesets All, Analyze, CE, CI-checks, Suggestions
Exakat since 0.8.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features return
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.382 Drop Substr Last Arg

Substr() works till the end of the string when the last argument is omitted. There is no need to calculate
string size to make this work.

<?php

$string = 'abcdef';

// Extract the end of the string
$cde = substr($string, 2);

// Too much work
$cde = substr($string, 2, strlen($string));

?>

14.2. List of Rules 759

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/substr

Exakat Documentation, Release 1

Suggestions

• Use negative length

• Omit the last argument to get the string till its end

Specs

Short name Structures/SubstrLastArg
Rulesets All, Suggestions
Exakat since 1.2.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Examples SuiteCrm, Tine20
Available in Entreprise Edition, Exakat Cloud

14.2.383 Drupal Usage

This analysis reports usage of the Drupal CMS. The report is based on the usage of Drupal namespace.

<?php

namespace Drupal\example\Controller;

use Drupal\Core\Controller\ControllerBase;

/**
* An example controller.
*/
class ExampleController extends ControllerBase {

/**
* {@inheritdoc}
*/
public function content() {
$build = array(
'#type' => 'markup',
'#markup' => t('Hello World!'),

);
return $build;

}

}

?>

See also Drupal.

760 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
http://www.drupal.org/

Exakat Documentation, Release 1

Specs

Short name Vendors/Drupal
Rulesets All, Appinfo, CE
Exakat since 1.0.3
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features framework
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.384 Duplicate Calls

Duplicate calls within the same context. They should be called once, and then cached in a variable for
reuse.

This saves a lot of time of execution and reexecution of the same code. It is a micro-optimisation in case of a simple
property fetch, but it may be more costly.

<?php

function foo($name) {
// The name decoration on the string is done twice. Once should be cached in a␣

→˓variable.
echo "Hello, ".ucfirst(strtolower($name))."
";

$query = 'Insert into visitors values ("'.ucfirst(strtolower($name)).'")';
$res = $db->query($query);

}

?>

See also Userland naming Guide.

Specs

Short name Structures/DuplicateCalls
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features calls, micro-optimisation
ClearPHP no-duplicated-code
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 761

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/userlandnaming.php
https://github.com/dseguy/clearPHP/tree/master/rules/no-duplicated-code.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.385 Duplicate Literal

Report literals that are repeated across the code. The minimum replication is 5, and is configurable with
maxDuplicate.

Repeated literals should be considered a prime candidate for constants.

Integer, reals and strings are considered here. Boolean, Null and Arrays are omitted. 0, 1, 2, 10 and the empty string
are all omitted, as too common. This list of omitted constants may be configured with the ignoreList parameter : a
comma separated list of values.

<?php
// array index are omitted
$x[3] = 'b';

// constanst are omitted
const X = 11;
define('Y', 'string')

// 0, 1, 2, 10 are omitted
$x = 0;

?>

Name Default Type Description
minDuplicate 15 integer Minimal number of duplication before the literal is reported.
ignoreList 0,1,2,10 array Common values that have to be ignored. Comma separated list.

Suggestions

• Create a constant and use it in place of the literal

• Create a class constant and use it in place of the literal

Specs

Short name Type/DuplicateLiteral
Rulesets All, Changed Behavior, Semantics
Exakat since 1.9.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features literal
Available in Entreprise Edition, Exakat Cloud

762 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.386 Duplicate Named Parameter

Two parameters have the same name in a method call. This will yield a Fatal error at execution time.

<?php

function foo($a, $b) {}

// parameters are all distinct
foo(a:1, b:2);

// parameter a is double
foo(a:1, a:1);

?>

See also Function arguments.

Suggestions

• Review the parameters names and remove the duplicates

• Review the parameters names and makes the names unique

Specs

Short name Functions/DuplicateNamedParameter
Rulesets All, Analyze, LintButWontExec
Exakat since 2.2.3
PHP Version With PHP 7.0 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features named-parameter
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.387 Dynamic Calls

List of dynamic calls. They will probably need to be reviewed manually.

<?php

$a = 'b';

// Dynamic call of a constant
echo constant($a);

// Dynamic variables
$$a = 2;

(continues on next page)

14.2. List of Rules 763

https://www.php.net/error
https://www.php.net/manual/en/functions.arguments.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

echo $b;

// Dynamic call of a function
$a('b');

// Dynamic call of a method
$object->$a('b');

// Dynamic call of a static method
A::$a('b');

?>

Specs

Short name Structures/DynamicCalls
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features dynamic-call
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.388 Dynamic Class Constant

This is the list of dynamic calls to class constants.

Constant may be dynamically called with the constant() function. In PHP 8.3, they may also be called with a new
dedicated syntax.

<?php
// Dynamic access to 'E_ALL'
echo constant('E_ALL');

interface i {
const MY_CONSTANT = 1;

}

// Dynamic access to 'E_ALL'
$constantName = 'MY_CONSTANT';
echo constant('i::'.$constantName);

// With PHP 8.3 :
echo i::{$constantName};

?>

764 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/constant

Exakat Documentation, Release 1

Specs

Short name Classes/DynamicConstantCall
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features dynamic-constant
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.389 Dynamic Classes

Dynamic calls of classes.

<?php

class x {
static function staticMethod() {}

}

$class = 'x';
$class::staticMethod();

?>

Specs

Short name Classes/DynamicClass
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Features dynamic-class
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 765

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.390 Dynamic Code

List of instructions that were left during analysis, as they rely on dynamic data.

Any further analysis will need to start from here.

<?php

// Dynamic call to 'method';
$name = 'method';
$object->$name();

// Hard coded call to 'method';
$object->method();

?>

See also Variable functions.

Specs

Short name Structures/DynamicCode
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features dynamic-call
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.391 Dynamic Function Call

Mark a functioncall made with a variable name. This means the function is only known at execution time,
since it depends on the content of the variable.

<?php

// function definition
function foo() {}

// function name is in a variable, as a string.
$var = 'foo';

// dynamic call of a function
$var();

call_user_func($var);

?>

766 Chapter 14. Rules

https://www.php.net/manual/en/functions.variable-functions.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Functions/Dynamiccall
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features dynamic-call
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.392 Dynamic Library Loading

Loading a variable dynamically requires a lot of care in the preparation of the library name.

In case of injection in the variable, the dynamic loading of a library gives a lot of power to an intruder.

<?php

// dynamically loading a library
dl($library. PHP_SHLIB_SUFFIX);

// dynamically loading ext/vips
dl('vips.' . PHP_SHLIB_SUFFIX);

// static loading ext/vips (unix only)
dl('vips.so');

?>

See also dl.

Suggestions

• Use a switch structure, to make the dl() calls static.

• Avoid using dl() and make the needed extension always available in PHP binary.

Specs

Short name Security/DynamicDl
Rulesets All, Changed Behavior, Security
Exakat since 1.1.7
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features library-loading
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 767

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
http://www.php.net/dl
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.393 Dynamic Methodcall

Dynamic calls to class methods.

<?php

class x {
static public function foo() {}

public function bar() {}
}

$staticmethod = 'foo';
// dynamic static method call to x::foo()
x::$staticmethod();

$method = 'bar';
// dynamic method call to bar()
$object = new x();
$object->$method();

?>

Specs

Short name Classes/DynamicMethodCall
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Features dynamic-call, method
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.394 Dynamic New

Dynamic instantiation of classes. It happens when the name of the class is an executable expression, and,
as such, only known at execution time.

<?php

$classname = foo();
$object = new $classname();

$object = new (foo());
?>

768 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Classes/DynamicNew
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features new, parenthesis, dynamic-call
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.395 Dynamic Property

Dynamic access to class property. This is when the the name of the property is stored in a variable (or
other container), rather than statically provided.

<?php

class x {
static public $foo = 1;

public $bar = 2;
}

$staticproperty = 'foo';
// dynamic static property call to x::$foo
echo x::${$staticproperty};

$property = 'bar';
// dynamic property call to bar()
$object = new x();
$object->$property = 4;

?>

See also class.

Specs

Short name Classes/DynamicPropertyCall
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features class
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 769

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.basic.php#language.oop5.basic.class
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.396 Dynamic Self Calls

A class that calls itself dynamically. This may be property or methods.

Calling itself dynamically happens when a class is configured to call various properties (container) or methods. This
rule is mostly useful internally, to side some special situations.

<?php

class x {
function foo() {

$f = 'goo';
return $this->$f();

}

function goo() {
return rand(1, 10);

}
}
?>

Specs

Short name Classes/DynamicSelfCalls
Rulesets All
Exakat since 2.1.1
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.397 Dynamically Called Classes

This rule reports when a class is called dynamically. To call dynamically a class, one must use a variable
at instantiation time, or with the objects syntaxes.

<?php

// This class is called dynamically
class X {

const CONSTANTE = 1;
}

$classe = 'X';

$x = new $classe();

echo $x::CONSTANTE;

?>

770 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Classes/VariableClasses
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features class, dynamic-class
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.398 Echo Or Print

Echo and print have the same functional use. <?= and printf() are also considered in this analysis.

There seems to be a choice that is not enforced : one form is dominant, (> 90%) while the others are rare.

The analyzed code has less than 10% of one of the three : for consistency reasons, it is recommended to make them all
the same.

It happens that print, echo or <?= are used depending on coding style and files. One file may be consistently using
print, while the others are all using echo.

<?php

echo 'a';
echo 'b';
echo 'c';
echo 'd';
echo 'e';
echo 'f';
echo 'g';
echo 'h';
echo 'i';
echo 'j';
echo 'k';

// This should probably be written 'echo';
print 'l';

?>

14.2. List of Rules 771

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/printf

Exakat Documentation, Release 1

Specs

Short name Structures/EchoPrintConsistance
Rulesets All, Coding conventions, Preferences
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features echo, print
Available in Entreprise Edition, Exakat Cloud

14.2.399 Echo With Concat

Optimize your echo’s by avoiding concatenating at echo time, but serving all argument separated. This
will save PHP a memory copy.

If values, literals and variables, are small enough, this won’t have visible impact. Otherwise, this is less work and less
memory waste. instead of It is a micro-optimisation.

<?php
echo $a, ' b ', $c;

?>

Suggestions

• Turn the concatenation into a list of argument, by replacing the dots by commas.

Specs

Short name Structures/EchoWithConcat
Rulesets All, Analyze, Performances, Suggestions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features echo
ClearPHP no-unnecessary-string-concatenation
Examples Phpdocumentor, TeamPass
Available in Entreprise Edition, Exakat Cloud

772 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://github.com/dseguy/clearPHP/tree/master/rules/no-unnecessary-string-concatenation.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.400 Ellipsis Merge

Ellipsis are slower than array_merge().

The speed up is significative when the merge happen inside a loop. There, array_merge() is an order of magnitude
faster.

This is a micro optimisation. The larger and numerous the arrays, the better the speed gain.

<?php

// slow
$all = array_merge($array1, $array2);

// very slow
$all = array(...$array1, ...$array2);

?>

Suggestions

• Use array_merge()

Specs

Short name Performances/EllipsisMerge
Rulesets All, Changed Behavior, Performances
Exakat since 2.5.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features merge, ellipsis, micro-optimisation
Available in Entreprise Edition, Exakat Cloud

14.2.401 Ellipsis Usage

Usage of the ellipsis keyword. The keyword is three dots : It is also named variadic or splat operator.

It may be in function definitions and function calls; it may be in arrays; it is also usable with parenthesis.

. . . allows for packing or unpacking arguments into an array.

<?php

$args = [1, 2, 3];
foo(...$args);
// Identical to foo(1,2,3);

function bar(...$a) {
// Identical to : $a = func_get_args();

(continues on next page)

14.2. List of Rules 773

https://www.php.net/array_merge
https://www.php.net/array_merge
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/functions.arguments.php#functions.variable-arg-list

Exakat Documentation, Release 1

(continued from previous page)

}
?>

See also PHP RFC: Syntax for variadic functions, PHP 5.6 and the Splat Operator and Variable-length argument lists.

Specs

Short name Php/EllipsisUsage
Rulesets All, Appinfo, CE, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55
Exakat since 0.8.4
PHP Version With PHP 5.6 and more recent
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features ellipsis
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.402 Else If Versus Elseif

Always use elseif instead of else and if.

The keyword elseif SHOULD be used instead of else if so that all control keywords look like single words”. Quoted
from the PHP-FIG documentation

<?php

// Using elseif
if ($a == 1) { doSomething(); }
elseif ($a == 2) { doSomethingElseIf(); }
else { doSomethingElse(); }

// Using else if
if ($a == 1) { doSomething(); }
else if ($a == 2) { doSomethingElseIf(); }
else { doSomethingElse(); }

// Using else if, no {}
if ($a == 1) doSomething();
else if ($a == 2) doSomethingElseIf();
else doSomethingElse();

?>

See also elseif/else if.

774 Chapter 14. Rules

https://wiki.php.net/rfc/variadics
https://lornajane.net/posts/2014/php-5-6-and-the-splat-operator
https://www.php.net/manual/en/functions.arguments.php#functions.variable-arg-list
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.elseif.php

Exakat Documentation, Release 1

Suggestions

• Merge else and if into elseif

• Turn the else expression into a block, and have more than the second if in this block

• Turn the if / else if / else into a switch structure

Specs

Short name Structures/ElseIfElseif
Rulesets All, Analyze, CE, CI-checks, Rector, php-cs-fixable
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features if-then
Examples TeamPass, Phpdocumentor
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.403 Else Usage

Else can be avoided by various means.

For example, defaulting values before using a condition; returning early in the method, thus skipping long else blocks;
using a ternary operator to assign values conditionnaly.

Else is the equivalent of the default clause in a switch statement. When the if/then structure can be replaced with a
switch can (albeit, a 2-case switch seems strange), then else usage is a good solution.

<?php

// $a is always set
$a = 'default';
if ($condition) {

$a = foo($condition);
}

// Don't use else for default : set default before
if ($condition) {

$a = foo($condition);
} else {

$a = 'default';
}

// Use then to exit
if (! $condition) {

return;
}
$a = foo($condition);

(continues on next page)

14.2. List of Rules 775

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// don't use else to return
if ($condition) {

$a = foo($condition);
} else {

return;
}

?>

See also Avoid Else, Return Early and Why does clean code forbid else expression.

Specs

Short name Structures/ElseUsage
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features class
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.404 Email Addresses

List of all the email addresses that were found in the code.

Emails are detected with regex : [_A-Za-z0-9-]+(\.[_A-Za-z0-9-]+)*`@ <https://www.php.net/manual/
en/language.operators.errorcontrol.php>`_[A-Za-z0-9]+(\.[A-Za-z0-9]+)*(\.[A-Za-z]{2,})

<?php

$email = 'contact@exakat.io';

?>

Specs

Short name Type/Email
Rulesets All, Appinfo, CE, Changed Behavior, Inventory
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features email
Available in Entreprise Edition, Community Edition, Exakat Cloud

776 Chapter 14. Rules

http://blog.timoxley.com/post/47041269194/avoid-else-return-early
https://stackoverflow.com/questions/32677046/why-does-clean-code-forbid-else-expression
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.405 Empty Array Detection

Empty arrays may be detected with different solutions.

This analysis includes comparison to 0 with count, with ==, ===, != and !==, and comparison to empty arrays. Con-
stants are not handled.

<?php

// comparison to empty array
$array === [];

// comparison of count()
count($array) === 0;

?>

Specs

Short name Structures/ArrayCountTripleEqual
Rulesets All, Preferences
Exakat since 2.4.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.406 Empty Blocks

Full empty block, part of a control structures.

It is recommended to remove those blocks, so as to reduce confusion in the code.

<?php

foreach($foo as $bar) ; // This block seems erroneous
$foobar++;

if ($a === $b) {
doSomething();

} else {
// Empty block. Remove this

}

// Blocks containing only empty expressions are also detected
for($i = 0; $i < 10; $i++) {

;
}

// Although namespaces are not control structures, they are reported here
(continues on next page)

14.2. List of Rules 777

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

namespace A;
namespace B;

?>

Suggestions

• Fill the block with a command

• Fill the block with a comment that explain the situation

• Remove the block and its commanding operator

Specs

Short name Structures/EmptyBlocks
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features block
Examples Cleverstyle, PhpIPAM
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.407 Empty Classes

Classes that do no define anything at all : no property, method nor constant. This is possibly dead code.

Empty classes are sometimes used to group classes; an interface may be used here for the same purpose, without
inserting an extra level in the class hierarchy. Classes that are directly derived from an exception are omitted.

<?php

//Empty class
class foo extends bar {}

//Not an empty class
class foo2 extends bar {

const FOO = 2;
}

//Not an empty class, as derived from Exception
class barException extends \Exception {}

?>

See also class.

778 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception
https://www.php.net/manual/en/language.oop5.basic.php#language.oop5.basic.class

Exakat Documentation, Release 1

Suggestions

• Remove the empty class: it is possibly dead code.

• Add some code to the class to make it concrete.

• Turn the class into an interface.

Specs

Short name Classes/EmptyClass
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features class
Examples WordPress
Available in Entreprise Edition, Exakat Cloud

14.2.408 Empty Final Element In Array

The array() construct allows for the empty last element.

By putting an element on each line, and adding the final comma, it is possible to reduce the size of the diff when
comparing code with the previous version.

<?php

// Array definition with final empty element
$array = [1,

2,
3,
];

// New version of the code above
// This array definition has only one line of diff with the previous array : the line␣
→˓with '4,'
$array = [1,

2,
3,
4,
];

// New version of the first code above
// This array definition is totally different from the first array : VCS will identify 3␣
→˓removed lines, and one modified.
$array = [1, 2, 3, 4];

?>

See also Array, Zend Framework Coding Standard and How clean is your code? How clean are your diffs?.

14.2. List of Rules 779

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array
https://www.php.net/manual/en/language.types.array.php
https://framework.zend.com/manual/2.4/en/ref/coding.standard.html#arrays
https://blog.madewithlove.be/post/code-style-options-for-cleaner-diffs/

Exakat Documentation, Release 1

Specs

Short name Arrays/EmptyFinal
Rulesets All, Preferences
Exakat since 0.11.0
PHP Version All
Severity
Time To Fix
Precision High
Features trailing-comma
Available in Entreprise Edition, Exakat Cloud

14.2.409 Empty Function

Function or method whose body is empty.

Such functions or methods are rarely useful. As a bare minimum, the function should return some useful value, even
if constant.

A method is considered empty when it contains nothing, or contains expressions without impact. Methods which
overwrite another methods are omitted. Methods which are the concrete version of an abstract method are considered.

<?php

// classic empty function
function emptyFunction() {}

class bar {
// classic empty method
function emptyMethod() {}

// classic empty function
function emptyMethodWithParent() {}

}

class barbar extends bar {
// NOT an empty method : it overwrites the parent method
function emptyMethodWithParent() {}

}

?>

780 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Fill the function with actual code

• Remove any usage of the function, then remove the function

Specs

Short name Functions/EmptyFunction
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features function
Examples Contao
Available in Entreprise Edition, Exakat Cloud

14.2.410 Empty Instructions

Empty instructions are part of the code that have no instructions.

This may be trailing semi-colon or empty blocks for if-then structures.

Comments that explains the reason of the situation are not taken into account.

<?php
$condition = 3;;;;
if ($condition) { }

?>

Suggestions

• Remove the empty lines

• Fill the empty lines

Specs

Short name Structures/EmptyLines
Rulesets All, Analyze, Dead code
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Examples Zurmo, ThinkPHP
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 781

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.411 Empty Interfaces

Empty interfaces are a code smell. Interfaces should contains at least a method or a constant, and not be
totally empty.

<?php

// an empty interface
interface empty {}

// an normal interface
interface normal {

public function i() ;
}

// a constants interface
interface constantsOnly {

const FOO = 1;
}

?>

See also Empty interfaces are bad practice and Blog : Are empty interfaces code smell?.

Suggestions

• Remove the interface

• Add some methods or constants to the interface

Specs

Short name Interfaces/EmptyInterface
Rulesets All, Analyze, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features interface
Available in Entreprise Edition, Exakat Cloud

782 Chapter 14. Rules

https://r.je/empty-interfaces-bad-practice.html
https://hackernoon.com/are-interfaces-code-smell-bd19abc266d3
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.412 Empty Json Error

json_last_error() keeps the last error that was generated while decoding a JSON string. To reset this cache
to empty, one must run a call to json_decode() that succeed. This leads some code to make an apparently
pointless call, just to empty the error cache, and avoid confusing the message with the one of a previous
call.

<?php

// This generates an error
$json = json_decode([);

$json = json_decode($valid_json);

echo json_last_error(); // This error is confused for the last call, not the first one.

// pointless call, except to empty the cache.
$json = json_decode([]);

$json = json_decode($valid_json);

echo json_last_error(); // This error is dedicated to the last call

?>

Specs

Short name Structures/EmptyJsonError
Rulesets All, Analyze, Changed Behavior
Exakat since 2.6.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.413 Empty List

Empty list() are not allowed anymore in PHP 7. There must be at least one variable in the list call.

<?php

//Not accepted since PHP 7.0
list() = array(1,2,3);

//Still valid PHP code
list(,$x) = array(1,2,3);

?>

14.2. List of Rules 783

https://www.php.net/json_last_error
https://www.php.net/error
https://www.php.net/json_decode
https://www.php.net/error
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/list

Exakat Documentation, Release 1

Suggestions

• Remove empty list() calls

Specs

Short name Php/EmptyList
Rulesets All, Analyze, CompatibilityPHP70
Exakat since 0.8.4
PHP Version With PHP 7.0 and older
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features list
Available in Entreprise Edition, Exakat Cloud

14.2.414 Empty Loop

This rule reports empty loop. An empty loop has no operation in its main block.

Some empty loop may have features: they are calling methods in the condition, which may change the status of a
resource.

Empty loop may come from a typo, where a semi colon detach the block from its loop.

<?php

$i = 0;
// sneaky semi-colon behind the while
while($i < 10) ; {

$i++;
}

// another sneaky semicolon
foreach($a as $b) ;
{

$i++;
}

// This skips the first empty lines
$fp = fopen('/path/to/file', 'r');
while(!($row = fgets($fp))) {

}

?>

784 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Remove the extra semicolon

• Fill the loop with a payload

Specs

Short name Structures/EmptyLoop
Rulesets All, Analyze, Changed Behavior
Exakat since 2.5.0
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features loop
Available in Entreprise Edition, Exakat Cloud

14.2.415 Empty Namespace

Declaring a namespace in the code and not using it for structure declarations or global instructions is
useless.

Using simple style : Using bracket-style syntax :

<?php

namespace Y;

class foo {}

namespace X;
// This is useless

?>

Suggestions

• Remove the namespace

• Fill the namespace with some definition

14.2. List of Rules 785

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Namespaces/EmptyNamespace
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, Dead code
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features namespace
ClearPHP no-empty-namespace
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.416 Empty Slots In Arrays

PHP allows the last element of an array to be empty. It doesn’t allow any other element to be empty: it
should at least be an explicit NULL value.

<?php
$a = array(1, 2, 3,);
$b = [4, 5,];

?>

Specs

Short name Arrays/EmptySlots
Rulesets All, Changed Behavior, Coding conventions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features array
Available in Entreprise Edition, Exakat Cloud

14.2.417 Empty Traits

List of all empty trait defined in the code.

Such traits may be reserved for future use. They may also be forgotten, and dead code.

<?php

// empty trait
trait t { }

// Another empty trait
trait t2 {

(continues on next page)

786 Chapter 14. Rules

https://github.com/dseguy/clearPHP/tree/master/rules/no-empty-namespace.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.types.null.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

use t;
}

?>

Suggestions

• Add some code to the trait

• Remove the trait

Specs

Short name Traits/EmptyTrait
Rulesets All, Analyze, Changed Behavior, Dead code
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features trait
Available in Entreprise Edition, Exakat Cloud

14.2.418 Empty Try Catch

The code does try, then catch errors but do no act upon the error.

At worst, the error should be logged, so as to measure the actual usage of the catch expression.

catch(`Exception <https://www.php.net/exception>`_ $e) (PHP 5) or catch(`Throwable <https:/
/www.php.net/manual/en/class.`throwable <https://www.php.net/throwable>`_.php>`_ $e) with
empty catch block should be banned. They ignore any error and proceed as if nothing happened. At worst, the event
should be logged for future analysis.

<?php

try {
doSomething();

} catch (Throwable $e) {
// ignore this

}

?>

See also Empty Catch Clause.

14.2. List of Rules 787

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/error
https://www.php.net/error
http://wiki.c2.com/?EmptyCatchClause

Exakat Documentation, Release 1

Suggestions

• Add some logging in the catch

• Add a comment to mention why the catch is empty

• Change the exception, chain it and throw again

Specs

Short name Structures/EmptyTryCatch
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features try
Examples LiveZilla, Mautic
Available in Entreprise Edition, Exakat Cloud

14.2.419 Empty With Expression

empty() doesn’t accept expressions until PHP 5.5. Until then, it is necessary to store the result of the
expression in a variable and then, test it with empty().

<?php

// PHP 5.5+ empty() usage
if (empty(strtolower($b . $c))) {

doSomethingWithoutA();
}

// Compatible empty() usage
$a = strtolower($b . $c);
if (empty($a)) {

doSomethingWithoutA();
}

?>

See also empty.

788 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/result
http://www.php.net/empty

Exakat Documentation, Release 1

Suggestions

• Use the compatible syntax, and store the result in a local variable before testing it with empty

Specs

Short name Structures/EmptyWithExpression
Rulesets All, Changed Behavior, Suggestions
Exakat since 0.8.4
PHP Version With PHP 5.5 and more recent
Severity Major
Time To Fix Quick (30 mins)
Changed Behavior PHP 5.5 - More
Precision Very high
Features empty
Examples HuMo-Gen
Available in Entreprise Edition, Exakat Cloud

14.2.420 Encoded Simple Letters

Some simple letters are written in escape sequence.

Usually, escape sequences are made to encode unusual characters. Using escape sequences for simple characters, like
letters or numbers is suspicious.

This analysis also detects Unicode codepoint with superfluous leading zeros.

<?php

// This escape sequence makes eval hard to spot
$a = "ev\101l";
$a('php_info();');

// With a PHP 7.0 unicode code point sequence
$a = "ev\u{000041}l";
$a('php_info();');

// With a PHP 5.0+ hexadecimal sequence
$a = "ev\x41l";
$a('php_info();');

?>

14.2. List of Rules 789

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Make all simple letter appear clearly

• Add comments about why this code is encoded

Specs

Short name Security/EncodedLetters
Rulesets All, Changed Behavior, Security
Exakat since 0.10.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features string-sequence
Examples Zurmo
Available in Entreprise Edition, Exakat Cloud

14.2.421 Encoding Usage

Usage of declare(encoding =);.

<?php

// Setting encoding for the file;
declare(encoding = 'UTF-8');

?>

See also declare.

Specs

Short name Php/DeclareEncoding
Rulesets All, Appinfo, CE, Changed Behavior, Preferences
Exakat since 0.12.1
PHP Version All
Severity
Time To Fix
Precision Very high
Features encoding
Available in Entreprise Edition, Community Edition, Exakat Cloud

790 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.declare.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.422 Enum Case Values

Adds a DEFINITION`link between a `static Enumeration case and its actual defined value.

No link is added when no value is defined.

<?php

enum E: string {
case Foo = 'foo';

}

// Constants
const C = E::Foo->name;

?>

Specs

Short name Complete/EnumCaseValues
Rulesets All
Exakat since 2.4.7
PHP Version With PHP 8.1 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features enum, enum-backed
Available in Entreprise Edition, Exakat Cloud

14.2.423 Enum Usage

PHP’s enumeration. Introduced in PHP 8.1.

<?php

enum X {
case A;
case B;

}

?>

See also Enumerations in PHP.

14.2. List of Rules 791

https://www.php.net/manual/en/language.oop5.static.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.delftstack.com/howto/php/php-enum/

Exakat Documentation, Release 1

Specs

Short
name

Php/EnumUsage

Rule-
sets

All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56, Compatibil-
ityPHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73, CompatibilityPHP74, Com-
patibilityPHP80

Ex-
akat
since

2.2.2

PHP
Ver-
sion

With PHP 8.1 and more recent

Sever-
ity
Time
To
Fix
Preci-
sion

Very high

Fea-
tures

enum

Avail-
able
in

Entreprise Edition, Exakat Cloud

14.2.424 Environment Variable Usage

This rule collects all environment variables used in the application, for inventory purposes. Environment
variables are detected with the usage of the $_SERVER superglobal variable, or calls to the getenv() and
setenv() native functions.

This helps catalog the interactions between the application and its host environment.

<?php

echo $_SERVER['MY_GLOBAL'];

print getenv('DB_HOST');

setenv('SPECIAL_KEY', $calculatedKey);

?>

See also Variable scope.

792 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/getenv
https://www.php.net/manual/en/language.variables.scope.php

Exakat Documentation, Release 1

Specs

Short name Dump/EnvironnementVariables
Rulesets All, CE, Changed Behavior, Dump
Exakat since 1.9.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.425 Environment Variables

Collect all used Environment variables.

Specs

Short name Dump/EnvironmentVariables
Rulesets none
Exakat since 1.9.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.426 Environment Variables

Environment variables are used to interact with the hosting system.

They often provides configuration parameter that are set by the host of the application to be used. That way, information
is not hardcoded in the application, and may be changed at production.

<?php

//ENVIRONMENT set the production context
if (getenv('ENVIRONMENT') === 'Production') {

$sshKey = getenv('HOST_KEY');
} elseif (getenv('ENVIRONMENT') === 'Developper') {

$sshKey = 'NO KEY';
} else {

header('No website here.');
die();

}

?>

See also $_ENV.

14.2. List of Rules 793

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/reserved.variables.environment.php

Exakat Documentation, Release 1

Specs

Short name Variables/UncommonEnvVar
Rulesets All, Appinfo, CE
Exakat since 1.0.5
PHP Version All
Severity
Time To Fix
Precision Medium
Features environment-variable
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.427 Error Messages

Error message when an error is reported in the code. Those messages will be read by whoever is triggering
the error, and it has to be helpful.

It is a good exercise to read the messages out of context, and try to understand what is about. Error messages are spotted
via die, exit, trigger_error() or throw.

<?php

// Not so helpful messages
die('Here be monsters');
exit('An error happened');
throw new Exception('Exception thrown at runtime');

?>

Specs

Short name Structures/ErrorMessages
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features error, die, exception
Available in Entreprise Edition, Community Edition, Exakat Cloud

794 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/error
https://www.php.net/error
https://www.php.net/error
https://www.php.net/die
https://www.www.php.net/exit
https://www.php.net/trigger_error
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.428 Error_Log() Usage

Usage of error_log() function. This leads to checking the configuration of error_log in the PHP config-
uration directives.

<?php

error_log("logging message\n");

?>

Specs

Short name Php/ErrorLogUsage
Rulesets All, Appinfo, CE
Exakat since 0.10.0
PHP Version All
Severity
Time To Fix
Precision High
Features log
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.429 Eval() Usage

Using eval() is evil.

Using eval() is bad for performances (compilation time), for caches (it won’t be compiled), and for security (if it
includes external data). Most of the time, it is possible to replace the code by some standard PHP, like variable variable
for accessing a variable for which you have the name. At worse, including a pregenerated file is faster and cacheable.

There are several situations where eval() is actually the only solution :

For PHP 7.0 and later, it is important to put eval() in a try..catch expression.

<?php
// Avoid using incoming data to build the eval() expression : any filtering error␣

→˓leads to PHP injection
$mathExpression = $_GET['mathExpression'];
$mathExpression = preg_replace('#[^0-9+-*/(/)]#is', '', $mathExpression); //␣

→˓expecting 1+2
$literalCode = '$a = '.$mathExpression.';';
eval($literalCode);
echo $a;

// If the code code given to eval() is known at compile time, it is best to put it␣
→˓inline

$literalCode = 'phpinfo();';
eval($literalCode);

?>

14.2. List of Rules 795

https://www.php.net/error_log
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

See also eval and The Land Where PHP Uses eval().

Suggestions

• Use a dynamic feature of PHP to replace the dynamic code

• Store the code on the disk, and use include

• Replace create_function() with a closure!

Specs

Short name Structures/EvalUsage
Rulesets All, Analyze, Appinfo, CE, PHP recommendations, Performances, Security
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features eval
ClearPHP no-eval
Examples XOOPS, Mautic
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.430 Exceeding Typehint

The typehint is not fully used in the method. Some of the defined methods in the typehint are unused. A
tighter typehint could be used, to avoid method pollution.

Tight typehint prevents the argument from doing too much. They also require more maintenance : creation of dedicated
interfaces, method management to keep all typehint tight.

<?php

interface i {
function i1();
function i2();

}

interface j {
function j1();
function j2();

}

function foo(i $a, j $b) {
// the i typehint is totally used
$a->i1();
$a->i2();

// the i typehint is not totally used : j2() is not used.
$b->j1();

(continues on next page)

796 Chapter 14. Rules

http://www.php.net/eval
https://www.exakat.io/land-where-php-uses-eval/
https://github.com/dseguy/clearPHP/tree/master/rules/no-eval.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

}

?>

See also Insufficient Typehint.

Suggestions

• Keep the typehint tight, do not inject more than needed.

Specs

Short name Functions/ExceedingTypehint
Rulesets All, Changed Behavior, Class Review
Exakat since 2.0.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features typehint
Available in Entreprise Edition, Exakat Cloud

14.2.431 Exception Order

When catching exception, the most specialized exceptions must be in the early catch, and the most general
exceptions must be in the later catch. Otherwise, the general catches intercept the exception, and the more
specialized will not be read.

<?php

class A extends \Exception {}
class B extends A {}

try {
throw new A();

}
catch(A $a1) { }
catch(B $b2) {

// Never reached, as previous Catch is catching the early worm
}

?>

14.2. List of Rules 797

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception
https://www.php.net/exception

Exakat Documentation, Release 1

Suggestions

• Remove one of the catch clause

Specs

Short name Exceptions/AlreadyCaught
Rulesets All, Changed Behavior, Dead code
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features exception
Examples Woocommerce
Available in Entreprise Edition, Exakat Cloud

14.2.432 Excimer

Excimer is a PHP 7.1+ extension that provides an interrupting timer and a low-overhead sampling profiler.

<?php

$timer = new ExcimerTimer;
$timer->setInterval(10 /* seconds */);
$timer->setCallback(function () {

throw new Exception("The allowed time has been exceeded");
});
$timer->start();
do_expensive_thing();

?>

See also Excimer.

Specs

Short name Extensions/Extexcimer
Rulesets All, Appinfo
Exakat since 2.4.2
PHP Version With PHP 7.1 and more recent
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Exakat Cloud

798 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.mediawiki.org/wiki/Excimer
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.433 Exit Without Argument

This rule reports usage of die and exit without arguments, nor parenthesis. These commands are not
functions, and are allowed to be used without parenthesis: by default, they use the 0 status.

<?php

exit;

die;

?>

Specs

Short name Php/ExitNoArg
Rulesets All, Analyze, Changed Behavior
Exakat since 2.6.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features exit
Available in Entreprise Edition, Exakat Cloud

14.2.434 Exit() Usage

Using exit or die() in the code makes the code untestable (it will break unit tests). Moreover, if there is no
reason or string to display, it may take a long time to spot where the application is stuck.

Try exiting the function/class with return, or throw exception that may be caught later in the code.

<?php

// Throw an exception, that may be caught somewhere
throw new Exception('error');

// Dying with error message.
die('error');

function foo() {
//exiting the function but not dying
if (somethingWrong()) {

return true;
}

}
?>

14.2. List of Rules 799

https://www.php.net/die
https://www.www.php.net/exit
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.www.php.net/exit
https://www.php.net/die
https://www.php.net/manual/en/control-structures.break.php
https://www.php.net/exception

Exakat Documentation, Release 1

Suggestions

• Avoid exit and die. Let the script finish.

• Throw an exception and let it be handled before finishing

Specs

Short name Structures/ExitUsage
Rulesets All, Analyze, Appinfo, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features exit
ClearPHP no-exit
Examples Traq, ThinkPHP
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.435 Exit-like Methods

Those methods terminate the execution.

They are detected when they do call exit() or die(). They may also be identified with the PHP 8.0 #[NoReturn]
attribute, or the PHPdoc @noreturn (case insensitive).

If they are called, they will stop the application. They are a user-land equivalent of exit() or die().

<?php

// This function anytime the code has finished its processing.
function finish() {

global $html;

echo $html;
die();

}

?>

See also PhpStorm 2020.3 EAP #4: Custom PHP 8 Attributes.

800 Chapter 14. Rules

https://github.com/dseguy/clearPHP/tree/master/rules/no-exit.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.www.php.net/exit
https://www.php.net/die
https://www.php.net/attribute
https://www.www.php.net/exit
https://www.php.net/die
https://blog.jetbrains.com/phpstorm/2020/10/phpstorm-2020-3-eap-4/

Exakat Documentation, Release 1

Specs

Short name Functions/KillsApp
Rulesets All, Attributes, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Medium
Features exit
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.436 Exponent Usage

Usage of the ** operator or **=, to make exponents.

<?php

$eight = 2 ** 3;

$sixteen = 4;
$sixteen **\= 2;

?>

See also Arithmetic Operators.

Suggestions

• Use the operator when no literal negative number is in the expression

Specs

Short name Php/ExponentUsage
Rulesets All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55
Exakat since 0.8.4
PHP Version With PHP 5.6 and more recent
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Features exponent
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 801

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.operators.arithmetic.php
https://www.php.net/manual/en/language.operators.arithmetic.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.437 Extended Typehints

Produces all the definition links between typehints (arguments, return types, properties) and the definitions
that are valid with the typehint.

<?php

function foo(A $A) {}

// This is the raw definition of the above typehint
interface A {}

// This is valid definition of the above typehint
class X implements A {}
// This is valid definition of the above typehint
class Y extends X {}

// This is not related to the typehint
class Z {}

?>

Specs

Short name Complete/ExtendedTypehints
Rulesets All, Changed Behavior, NoDoc
Exakat since 2.1.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features typehint
Available in Entreprise Edition, Exakat Cloud

14.2.438 Extends stdClass

Those classes extends stdClass.

Traditionally, classes are defined independently, without any native class extension.

In PHP 8.2, dynamic properties are deprecated, and yield a warning in the logs. Adding ‘extends `stdClass <https://
www.php.net/stdclass>`_’ to classes signature removes this warning, as stdclass is the empty class, without any method,
property nor constants.

<?php

class myClass extends \stdClass {
function __set($a, $b) {

$this->$a = $b;
}

}
(continues on next page)

802 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/stdclass
https://www.php.net/stdclass
https://www.php.net/stdclass

Exakat Documentation, Release 1

(continued from previous page)

?>

Specs

Short name Classes/ExtendsStdclass
Rulesets All, Changed Behavior, CompatibilityPHP82, Inventory
Exakat since 2.3.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features stdclass, dynamic-property
Available in Entreprise Edition, Exakat Cloud

14.2.439 Extensions yar

yar : Yet Another RPC framework.

<?php

/* assume this page can be accessed by http://example.com/operator.php */

class Operator {

/**
* Add two operands
* @param interge
* @return interge
*/
public function add($a, $b) {

return $this->_add($a, $b);
}

/**
* Sub
*/
public function sub($a, $b) {

return $a - $b;
}

/**
* Mul
*/
public function mul($a, $b) {

return $a * $b;
}

/**
(continues on next page)

14.2. List of Rules 803

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

* Protected methods will not be exposed
* @param interge
* @return interge
*/
protected function _add($a, $b) {

return $a + $b;
}

}

$server = new Yar_Server(new Operator());
$server->handle();
?>

Specs

Short name Extensions/Extyar
Rulesets All, Appinfo
Exakat since 2.4.1
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features rpc
Available in Entreprise Edition, Exakat Cloud

14.2.440 Extensions/Exttaint

Taint is a extension used to detect and track tainted string. It follows each assignation of the code and keeps
track of its taint. And also can be used to spot sql injection vulnerabilities, shell inject, etc.

<?php
$a = trim($_GET['a']);

$file_name = '/tmp' . $a;
$output = "Welcome, {$a} !!!";

//Warning: main() [function.echo]: Attempt to echo a string that might be tainted

?>

See also taint and taint on github.

804 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.taint.php
https://github.com/laruence/taint

Exakat Documentation, Release 1

Specs

Short name Extensions/Exttaint
Rulesets All, Appinfo
Exakat since 2.4.4
PHP Version With PHP 7.4 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features taint
Available in Entreprise Edition, Exakat Cloud

14.2.441 External Config Files

List services being used in this code repository, based on configuration files that are committed.

For example, a .git folder is an artefact of a GIT repository.

Specs

Short name Files/Services
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.442 Ez cms usage

This analysis reports usage of the Ez CMS.

<?php
namespace My\Bundle\With\Controller;

use eZ\Bundle\EzPublishCoreBundle\Controller;
use Symfony\Component\HttpFoundation\Request;

class DemoController extends Controller {
public function demoCreateContentAction(Request $request) {

//
}

}

?>

See also Ez.

14.2. List of Rules 805

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://ez.no/

Exakat Documentation, Release 1

Specs

Short name Vendors/Ez
Rulesets All, Appinfo, CE
Exakat since 0.11.8
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features framework
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.443 Failed Substr() Comparison

The extracted string must be of the size of the compared string.

This is also true for negative lengths. This rule raise a false positive when the variable is already smaller than the
expected substr() results.

This rule doesn’t apply to mb_substr() and iconv_substr() : those functions use the character size, not the byte size.

<?php

// Possible comparison : strings and substr results are the same
if (substr($a, 0, 3) === 'abc') { }
if (substr($b, 4, 3) === 'abc') { }

// Always failing : substr will probably provide a longer string
if (substr($a, 0, 3) === 'ab') { }
if (substr($a, 3, -3) === 'ab') { }

// Omitted in this analysis
if (substr($a, 0, 3) !== 'ab') { }

?>

Suggestions

• Fix the string

• Fix the length of the string

• Put the string in a constant, and use strlen() or mb_strlen()

• Put the string in a constant, and use strlen() or mb_strlen()

806 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/substr
https://www.php.net/mb_substr
https://www.php.net/iconv_substr

Exakat Documentation, Release 1

Specs

Short name Structures/FailingSubstrComparison
Rulesets All, Analyze, CE, CI-checks, Top10
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Features string
Examples Zurmo, MediaWiki
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.444 Failing Analysis

This is a dummy analysis. It is made to fail, for testing purposes.

Specs

Short name Php/FailingAnalysis
Rulesets All
Exakat since 1.2.8
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.445 Fallback Function

A function that is called with its name alone, and whose definition is in the global scope.

<?php

namespace {
// global definition
function foo() {}

}

namespace Bar {
// local definition
function foo2() {}

foo(); // definition is in the global namespace
foo2(); // definition is in the Bar namespace

}

?>

14.2. List of Rules 807

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

See also Using namespaces: fallback to global function/constant.

Specs

Short name Functions/FallbackFunction
Rulesets All, Appinfo, CE
Exakat since 1.1.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features function, fallback-function
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.446 False To Array Conversion

The auto vivification of false is deprecated. This feature is the automagical conversion of a boolean into
an array, if needed.

Until PHP 8.1, this was possible. This feature is deprecated in PHP 8.1, and will be removed in PHP 9.0.

<?php

$a = false;

//valid in PHP
$a[3] = 1;

?>

See also Autovivification from false.

Suggestions

• Change the typehints from bool or false to array

• Validate the type returned values of an functioncall before using it

Specs

Short name Php/FalseToArray
Rulesets All, Analyze, CompatibilityPHP81, CompatibilityPHP82, LintButWontExec
Exakat since 2.3.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features array
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

808 Chapter 14. Rules

https://www.php.net/manual/en/language.namespaces.fallback.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/migration81.deprecated.php#migration81.deprecated.core.autovivification-false
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.447 Favorite Casting Method

There are two methods for casting : the cast operators, or the conversion functions. The cast operators are
int, float and string. The conversion functions are intval(), floatval() and strval().

The analyzed code has less than 10% of one of them : for consistency reasons, it is recommended to make them all the
same.

It happens that casting operators or conversion functions are used depending on coding style and files.

<?php

// be consistent
$a = (int) $_GET['a'];
$b = (float) $_GET['b'];
$c = (int) $_GET['c'];
$d = (int) $_GET['d'];
$e = (string) $_GET['e'];
$f = (int) $_GET['f'];
$g = (int) $_GET['g'];
$i = (int) $_GET['i'];
$j = (int) $_GET['j'];
$k = (int) $_GET['k'];
$l = intval($_GET['l']);

?>

Suggestions

• Choose one of the two syntaxes

Specs

Short name Structures/CastFavorite
Rulesets All, Preferences
Exakat since 2.6.1
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features cast
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 809

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.448 Feast usage

This analysis reports usage of the Feast framework.

FEAST is a radically different PHP Framework that was built from the ground up to be an alternative to the dependency-
heavy frameworks that exist already. Its goal is a light-weight footprint that just lets you get stuff done.

<?php

$this->httpRequest->postJson(self::URL . '/subscribers');
$this->httpRequest->addArguments($data);
$this->httpRequest->authenticate($this->apiKey, '');
$this->httpRequest->makeRequest();
$response = $this-httpRequest->getResponseAsJson();

?>

See also Feast and `Feast on github<https://github.com/feastframework/framework>`_.

Specs

Short name Vendors/Feast
Rulesets All, Appinfo
Exakat since 2.4.8
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features framework
Available in Entreprise Edition, Exakat Cloud

14.2.449 Fetch One Row Format

When reading results with ext/Sqlite3, it is recommended to explicitly request SQLITE3_NUM or
SQLITE3_ASSOC, while avoiding the default value and SQLITE3_BOTH.

This is a micro-optimisation. The difference may be visible with 200k rows fetches, and measurable with 10k.

<?php

$res = $database->query($query);

// Fastest version, but less readable
$row = $res->fetchArray(\SQLITE3_NUM);
// Almost the fastest version, and more readable
$row = $res->fetchArray(\SQLITE3_ASSOC);

// Default version. Quite slow
$row = $res->fetchArray();

// Worse case
(continues on next page)

810 Chapter 14. Rules

https://docs.feast-framework.com/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/sqlite3

Exakat Documentation, Release 1

(continued from previous page)

$row = $res->fetchArray(\SQLITE3_BOTH);

?>

Suggestions

• Specify the result format when reading rows from a Sqlite3 database

Specs

Short name Performances/FetchOneRowFormat
Rulesets All, Changed Behavior, Performances
Exakat since 0.9.6
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features csv
Available in Entreprise Edition, Exakat Cloud

14.2.450 File Is Component

Check that a file only contains definition elements, such as traits, interfaces, enumerations, declare, classes,
constants, global variables, use or inclusions.

Such a file is a component, that may be included in other code and there, used. By itself, it doesn’t execute any code.

<?php

declare(strict_types=1);

class x {
// more code

}

?>

Specs

Short name Files/IsComponent
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 811

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.451 File Is Not Definitions Only

An included file should only provide definitions and declarations, or executable code : not both.

With definitions only files, their inclusion provide new features, and keep the current execution untouched, and in
control of the flow. Within this context, globals, use, and namespaces instructions are not considered a warning.

<?php
// This whole script is a file

// It contains definitions and global code
class foo {

static public $foo = null;
}
//This can be a singleton creation
foo::$foo = new foo();

trait t {}

class bar {}

?>

Suggestions

• Remove the executable code from the file

• Remove the definitions from the file

Specs

Short name Files/NotDefinitionsOnly
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.452 File Uploads

This code makes usage of file upload features of PHP.

Upload file feature is detected through the usage of specific functions :

<?php
$uploaddir = '/var/www/uploads/';
$uploadfile = $uploaddir . basename($_FILES['userfile']['name']);

echo '<pre>';
(continues on next page)

812 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

if (move_uploaded_file($_FILES['userfile']['tmp_name'], $uploadfile)) {
echo 'File is valid, and was successfully uploaded.'.PHP_EOL;

} else {
echo 'Possible file upload attack!'.PHP_EOL;

}

echo 'Here is some more debugging info:';
print_r($_FILES);

print '</pre>';

?>

See also Handling file uploads.

Specs

Short name Structures/FileUploadUsage
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features file-upload
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.453 File Usage

The application makes usage of files on the system (read, write, delete, etc.).

Files usage is based on the usage of file functions.

<?php
$fp = fopen('/tmp/file.txt', 'w+');
//

?>

See also filesystem.

14.2. List of Rules 813

https://www.php.net/manual/en/features.file-upload.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
http://www.php.net/manual/en/book.filesystem.php

Exakat Documentation, Release 1

Specs

Short name Structures/FileUsage
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Features file
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.454 File_Put_Contents Using Array Argument

file_put_contents() accepts a second argument as an array, and stores it in the file with an implicit implode.
This is a documented behavior, though it is rarely used.

<?php

file_put_contents('/tmp/file.txt', [1, 2, 3, 4]);

print file_get_contents('/tmp/file.txt');
// displays 1234

?>

See also file_put_contents().

Specs

Short name Structures/FilePutContentsDataType
Rulesets All, Appinfo, Changed Behavior
Exakat since 2.6.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features silent
Available in Entreprise Edition, Exakat Cloud

814 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/file_put_contents
https://www.php.net/file_put_contents
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.455 Filter Not Raw

Report usage of filter functions with the FILTER_RAW_UNSAFE option. This option is the default one.

<?php

// default to FILTER_RAW_UNSAFE
filter_var($a);

// explicit no filter
filter_var($a, FILTER_RAW_UNSAFE);

?>

Suggestions

• Use a different filter to validate those data.

Specs

Short name Security/FilterNotRaw
Rulesets All, Changed Behavior, Security
Exakat since 2.5.1
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features filter
Available in Entreprise Edition, Exakat Cloud

14.2.456 Filter To add_slashes()

FILTER_SANITIZE_MAGIC_QUOTES is deprecated. In PHP 7.4, it should be replaced with addslashes()

According to the migration RDFC : ‘Magic quotes were deprecated all the way back in PHP 5.3 and later removed
in PHP 5.4. The filter extension implements a sanitization filter that mimics this behavior of magic_quotes by calling
addslashes() on the input in question.’ addslashes() used to filter data while building SQL queries, to prevent injections.
Nowadays, prepared queries are a better option.

<?php

// Deprecated way to filter input
$var = filter_input($input, FILTER_SANITIZE_MAGIC_QUOTES);

// Alternative way to filter input
$var = addslashes($input);

?>

See also Deprecations for PHP 7.4.

14.2. List of Rules 815

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/addslashes
https://www.php.net/addslashes
https://www.php.net/addslashes
https://wiki.php.net/rfc/deprecations_php_7_4

Exakat Documentation, Release 1

Suggestions

• Replace FILTER_SANITIZE_MAGIC_QUOTES with addslashes()

• Replace FILTER_SANITIZE_MAGIC_QUOTES with an adapted escaping system

Specs

Short name Php/FilterToAddSlashes
Rulesets All, CE, Changed Behavior, CompatibilityPHP74
Exakat since 1.9.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.457 Final Class Usage

List of all final classes being used.

final may be applied to classes and methods.

<?php
class BaseClass {
public function test() {

echo 'BaseClass::test() called'.PHP_EOL;
}

final public function moreTesting() {
echo 'BaseClass::moreTesting() called'.PHP_EOL;

}
}

class ChildClass extends BaseClass {
public function moreTesting() {

echo 'ChildClass::moreTesting() called'.PHP_EOL;
}

}
// Results in Fatal error: Cannot override final method BaseClass::moreTesting()
?>

See also Final Keyword.

816 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.final.php

Exakat Documentation, Release 1

Specs

Short name Classes/Finalclass
Rulesets All, Class Review, LintButWontExec
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features final
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.458 Final Constant

This rule lists the usage of the final modifier for class constants. The support of final for class constants
was added in PHP 8.1.

<?php

class MyClass {
final const X = 1; // This constant cannot be redefined

const Y = 2; // This constant might be redefined in a child

private const Z = 3; // This private, and can't be made final, because it is not␣
→˓available anyway
}

?>

See also https://www.php.net/manual/en/language.oop5.final.php and https://php.watch/versions/8.1/
final-class-const.

14.2. List of Rules 817

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.final.php
https://php.watch/versions/8.1/final-class-const
https://php.watch/versions/8.1/final-class-const

Exakat Documentation, Release 1

Specs

Short
name

Php/FinalConstant

Rule-
sets

All, Appinfo, Changed Behavior, CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72,
CompatibilityPHP73, CompatibilityPHP74, CompatibilityPHP80

Exakat
since

2.3.0

PHP
Version

With PHP 8.1 and more recent

Sever-
ity

Major

Time
To Fix

Instant (5 mins)

Preci-
sion

Very high

Fea-
tures

final-class-constant

Avail-
able in

Entreprise Edition, Exakat Cloud

14.2.459 Final Methods Usage

List of all final methods being used.

final may be applied to classes and methods in classes and traits.

<?php
class BaseClass {
public function test() {

echo 'BaseClass::test() called'.PHP_EOL;
}

final public function moreTesting() {
echo 'BaseClass::moreTesting() called'.PHP_EOL;

}
}

class ChildClass extends BaseClass {
public function moreTesting() {

echo 'ChildClass::moreTesting() called'.PHP_EOL;
}

}
// Results in Fatal error: Cannot override final method BaseClass::moreTesting()
?>

See also Final Keyword.

818 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.final.php

Exakat Documentation, Release 1

Specs

Short name Classes/Finalmethod
Rulesets All, Class Review, LintButWontExec
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.460 Final Private Methods

PHP’s private methods cannot be overwritten, as they are dedicated to the current class. That way, the
final keyword is useless.

PHP 8.0 warns when it finds such a method.

<?php

class foo {
// Final and private both prevent child classes to overwrite the method
final private function bar() {}

// Final and protected (or public) keep this method available, but not overwritable
final protected function bar() {}

}

?>

See also Final Keyword.

Suggestions

• Remove the final keyword

• Relax visibility

Specs

Short name Classes/FinalPrivate
Rulesets All, CE, Class Review, CompatibilityPHP80
Exakat since 2.2.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features final
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 819

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.final.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.461 Final Traits Are Final

A final method in a trait is also final when in its importing class. This means that the importing class may
redefine it, but not the children.

<?php

trait t {
final function FFinal() {}
final function FNotFinalInClass() {}
function FNotFinal() {} // This is a normal method

}

class x {
use t;

function FNotFinalInClass() {}

}

class y extends x {
function FFinal() {} // This is KO, as it is final in the trait
function FNotFinalInClass() {} // This is OK, the class as priority
function FNotFinal() {}

}
?>

Specs

Short
name

Traits/FinalTraitsAreFinal

Rule-
sets

All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56, Compatibil-
ityPHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73, CompatibilityPHP74, Com-
patibilityPHP80, CompatibilityPHP81, CompatibilityPHP82

Ex-
akat
since

2.5.3

PHP
Ver-
sion

With PHP 8.3 and older

Sever-
ity

Minor

Time
To
Fix

Quick (30 mins)

Pre-
ci-
sion

High

Avail-
able
in

Entreprise Edition, Exakat Cloud

820 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.462 Find Key Directly

There is no need to use foreach() to search for a key.

PHP offers two solutions : array_search() and array_keys(). Array_search() finds the first key that fits a value, and
array_keys() returns all the keys.

<?php

$array = ['a', 'b', 'c', 'd', 'e'];

print array_search($array, 'c');
// print 2 => 'c';

print_r(array_keys($array, 'c'));
// print 2 => 'c';

?>

See also array_search and array_keys.

Suggestions

• Use array_search()

• Use array_keys()

Specs

Short name Structures/GoToKeyDirectly
Rulesets All
Exakat since 1.1.4
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Features property
Available in Entreprise Edition, Exakat Cloud

14.2.463 First Class Callable

A syntax using ellipsis was introduced to make it easy to make a method into a callable.

<?php

// Using ellipsis as the only argument
$a = $object->method(...);

// Old style equivalent
$a = array($object, 'method');

(continues on next page)

14.2. List of Rules 821

https://www.php.net/manual/en/control-structures.foreach.php
https://www.php.net/array_search
https://www.php.net/array_keys
https://www.php.net/array_search
https://www.php.net/array_keys
https://www.php.net/array_search
https://www.php.net/array_keys
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// calling the closure.
$a();

?>

See also PHP RFC: First-class callable syntax.

Specs

Short name Php/FirstClassCallable
Rulesets All, Appinfo
Exakat since 2.3.0
PHP Version With PHP 8.1 and more recent
Severity
Time To Fix
Precision Very high
Features first-class-callable
Available in Entreprise Edition, Exakat Cloud

14.2.464 Flexible Heredoc

Flexible syntax for Heredoc.

The new flexible syntax for heredoc and nowdoc enable the closing marker to be indented, and remove the new line
requirement after the closing marker.

It was introduced in PHP 7.3. This syntax is backward incompatible : once adopted in the code, previous versions
won’t compile it.

<?php

// PHP 7.3 and newer
foo($a = <<<END

flexible syntax
with extra indentation

END);

// All PHP versions
$a = <<<END

Normal syntax

END;

?>

See also Heredoc and Flexible Heredoc and Nowdoc Syntaxes.

822 Chapter 14. Rules

https://wiki.php.net/rfc/first_class_callable_syntax
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.types.string.php#language.types.string.syntax.heredoc
https://wiki.php.net/rfc/flexible_heredoc_nowdoc_syntaxes

Exakat Documentation, Release 1

Specs

Short
name

Php/FlexibleHeredoc

Rule-
sets

All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compatibil-
ityPHP56, CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72

Exakat
since

1.2.9

PHP
Ver-
sion

With PHP 7.3 and more recent

Sever-
ity

Critical

Time
To Fix

Instant (5 mins)

Preci-
sion

Very high

Fea-
tures

heredoc

Avail-
able in

Entreprise Edition, Exakat Cloud

14.2.465 Float Conversion As Index

Only integers and strings are possible types when used for array index. Until PHP 8.1, floats
were converted to integer by truncation. Since PHP 8.1, a deprecated message is emitted.

The implicit conversion of float to int which leads to a loss in precision is now deprecated. This affects
array keys, int type declarations in coercive mode, and operators working on integers.

<?php
$a = [];
$a[15.5]; // deprecated, as key value loses the 0.5 component
$a[15.0]; // ok, as 15.0 == 15
?>

See also Implicit incompatible float to int conversions.

Specs

Short name Arrays/FloatConversionAsIndex
Rulesets All, Analyze, Changed Behavior, CompatibilityPHP81, CompatibilityPHP82
Exakat since 2.3.1
PHP Version With PHP 8.1 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features array
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 823

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/migration81.deprecated.php#migration81.deprecated.core.implicit-float-conversion
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.466 Fn Argument Variable Confusion

Avoid using local variables as arrow function arguments.

When a local variable name is used as an argument’s name in an arrow function, the local variable from the original
scope is not imported. They are now two distinct variables.

When the local variable is not listed as argument, it is then imported in the arrow function.

<?php

function foo() {
$locale = 1;

// Actually ignores the argument, and returns the local variable ``$locale``.
$fn2 = fn ($argument) => $locale;

// Seems similar to above, but returns the incoming argument
$fn2 = fn ($locale) => $locale;

}

?>

See also Arrow functions.

Suggestions

• Change the name of the local variable

• Change the name of the argument

Specs

Short name Functions/FnArgumentVariableConfusion
Rulesets All, Analyze, Semantics
Exakat since 2.1.0
PHP Version With PHP 7.4 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features arrow-function
Available in Entreprise Edition, Exakat Cloud

824 Chapter 14. Rules

https://www.php.net/manual/en/functions.arrow.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.467 Follow Closure Definition

This command adds DEFINITION link between closure <https://www.php.net/`closure>`_ and arrow
functions definitions and their usage.

Local usage of the closure <https://www.php.net/`closure>`_, in the same scope, are detected. Relayed closure
<https://www.php.net/`closure>`_, when they are transmitted to another method for usage, is detected, for one jump.

This also supports first class callable, when the callable is defined in the code code (aka, not with native PHP functions
or external libraries).

<?php

function foo() {
$closure = function () {};
// Local usage
echo $closure();

}

function bar(Closure $x) {
// relayed usage
echo $x();

}

?>

Specs

Short name Complete/FollowClosureDefinition
Rulesets All, CE, Changed Behavior, NoDoc
Exakat since 1.9.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features closure, arrow-function
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.468 Fopen Binary Mode

Use explicit b when opening files.

fopen() supports a b option in the second parameter, to make sure the read is binary. This is the recommended way
when writing portable applications, between Linux and Windows. Also, Windows PHP does support a t option, that
translates automatically line endings to the right value. As this is Windows only, this should be avoided for portability
reasons.

<?php

// This opens file with binary reads on every OS
(continues on next page)

14.2. List of Rules 825

https://www.php.net/closure
https://www.php.net/closure
https://www.php.net/closure
https://www.php.net/closure
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/fopen

Exakat Documentation, Release 1

(continued from previous page)

$fp = fopen('path/to/file.doc', 'wb');

// This may not open files with binary mode on Windows
$fp = fopen('path/to/file.doc', 'w');

?>

See also fopen.

Suggestions

• Add the b option when opening files

Specs

Short name Portability/FopenMode
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features file
Available in Entreprise Edition, Exakat Cloud

14.2.469 For Using Functioncall

It is recommended to avoid functioncall in the for() statement.

This is true with any kind of functioncall that returns the same value throughout the loop.

Make sure that the functioncall doesn’t change with the loop.

<?php

// Fastest way
$nb = count($array);
for($i = 0; $i < $nb; ++$i) {

doSomething($i);
}

// Same as above, but slow
for($i = 0; $i < count($array); ++$i) {

doSomething($i);
}

// Same as above, but slow
foreach($portions as &$portion) {

// here, array_sum() doesn't depends on the $grade. It should be out of the loop
(continues on next page)

826 Chapter 14. Rules

https://www.php.net/fopen
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.for.php

Exakat Documentation, Release 1

(continued from previous page)

$portion = $portion / array_sum($portions);
}

$total = array_sum($portion);
foreach($portion as &$portion) {

$portion = $portion / $total;
}

?>

See also PHP for loops and counting arrays.

Suggestions

• Call the function once, before the loop

• Replace by a foreach structure

Specs

Short name Structures/ForWithFunctioncall
Rulesets All, Changed Behavior, Performances, Rector, Top10
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features for
ClearPHP no-functioncall-in-loop
Available in Entreprise Edition, Exakat Cloud

14.2.470 Foreach Don’t Change Pointer

foreach() loops use their own internal cursor.

A foreach loop won’t change the internal pointer of the array, as it works on a copy of the source. Hence, applying array
pointer’s functions such as current() or next() to the source array won’t have the same behavior in PHP 5 than PHP 7.

This only applies when a foreach() by reference is used.

<?php

$numbers = range(1, 10);
next($numbers);
foreach($numbers as &$number){

print $number;
print current($numbers)."\n"; // Always

}

?>

14.2. List of Rules 827

https://electrictoolbox.com/php-for-loop-counting-array/
https://github.com/dseguy/clearPHP/tree/master/rules/no-functioncall-in-loop.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.foreach.php
https://www.php.net/current
https://www.php.net/next
https://www.php.net/manual/en/control-structures.foreach.php

Exakat Documentation, Release 1

See also foreach no longer changes the internal array pointer.

Suggestions

• Do not change the pointer on the source array while in the loop

Specs

Short name Php/ForeachDontChangePointer
Rulesets All, Changed Behavior, CompatibilityPHP70
Exakat since 0.8.4
PHP Version With PHP 7.0 and older
Severity Major
Time To Fix Slow (1 hour)
Changed Behavior PHP 7.0 - More
Precision High
Features foreach
Available in Entreprise Edition, Exakat Cloud

14.2.471 Foreach Needs Reference Array

When using foreach with a reference as value, the source must be a referenced array, which is a variable
(or array or property or static property).

When the array is the result of an expression, the array is not kept in memory after the foreach loop, and any change
made with & are lost.

This will do nothing This will have an actual effect

<?php
foreach(array(1,2,3) as &$value) {

$value *= 2;
}

?>

Suggestions

• Use a referenced array when applying modifications inside a foreach loop

828 Chapter 14. Rules

https://www.php.net/manual/en/migration70.incompatible.php#migration70.incompatible.foreach.array-pointer
https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/result

Exakat Documentation, Release 1

Specs

Short name Structures/ForeachNeedReferencedSource
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features foreach, reference
Available in Entreprise Edition, Exakat Cloud

14.2.472 Foreach On Object

Foreach on object looks like a typo. This is particularly true when both object and member are variables.

Foreach on an object member is a legit PHP syntax, though it is very rare : blind variables rarely have to be securing
in an object to be processed.

<?php

// This is the real thing
foreach($array as $o => $b) {

doSomething();
}

// Looks suspicious
foreach($array as $o -> $b) {

doSomething();
}

?>

Specs

Short name Php/ForeachObject
Rulesets All, Analyze, Changed Behavior
Exakat since 1.1.6
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision High
Features foreach, loop
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 829

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.473 Foreach Reference Is Not Modified

Foreach statement may loop using a reference, especially when the loop has to change values of the array
it is looping on.

In the spotted loop, reference are used but never modified. They may be removed.

<?php

$letters = range('a', 'z');

// $letter is not used here
foreach($letters as &$letter) {

$alphabet .= $letter;
}

// $letter is actually used here
foreach($letters as &$letter) {

$letter = strtoupper($letter);
}

?>

Suggestions

• Remove the reference from the foreach

• Actually modify the content of the reference

Specs

Short name Structures/ForeachReferenceIsNotModified
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features foreach, reference
Examples Dolibarr, Vanilla
Available in Entreprise Edition, Community Edition, Exakat Cloud

830 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.474 Foreach With list()

Foreach loops have the ability to use list() (or []) as blind variables. This syntax assign directly array
elements to various variables.

PHP 5.5 introduced the usage of list in foreach() loops. Until PHP 7.1, it was not possible to use non-numerical arrays
as list() wouldn’t support string-indexed arrays. Previously, it was compulsory to extract() the data from the blind array
:

<?php
// PHP 5.5 and later, with numerically-indexed arrays
foreach($array as list($a, $b)) {

// do something
}

// PHP 7.1 and later, with arrays
foreach($array as list('col1' => $a, 'col3' => $b)) { // 'col2 is ignored'

// do something
}

?>

See also The list function & practical uses of array destructuring in PHP and Array destructuring in PHP.

Specs

Short name Structures/ForeachWithList
Rulesets All, CompatibilityPHP53, CompatibilityPHP54
Exakat since 0.8.4
PHP Version With PHP 5.5 and more recent
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features foreach
Available in Entreprise Edition, Exakat Cloud

14.2.475 Foreach() Favorite

Collect the name used in foreach() loops. Then, sorts them in order of popularity.

<?php

// collect $k, $v
foreach($array as $k => $v) { }

// collect $k, $v1, $v2
foreach($array as $k => [$v1, $v2]) { }

?>

14.2. List of Rules 831

https://www.php.net/list
https://www.php.net/manual/en/control-structures.foreach.php
https://www.php.net/list
https://www.php.net/extract
https://sebastiandedeyne.com/the-list-function-and-practical-uses-of-array-destructuring-in-php
https://stitcher.io/blog/array-destructuring-with-list-in-php#in-loops
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.foreach.php

Exakat Documentation, Release 1

Specs

Short name Dump/CollectForeachFavorite
Rulesets All, CE, Dump
Exakat since 1.9.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features foreach
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.476 Forgotten Interface

The following classes have been found implementing an interface’s methods, though it doesn’t explicitly
implements this interface. This may have been forgotten.

<?php

interface i {
function i();

}

// i is not implemented and declared
class foo {

function i() {}
function j() {}

}

// i is implemented and declared
class foo implements i {

function i() {}
function j() {}

}

?>

See also Could Use Trait.

832 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Mention interfaces explicitly whenever possible

Specs

Short name Interfaces/CouldUseInterface
Rulesets All, Analyze, Changed Behavior
Exakat since 0.11.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features interface, ducktyping
Available in Entreprise Edition, Exakat Cloud

14.2.477 Forgotten Thrown

This rule reports when an exception is instantiated, but not thrown. Often, this is a case of forgotten throw.

<?php

class MyException extends \Exception { }

if ($error !== false) {
// This looks like 'throw' was omitted
new MyException();

}

?>

Suggestions

• Remove the instantiation expression.

• Add the throw to the new expression.

Specs

Short name Exceptions/ForgottenThrown
Rulesets All, Analyze, Changed Behavior
Exakat since 0.10.2
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features throw, exception
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 833

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.478 Forgotten Visibility

Some classes elements (property, method, constant) are missing their explicit visibility.

By default, it is public. It should at least be mentioned as public, or may be reviewed as protected or private.

Class constants support also visibility since PHP 7.1.

final, static and abstract are not counted as visibility. Only public, private and protected. The PHP 4 var keyword is
counted as undefined.

Traits, classes and interfaces are checked.

<?php

// Explicit visibility
class X {

protected sconst NO_VISIBILITY_CONST = 1; // For PHP 7.2 and later

private $noVisibilityProperty = 2;

public function Method() {}
}

// Missing visibility
class X {

const NO_VISIBILITY_CONST = 1; // For PHP 7.2 and later

var $noVisibilityProperty = 2; // Only with var

function NoVisibilityForMethod() {}
}

?>

See also Visibility and Understanding The Concept Of Visibility In Object Oriented PHP.

Suggestions

• Always add explicit visibility to methods and constants in a class

• Always add explicit visibility to properties in a class, after PHP 7.4

834 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.visibility.php
https://torquemag.io/2016/05/understanding-concept-visibility-object-oriented-php/

Exakat Documentation, Release 1

Specs

Short name Classes/NonPpp
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features visibility
ClearPHP always-have-visibility
Examples FuelCMS, LiveZilla
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.479 Forgotten Whitespace

Forgotten whitespaces brings unexpected error messages.

White spaces have been left at either end of a file : before the PHP opening tag, or after the closing tag.

Usually, such whitespaces are forgotten, and may end up summoning the infamous ‘headers already sent’ error. It is
better to remove them.

<?php
// This script has no forgotten whitespace, not at the beginning
function foo() {}

// This script has no forgotten whitespace, not at the end
?>

See also How to fix Headers already sent error in PHP.

Suggestions

• Remove all whitespaces before and after a script. This doesn’t apply to template, which may need to use those
spaces.

• Remove the final tag, to prevent any whitespace to be forgotten at the end of the file. This doesn’t apply to the
opening PHP tag, which is always necessary.

Specs

Short name Structures/ForgottenWhiteSpace
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features whitespace
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 835

https://github.com/dseguy/clearPHP/tree/master/rules/always-have-visibility.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/error
http://stackoverflow.com/questions/8028957/how-to-fix-headers-already-sent-error-in-php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.480 Fossilized Method

A method is fossilized when it is overwritten so often that changing a default value, a return type or an
argument type is getting difficult.

This happens when a class is extended. When a method is overwritten once, it may be easy to update the signature in
two places. The more methods are overwriting a parent method, the more difficult it is to update it.

This analysis counts the number of times a method is overwritten, and report any method that is overwritten more than
6 times. This threshold may be configured.

<?php

class x1 {
// foo1() is never overwritten. It is easy to update.
function foo1() {}

// foo7() is overwritten seven times. It is hard to update.
function foo7() {}

}

// classes x2 to x7, all overwrite foo7();
// Only x2 is presente here.
class x2 extends x1 {

function foo7() {}
}

?>

Name De-
fault

Type Description

fossilizationThresh-
old

6 inte-
ger

Minimal number of overwriting methods to consider a method difficult to
update.

See also Method fossilization <https://www.exakat.io/en/method-fossilisation/>_.

Specs

Short name Classes/FossilizedMethod
Rulesets All, Class Review, Typechecks
Exakat since 2.0.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features fossilized-method
Available in Entreprise Edition, Exakat Cloud

836 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.481 Fossilized Methods List

This is the list of fossilized methods. Those methods appears when they get tightly couple with a child or
parent class, and cannot evolve anymore without making the rest of the family evolve also. They are now
very difficult to update and usually, become inert.

<?php

class x {
function foo(int $a) : string {

//...
}

}

class y extends x {
// this methods is fossilized, as its modification will trigger an update in the␣

→˓parent class
function foo(int $a) : string {

//...
}

}

?>

Specs

Short name Dump/FossilizedMethods
Rulesets All, CE, Changed Behavior, Dump
Exakat since 2.1.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features fossilized-method
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.482 Friend Attribute

A method or class can supply via a #[Friend] attribute a list of classes. Only these classes can call the
method. This is loosely based on the C++ friend feature.

• Multiple classes can be specified. E.g. #[Friend(Foo::class, Bar::class)]

• A class can have a #[Friend] attribute, classes listed here are applied to every method.

• The #[Friend] attribute is additive. If a class and a method have the #[Friend] the method can be called from any
of the classes listed. E.g.

• This is is currently limited to method calls (including __construct).

• The Attribute is limited to the exact classes, the family hierarchy is not searched.

• Multiple attributes can be specified to add more classes. E.g. #[Friend(Foo::class)] #[Friend(Bar::class)]

14.2. List of Rules 837

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/attribute
https://www.php.net/attribute
https://www.php.net/attribute
https://www.php.net/manual/en/language.oop5.decon.php
https://www.php.net/attribute

Exakat Documentation, Release 1

Based on the specificiations from Dave Liddament.

<?php

class Person
{

#[Friend(PersonBuilder::class)]
public function __construct()
{

// Some implementation
}

}

class PersonBuilder
{

public function build(): Person
{

$person = new Person(): // OK as PersonBuilder is allowed to call Person's␣
→˓construct method.

// set up Person
return $person;

}
}

// ERROR Call to Person::__construct is not from PersonBuilder
$person = new Person();

?>

See also Friend and php-language-extension.

Suggestions

• Add the reported classes as friend to the original class

• Remove the call to the class from the reported classes

Specs

Short name Attributes/Friend
Rulesets All, Attributes
Exakat since 2.6.2
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features attribute
Available in Entreprise Edition, Exakat Cloud

838 Chapter 14. Rules

https://github.com/DaveLiddament/php-language-extensions#friend
https://github.com/DaveLiddament/php-language-extensions
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.483 Fuel PHP Usage

This analysis reports usage of the Fuel PHP Framework.

Do not confuse fuelPHP and fuelCMS

<?php
// file located in APPPATH/classes/presenter.php
class Presenter extends \Fuel\Core\Presenter
{

// namespace prefix
protected static $ns_prefix = 'Presenter\';

}
?>

See also FuelPHP.

Specs

Short name Vendors/Fuel
Rulesets All, Appinfo, CE
Exakat since 1.0.3
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features framework
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.484 Fully Qualified Constants

Constants defined with their namespace.

When defining constants with define() function, it is possible to include the actual namespace : However, the name
should be fully qualified without the initial . Here, abc constant will never be accessible as a namespace constant,
though it will be accessible via the constant() function.

Also, the namespace will be absolute, and not a relative namespace of the current one.

<?php

define('a\b\c', 1);

?>

14.2. List of Rules 839

https://fuelphp.com
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/define
https://www.php.net/constant

Exakat Documentation, Release 1

Suggestions

• Drop the initial when creating constants with define() : for example, use trim($x, ‘'), which removes anti-slashes
before and after.

Specs

Short name Namespaces/ConstantFullyQualified
Rulesets All, Analyze, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features namespace
Available in Entreprise Edition, Exakat Cloud

14.2.485 Function Called With Other Case Than Defined

Functions and methods are defined with a specific case. Often, this is done on purpose,

either to distinguish the method from others, such as PHP natives functions, or to follow a naming convention.

PHP functions are case insensitive, which leads to situations like : It is recommended to use the same casing in the
function call and the function definition.

<?php
function myUtility($arg) {
/* some code here */

}

myutility($var);
?>

Suggestions

• Use the same case for the function and its call.

Specs

Short name Functions/FunctionCalledWithOtherCase
Rulesets All, Semantics
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features function
Available in Entreprise Edition, Exakat Cloud

840 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.486 Function Subscripting

It is possible to use the result of a methodcall directly as an array, without storing the result in a temporary
variable.

This works, given that the method actually returns an array.

This syntax was not possible until PHP 5.4. Until then, it was compulsory to store the result in a variable first. Although
this is now superfluous, it has been a standard syntax in PHP, and is still being used. Storing the result in a variable is
still useful if the result is actually used more than once.

<?php

function foo() {
return array(1 => 'a', 'b', 'c');

}

echo foo()[1]; // displays 'a';

// Function subscripting, the old way
function foo() {

return array(1 => 'a', 'b', 'c');
}

$x = foo();
echo $x[1]; // displays 'a';

?>

See also Accessing array elements with square bracket syntax.

Specs

Short name Structures/FunctionSubscripting
Rulesets All, Appinfo, CE, CompatibilityPHP53
Exakat since 0.8.4
PHP Version With PHP 5.4 and more recent
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features subscripting
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 841

https://www.php.net/result
https://www.php.net/result
https://www.php.net/result
https://www.php.net/result
https://www.php.net/result
https://www.php.net/manual/en/language.types.array.php#language.types.array.syntax.accessing
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.487 Function Subscripting, Old Style

It is possible use function results as an array, and read directly its element. This was added in PHP 5.4.

<?php

function foo() {
return array(1 => 'a', 'b', 'c');

}

echo foo()[1]; // displays 'a';

// Function subscripting, the old way
function foo() {

return array(1 => 'a', 'b', 'c');
}

$x = foo();
echo $x[1]; // displays 'a';

?>

Suggestions

• Skip the local variable and directly use the return value from the function

Specs

Short name Structures/FunctionPreSubscripting
Rulesets All, Changed Behavior, Suggestions
Exakat since 0.8.4
PHP Version With PHP 5.4 and more recent
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features function-subscripting
Examples OpenConf
Available in Entreprise Edition, Exakat Cloud

14.2.488 Function With Dynamic Code

Mark a method, function, closure <https://www.php.net/`closure>`_, arrow function that includes dynamic
code.

Dynamic code is based on usage of include(), require(), require_once() and include(), extract() and eval().

This is a support rule, to help omits some special cases in other rules.

<?php

(continues on next page)

842 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/closure
https://www.php.net/extract

Exakat Documentation, Release 1

(continued from previous page)

// Function with dynamic code
function foo($x) {

include $x;
return $y;

}

// Static coe Function
function foo($x) {

return $y + $x;
}

?>

Specs

Short name Functions/DynamicCode
Rulesets All, CE, Changed Behavior
Exakat since 2.1.8
PHP Version All
Severity
Time To Fix
Precision Very high
Features dynamic-call
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.489 Functioncall Is Global

Marks a functioncall when it is from the global scope. It is not located in another function, class or trait.

<?php

function foo() {
// This is not a global functioncall
goo();

}

// This is a global functioncall
foo();

?>

See also class.

14.2. List of Rules 843

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.basic.php#language.oop5.basic.class

Exakat Documentation, Release 1

Specs

Short name Functions/IsGlobal
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features class
Available in Entreprise Edition, Exakat Cloud

14.2.490 Functions Glossary

List of all the defined functions in the code.

<?php

// A function
function aFunction() {}

// Closures (not reported)
$closure = function ($arg) { }

// Methods
class foo {

function aMethod() {}
}

?>

Specs

Short name Functions/Functionnames
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features function
Available in Entreprise Edition, Community Edition, Exakat Cloud

844 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.491 Functions In Loop Calls

The following functions call each-other in a loop fashion : A -> B -> A.

When those functions have no other interaction, the code is useless and should be dropped.

Loops of size 2, 3 and 4 function are supported by this analyzer.

<?php

function foo1($a) {
if ($a < 1000) {

return foo2($a + 1);
}
return $a;

}

function foo2($a) {
if ($a < 1000) {

return foo1($a + 1);
}
return $a;

}

// if foo1 nor foo2 are called, then this is dead code.
// if foo1 or foo2 are called, this recursive call should be investigated.

?>

Suggestions

• Drop all the functions in the loop, as they are dead code

Specs

Short name Functions/LoopCalling
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features function, recursion
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 845

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.492 Functions Removed In PHP 5.4

Those functions were removed in PHP 5.4.

• ereg()

• ereg_replace()

• eregi()

• eregi_replace()

• split()

• spliti()

• sql_regcase()

• magic_quotes_runtime()

• set_magic_quotes_runtime

• call_user_method()

• call_user_method_array()

• set_socket_blocking()

• mcrypt_ecb()

• mcrypt_cbc()

• mcrypt_cfb()

• mcrypt_ofb()

• datefmt_set_timezone_id()

• imagepsbbox()

• imagepsencodefont()

• imagepsextendfont()

• imagepsfreefont()

• imagepsloadfont()

• imagepsslantfont()

• imagepstext()

See also Deprecated features in PHP 5.4.x.

Specs

Short name Php/Php54RemovedFunctions
Rulesets All, Changed Behavior, CompatibilityPHP54
Exakat since 0.8.4
PHP Version With PHP 5.4 and older
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features function
Available in Entreprise Edition, Exakat Cloud

846 Chapter 14. Rules

https://www.php.net/magic_quotes_runtime
https://www.php.net/manual/en/migration54.deprecated.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.493 Functions Removed In PHP 5.5

Those functions were removed in PHP 5.5.

• php_logo_guid()

• php_egg_logo_guid()

• php_real_logo_guid()

• zend_logo_guid()

• mcrypt_cbc()

• mcrypt_cfb()

• mcrypt_ecb()

• mcrypt_ofb()

<?php

echo '<img src="' . $_SERVER['PHP_SELF'] .
'?=' . php_logo_guid() . '" alt="PHP Logo !" />';

?>

See also Deprecated features in PHP 5.5.x.

Suggestions

• Stop using those functions

Specs

Short name Php/Php55RemovedFunctions
Rulesets All, CompatibilityPHP55
Exakat since 0.8.4
PHP Version With PHP 5.5 and older
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features deprecated
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 847

https://www.php.net/php_logo_guid
https://www.php.net/zend_logo_guid
https://www.php.net/manual/en/migration55.deprecated.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.494 Functions Using Reference

Functions and methods using references in their signature.

<?php

function usingReferences(&$a) {}

class foo {
public function methodUsingReferences($b, &$c = 1) {}

}
?>

Specs

Short name Functions/FunctionsUsingReference
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features function, reference
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.495 GLOB_BRACE Usage

GLOB_BRACE is not always available on every underlying operating system. This is the case on Solaris
OS, and on Alpine OS, used for Docker.

It is possible to check the support for GLOB_BRACE by checking the presence of the constant.

<?php

// glob uses GLOB_BRACE
$abcFiles = glob($path.'/{a,b,c}*', GLOB_BRACE);

// avoiding usage of GLOB_BRACE
$abcFiles = array_merge(glob($path.'/a*'),

glob($path.'/b*'),
glob($path.'/c*'),
);

?>

See also Alpine Linux, GLOB_BRACE breaks Sulu on Alpine Linux and [performance] Symfony Kernel::boot() in
dev mode on Alpine #35009.

848 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/GLOB_BRACE
https://www.php.net/GLOB_BRACE
https://alpinelinux.org/
https://github.com/sulu/sulu/issues/4513
https://github.com/symfony/symfony/issues/35009
https://github.com/symfony/symfony/issues/35009

Exakat Documentation, Release 1

Suggestions

• Create as many glob() calls at there are alternative in the braces

• Use another tool to search the system on names

• Do not use glob brace

Specs

Short name Portability/GlobBraceUsage
Rulesets All
Exakat since 2.1.6
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features glob
Available in Entreprise Edition, Exakat Cloud

14.2.496 GPRC Aliases

The following variables are holding the content of $_GET, $_POST, $_REQUEST or $_COOKIE. They
shouldn’t be trusted, just like their original variables.

<?php

$post = $_POST;

foreach($post as $key => $var) {
print $var;

}

?>

See also Superglobals.

Specs

Short name Security/GPRAliases
Rulesets All, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features superglobal
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 849

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/reserved.variables.get.php
https://www.php.net/manual/en/reserved.variables.post.php
https://www.php.net/manual/en/reserved.variables.request.php
https://www.php.net/manual/en/language.variables.superglobals.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.497 Generator Cannot Return

Generators could not use return and yield at the same time. In PHP 7.0, generator
<https://www.php.net/`generator>`_ can now use both of them.

<?php

// This is not allowed until PHP 7.0
function foo() {

yield 1;
return 'b';

}

?>

Suggestions

• Remove the return

Specs

Short name Functions/GeneratorCannotReturn
Rulesets All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compat-

ibilityPHP56
Exakat
since

1.8.7

PHP Ver-
sion

With PHP 7.0 and more recent

Severity Major
Time To
Fix

Quick (30 mins)

Precision Very high
Features generator
Available
in

Entreprise Edition, Exakat Cloud

14.2.498 Geospatial

PHP Extension to handle common geospatial functions. The extension currently has implementations of
the Haversine and Vincenty’s formulas for calculating distances, an initial bearing calculation function,
a Helmert transformation function to transfer between different supported datums, conversions between
polar and Cartesian coordinates, conversions between Degree/Minute/Seconds and decimal degrees, a
method to simplify linear geometries, as well as a method to calculate intermediate points on a LineString.

NB : description and exemples are extracted from the extension source code.

<?php
$from = array(

'type' => 'Point',
'coordinates' => array(-104.88544, 39.06546)

(continues on next page)

850 Chapter 14. Rules

https://www.php.net/generator
https://www.php.net/generator
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

);
$to = array(

'type' => 'Point',
'coordinates' => array(-104.80, 39.06546)

);
var_dump(haversine($to, $from));
?>

See also geospatial - PHP Geospatial Extension <https://github.com/php-geospatial/geospatial>.

Specs

Short name Extensions/Extgeospatial
Rulesets All, Appinfo
Exakat since 2.4.7
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.499 Getter And Setter

A getter is a method whose purpose is to read the internal value of a class; a setter is a method whose
purpose is to write a value inside a class.

Exakat marks simple setters and getters : their content only writes (resp. reads) on property at a time. More refined
getters/setters might appear in the future, when formatting and filter is detected and omitted.

<?php

class x {
private $p = 1;

// getter
function getP() {

return $this->p;
}

// setter
function setP($a) {

$this->p = $a;
}

}

?>

See also PHP: Getters and Setters.

14.2. List of Rules 851

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://thisinterestsme.com/php-getters-and-setters/

Exakat Documentation, Release 1

Specs

Short name Patterns/GetterSetter
Rulesets All, Changed Behavior
Exakat since 2.3.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features getter, setter
Available in Entreprise Edition, Exakat Cloud

14.2.500 Getting Last Element

Getting the last element of an array relies on array_key_last().

array_key_last() was added in PHP 7.3. Before that, other ways had to be used, such as reaching the count() - 1
elements, or via array_pop(`array_keys()) <https://www.php.net/array_keys>`_.

<?php

$array = ['a' => 1, 'b' => 2, 'c' => 3];

// Best solutions, by far
$last = $array[array_key_last($array)];

// Best solutions, just as fast as each other
$last = $array[count($array) - 1];
$last = end($array);

// Bad solutions

// popping, but restoring the value.
$last = array_pop($array);
$array[] = $last;

// array_unshift would be even worse

// reversing array
$last = array_reverse($array)[0];

// slicing the array
$last = array_slice($array, -1)[0]',
$last = current(array_slice($array, -1));
);

?>

852 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_key_last
https://www.php.net/array_key_last

Exakat Documentation, Release 1

Suggestions

• Use PHP native function : array_key_last(), when using PHP 7.4 and later

• Use PHP native function : array_pop()

• Organise the code to put the last element in the first position (array_unshift() instead of append operator [])

Specs

Short name Arrays/GettingLastElement
Rulesets All, Changed Behavior, Performances
Exakat since 0.9.0
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features array
Examples Thelia
Available in Entreprise Edition, Exakat Cloud

14.2.501 Global Code Only

This rule reports files that only contain global code.

<?php

include 'another_file.pnp';

// This sets an options, but does not execute anything
set_memory_limit(-1);

// Some definitions, no code
const A = 1;

function foo() {}

class x {}

?>

14.2. List of Rules 853

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Files/GlobalCodeOnly
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features global-code
Available in Entreprise Edition, Exakat Cloud

14.2.502 Global Definitions

Sets the definitions of global variables across the application.

It creates a Virtualglobal atom, which links to all definitions of that variables, using global $a or $GLOBALS['a'].

It currently doesn’t work with variables in the global space, as it is not known how to detect them : they might be
included at some point.

<?php

function foo() {
global $a;

$a = 'PHP';
}

function goo() {
echo $GLOBALS['a'];

}

?>

Specs

Short name Complete/GlobalDefinitions
Rulesets All
Exakat since 2.5.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features global, globals
Available in Entreprise Edition, Exakat Cloud

854 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.503 Global Import

Mark a Use statement that is importing a global class in the current file.

<?php

namespace Foo {
// This is a global import
use Stdclass;

}
?>

Specs

Short name Namespaces/GlobalImport
Rulesets All, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Features namespace
Available in Entreprise Edition, Exakat Cloud

14.2.504 Global In Global

List of global variables. There are the global variables, defined with the global keyword, and the implicit
global variables, defined in the global scope.

<?php
global $explicitGlobal; // in global namespace

$implicitGlobal = 1; // in global namespace, variables are automatically global

function foo() {
global $explicitGlobalInFoo; // in functions, globals must be declared with␣

→˓global
}

?>

See also Variable Scope.

14.2. List of Rules 855

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.variables.scope.php

Exakat Documentation, Release 1

Specs

Short name Structures/GlobalInGlobal
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features global
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.505 Global Inside Loop

The global and static keywords must be used outside loops. Otherwise, they are evaluated at each loop,
slowing the whole process.

This is a micro-optimisation.

<?php

// Here, global is used once
global $total;
foreach($a as $b) {

$total += $b;
}

// Global is called each time : this is slow.
foreach($a as $b) {

global $total;
$total += $b;

}
?>

Suggestions

• Move the global keyword outside the loop

Specs

Short name Structures/GlobalOutsideLoop
Rulesets All, Performances
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

856 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.506 Global Usage

List usage of globals variables, with global keywords or direct access to $GLOBALS.

It is recommended to avoid using global variables, at it makes it very difficult to track changes in values across the
whole application.

<?php
$a = 1; /* global scope */

function test()
{

echo $a; /* reference to local scope variable */
}

test();

?>

See also Variable scope.

Specs

Short name Structures/GlobalUsage
Rulesets All, Analyze, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features global
ClearPHP no-global
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.507 Globals

Global variables.

<?php

// global via global keyword
global $a, $b;

// global via $GLOBALS variable
$GLOBALS['c'] = 1;

?>

See also Global keyword.

14.2. List of Rules 857

https://www.php.net/manual/en/language.variables.scope.php
https://github.com/dseguy/clearPHP/tree/master/rules/no-global.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.variables.scope.php#language.variables.scope.global

Exakat Documentation, Release 1

Specs

Short name Variables/Globals
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Features global, global-variable
Available in Entreprise Edition, Exakat Cloud

14.2.508 Goto Names

This rule lists of all goto labels used in the code. The labels must match a goto call, although it is possible
to create a label without a goto.

<?php

GOTO_NAME_1:

// reports the usage of GOTO_NAME_1
goto GOTO_NAME_1;

UNUSED_GOTO_NAME_1:

?>

See also goto.

Specs

Short name Php/Gotonames
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features goto, label
ClearPHP no-goto
Available in Entreprise Edition, Community Edition, Exakat Cloud

858 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/goto
https://github.com/dseguy/clearPHP/tree/master/rules/no-goto.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.509 Group Use Declaration

This rule reports when a group use declaration is used. This is PHP feature since version 7.0, yet it is
seldom used.

<?php

// Adapted from the RFC documentation
// Pre PHP 7 code
use some\name_space\ClassA;
use some\name_space\ClassB;
use some\name_space\ClassC as C;

use function some\name_space\fn_a;
use function some\name_space\fn_b;
use function some\name_space\fn_c;

use const some\name_space\ConstA;
use const some\name_space\ConstB;
use const some\name_space\ConstC;

// PHP 7+ code
use some\name_space\{ClassA, ClassB, ClassC as C};
use function some\name_space\{fn_a, fn_b, fn_c};
use const some\name_space\{ConstA, ConstB, ConstC};

?>

See also Group Use Declaration RFC and Using namespaces: Aliasing/Importing.

Specs

Short
name

Php/GroupUseDeclaration

Rulesets All, Appinfo, CE, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, Compatibility-
PHP55, CompatibilityPHP56

Exakat
since

0.10.7

PHP Ver-
sion

All

Severity Minor
Time To
Fix

Instant (5 mins)

Precision Very high
Features use
Available
in

Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 859

https://wiki.php.net/rfc/group_use_declarations
https://www.php.net/manual/en/language.namespaces.importing.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.510 Group Use Trailing Comma

The usage of a final empty slot in array() was allowed with use statements. This works in PHP 7.2 and
more recent.

Although this empty instruction is ignored at execution, this allows for clean presentation of code, and short diff when
committing in a VCS.

<?php

// Valid in PHP 7.2 and more recent.
use a\b\{c,

d,
e,
f,
};

// This won't compile in 7.1 and older.

?>

See also Trailing Commas In List Syntax and Revisit trailing commas in function arguments.

Specs

Short
name

Php/GroupUseTrailingComma

Rulesets All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compatibil-
ityPHP56, CompatibilityPHP70, CompatibilityPHP71

Exakat
since

0.12.3

PHP
Version

With PHP 7.2 and more recent

Severity Major
Time To
Fix

Instant (5 mins)

Preci-
sion

Very high

Features use
Avail-
able in

Entreprise Edition, Exakat Cloud

14.2.511 HTTP Status Code

List of all the HTTP status codes mentioned in the code.

<?php

http_response_code(418);

header('HTTP/1.1 418 I\'m a teapot');
(continues on next page)

860 Chapter 14. Rules

https://www.php.net/array
https://wiki.php.net/rfc/list-syntax-trailing-commas
https://www.mail-archive.com/internals@lists.php.net/msg81138.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

?>

See also List of HTTP status codes.

Specs

Short name Type/HttpStatus
Rulesets All, Changed Behavior, Inventory
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features http
Available in Entreprise Edition, Exakat Cloud

14.2.512 Handle Arrays With Callback

Use functions like array_map().

<?php

// Handles arrays with callback
$uppercase = array_map('strtoupper', $source);

// Handles arrays with foreach
foreach($source as &$s) {

$s = uppercase($s);
}

?>

See also array_map.

Specs

Short name Arrays/WithCallback
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 1.3.7
PHP Version All
Severity
Time To Fix
Precision High
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 861

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_map
https://www.php.net/array_map
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.513 Hardcoded Passwords

Hardcoded passwords in the code.

Hardcoding passwords is a bad idea. Not only it make the code difficult to change, but it is an information leak. It is
better to hide this kind of information out of the code.

<?php

$ftp_server = '300.1.2.3'; // yes, this doesn't exists, it's an example
$conn_id = ftp_connect($ftp_server);

// login with username and password
$login_result = ftp_login($conn_id, 'login', 'password');

?>

Name Default Type Description
pass-
wordsKeys

pass-
word_keys.json

data List of array index and property names that shall be checked for potential
secret key storages.

See also 10 GitHub Security Best Practices and Git How-To: Remove Your Password from a Repository.

Suggestions

• Remove all passwords from the code. Also, check for history if you are using a VCS.

Specs

Short name Functions/HardcodedPasswords
Rulesets All, Analyze, Security
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features password, hard-coded
ClearPHP no-hardcoded-credential
Available in Entreprise Edition, Exakat Cloud

14.2.514 Has Magic Method

The class has defined one of the magic methods.

The magic methods are : __call(), __callStatic(), __get(), __set(), __isset(), __unset(), __sleep(), __wakeup(),
__toString(), __invoke(), __set_state(), __clone() and __debugInfo().

__construct() and __destruct() are omitted here.

862 Chapter 14. Rules

https://snyk.io/blog/ten-git-hub-security-best-practices/
https://davidverhasselt.com/git-how-to-remove-your-password-from-a-repository/
https://github.com/dseguy/clearPHP/tree/master/rules/no-hardcoded-credential.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.decon.php
https://www.php.net/manual/en/language.oop5.decon.php

Exakat Documentation, Release 1

<?php

class WithMagic {
// some more methods, const or properties

public function __get() {
// doSomething();

}
}

?>

See also Property overloading..

Specs

Short name Classes/HasMagicProperty
Rulesets All, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features magic-method
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.515 Has Variable Arguments

Indicates if this function or method accept an arbitrary number of arguments, based on func_get_args(),
func_get_arg() and func_num_args() usage.

<?php

// Fixed number of arguments
function fixedNumberOfArguments($a, $b) {

if (func_num_args() > 2) {
$c = func_get_args();
array_shift($c); // $a
array_shift($c); // $b

}
// do something

}

// Fixed number of arguments
function fixedNumberOfArguments($a, $b, $c = 1) {}

?>

14.2. List of Rules 863

https://www.php.net/manual/en/language.oop5.overloading.php#language.oop5.overloading.members
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/func_get_args
https://www.php.net/func_get_arg
https://www.php.net/func_num_args

Exakat Documentation, Release 1

Specs

Short name Functions/VariableArguments
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.516 Hash Algorithms

There is a long but limited list of hashing algorithm available to PHP. The one found doesn’t seem to be
existing.

<?php

// This hash has existed in PHP. Check with hash_algos() if it is available on your␣
→˓system.
echo hash('ripmed160', 'The quick brown fox jumped over the lazy dog.');

// This hash doesn't exist
echo hash('ripemd160', 'The quick brown fox jumped over the lazy dog.');

?>

See also hash_algos.

Suggestions

• Use a hash algorithm that is available on several PHP versions

• Fix the name of the hash algorithm

Specs

Short name Php/HashAlgos
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features hash
Available in Entreprise Edition, Exakat Cloud

864 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/hash_algos
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.517 Hash Algorithms Incompatible With PHP 5.3

List of hash algorithms incompatible with PHP 5.3.

<?php

// Compatible only with 5.3 and more recent
echo hash('md2', 'The quick brown fox jumped over the lazy dog.');

// Always compatible
echo hash('ripemd320', 'The quick brown fox jumped over the lazy dog.');

?>

See also hash_algos.

Specs

Short
name

Php/HashAlgos53

Rule-
sets

All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56, Compat-
ibilityPHP70, CompatibilityPHP71, CompatibilityPHP72

Exakat
since

0.8.4

PHP
Version

With PHP 5.3 and older

Severity Major
Time To
Fix

Slow (1 hour)

Preci-
sion

Very high

Avail-
able in

Entreprise Edition, Exakat Cloud

14.2.518 Hash Algorithms Incompatible With PHP 5.4/5.5

List of hash algorithms incompatible with PHP 5.4 and 5.5.

<?php

// Compatible only with 5.4 and more recent
echo hash('fnv132', 'The quick brown fox jumped over the lazy dog.');

// Always compatible
echo hash('ripemd320', 'The quick brown fox jumped over the lazy dog.');

?>

See also hash_algos.

14.2. List of Rules 865

https://www.php.net/hash_algos
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/hash_algos

Exakat Documentation, Release 1

Specs

Short
name

Php/HashAlgos54

Rulesets All, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56, CompatibilityPHP70, Compat-
ibilityPHP71, CompatibilityPHP72

Exakat
since

0.8.4

PHP Ver-
sion

With PHP 5.4 and older

Severity Major
Time To
Fix

Slow (1 hour)

Precision Very high
Available
in

Entreprise Edition, Exakat Cloud

14.2.519 Hash Algorithms Incompatible With PHP 7.1-

List of hash algorithms incompatible with PHP 7.1 and more recent. At the moment of writing, this is
compatible up to 7.3.

The hash algorithms were introduced in PHP 7.1.

<?php

// Compatible only with 7.1 and more recent
echo hash('sha512/224', 'The quick brown fox jumped over the lazy dog.');

// Always compatible
echo hash('ripemd320', 'The quick brown fox jumped over the lazy dog.');

?>

See also hash_algos.

866 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/hash_algos

Exakat Documentation, Release 1

Specs

Short
name

Php/HashAlgos71

Rulesets All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compati-
bilityPHP56, CompatibilityPHP70

Exakat
since

1.3.4

PHP Ver-
sion

With PHP 7.1 and older

Severity Major
Time To
Fix

Slow (1 hour)

Precision Very high
Available
in

Entreprise Edition, Exakat Cloud

14.2.520 Hash Algorithms Incompatible With PHP 7.4-

List of hash algorithms incompatible with PHP 7.3 and older recent. At the moment of writing, this is
compatible up to 7.4s.

The hash algorithms were introduced in PHP 7.4s.

<?php

// Compatible only with 7.1 and more recent
echo hash('crc32cs', 'The quick brown fox jumped over the lazy dog.');

// Always compatible
echo hash('ripemd320', 'The quick brown fox jumped over the lazy dog.');

?>

See also hash_algos.

Specs

Short name Php/HashAlgos74
Rulesets All, CE, Changed Behavior, CompatibilityPHP74
Exakat since 1.3.4
PHP Version With PHP 7.4 and older
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 867

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/hash_algos
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.521 Hash Will Use Objects

The ext/hash extension used resources, and is being upgraded to use resources.

<?php

// Post 7.2 code
$hash = hash_init('sha256');
if (!is_object($hash)) {

trigger_error('error');
}
hash_update($hash, $message);

// Pre-7.2 code
$hash = hash_init('md5');
if (!is_resource($hash)) {

trigger_error('error');
}
hash_update($hash, $message);

?>

See also Move ext/hash from resources to objects.

Specs

Short name Php/HashUsesObjects
Rulesets All, Changed Behavior, CompatibilityPHP72
Exakat since 1.0.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features hash, object
Available in Entreprise Edition, Exakat Cloud

14.2.522 Heredoc Delimiter

Heredoc and Nowdoc expressions may use a variety of delimiters.

There seems to be a standard delimiter in the code, and some exceptions : one or several forms are dominant (> 90%),
while the others are rare.

The analyzed code has less than 10% of the rare delimiters. For consistency reasons, it is recommended to make them
all the same.

Generally, one or two delimiters are used, with generic value. It is recommended to use a humanly readable delimiter
: SQL, HTML, XML, GREMLIN, etc. This helps readability in the code.

<?php

echo <<<SQL
(continues on next page)

868 Chapter 14. Rules

http://www.php.net/manual/en/book.hash.php
https://www.php.net/manual/en/migration72.incompatible.php#migration72.incompatible.hash-ext-to-objects
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

SELECT * FROM table1;
SQL;

echo <<<SQL
SELECT * FROM table2;
SQL;

echo <<<SQL
SELECT * FROM table3;
SQL;

echo <<<SQL
SELECT * FROM table4;
SQL;

echo <<<SQL
SELECT * FROM table5;
SQL;

echo <<<SQL
SELECT * FROM table11;
SQL;

echo <<<SQL
SELECT * FROM table12;
SQL;

echo <<<SQL
SELECT * FROM table13;
SQL;

// Nowdoc
echo <<<'SQL'
SELECT * FROM table14;
SQL;

echo <<<SQL
SELECT * FROM table15;
SQL;

echo <<<HEREDOC
SELECT * FROM table215;
HEREDOC;

?>

14.2. List of Rules 869

Exakat Documentation, Release 1

Specs

Short name Structures/HeredocDelimiterFavorite
Rulesets All, Coding conventions, Preferences
Exakat since 0.12.0
PHP Version All
Severity
Time To Fix
Precision Very high
Features heredoc
Available in Entreprise Edition, Exakat Cloud

14.2.523 Heredoc Delimiter Glossary

List of all the delimiters used to build a Heredoc string.

In the example below, EOD is the delimiter.

<?php

$a = <<<EOD
heredoc
EOD;

?>

See also Heredoc.

Specs

Short name Type/Heredoc
Rulesets All, Appinfo, CE, Inventory
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features heredoc
Available in Entreprise Edition, Community Edition, Exakat Cloud

870 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.types.string.php#language.types.string.syntax.heredoc
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.524 Hexadecimal Glossary

List of all the integer values, written in the hexadecimal format.

<?php

$hexadecimal = 0x10;

$anotherHexadecimal =0XAF;

?>

See also Integer Syntax.

Specs

Short name Type/Hexadecimal
Rulesets All, Appinfo, CE, Inventory
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features hexadecimal-integer
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.525 Hexadecimal In String

Mark strings that may be confused with hexadecimal.

Until PHP 7.0, PHP recognizes hexadecimal numbers inside strings, and converts them accordingly.

PHP 7.0 and until 7.1, converts the string to 0, silently.

PHP 7.1 and later, emits a ‘A non-numeric value encountered’ warning, and convert the string to 0.

<?php
$a = '0x0030';
print $a + 1;
// Print 49

$c = '0x0030zyc';
print $c + 1;
// Print 49

$b = 'b0x0030';
print $b + 1;
// Print 0

?>

See also Integer Syntax.

14.2. List of Rules 871

https://www.php.net/manual/en/language.types.integer.php#language.types.integer.syntax
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.types.integer.php#language.types.integer.syntax

Exakat Documentation, Release 1

Specs

Short name Type/HexadecimalString
Rulesets All, CompatibilityPHP70, CompatibilityPHP71, Inventory
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features hexadecimal
Available in Entreprise Edition, Exakat Cloud

14.2.526 Hidden Use Expression

The use expression for namespaces should always be at the beginning of the namespace block.

It is where everyone expect them, and it is less confusing than having them at various levels.

<?php

// This is visible
use A;

class B {}

// This is hidden
use C as D;

class E extends D {
use traitT; // This is a use for a trait

function foo() {
// This is a use for a closure
return function ($a) use ($b) {}

}
}

?>

872 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Group all uses together, at the beginning of the namespace or class

Specs

Short name Namespaces/HiddenUse
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features use
Examples Tikiwiki, OpenEMR
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.527 Htmlentities Calls

htmlentities() and htmlspecialchars() are used to prevent injecting special characters in HTML code. As a
bare minimum, they take a string and encode it for HTML.

The second argument of the functions is the type of protection. The protection may apply to quotes or not, to HTML
4 or 5, etc. It is highly recommended to set it explicitly.

The third argument of the functions is the encoding of the string. In PHP 5.3, it is ISO-8859-1, in 5.4, was UTF-8, and
in 5.6, it is now default_charset, a php.ini configuration that has the default value of UTF-8. It is highly recommended
to set this argument too, to avoid distortions from the configuration. Also, note that arguments 2 and 3 are constants
and string, respectively, and should be issued from the list of values available in the manual. Other values than those
will make PHP use the default values.

<?php
$str = 'A quote is bold';

// Outputs, without depending on the php.ini: A 'quote' is bold</b&
→˓gt;
echo htmlentities($str, ENT_QUOTES, 'UTF-8');

// Outputs, while depending on the php.ini: A quote is bold
echo htmlentities($str);

?>

See also htmlentities and htmlspecialchars.

14.2. List of Rules 873

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/htmlentities
https://www.php.net/htmlspecialchars
https://www.php.net/htmlentities
https://www.php.net/htmlspecialchars

Exakat Documentation, Release 1

Suggestions

• Always use the third argument with htmlentities()

Specs

Short name Structures/Htmlentitiescall
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Features html-entity
Related rule Htmlentities Using Default Flag
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.528 Htmlentities Using Default Flag

htmlspecialchars(), htmlentities(), htmlspecialchars_decode(), html_entity_decode() and
get_html_translation_table(), are used to prevent injecting special characters in HTML code. As a
bare minimum, they take a string and encode it for HTML.

The second argument of the functions is the type of protection. The protection may apply to quotes or not, to HTML
4 or 5, etc. It is highly recommended to set it explicitly.

In PHP 8.1, the default value of this parameter has changed. It used to be ENT_COMPAT and is now ENT_QUOTES
| `ENT_SUBSTITUTE <https://www.php.net/ENT_SUBSTITUTE>`_. The main difference between the different
configuration is that the single quote, which was left intact so far, is now protected HTML style.

<?php
$str = 'A quote in bold : \' and ""';

// PHP 8.0 outputs, without depending on the php.ini: A quote in bold␣
→˓: ' and "
echo htmlentities($str);

// PHP 8.1 outputs, while depending on the php.ini: A quote in bold :␣
→˓' and "
echo htmlentities($str);

?>

See also htmlentities and htmlspecialchars.

874 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/htmlspecialchars
https://www.php.net/htmlentities
https://www.php.net/htmlspecialchars_decode
https://www.php.net/html_entity_decode
https://www.php.net/get_html_translation_table
https://www.php.net/htmlentities
https://www.php.net/htmlspecialchars

Exakat Documentation, Release 1

Suggestions

• Always use the second argument to explicitly set the desired protection

Specs

Short name Structures/HtmlentitiescallDefaultFlag
Rulesets All, Analyze, CI-checks, Changed Behavior
Exakat since 2.2.3
PHP Version With PHP 8.1 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Changed Behavior PHP 8.1 - More
Precision High
Features escape-sequence, html-entity, class
Related rule Htmlentities Calls
Available in Entreprise Edition, Exakat Cloud

14.2.529 Http Headers

List of HTTP headers use in the code.

Those headers are mostly used with header() function to send to browser.

<?php

header('Location: http://www.example.com/');

// Parseable headers are also reported
header('Location: http://www.example.com/');

// UnParseable headers are not reported
header('GarbagexxxxXXXXxxxGarbagexxxxXXXXxxx');
header($header);

?>

See also List of HTTP header fields.

Specs

Short name Type/HttpHeader
Rulesets All, Inventory
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features http, http-header
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 875

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/header
https://en.wikipedia.org/wiki/List_of_HTTP_header_fields
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.530 Ice framework

Ice - simple, fast and open-source PHP framework frozen in C-extension. Ice is loosely coupled, allowing
developers to use only the components that they need.

See also ice framework and ice framework : Hello world tutorial.

Specs

Short name Extensions/Extice
Rulesets All, Appinfo
Exakat since 2.4.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features framework
Available in Entreprise Edition, Exakat Cloud

14.2.531 Iconv With Translit

The transliteration feature of iconv() depends on the underlying system to support it.

<?php

$string = iconv('utf-8', 'utf-8//TRANSLIT', $source);

?>

See also iconv().

Suggestions

• Use an OS that supports TRANSLIT with iconv

• Remove the usage of TRANSLIT

Specs

Short name Portability/IconvTranslit
Rulesets All
Exakat since 2.1.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features iconv
Available in Entreprise Edition, Exakat Cloud

876 Chapter 14. Rules

https://www.iceframework.org/
https://www.iceframework.org/doc/tutorial/hello
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/iconv
https://www.php.net/manual/en/function.iconv.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.532 Identical Case In Switch

In a switch() or match() statement, when there are identical cases, it means that multiple case labels that
have the same code block.

This can happen by mistake or design. They may be merged together.

<?php

switch($a) {
case 1:

$b = 2;
break;

case 2:
$b = 12;
break;

// Identical to case 1
case 3:

$b = 2;
break;

}

?>

Suggestions

• Merge the cases and reduce the size of code

• Review the cases code and make them different

Specs

Short name Structures/IdenticalCase
Rulesets All, Analyze, Changed Behavior
Exakat since 2.5.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features dry
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 877

https://www.php.net/manual/en/control-structures.switch.php
https://www.php.net/manual/en/control-structures.match.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.533 Identical Conditions

These logical expressions contain members that are identical.

This means those expressions may be simplified.

<?php

// twice $a
if ($a || $b || $c || $a) { }

// Hiding in parenthesis is bad
if (($a) ^ ($a)) {}

// expressions may be large
if ($a === 1 && 1 === $a) {}

?>

Suggestions

• Merge the two structures into one unique test

• Add extra expressions between the two structures

• Nest the structures, to show that different attempts are made

Specs

Short name Structures/IdenticalConditions
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Critical
Time To Fix Quick (30 mins)
Precision High
Examples WordPress, Dolibarr
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.534 Identical Consecutive Expression

Identical consecutive expressions might be double code. They are worth being checked.

They may be a copy/paste with unmodified content. When the content has to be duplicated, it is recommended to avoid
executing the expression again, and just access the cached result.

<?php

$current = $array[$i];
$next = $array[$i + 1];
$nextnext = $array[$i + 1]; // OOps, nextnext is wrong.

(continues on next page)

878 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/result

Exakat Documentation, Release 1

(continued from previous page)

// Initialization
$previous = foo($array[1]); // previous is initialized with the first value on purpose
$next = foo($array[1]); // the second call to foo() with the same arguments should␣
→˓be avoided
// the above can be rewritten as :
$next = $previous; // save the processing.

for($i = 1; $i < 200; ++$i) {
$next = doSomething();

}
?>

Suggestions

• Check if the expression needs to be used twice.

Specs

Short name Structures/IdenticalConsecutive
Rulesets All, Analyze
Exakat since 1.0.8
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features expression
Available in Entreprise Edition, Exakat Cloud

14.2.535 Identical Elseif

In a long if/elseif/then structures, identical conditions are mutually exclusive. The first one will happen,
and the second will be ignored.

This is similar to having multiple cases in the same switch or match expression.

<?php

if ($a === 1) { }
elseif ($a === 2) { }
elseif ($a === 3) { }
elseif ($a === 4) { }
elseif ($a === 2) { }
else {}

?>

14.2. List of Rules 879

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Remove the extra elseif() clause

• Fixed the condition of the extra elseif() clause

• Use a switch() or match() expression

Specs

Short name Structures/IdenticalElseif
Rulesets All, Dead code
Exakat since 2.3.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features if-then
Available in Entreprise Edition, Exakat Cloud

14.2.536 Identical Methods

When the parent class and the child class have the same method, the child might omit it. This reduces code
duplication.

Duplicate code in methods is often the results of code evolution, where a method was copied with the hierarchy, but
the original wasn’t removed.

This doesn’t apply to private methods, which are reserved for one class.

<?php

class a {
public function foo() {

return rand(0, 100);
}

}

class b extends a {
public function foo() {

return rand(0, 100);
}

}

?>

880 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

Suggestions

• Drop the method from the parent class, in particular if only one child uses the method.

• Drop the method from the child class, in particular if there are several children class

• Use an abstract method, and make sure every child has its own implementation

• Modify one of the methods so they are different

Specs

Short name Classes/IdenticalMethods
Rulesets All
Exakat since 1.8.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features method
Available in Entreprise Edition, Exakat Cloud

14.2.537 Identical On Both Sides

Operands should be different when comparing or making a logical combination. Of course, the value each
operand holds may be identical. When the same operand appears on both sides of the expression, the result
is know before execution.

<?php

// Trying to confirm consistency
if ($login == $login) {

doSomething();
}

// Works with every operators
if ($object->login() !== $object->login()) {

doSomething();
}

if ($sum >= $sum) {
doSomething();

}

//
if ($mask && $mask) {

doSomething();
}

if ($mask || $mask) {
doSomething();

}
(continues on next page)

14.2. List of Rules 881

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/result

Exakat Documentation, Release 1

(continued from previous page)

?>

Suggestions

• Remove one of the alternative, and remove the logical link

• Modify one of the alternative, and make it different from the other

Specs

Short name Structures/IdenticalOnBothSides
Rulesets All, Analyze, CE, CI-checks
Exakat since 1.0.8
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features if-then
Examples phpMyAdmin, HuMo-Gen
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.538 Identical Variables In Foreach

Do not use the same variable names as a foreach() source and one of its blind variables.

Foreach() makes a copy of the original data while working on it : this prevents any interference. Yet, when the source
and the blind variable is the same, the source will have changed after the loop.

<?php

// classic way to use a foreach loop
foreach($array as $key => $value) {

// doSomething with $key and $value
}

// unusual way to end up with a name conflict
foreach($a as $a => [$b, $c, $a]) {

// doSomething with $a and $a, $b, $c
}

// classic way to use a foreach loop
foreach($a as $a => $b) {

// doSomething with $a and $a
}
// Now, after the loop, $a is an integer or a string!

?>

882 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.foreach.php
https://www.php.net/manual/en/control-structures.foreach.php

Exakat Documentation, Release 1

Suggestions

• Use a different name for the source of the array and the blind values

Specs

Short name Structures/IdenticalVariablesInForeach
Rulesets All, Analyze
Exakat since 2.3.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features foreach
Available in Entreprise Edition, Exakat Cloud

14.2.539 Identity

This method, function or closure <https://www.php.net/`closure>`_ returns one of its argument, without
modification. This is the identity function, which might not be called at all, as it does nothing but return
the same incoming argument. It might also be ready for future use.

<?php

function foo($a) {
return $a;

}

?>

Specs

Short name Functions/Identity
Rulesets All
Exakat since 2.4.2
PHP Version All
Severity
Time To Fix
Precision High
Features identity
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 883

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/closure
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.540 If Then Return Favorite

Show of hands: which syntax would you prefer in a PHP function - A, B or C?

Based on a tweet from Povilas Korop : Show of hands: which syntax would you prefer in a PHP function - A, B or C?

<?php

// Format A : double return
if ($condition) {

return A;
} else {

return B;
}

// Format B : early bailout
if ($condition) {

return A;
}
return B;

// Format C : ternary
return $condition ? A : B;

?>

Specs

Short name Structures/IfThenReturnFavorite
Rulesets All, Preferences
Exakat since 2.4.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.541 If With Same Conditions

Successive If / then structures that have the same condition may be either merged or have one of the
condition changed.

Note that if the values used in the condition have been modified in the first if/then structure, the two distinct conditions
may be needed.

<?php

if ($a == 1) {
doSomething();

}

(continues on next page)

884 Chapter 14. Rules

https://twitter.com/PovilasKorop
https://twitter.com/exakat/status/1542585298562998274
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

if ($a == 1) {
doSomethingElse();

}

// May be replaced by
if ($a == 1) {

doSomething();
doSomethingElse();

}

?>

Suggestions

• Merge the two conditions so the condition is used once.

• Change one of the condition, so they are different

• Make it obvious that the first condition is a try, preparing the normal conditions.

Specs

Short name Structures/IfWithSameConditions
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Examples phpMyAdmin, Phpdocumentor
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.542 Iffectations

Affectations that appears in a condition.

Iffectations are a way to do both a test and an affectations. They may also be typos, such as if ($x = 3) { . . . }, leading
to a constant condition.

<?php

// an iffectation : assignation in a If condition
if($connexion = mysql_connect($host, $user, $pass)) {

$res = mysql_query($connexion, $query);
}

// Iffectation may happen in while too.
while($row = mysql_fetch($res)) {

$store[] = $row;
(continues on next page)

14.2. List of Rules 885

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/functions.arguments.php#functions.variable-arg-list

Exakat Documentation, Release 1

(continued from previous page)

}

?>

Suggestions

• Move the assignation inside the loop, and make an existence test in the condition.

• Move the assignation before the if/then, make an existence test in the condition.

Specs

Short name Structures/Iffectation
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features assignation
Available in Entreprise Edition, Exakat Cloud

14.2.543 Illegal Name For Method

PHP has reserved usage of methods starting with __ for magic methods. It is recommended to avoid using
this prefix, to prevent confusions.

<?php

class foo{
// Constructor
function __construct() {}

// Constructor's typo
function __constructor() {}

// Illegal function name, even as private
private function __bar() {}

}

?>

See also Magic Methods.

886 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.magic.php

Exakat Documentation, Release 1

Suggestions

• Avoid method names starting with a double underscore : __

• Use method visibilities to ensure that methods are only available to the current class or its children

Specs

Short name Classes/WrongName
Rulesets All, Analyze
Exakat since 0.9.2
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features method
Examples PrestaShop, Magento
Available in Entreprise Edition, Exakat Cloud

14.2.544 Immutable Signature

Overwrites makes refactoring a method signature difficult. PHP enforces compatible signature, by check-
ing if arguments have the same type, reference and default values.

In PHP 7.3, typehint had to be the same, or dropped. In PHP 7.4, typehint may be contravariant (arguments), or
covariant (returntype).

This analysis may be configured with maxOverwrite. By default, a minimum of 8 overwritten methods is considered
difficult to update. When refactoring a method, all the related methodcall may have to be updated too. Adding a type,
a default value, or a new argument with default value won’t affect the calls, but only the definitions. Otherwise, calls
will also have to be updated.

IDE may help with signature refactoring, such as Refactoring code.

<?php

// Changing any of the four foo() method signature will trigger a PHP warning
class a {

function foo($a) {}
}

class ab1 extends a {
// four foo() methods have to be refactored at the same time!
function foo($ab1) {}

}

class ab2 extends a {
function foo($ab2) {}

}

class ab3 extends ab1 {
function foo($abc1) {}

(continues on next page)

14.2. List of Rules 887

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.jetbrains.com/help/phpstorm/refactoring-source-code.html

Exakat Documentation, Release 1

(continued from previous page)

}

?>

Name De-
fault

Type Description

maxOver-
write

8 inte-
ger

Minimal number of method overwrite to consider that any refactor on the method
signature is now hard.

See also Covariance and contravariance (computer science) and extends.

Specs

Short name Classes/ImmutableSignature
Rulesets All, Appinfo, CE
Exakat since 1.9.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features overwrite
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.545 Implemented Methods Must Be Public

Class methods that are defined in an interface must be public. They cannot be either private, nor protected.

This error is not reported by lint, and is reported at execution time.

<?php

interface i {
function foo();

}

class X {
// This method is defined in the interface : it must be public
protected function foo() {}

// other methods may be private
private function bar() {}

}

?>

See also Interfaces and Interfaces - the next level of abstraction.

888 Chapter 14. Rules

https://en.wikipedia.org/wiki/Covariance_and_contravariance_(computer_science)
https://www.php.net/manual/en/language.oop5.basic.php#language.oop5.basic.extends
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/manual/en/language.oop5.interfaces.php
https://phpenthusiast.com/object-oriented-php-tutorials/interfaces

Exakat Documentation, Release 1

Suggestions

• Make the implemented method public

Specs

Short name Classes/ImplementedMethodsArePublic
Rulesets All, Analyze, LintButWontExec
Exakat since 0.11.5
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Features method, visibility
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.546 Implements Is For Interface

With class heritage, implements should be used for interfaces, and extends with classes.

PHP defers the implements check until execution : the code in example does lint, but won,t run.

<?php

class x {
function foo() {}

}

interface y {
function foo();

}

// Use implements with an interface
class z implements y {}

// Implements is for an interface, not a class
class z implements x {}

?>

14.2. List of Rules 889

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Create an interface from the class, and use it with the implements keyword

Specs

Short name Classes/ImplementIsForInterface
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features implements, interface
Available in Entreprise Edition, Exakat Cloud

14.2.547 Implicit Conversion To Int

PHP warns when a value is implicitely converted from float to int. This usually leads to a loss of precision
and unexpected values.

The conversion happens in various situations in PHP lifecycle (extracted from the wiki article):

• Bitwise OR operator |

• Bitwise AND operator &

• Bitwise XOR operator ^

• Shift right and left operators

• Modulo operator

• The combined assignment operators of the above operators

• Assignment to a typed property of type int in coercive typing mode

• Argument for a parameter of type int for both internal and custom functions in coercive typing mode

• Returning such a value for custom functions declared with a return type of int in coercive typing mode

• Bitwise NOT operator ~

• As an array key

This features is applied to PHP 8.1 and later, yet it is also applicable to older versions of PHP.

<?php

function foo(int $i) {}

//Implicit conversion from float 1.2 to int loses precision
foo(1.2);

?>

See also PHP RFC: Deprecate implicit non-integer-compatible float to int conversions.

890 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://wiki.php.net/rfc/implicit-float-int-deprecate

Exakat Documentation, Release 1

Suggestions

• Add an explicit cast (int) operator

Specs

Short name Structures/ImplicitConversionToInt
Rulesets All, Analyze, LintButWontExec
Exakat since 2.4.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features type-juggling
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.548 Implicit Global

Global variables, that are used in local scope with global keyword, but are not declared as global in the
global scope. They may be mistaken with distinct values, while, in PHP, variables in the global scope are
truly global.

<?php

// This is implicitely global
$implicitGlobal = 1;

global $explicitGlobal;
$explicitGlobal = 2;

foo();
echo $explicitFunctionGlobal;

function foo() {
// This global is needed, but not the one in the global space
global $implicitGlobal, $explicitGlobal, $explicitFunctionGlobal;

// This won't be a global, as it must be 'global' in a function scope
$notImplicitGlobal = 3;
$explicitFunctionGlobal = 3;

}

?>

14.2. List of Rules 891

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Structures/ImplicitGlobal
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features global
Available in Entreprise Edition, Exakat Cloud

14.2.549 Implicit Nullable Type

Argument with default value of null are nullable. It works both with the null typehint (PHP 8.0), or the
? operator are not used, setting the default value to null is allowed, and makes the argument nullable.

This works with single types, both classes and scalars; it works with union types but not with intersection types.

This doesn’t happen with properties : they must be defined with the nullable type to accept a ``null``value as default
value.

This doesn’t happen with constant, whose value must be explicitely defined.

In PHP 8.4, the implicit nullable type are deprecated. They might be removed in PHP 9.0.

<?php

// explicit nullable parameter $s
function bar(?string $s = null) {

// implicit nullable parameter $s
function foo(string $s = null) {

echo $s ?? 'NULL-value';
}

// both display NULL-value
foo();
foo(null);

?>

See also Nullable types, Type declaration, Deprecate implicit nullable parameters #3535 and PHP RFC: Deprecate
implicitly nullable parameter types.

892 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://wiki.php.net/rfc/nullable_types
https://www.php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration
https://github.com/php/php-src/pull/3535
https://wiki.php.net/rfc/deprecate-implicitly-nullable-types
https://wiki.php.net/rfc/deprecate-implicitly-nullable-types

Exakat Documentation, Release 1

Suggestions

• Change the default value to a compatible literal : for example, string $s = ''

• Add the explicit ? nullable operator, or ``null``with PHP 8.0

• Remove the default value

Specs

Short name Classes/HiddenNullable
Rulesets All, Analyze, Class Review
Exakat since 2.1.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features typehint, nullable
Available in Entreprise Edition, Exakat Cloud

14.2.550 Implied If

It is confusing to emulate if/then with boolean operators.

It is possible to emulate a if/then structure by using the operators ‘and’ and ‘or’. Since optimizations will be applied
to them : when the left operand of ‘and’ is false, the right one is not executed, as its result is useless; when the left
operand of ‘or’ is true, the right one is not executed, as its result is useless;

However, such structures are confusing. It is easy to misread them as conditions, and ignore an important logic step.
It is recommended to use a real ‘if then’ structures, to make the condition readable.

<?php

// Either connect, or die
mysql_connect('localhost', $user, $pass) or die();

// Defines a constant if not found.
defined('SOME_CONSTANT') and define('SOME_CONSTANT', 1);

// Defines a default value if provided is empty-ish
// Warning : this is
$user = $_GET['user'] || 'anonymous';

?>

14.2. List of Rules 893

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/result
https://www.php.net/result

Exakat Documentation, Release 1

Suggestions

• Replace this expression by an explicit if-then structure

Specs

Short name Structures/ImpliedIf
Rulesets All, Analyze, CE, CI-checks, Rector
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision High
ClearPHP no-implied-if
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.551 Implode One Arg

implode() may be called with one arg. It is recommended to avoid it.

Using two arguments makes it less surprising to new comers, and consistent with explode() syntax.

<?php

$array = range('a', 'c');

// empty string is the glue
print implode('', $array);

// only the array : PHP uses the empty string as glue.
// Avoid this
print implode($array);

?>

See also implode.

Suggestions

• Add an empty string as first argument

894 Chapter 14. Rules

https://github.com/dseguy/clearPHP/tree/master/rules/no-implied-if.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/implode
https://www.php.net/explode
https://www.php.net/implode

Exakat Documentation, Release 1

Specs

Short name Php/ImplodeOneArg
Rulesets All, Changed Behavior, PHP recommendations, Suggestions, php-cs-fixable
Exakat since 1.7.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.552 Implode() Arguments Order

implode() used to accept two signatures, but is only recommending one. Both types orders of string then
array, and array then string have been possible until PHP 7.4.

In PHP 7.4, the order array then string is deprecated, and emits a warning. It will be removed in PHP 8.0.

<?php

$glue = ',';
$pieces = range(0, 4);

// documented argument order
$s = implode($glue, $pieces);

// Pre 7.4 argument order
$s = implode($pieces, $glue);

// both produces 0,1,2,3,4

?>

See also implode().

Suggestions

• Always use the array as the second argument

Specs

Short name Structures/ImplodeArgsOrder
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 1.9.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Changed Behavior PHP 7.4 - More
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 895

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/implode
https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.553 Include Variables

When include, and its cousins, are used with a variable, or any data container.

<?php

include $fileToPath;

?>

Specs

Short name Php/IncludeVariables
Rulesets All, Dump
Exakat since 2.6.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.554 Inclusion Wrong Case

Inclusion should follow exactly the case of included files and path. This prevents the infamous case-
sensitive filesystem bug, where files are correctly included in a case-insensitive system, and failed to be
when moved to production.

<?php

// There must exist a path called "path/to" and a file "library.php" with this case
include "path/to/library.php";

// Error on the case, while the file does exist
include "path/to/LIBRARY.php";

// Error on the case, on the PATH
include "path/TO/library.php";

?>

See also include_once.

896 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/function.include-once.php

Exakat Documentation, Release 1

Suggestions

• Make the inclusion string identical to the file name.

• Change the name of the file to reflect the actual inclusion. This is the best way when a naming convention has
been set up for the project, and the file doesn’t adhere to it. Remember to change all other inclusion.

Specs

Short name Files/InclusionWrongCase
Rulesets All, Analyze
Exakat since 1.1.1
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features include
Available in Entreprise Edition, Exakat Cloud

14.2.555 Inclusions

Collect inclusions of files. This is based on include(), require(), include_once() and require_once() key-
words.

<?php
// This is file 'A.php';

include 'B.php';

// Here, B.php includes A.php

?>

Specs

Short name Dump/Inclusions
Rulesets All, CE, Changed Behavior, Dump
Exakat since 2.0.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features inclusion
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 897

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.556 Inclusions

List of all inclusions. Inclusions are made with include(), include_once(), require() and require_once().

<?php

include 'library.php';

// display is a function defined in 'library.php';
display('Message');

?>

See also Include and Require.

Specs

Short name Structures/IncludeUsage
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features inclusion
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.557 Incoming Date Formats

This is the list of format string used when creating dates.

This is particularly interesting for relative time strings inventories. This doesn’t collect the dynamical dates, built from
strings. strtotime() and date::createFromFormat() are used.

<?php

echo strtotime("now"), "\n";

?>

See also DateTimeImmutable::createFromFormat.

898 Chapter 14. Rules

https://www.php.net/manual/en/function.include.php
https://www.php.net/manual/en/function.require.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/strtotime
https://www.php.net/manual/en/datetime.createfromformat.php

Exakat Documentation, Release 1

Specs

Short name Type/IncomingDateFormat
Rulesets All, Inventory
Exakat since 2.4.2
PHP Version All
Severity
Time To Fix
Precision High
Features date-format
Available in Entreprise Edition, Exakat Cloud

14.2.558 Incoming Values

The names of the variables that are passed via the superglobals.

<?php

$x = $_GET['y']; // y is the incoming variable

?>

Specs

Short name Php/IncomingValues
Rulesets All, Changed Behavior
Exakat since 1.7.7
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.559 Incoming Variable Index Inventory

This collects all the index used in incoming variables : $_GET, $_POST, $_REQUEST, $_COOKIE.

<?php

// x is collected
echo $_GET['x'];

// y is collected, but no z.
echo $_POST['y']['z'];

// a is not collected
echo $_ENV['s'];

(continues on next page)

14.2. List of Rules 899

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/reserved.variables.get.php
https://www.php.net/manual/en/reserved.variables.post.php
https://www.php.net/manual/en/reserved.variables.request.php

Exakat Documentation, Release 1

(continued from previous page)

?>

Specs

Short name Type/GPCIndex
Rulesets All, Appinfo, CE, Inventory
Exakat since 1.0.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features super-global
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.560 Incoming Variables

Incoming names, used across the application.

Incoming variables are first-level index in $_POST, $_GET, $_COOKIE, $_REQUEST and $_FILE;

$_SESSION and $_ENV are not reported as incoming data, as they are not supposed to be manipulated by normal user.

Dynamic names are not reported too.

<?php

$name = $_GET['name'];
$cookie = $_COOKIE['cookie'];

// 'archive' is the incoming variable, not 'file_name'
$file_name = $_FILE['archive']['file_name'];

// This is not reported, because it is from $_ENV.
$db_pass = $_ENV['DB_PASS'];

// This is not reported, because it is dynamic
$x = 'userId';
$userId = $_GET[$x];

?>

900 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Php/IncomingVariables
Rulesets All, Inventory
Exakat since 2.2.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.561 Incompatible Property Between Class And Trait

Reports a property definition that doesn’t fit the importing class. The property definition should be identical
in the trait and in the class.

<?php

trait t {
private Invalid $property1;

private Valid $property2;
}

class xt {
use t;

// This is incompatible with the trait
private OtherType $property1;

// This is compatible with the trait
private Valid $property2;

}

?>

Suggestions

• Make sure the property is defined identically in the class and the trait.

• Change the property definition in the class and make it distinct with the one in the trait.

• Change the property definition in the trait and make it distinct with the one in the class.

14.2. List of Rules 901

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Traits/IncompatibleProperty
Rulesets All, Changed Behavior, Class Review
Exakat since 2.5.3
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.562 Incompatible Signature Methods

Methods should have the same signature when being overwritten.

The same signatures means the children class must have :

• the same name

• the same visibility or less restrictive

• the same typehint or removed

• the same default value or removed

• a reference like its parent

This problem emits a fatal error, for abstract methods, or a warning error, for normal methods. Yet, it is difficult to
lint, because classes are often stored in different files. As such, PHP do lint each file independently, as unknown parent
classes are not checked if not present. Yet, when executing the code, PHP lint the actual code and may encounter a
fatal error.

<?php

class a {
public function foo($a = 1) {}

}

class ab extends a {
// foo is overloaded and now includes a default value for $a
public function foo($a) {}

}

?>

See also Object Inheritance.

902 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/error
https://www.php.net/error
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/error
https://www.php.net/manual/en/language.oop5.inheritance.php

Exakat Documentation, Release 1

Suggestions

• Make signatures compatible again

Specs

Short name Classes/IncompatibleSignature
Rulesets All, Analyze, LintButWontExec
Exakat since 1.3.3
PHP Version With PHP 7.4 and older
Severity Critical
Time To Fix Quick (30 mins)
Precision Medium
Examples SuiteCrm
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.563 Incompatible Signature Methods With Covariance

Methods should have the compatible signature when being overwritten.

The same signatures means the children class must have :

• the same name

• the same visibility or less restrictive

• the same contravariant typehint or removed

• the same covariant return typehint or removed

• the same default value or removed

• a reference like its parent

This problem emits a fatal error, for abstract methods, or a warning error, for normal methods. Yet, it is difficult to
lint, because classes are often stored in different files. As such, PHP do lint each file independently, as unknown parent
classes are not checked if not present. Yet, when executing the code, PHP lint the actual code and may encounter a
fatal error.

<?php

class a {
public function foo($a = 1) {}

}

class ab extends a {
// foo is overloaded and now includes a default value for $a
public function foo($a) {}

}

?>

See also Object Inheritance, PHP RFC: Covariant Returns and Contravariant Parameters and Incompatible Signature
Methods.

14.2. List of Rules 903

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/error
https://www.php.net/error
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/error
https://www.php.net/manual/en/language.oop5.inheritance.php
https://wiki.php.net/rfc/covariant-returns-and-contravariant-parameters

Exakat Documentation, Release 1

Suggestions

• Make signatures compatible again

Specs

Short name Classes/IncompatibleSignature74
Rulesets All, Analyze
Exakat since 1.3.3
PHP Version With PHP 7.4 and more recent
Severity Critical
Time To Fix Quick (30 mins)
Precision Medium
Features type-covariance, type-contravariance
Examples SuiteCrm
Available in Entreprise Edition, Exakat Cloud

14.2.564 Incompatible Types With Incoming Values

This analysis report invalid type used when extracting data from an HTTP request, and using them with
typed method.

This currently is based on symfonycomponenthttpfoundationrequest class, and its related get*() methods.

The analysis also checks usage of superglobals and their related types.

<?php

function foo(\Symfony\Component\HttpFoundation\Request $request) {
// This is valid and typed
$object = new X($request->getInt('value'));

// This is wrong : value is a string, or even an array
$object = new X($request->get('value'));

}

class X {
function __construct(int $a) {}

}

foo($_GET['a']);
// This is missing null type
function foo(array|string $arg) {}

?>

904 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Add restriction before calling the methods

• Add possible types in the method definition

Specs

Short name Security/IncompatibleTypesWithIncoming
Rulesets All, Changed Behavior, Security
Exakat since 2.5.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features typehint
Available in Entreprise Edition, Exakat Cloud

14.2.565 Incompilable Files

Files that cannot be compiled, and, as such, be run by PHP. Scripts are linted against various versions of
PHP.

This is usually undesirable, as all code must compile before being executed. It may be that such files are not compilable
because they are not yet ready for an upcoming PHP version.

Code that is not compilable with older PHP versions means that the code is breaking backward compatibility : good or
bad is project decision.

When the code is used as a template for PHP code generation, for example at installation time, it is recommended to
use a distinct file extension, so as to distinguish them from actual PHP code.

<?php

// Can't compile this : Print only accepts one argument
print $a, $b, $c;

?>

Suggestions

• If this file is a template for PHP code, change the extension to something else than .php

• Fix the syntax so it works with various versions of PHP

14.2. List of Rules 905

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Php/Incompilable
Rulesets All, Analyze, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity Critical
Time To Fix Slow (1 hour)
Precision Very high
ClearPHP no-incompilable
Examples xataface
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.566 Inconsistent Concatenation

Concatenations happens within a string or using the dot operator. Using both is an inconsistent way of
writing concatenations.

Switching methods of concatenation, sometimes in the same expression, is error prone. The reader gets confused, and
may miss important information.

There are some situations where using concatenation are compulsory : when calling a constant, or a function, or make
use of the escape sequence. Those are ignored in this analysis.

<?php

//Concatenation
$consistent = $a . 'b'. $c;

//Interpolation
$consistentToo = "{$a}b$c";

// Concatenation and interpolation
$inconsistent = $a . "b$c";

// Concatenation and interpolation too
$consistentThree = <<<CONSISTENT

{$a}b$c
CONSISTENT;

// Concatenation and interpolation collisions
$collision = theClass::CONSTANTE . "b{$c}".number_format($t, 2).' $CAD'."\n";

?>

906 Chapter 14. Rules

https://github.com/dseguy/clearPHP/tree/master/rules/no-incompilable.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error

Exakat Documentation, Release 1

Specs

Short name Structures/InconsistentConcatenation
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features concat
Examples FuelCMS
Available in Entreprise Edition, Exakat Cloud

14.2.567 Inconsistent Elseif

Chaining if/elseif requires a consistent string of conditions. The conditions are executed one after the
other, and the conditions shouldn’t overlap.

This analysis reports chains of elseif that don’t share a common variable (or array, or property, etc..). As such, testing
different conditions are consistent.

<?php

// $a is always common, so situations are mutually exclusive
if ($a === 1) {

doSomething();
} else if ($a > 1) {

doSomethingElse();
} else {

doSomethingDefault();
}

// $a is always common, so situations are mutually exclusive
// although, it may be worth checking the consistency here
if ($a->b === 1) {

doSomething();
} else if ($a->c > 1) {

doSomethingElse();
} else {

doSomethingDefault();
}

// if $a === 1, then $c doesn't matter?
// This happens, but then logic doesn't appear in the code.
if ($a === 1) {

doSomething();
} else if ($c > 1) {

doSomethingElse();
} else {

doSomethingDefault();
}

(continues on next page)

14.2. List of Rules 907

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

?>

Specs

Short name Structures/InconsistentElseif
Rulesets All
Exakat since 1.4.3
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features if-then
Available in Entreprise Edition, Exakat Cloud

14.2.568 Inconsistent Variable Usage

Those variables are used in various and inconsistent ways. It is difficult to understand if they are an array,
an object or a scalar variable.

<?php

// $a is an array, then $b is a string.
$a = ['a', 'b', 'c'];
$b = implode('-', $a);

// $a is an array, then it is a string.
$a = ['a', 'b', 'c'];
$a = implode('-', $a);

?>

Suggestions

• Keep one type for each variable. This keeps the code readable.

• Give different names to variables with different types.

908 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Variables/InconsistentUsage
Rulesets All, Changed Behavior
Exakat since 1.6.9
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Examples WordPress
Available in Entreprise Edition, Exakat Cloud

14.2.569 Indentation Levels

Collect all level of indentations for methods and functions. Inside methods, indentation level raises for
structures such as switch, match(), closures, ifthen, and loops. It is recommended to avoid going too high
in the levels, as the code becomes less readable.

<?php

function foo() {
$a = 1; // level 1
if ($b == 2) {

$c = 1; // level 2
}
$d = 4; // level 1

}

?>

Specs

Short name Dump/IndentationLevels
Rulesets All, CE, Changed Behavior, Dump
Exakat since 1.9.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features indentation, inclusion
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 909

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.match.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.570 Indices Are Int Or String

Indices in an array notation such as $array['indice'] may only be integers or string.

Boolean, Null or float will be converted to their integer or string equivalent.

Decimal numbers are rounded to the closest integer; Null is transtyped to ‘’ (empty string); true is 1 and false is 0;
Integers in strings are transtyped, while partial numbers or decimals are not analyzed in strings.

As a general rule of thumb, only use integers or strings that don't look like integers.

This analyzer may find constant definitions, when available.

Note also that PHP detects integer inside strings, and silently turn them into integers. Partial and octal numbers are not
transformed.

<?php
$a = [true => 1,

1.0 => 2,
1.2 => 3,
1 => 4,
'1' => 5,
0.8 => 6,
0x1 => 7,
01 => 8,

null => 1,
'' => 2,

false => 1,
0 => 2,

'0.8' => 3,
'01' => 4,
'2a' => 5
];

print_r($a);

/*
The above displays
Array
(

[1] => 8
[0] => 2
[] => 2
[0.8] => 3
[01] => 4
[2a] => 5

)
*/
?>

See also Arrays syntax.

910 Chapter 14. Rules

https://www.php.net/manual/en/language.types.array.php

Exakat Documentation, Release 1

Suggestions

• Do not use any type but string or integer

• Force typecast the keys when building an array

Specs

Short name Structures/IndicesAreIntOrString
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features array
Examples Zencart, Mautic
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.571 Indirect Injection

This rule reports injections through indirect usage of $_GET, $_POST, $_REQUEST, $_COOKIE values.
The injection is indirect, as the incoming data may be stored in different container before reaching the
sensitive call.

Sensitive parameters are identified with Security/SensitiveParameter rule.

<?php

$a = $_GET['a'];
echo $a;

function foo($b) {
echo $b;

}
foo($_POST['c']); // $_POST is propagated to the foo function

?>

Suggestions

• Always validate incoming values before using them.

14.2. List of Rules 911

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/reserved.variables.get.php
https://www.php.net/manual/en/reserved.variables.post.php
https://www.php.net/manual/en/reserved.variables.request.php
https://www.php.net/sensitiveparameter

Exakat Documentation, Release 1

Specs

Short name Security/IndirectInjection
Rulesets All, Changed Behavior, Security
Exakat since 0.8.4
PHP Version All
Severity Critical
Time To Fix Slow (1 hour)
Precision High
Features injection
Available in Entreprise Edition, Exakat Cloud

14.2.572 Infinite Recursion

A method is calling itself, with unchanged arguments. This might repeat indefinitely.

This rules applies to recursive functions without any condition. This also applies to function which inject the incoming
arguments, without modifications.

<?php

function foo($a, $b) {
if ($a > 10) {

return;
}
foo($a, $b);

}

function foo2($a, $b) {
++$a; // $a is modified
if ($a > 10) {

return;
}
foo2($a, $b);

}

?>

Suggestions

• Modify arguments before injecting them again in the same method

• Use different values when calling the same method

912 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Structures/InfiniteRecursion
Rulesets All, Analyze
Exakat since 1.8.6
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features loop, recursion, infinite
Available in Entreprise Edition, Exakat Cloud

14.2.573 Inherited Class Constant Visibility

Visibility of class constant must be public, even when overwritten.

This was not checked until PHP 8.3, where it is now a Fatal Error. When the interface and the class are defined in
different files, the error appears at execution time.

<?php

interface i {
public const I = 1;
public const J = 2;

}

class x implements i {
// This should not be possible
private const I = 10;
public const J = 20;

}

?>

Suggestions

• Set the constant visibility in the class to public

• Remove the visibility of the constant in the class

14.2. List of Rules 913

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/error

Exakat Documentation, Release 1

Specs

Short name Interfaces/InheritedClassConstantVisibility
Rulesets All, CompatibilityPHP82, CompatibilityPHP83
Exakat since 2.5.3
PHP Version 8.2
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features visibility, lazy-loading
Available in Entreprise Edition, Exakat Cloud

14.2.574 Inherited Property Type Must Match

Properties that are inherited between classes must match.

This affect public and protected properties. Private properties are immune to this rule, as they actually are distinct
properties.

<?php

class A {
private A $a;
protected array $b;
public $c;

}

class B extends A {
private A $a; // OK, as it is private
protected int $b; // type must match with the previous definition
public $c; // no type behaves just like a type : it must match too.

}

?>

See also Properties.

914 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.properties.php

Exakat Documentation, Release 1

Suggestions

• Remove the definition in the child class

• Synchronize the definition of the property in the child class

Specs

Short name Classes/InheritedPropertyMustMatch
Rulesets All, Analyze, Class Review, LintButWontExec
Exakat since 2.2.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features inheritance, property
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.575 Inherited Static Variable

Static variables are distinct when used in an inherited static method. In PHP 8.1, the static variable will
also be inherited, and shared between the two methods, like a static property.

<?php

// Code extracted from the RFC
class A {

public static function counter() {
static $i = 0;
return ++$i;

}
}
class B extends A {}

var_dump(A::counter()); // int(1)
var_dump(A::counter()); // int(2)
var_dump(B::counter()); // int(1)
var_dump(B::counter()); // int(2)

?>

See also PHP RFC: Static variables in inherited methods.

14.2. List of Rules 915

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://wiki.php.net/rfc/static_variable_inheritance

Exakat Documentation, Release 1

Suggestions

• Define the method in the child class to enforce the distinct behavior

• Replace the static variable by a static property to make this PHP 8.1 ready

Specs

Short name Variables/InheritedStaticVariable
Rulesets All, Changed Behavior, CompatibilityPHP81
Exakat since 2.2.2
PHP Version With PHP 8.0 and older
Severity Minor
Time To Fix Quick (30 mins)
Changed Behavior PHP 8.1 - More
Precision Medium
Features static-variable, inheritance
Available in Entreprise Edition, Exakat Cloud

14.2.576 Init Then Update

This is a structure where the variable is initialized in the main sequence of the code, then adapted to another
value in a subsequent if structure.

This analysis reports such structures, based on assignation of constant values in the initial statement.

<?php

$a = 1;
if ($b === 2) {

$a = 2;
}

?>

Specs

Short name Structures/InitThenIf
Rulesets All, Changed Behavior, Inventory
Exakat since 2.5.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features initialisation
Available in Entreprise Edition, Exakat Cloud

916 Chapter 14. Rules

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.577 Injectable Version

The Injectable Version attribute mark a class in a class hierarchy to be the one to use when giving a type
to a parameter, return type or property.

For constructor, it is an implicit check. For other methods, the method has to be marked as CheckInjectableMethod
to be checked. In case no attribute is provided, both for InjectableVersion and CheckInjectableVersion, no
error is returned.

The InjectableVersion allows to mark a specific class in a class hierarchy as the class to use in injections.

The check applies to the whole method.

The specifications include namespaces which are exempt from checking the attribute, namely test. This is not supported
yet.

<?php

#[InjectableVersion]
abstract class Injectable {}

class NotInjectable extends Injectable {}

class x {
// CheckInjectableMethod is implicit for constructors
function __construct(Injectable $good, NotInjectable $wrong) {}

#[CheckInjectableVersion]
function good(Injectable $good, NotInjectable $wrong) {}

}

?>

Name Default Type Description
injectableVersion injectableversion string The FQN for the InjectableVersion attribute. By default, it is in the

global space
checkIn-
jectableVersion

checkin-
jectableversion

string The FQN for the CheckInjectableVersion attribute. By default, it is
in the global space

Specs

Short name Attributes/InjectableVersion
Rulesets All, Changed Behavior
Exakat since 2.6.4
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 917

https://www.php.net/attribute
https://www.php.net/attribute
https://www.php.net/error
https://www.php.net/attribute
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.578 Insecure Integer Validation

Comparing incoming variables to integer may lead to injection.

When comparing a variable to an integer, PHP applies type juggling, and transform the variable in an integer too. When
the value converts smoothly to an integer, this means the validation may pass and yet, the value may carry an injection.
This analysis spots situations where an incoming value is compared to an integer. The usage of the validated value is
not analyzed further.

<?php

// This is safe :
if ($_GET['x'] === "2") {

echo $_GET['x'];
}

// Using (int) for validation and for display
if ((int) $_GET['x'] === 2) {

echo (int) $_GET['x'];
}

// This is an injection
// '2 <script>' == 2, then echo will make the injection
if ($_GET['x'] == 2) {

echo $_GET['x'];
}

// This is unsafe, as $_GET['x'] is tested as an integer, but echo'ed raw
if ((int) $_GET['x'] === 2) {

echo $_GET['x'];
}

?>

See also Type Juggling Authentication Bypass Vulnerability in CMS Made Simple, PHP STRING COMPARISON
VULNERABILITIES and PHP Magic Tricks: Type Juggling.

Suggestions

• Add the typecasting to all read access to the incoming variable

• Add the typecasting when writing the incoming value to a local variable

918 Chapter 14. Rules

https://www.netsparker.com/blog/web-security/type-juggling-authentication-bypass-cms-made-simple/
https://hydrasky.com/network-security/php-string-comparison-vulnerabilities/
https://hydrasky.com/network-security/php-string-comparison-vulnerabilities/
https://www.owasp.org/images/6/6b/PHPMagicTricks-TypeJuggling.pdf

Exakat Documentation, Release 1

Specs

Short name Security/IntegerConversion
Rulesets All, Changed Behavior, Security
Exakat since 1.7.7
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features validation
Available in Entreprise Edition, Exakat Cloud

14.2.579 Instantiating Abstract Class

PHP cannot instantiate an abstract class.

The classes are actually abstract classes, and should be derived into a concrete class to be instantiated.

<?php

abstract class Foo {
protected $a;

}

class Bar extends Foo {
protected $b;

}

// instantiating a concrete class.
new Bar();

// instantiating an abstract class.
// In real life, this is not possible also because the definition and the instantiation␣
→˓are in the same file
new Foo();

?>

See also Class Abstraction.

Suggestions

• Make the class non abstract

• Extends that class with a new class that is not abstract. Instantiate that second class.

• Find an existing concrete class

14.2. List of Rules 919

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/abstract

Exakat Documentation, Release 1

Specs

Short name Classes/InstantiatingAbstractClass
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features abstract, concrete
Available in Entreprise Edition, Exakat Cloud

14.2.580 Insufficient Property Typehint

The typehint used for a class property doesn’t cover all it usage.

The typehint is insufficient when a undefined method or constant is called, or if members are accessed while the typehint
is an interface. This analysis relies on typehinted properties, as introduced in PHP 7.4. It also relies on typehinted
assignations at construct time : the typehint of the assigned argument will be used as the property typehint. Getters
and setters are not considered here.

<?php

class A {
function a1() {}

}

// PHP 7.4 and more recent
class B {

private A $a = null;

function b2() {
// this method is available in A
$this->a->a1();
// this method is NOT available in A
$this->a->a2();

}
}

// Supported by all PHP versions
class C {

private $a = null;

function __construct(A $a) {
$this->a = $a;

}

function b2() {
// this method is available in A
$this->a->a1();
// this method is NOT available in A

(continues on next page)

920 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$this->a->a2();
}

}

?>

Suggestions

• Change the typehint to match the actual usage of the object in the class.

Specs

Short name Classes/InsufficientPropertyTypehint
Rulesets All, Class Review
Exakat since 2.0.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features typehint
Available in Entreprise Edition, Exakat Cloud

14.2.581 Insufficient Typehint

An argument is typehinted, but it actually calls methods that are not listed in the interface.

Classes may be implementing more methods than the one that are listed in the interface they also implements. This
means that filtering objects with a typehint, but calling other methods will be solved at execution time : if the method
is available, it will be used; if it is not, a fatal error is reported. Inspired by discussion with Brandon Savage.

<?php

class x implements i {
function methodI() {}
function notInI() {}

}

interface i {
function methodI();

}

function foo(i $x) {
$x->methodI(); // this call is valid
$x->notInI(); // this call is not garanteed

}
?>

See also Interface segregation principle.

14.2. List of Rules 921

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://twitter.com/BrandonSavage
https://en.wikipedia.org/wiki/Interface_segregation_principle

Exakat Documentation, Release 1

Suggestions

• Extend the interface with the missing called methods

• Change the body of the function to use only the methods that are available in the interface

• Change the used objects so they don’t depend on extra methods

Specs

Short name Functions/InsufficientTypehint
Rulesets All, Analyze, Typechecks
Exakat since 1.6.6
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Medium
Features type, interface, abstract-class
Available in Entreprise Edition, Exakat Cloud

14.2.582 Integer As Property

It is backward incompatible to use integers are property names. This feature was introduced in PHP 7.2.

If the code must be compatible with previous versions, avoid casting arrays to object.

<?php

// array to object
$arr = [0 => 1];
$obj = (object) $arr;
var_dump(

$obj,
$obj->{'0'}, // PHP 7.2+ accessible
$obj->{0} // PHP 7.2+ accessible

$obj->{'b'}, // always been accessible
);
?>

See also PHP RFC: Convert numeric keys in object/array casts.

Suggestions

• Add a prefix with letters whenever property’s name adaptation is possible

922 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://wiki.php.net/rfc/convert_numeric_keys_in_object_array_casts

Exakat Documentation, Release 1

Specs

Short
name

Classes/IntegerAsProperty

Rulesets All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56, Compat-
ibilityPHP70, CompatibilityPHP71

Exakat
since

1.0.4

PHP Ver-
sion

With PHP 7.2 and more recent

Severity Major
Time To
Fix

Slow (1 hour)

Precision High
Features property
Available
in

Entreprise Edition, Exakat Cloud

14.2.583 Interface Arguments

This rule lists variables that are arguments in an interface.

<?php

interface i {
function interfaceMethod($interfaceArgument) ;

}

class foo extends i {
// Save function as above, but the variable is not reported
function interfaceMethod($notAnInterfaceArgument) {}

}

?>

Specs

Short name Variables/InterfaceArguments
Rulesets All, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features interface
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 923

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.584 Interface Methods

List the names of the methods in an interface.

<?php

interface i {
// This is an interface method name
function foo() ;

}

?>

Specs

Short name Interfaces/InterfaceMethod
Rulesets All, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Features method
Available in Entreprise Edition, Exakat Cloud

14.2.585 Interfaces Don’t Ensure Properties

When using an interface as a type, properties are not enforced. They might be not available, and lead to a
Fatal Error.

An interface is a template for a class, which specify the minimum amount of methods and constants. Properties are
never defined in an interface, and should not be relied upon.

Properties may be defined in an abstract class.

<?php

interface i {
function m () ;

}

class x implements i {
public $p = 1;

function m() {
return $this->p;

}
}

function foo(i $i, x $x) {
// this is invalid, as $p is not defined in i, so it may be not available

(continues on next page)

924 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error

Exakat Documentation, Release 1

(continued from previous page)

echo $i->p;

// this is valid, as $p is defined in $x
echo $x->p;

}

?>

See also Interface And Abstract Class.

Suggestions

• Use classes for type when properties are accessed

• Only use methods and constants which are available in the interface

• Use an abstract class

Specs

Short name Interfaces/NoGaranteeForPropertyConstant
Rulesets All, Analyze, Changed Behavior, Class Review
Exakat since 1.9.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features interface
Available in Entreprise Edition, Exakat Cloud

14.2.586 Interfaces Is Not Implemented

Classes that implements interfaces, must implements each of the interface’s methods. Otherwise, the class
shall be marked as abstract.

This problem tends to occur in code that splits interfaces and classes by file. This means that PHP’s linting will skip
the definitions and not find the problem. At execution time, the definitions will be checked, and a Fatal error will occur.

This situation usually detects code that was forgotten during a refactorisation of the interface or the class and its siblings.

<?php

class x implements i {
// This method implements the foo method from the i interface
function foo() {}

// The method bar is missing, yet is requested by interface i
function foo() {}

}

(continues on next page)

14.2. List of Rules 925

https://medium.com/@atakde/interface-and-abstract-class-6f5cae27fa07
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error

Exakat Documentation, Release 1

(continued from previous page)

interface i {
function foo();
function bar();

}

?>

See also Interfaces.

Suggestions

• Implements all the methods from the interfaces

• Remove the class

• Make the class abstract

• Make the missing methods abstract

Specs

Short name Interfaces/IsNotImplemented
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, Class Review, LintButWontExec
Exakat since 1.9.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features interface, abstract, implements
Note This issue may lint but will not run
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.587 Interfaces Names

List of all the defined interfaces in the code.

<?php

// interfaceName is reported
interface interfaceName {

function interfaceMethod() ;
}
?>

926 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.interfaces.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Interfaces/Interfacenames
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features interface
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.588 Interfaces Usage

List of used interfaces.

Interfaces are used when mentioned in a class or another interface, with implements keyword; they are used in instanceof
expression, in typehints and class constant.

<?php

// interface definition
interface i {

const I = 2;
}

// interface extension
interface i2 extends i {}

// interface implementation
class foo implements i {}

$foo = new foo();

var_dump($foo instanceof i);

function bar(i $arg) { }
bar($foo);

// in class constant
echo i::I;

?>

14.2. List of Rules 927

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.operators.type.php

Exakat Documentation, Release 1

Specs

Short name Interfaces/InterfaceUsage
Rulesets All, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features interface
Available in Entreprise Edition, Exakat Cloud

14.2.589 Internally Used Properties

Properties that are used internally.

<?php

class x {
public $internallyUsedProperty = 1;
public $externallyUsedProperty = 1;
public $alsoExternallyUsedProperty = 1;

function foo() {
$this->internallyUsedProperty = 2;

}
}

class y extends x {
function bar() {

$this->externallyUsedProperty = 3;
}

}

$X = new x();
$X->alsoExternallyUsedProperty = 3;

?>

Specs

Short name Classes/PropertyUsedInternally
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features property
Available in Entreprise Edition, Exakat Cloud

928 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.590 Internet Domains

List all internet domain (UDP) used.

See also List of TCP and UDP port numbers.

Specs

Short name Type/UdpDomains
Rulesets All, Inventory
Exakat since 1.9.6
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.591 Internet Ports

List of all the Internet ports mentioned in the code.

Ports are recognized based on a internal database of port. They are found in Integers.

<?php

// 21 is the default port for FTP
$ftp = ftp_connect($host, 21, $timeout = 90);

?>

See also List of TCP and UDP port numbers.

Specs

Short name Type/Ports
Rulesets All, Inventory
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features class, anonymous-class, abstract
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 929

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.592 Interpolation

The following strings contain variables that are will be replaced. However, the following characters are
ambiguous, and may lead to confusion.

It is advised to add curly brackets around those structures to make them non-ambiguous.

<?php

class b {
public $b = 'c';
function __toString() { return __CLASS__; }

}
$x = array(1 => new B());

// -> after the $x[1] looks like a 2nd dereferencing, but it is not.
print "$x[1]->b";
// displays : b->b

print "{$x[1]->b}";
// displays : c

?>

See also Double quoted.

Specs

Short name Type/StringInterpolation
Rulesets All, Changed Behavior, Coding conventions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features string, interpolation
Available in Entreprise Edition, Exakat Cloud

14.2.593 Intersection Typehint

Intersection typehints allows the combination of several typehint for the same argument or return value.

Several typehints are specified at the same place as a single one. The different values are separated by a ampersand
character &.

Intersection types are a PHP 8.1 new feature.

<?php

class Number {
private A&B $object;

(continues on next page)

930 Chapter 14. Rules

https://www.php.net/manual/en/language.types.string.php#language.types.string.syntax.double
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

}
?>

See also PHP RFC: Pure intersection types, Type declarations and How the New Intersection Types in PHP 8.1 Give
You More Flexibility.

Specs

Short name Php/Php81IntersectionTypehint
Rulesets All, Appinfo
Exakat since 2.3.3
PHP Version With PHP 8.1 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features typehint, union-type
Available in Entreprise Edition, Exakat Cloud

14.2.594 Invalid Cast

Some cast operations not permitted.

• (string) on an object whose class doesn’t have a __toString method

• (int) on any object, except certain PHP native ones

• (string) on an array: this will produce the Array string, which is useless.

<?php

class Foo {}

(string) new Foo(); // Error

print (string) array(); // Array

?>

14.2. List of Rules 931

https://wiki.php.net/rfc/pure-intersection-types
https://www.php.net/manual/en/language.types.declarations.php
https://www.cloudsavvyit.com/12907/how-the-new-intersection-types-in-php-8-1-give-you-more-flexibility/
https://www.cloudsavvyit.com/12907/how-the-new-intersection-types-in-php-8-1-give-you-more-flexibility/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Structures/InvalidCast
Rulesets All, Analyze, Changed Behavior, LintButWontExec
Exakat since 2.6.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features cast
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.595 Invalid Constant Name

There is a naming convention for PHP constants names.

According to PHP’s manual, constant names, ‘ A valid constant name starts with a letter or underscore, followed by
any number of letters, numbers, or underscores.’.

Constant, must follow this regex : /[a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]*/.

In particular when defined using define() function, no error is produced. When using const, on the other hand, the
name must be valid at linting time.

<?php

define('+3', 1); // wrong constant name!

echo constant('+3'); // invalid constant access

// This won't compile, with a syntax error.
// const 3A = 3;

?>

See also Constants.

Suggestions

• Change constant name

932 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/define
https://www.php.net/error
https://www.php.net/manual/en/language.constants.php

Exakat Documentation, Release 1

Specs

Short name Constants/InvalidName
Rulesets All, Analyze, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features constant
Examples OpenEMR
Available in Entreprise Edition, Exakat Cloud

14.2.596 Invalid Date Scanning Format

The format string used with Datetime::createFromFormat() method (or similar) contains unknown char-
acters.

This won’t raise an error, though the resulting values should be checked.

<?php

// format is valid
$date = datetimeimmutable::createFromFormat('d/m/Y', $a);
// When wrong, $date is false
// The errors are in datetimeimmutable::getLastErrors();

// X is not a valid character for
$date = datetimeimmutable::createFromFormat('d/X/Y', $a);

?>

Suggestions

• Remove the unknown characters

• Replace the unknown character with the expected one

Specs

Short name Structures/InvalidDateScanningFormat
Rulesets All, Analyze
Exakat since 2.4.5
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features date, external-format
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 933

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/datetime.createfromformat.php
https://www.php.net/error
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.597 Invalid Octal In String

Any octal sequence inside a string can’t be go 377. Those will be a fatal error at parsing time.

The check is applied to the string, starting with PHP 7.1. In PHP 7.0 and older, those sequences were silently adapted
(modulo/% 400).

<?php

// A valid octal in a PHP string
echo "\100"; // @

// Emit a warning in PHP 7.1
//Octal escape sequence overflow \500 is greater than \377
echo "\500"; // @

// Silent conversion
echo "\478"; // 8

?>

See also Integers.

Suggestions

• Use a double slash to avoid the sequence to be an octal sequence

• Use a function call, such as decoct() to convert larger number to octal notation

Specs

Short name Type/OctalInString
Rulesets All, CompatibilityPHP71, Inventory
Exakat since 0.9.1
PHP Version With PHP 7.1 and older
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.598 Invalid Pack Format

Some characters are invalid in a pack() format string.

pack() and unpack() accept the following format specifiers : aAhHcCsSnviIlLNVqQJPfgGdeExXZ.

unpack() also accepts a name after the format specifier and an optional quantifier.

All other situations is not a valid, and produces a warning : pack(): Type t: unknown format code Check
pack() documentation for format specifiers that were introduced in various PHP version, namely 7.0, 7.1 and 7.2.

934 Chapter 14. Rules

https://www.php.net/error
https://www.php.net/manual/en/language.types.integer.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/pack
https://www.php.net/pack
https://www.php.net/unpack
https://www.php.net/unpack
https://www.php.net/pack

Exakat Documentation, Release 1

<?php
$binarydata = pack("nvc*", 0x1234, 0x5678, 65, 66);

// the first unsigned short is stored as 'first'. The next matches are names with␣
→˓numbers.

$res = unpack('nfirst/vc*', $binarydata);
?>

See also pack and unpack.

Suggestions

• Fix the packing format with correct values

Specs

Short name Structures/InvalidPackFormat
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 1.4.9
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features pack
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.599 Invalid Regex

The PCRE regex doesn’t compile. It isn’t a valid regex.

Several reasons may lead to this situation : syntax error, Unknown modifier, missing parenthesis or reference.

Regex are check with the Exakat version of PHP.

Dynamic regex are only checked for simple values. Dynamic values may eventually generate a compilation error.

<?php

// valid regex
preg_match('/[abc]/', $string);

// invalid regex (missing terminating] for character class
preg_match('/[abc/', $string);

?>

14.2. List of Rules 935

https://www.php.net/pack
https://www.php.net/pack
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/error

Exakat Documentation, Release 1

Suggestions

• Fix the regex before running it

Specs

Short name Structures/InvalidRegex
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 1.0.5
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Examples SugarCrm
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.600 Ip

This rule lists hardocded IPs in the source. Such IPs cannot be changed, and may produce unexpected
results.

<?php

$ip = '123.34.56.227';
$a = '3627734755';
$a = '000000000330.0000000072.00000000326.0343';

?>

See also IP converter.

Specs

Short name Type/Ip
Rulesets All, Appinfo, Changed Behavior, Inventory
Exakat since 2.4.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features ip
Available in Entreprise Edition, Exakat Cloud

936 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://h.43z.one/ipconverter/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.601 Is A Magic Property

Mark properties usage when they are actually a magic call.

There is no direct mention of it in the syntax, it has to be checked with the definitions of the class.

<?php

class magicProperty {
public $b;

function __get($name) {
// do something with the value

}

function foo() {
$this->a;
$this->b;

}
}

?>

See also Magic Methods.

Specs

Short name Classes/IsaMagicProperty
Rulesets All, CE
Exakat since 0.12.17
PHP Version All
Severity
Time To Fix
Precision High
Features magic-property
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.602 Is Actually Zero

This addition actually may be simplified because one term is actually negated by another.

This kind of error happens when the expression is very large : the more terms are included, the more chances are that
some auto-annihilation happens.

This error may also be a simple typo : for example, calculating the difference between two consecutive terms.

<?php

// This is quite obvious
$a = 2 - 2;

// This is obvious too. This may be a typo-ed difference between two consecutive terms.
(continues on next page)

14.2. List of Rules 937

https://www.php.net/manual/en/language.oop5.magic.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/error

Exakat Documentation, Release 1

(continued from previous page)

// Could have been $c = $fx[3][4] - $fx[3][3] or $c = $fx[3][5] - $fx[3][4];
$c = $fx[3][4] - $fx[3][4];

// This is less obvious
$a = $b[3] - $c + $d->foo(1,2,3) + $c + $b[3];

?>

Suggestions

• Clean the code and remove the null sum

• Fix one of the variable : this expression needs another variable here

• When adding differences, calculate the difference in a temporary variable first.

Specs

Short name Structures/IsZero
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 0.12.15
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Examples Dolibarr, SuiteCrm
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.603 Is An Extension Class

Those classes belongs to a PHP Extensions.

<?php

// This is a native PHP class
$o = new Stdclass();

// This is not a native PHP class
$o = new Elephpant();

?>

938 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Classes/IsExtClass
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features class, extension
Available in Entreprise Edition, Exakat Cloud

14.2.604 Is An Extension Constant

Mark a constant if it belongs to a known extension.

<?php

// JSON_HEX_AMP is a constant from ext/json
echo json_encode($object, JSON_HEX_AMP);

// JSON_HEX_AMP is a constant from ext/json
echo json_encode($object, JSON_HOAX_AMP);

?>

See also Supported PHP Extensions.

Specs

Short name Constants/IsExtConstant
Rulesets All, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features constant
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 939

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
http://exakat.readthedocs.io/en/latest/Annex.html#supported-php-extensions
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.605 Is An Extension Function

This is an extension function.

Almost every PHP extension defines extra functions. Nowadays, they are prefixed, like mysqli_connect,
ldap_close, or zlib_decode. Sometimes, they are even in a namespace. Refer to the extension itself to learn
more about its functions usage.

<?php

// range is a native PHP function. It is always available
$array = range(0, 100);

// json_encode is an extension function : it requires that PHP was compile with ext/json
echo json_encode($array);

?>

Specs

Short name Functions/IsExtFunction
Rulesets All, CE, Deprecated
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Features function, extension
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.606 Is An Extension Interface

This is an interface defined in a PHP C extension.

<?php

// MyInterface is not recognized as an extension interface
function foo (MyInterface $a) {

// \ArrayAccess is recognized as a native PHP extension
if ($a instanceof \ArrayAccess) {

// doSomething()
}

}

?>

940 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Interfaces/IsExtInterface
Rulesets All, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features interface
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.607 Is CLI Script

Mark a file as a CLI script. This means that this code is used in command line. That detection is based on
the usage of distinct CLI features, such as #! at the beginning of the file.

#!/usr/bin/php

<?php
echo PHP_VERSION;

?>

Specs

Short name Files/IsCliScript
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features cli
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.608 Is Extension Structure

Finish marking atoms with isExt, as part of the PHP extension elements. For example, openssl, mysqli,
etc.

14.2. List of Rules 941

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Complete/IsExtStructure
Rulesets All, NoDoc
Exakat since 2.3.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.609 Is Extension Trait

Indicates if these traits are defined in an extension. Traits that are defined in an extension are available from
the start of the application. There are no known extension that defines a trait, at the moment of writing
(feb-2024).

Specs

Short name Traits/IsExtTrait
Rulesets All, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features trait
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.610 Is Global Constant

Mark a constant that may fallback to a global const definition, even though it is in a namespace.

This analysis skips PHP and ext’s functions, namespaced constants.

<?php

namespace X {

const PHP_VERSION = 1;

// Local constant
echo PHP_VERSION;

// This constant fallsback to \E_ALL, unless DNS_NS is defined in this namespace
echo E_ALL;

// This constant is always \DNS_NS
(continues on next page)

942 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

echo \DNS_NS;

// This is a Notice
echo UNDEFINED_CONSTANT;

}

?>

See also $GLOBALS and Variable scope.

Specs

Short name Constants/IsGlobalConstant
Rulesets All, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features constant
Available in Entreprise Edition, Exakat Cloud

14.2.611 Is Interface Method

Mark a method as part of an interface that the current class implements.

<?php

interface i {
function i20();

}

class x implements i {
// This is an interface method
function i20() {}

// This is not an interface method
function x20() {}

}

?>

14.2. List of Rules 943

https://www.php.net/manual/en/reserved.variables.globals.php
https://www.php.net/manual/en/language.variables.scope.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Classes/IsInterfaceMethod
Rulesets All, IsExt, IsPHP, IsStub
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Features interface
Available in Entreprise Edition, Exakat Cloud

14.2.612 Is Library

Is this project a library (it must be used in a larger project) or a standalone code.

Specs

Short name Project/IsLibrary
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.613 Is Not Class Family

Mark a static method call as inside the family of classes. Children are not considered here.

<?php

class a {
function familyMethod() {}

}

classs b {
function foo() {

self::familyMethod(); // This is a call to a family method
b::notAFamilyMethod(); // This is a call to a method of a class outside the␣

→˓family
}

}
?>

944 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

Specs

Short name Classes/IsNotFamily
Rulesets All, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features class
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.614 Is PHP Constant

Mark a constant if it is a PHP constant.

<?php

// This is an PHP constant
$a = HTML_ENTITIES;

// This is an PHP function
$a = CMS_ORDER;

?>

Specs

Short name Constants/IsPhpConstant
Rulesets All, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Features constant
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.615 Is PHP Structure

This rules marks atoms with isPhp, as part of the standard PHP elements. For example, Datetime, E_ALL,
etc. This attribute is available in the engine, but not displayed.

<?php

// strtolower is marked as isPhp
$string = strtolower($s) . foo($s);

(continues on next page)

14.2. List of Rules 945

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/attribute
https://www.php.net/engine

Exakat Documentation, Release 1

(continued from previous page)

?>

Specs

Short name Complete/IsPhpStructure
Rulesets All, NoDoc
Exakat since 2.3.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.616 Is Stub Structure

This command finishes marking atoms with the isStub property. isStub are structures (functions, con-
stants, classes, traits. . .) that are defined in an external component, and described with PDFF files.

Specs

Short name Complete/IsStubStructure
Rulesets All, NoDoc
Exakat since 2.3.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features stubs
Available in Entreprise Edition, Exakat Cloud

14.2.617 Is Upper Family

Does the static call is made within the current hierarchy of class, or, is it made in the class, in the children
or outside.

This applies to static methodcalls, property accesses and class constants.

<?php

class AAA { function inAAA() {} } // upper family : grand-parent
class AA extends AAA { function inAA() {} } // upper family : parent
class A extends AA { function inA() {} } // current family
class B extends A { function inB() {} } // lower family
class C { function inC() {} } // outside family

(continues on next page)

946 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

(continued from previous page)

?>

Specs

Short name Classes/IsUpperFamily
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features class
Available in Entreprise Edition, Exakat Cloud

14.2.618 Is_A() With String

When using is_a() with a string as first argument, the third argument is compulsory. The third argument
is $allow_string, and is necessary to work on strings.

<?php

// is_a() works with string as first argument, when the third argument is 'true'
if (is_a('A', 'B', true)) {}

// is_a() works with object as first argument
if (is_a(new A, 'A')) {}
?>

See also is_a.

Suggestions

• Add the third argument, and set it to true

• Use an object as a first argument

Specs

Short name Php/IsAWithString
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, Rector
Exakat since 1.9.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features class, interface
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 947

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/is_a
https://www.php.net/is_a
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.619 Isset Multiple Arguments

isset() may be used with multiple arguments and acts as a AND.

<?php

// isset without and
if (isset($a, $b, $c)) {

// doSomething()
}

// isset with and
if (isset($a) && isset($b) && isset($c)) {

// doSomething()
}

?>

See also Isset.

Suggestions

• Merge all isset() calls into one

Specs

Short name Php/IssetMultipleArgs
Rulesets All, Changed Behavior, Suggestions, php-cs-fixable
Exakat since 0.12.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features isset, coalesce
Examples ThinkPHP, LiveZilla
Available in Entreprise Edition, Exakat Cloud

14.2.620 Isset() On The Whole Array

Isset() works quietly on a whole array. There is no need to test all previous index before testing for the
target index.

It also works on chained properties. There is a gain in readability, by avoiding long and hard to read logical expression,
and reducing them in one simple isset() call.

There is a gain in performances by using one call to isset(), instead of several. It is a micro-optimization.

<?php

// Straight to the point
if (isset($a[1]['source'])) {

(continues on next page)

948 Chapter 14. Rules

https://www.www.php.net/isset
http://www.php.net/isset
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.www.php.net/isset
https://www.www.php.net/isset
https://www.www.php.net/isset

Exakat Documentation, Release 1

(continued from previous page)

// Do something with $a[1]['source']
}

// Doing too much work
if (isset($a) && isset($a[1]) && isset($a[1]['source'])) {

// Do something with $a[1]['source']
}

// Doing too much work
if (isset($object) && isset($object->p1) && isset($object->p1->property)) {

// Do something with $object->p1->property
}

?>

See also Isset.

Suggestions

• Merge all calls in one, and remove all unnecessary calls to isset()

Specs

Short name Performances/IssetWholeArray
Rulesets All, Changed Behavior, Performances, Suggestions
Exakat since 1.5.6
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features coalesce, isset
Examples Tine20, ExpressionEngine
Available in Entreprise Edition, Exakat Cloud

14.2.621 Joining file()

Use file() to read lines separately.

Applying join('',) or implode('',) to the result of file() provides the same results than using
file_get_contents(), but at a higher cost of memory and processing.

If the delimiter is not '', then implode() and file() are a better solution than file_get_contents() and
str_replace() or nl2br().

Always use file_get_contents() to get the content of a file as a string. Consider using readfile() to echo the content
directly to the output.

This analysis also checks for the reverse feature: loading a file with file_get_contents() and splitting it into rows
with explode() or an alternative. Such association should be replaced by a single call to file(), with may be the
FILE_IGNORE_NEW_LINES.

14.2. List of Rules 949

http://www.php.net/isset
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/file
https://www.php.net/result
https://www.php.net/file
https://www.php.net/file_get_contents
https://www.php.net/readfile

Exakat Documentation, Release 1

<?php

// memory intensive
$content = file_get_contents('path/to/file.txt');

// memory and CPU intensive
$content = join('', file('path/to/file.txt'));

// Consider reading the data line by line and processing it along the way,
// to save memory
$fp = fopen('path/to/file.txt', 'r');
while($line = fget($fp)) {

// process a line
}
fclose($fp);

// Reverse feature
$file = file_get_contents('/path/to/file.txt');
$rows = explode(PHP_EOL, $file);

?>

See also file_get_contents, file and explode.

Suggestions

• Use file_get_contents() instead of implode(file()) to read the whole file at once.

• Use readfile() to echo the content to standard output stdout at once.

• Use fopen() to read the lines one by one, generator style.

Specs

Short name Performances/JoinFile
Rulesets All, Performances
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features csv
Examples WordPress, SPIP
Available in Entreprise Edition, Exakat Cloud

950 Chapter 14. Rules

https://www.php.net/file_get_contents
https://www.php.net/file
https://www.php.net/explode
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.622 Joomla usage

This analysis reports usage of the Joomla CMS.

<?php

// no direct access
defined('_JEXEC') or die('Restricted access');

jimport('joomla.application.component.controller');
JLoader::import('KBIntegrator', JPATH_PLUGINS . DS . 'kbi');

class MyController extends JController {
function display($message) {
echo $message;

}
}

?>

See also Joomla.

Specs

Short name Vendors/Joomla
Rulesets All, Appinfo, CE
Exakat since 0.11.8
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features framework
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.623 Json_encode() Without Exceptions

json_encode() and json_decode() should use the exception system, to detect invalid JSON syntax.

The second argument is a bitmask, and shall include JSON_THROW_ON_ERROR, so that both function may emit an
exception when a parsing error happen. That exception can then be caught with a try/catch structure. Alternatively, the
error may be check by calling json_last_error() function. It will not be empty if an error is called.

<?php

try{
echo json_encode($response, JSON_THROW_ON_ERROR | JSON_PRETY_PRINT);

} catch (\JsonException $e) {
echo "Sorry, an error occured.";

}
?>

See also json_encode().

14.2. List of Rules 951

http://www.joomla.org/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/json_encode
https://www.php.net/json_decode
https://www.php.net/exception
https://www.php.net/JSON_THROW_ON_ERROR
https://www.php.net/exception
https://www.php.net/error
https://www.php.net/exception
https://www.php.net/error
https://www.php.net/json_last_error
https://www.php.net/error
https://www.php.net/manual/en/function.json-encode.php

Exakat Documentation, Release 1

Suggestions

• Add the JSON_THROW_ON_ERROR in the second argument.

• Call json_validate() on the data, before parsing it.

• Check json_last_error() after the parsing, to detect any error

Specs

Short name Structures/JsonEncodeExceptions
Rulesets All, Suggestions
Exakat since 2.5.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features json, error-handling
Available in Entreprise Edition, Exakat Cloud

14.2.624 Keep Files Access Restricted

Avoid using 0777 as file or directory <https://www.php.net/`directory>`_ mode. In particular, setting a
file or a directory <https://www.php.net/`directory>`_ to 0777 (or universal read-write-execute) may lead
to security vulnerabilities, as anything on the server may read, write and even execute

File mode may be changed using the chmod() function, or at directory <https://www.php.net/`directory>`_ creation,
with mkdir(). By default, this analysis report universal access (0777). It is possible to make this analysis more restric-
tive, by providing more forbidden modes in the filePrivileges parameter. For example : 511,510,489. Only use
a decimal representation.

<?php

file_put_contents($file, $content);

// this file is accessible to the current user, and to his group, for reading and␣
→˓writing.
chmod($file, 0550);

// this file is accessible to everyone
chmod($file, 0777);

?>

Name De-
fault

Type Description

filePriv-
ileges

0777 string List of forbidden file modes (comma separated). This should be a decimal value : 511
instead of 777. The values will not be converted from octal to decimal.

See also Mkdir Default and Least Privilege Violation.

952 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/directory
https://www.php.net/directory
https://www.php.net/chmod
https://www.php.net/directory
https://www.php.net/mkdir
https://owasp.org/www-community/vulnerabilities/Least_Privilege_Violation

Exakat Documentation, Release 1

Suggestions

• Set the file mode to a level of restriction as low as possible.

Specs

Short name Security/KeepFilesRestricted
Rulesets All, Changed Behavior, Security
Exakat since 2.1.1
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.625 Labels

List of all labels used in the code.

<?php

// A is label.
goto A:

A:

// A label may be used by several gotos.
goto A:

?>

Specs

Short name Php/Labelnames
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features goto, label
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 953

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.626 Laravel usage

This analysis reports usage of the Laravel framework.

<?php

namespace App\Http\Controllers;

use App\User;
use App\Http\Controllers\Controller;

class UserController extends Controller
{

/**
* Show the profile for the given user.
*
* @param int $id
* @return Response
*/
public function show($id)
{

return view('user.profile', ['user' => User::findOrFail($id)]);
}

}

?>

See also Laravel.

Specs

Short name Vendors/Laravel
Rulesets All, Appinfo, CE
Exakat since 0.11.8
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features framework
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.627 Large Try Block

Try block should enclosing only the expression that may emit an exception.

When writing large blocks of code in a try, it becomes difficult to understand where the expression is coming from.
Large blocks may also lead to catch multiples exceptions, with a long list of catch clause.

In particular, the catch clause will resume the execution without knowing where the try was interrupted : there are
no indication of achievement, even partial. In fact, catching an exception signals a very dirty situation. This analysis
reports try blocks that are 5 lines or more. This threshold may be configured with the directive tryBlockMaxSize.
Catch clause, and finally are not considered here.

954 Chapter 14. Rules

http://www.lavarel.com/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception
https://www.php.net/exception

Exakat Documentation, Release 1

<?php

// try is one expression only
try {

$database->query($query);
} catch (DatabaseException $e) {

// process exception
}

// Too many expressions around the one that may actually emit the exception
try {

$SQL = build_query($arguments);
$database = new Database($dsn);
$database->setOption($options);
$statement = $database->prepareQuery($SQL);
$result = $statement->query($query);

} catch (DatabaseException $e) {
// process exception

}

?>

Name Default Type Description
tryBlockMaxSize 5 integer Maximal number of expressions in the try block.

See also Exceptions.

Suggestions

• Reduce the amount of code in the block, by moving it before and after

Specs

Short name Exceptions/LargeTryBlock
Rulesets All, Changed Behavior, Suggestions
Exakat since 2.1.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features try-catch
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 955

https://www.php.net/manual/en/language.exceptions.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.628 Law of Demeter

The law of Demeter specifies a number of constraints to apply to methodcalls from within an method, so
as to keep dependencies to a minimum.

<?php

class x {
function foo($arg) {

$this->foo(); // calling oneself is OK
$this->x->bar(); // calling one's property is OK
$arg->bar2(); // calling arg's methods is OK

$local = new y();
$z = $y->bar3(); // calling a local variable is OK

$z->bar4(); // calling a method on a previous result is wrong
}

}

?>

See also Do your objects talk to strangers? and Law of Demeter.

Specs

Short name Classes/DemeterLaw
Rulesets All
Exakat since 1.6.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.629 Links Between Parameter And Argument

Collect various stats about arguments and parameter usage.

A parameter is one slot in the method definition. An argument is a slot in the method call. Both are linked by the
method and their respective position in the argument list.

• Total number of argument usage, linked to a parameter : this excludes arguments from external libraries and
native PHP functions. For reference.

• Number of identical parameter : cases where argument and parameter have the same name.

• Number of different parameter : cases where argument and parameter have the different name.

• Number of expression argument : cases where argument is an expression

• Number of constant argument : cases where the argument is a constant

956 Chapter 14. Rules

https://www.brandonsavage.net/do-your-objects-talk-to-strangers/
https://en.wikipedia.org/wiki/Law_of_Demeter
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

<?php

function foo($a, $b) {
// some code

}

// $a is the same as the parameter
// $c is different from the paramter $b
foo($a, $c);

const C = 1;

// Foo is called with a constant (1rst argument)
// Foo is called with a expression (2nd argument)
foo(C, 1+3);

?>

Specs

Short name Dump/ParameterArgumentsLinks
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 2.0.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features parameter, argument
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.630 Linux Only Files

List of files that are only found on Linux style systems. They are making the application depend on the
system.

<?php

// Really non-portable system check
$os = shell_exec("cat /proc/version");
echo "You are using $os\n";

?>

14.2. List of Rules 957

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Portability/LinuxOnlyFiles
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision High
Features file
Available in Entreprise Edition, Exakat Cloud

14.2.631 List Short Syntax

Usage of short syntax version of list().

<?php

// PHP 7.1 short list syntax
// PHP 7.1 may also use key => value structures with list
[$a, $b, $c] = ['2', 3, '4'];

// PHP 7.0 list syntax
list($a, $b, $c) = ['2', 3, '4'];

?>

Specs

Short
name

Php/ListShortSyntax

Rulesets All, Appinfo, CE, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, Compatibility-
PHP55, CompatibilityPHP56, CompatibilityPHP70

Exakat
since

0.8.4

PHP
Version

With PHP 7.1 and more recent

Severity Major
Time To
Fix

Quick (30 mins)

Preci-
sion

High

Features short-syntax
Avail-
able in

Entreprise Edition, Community Edition, Exakat Cloud

958 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/list
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.632 List With Array Appends

List() behavior has changed in PHP 7.0 and it has impact on the indexing when list is used with the []
operator.

The appended values are created in the same order than in the syntax, while in PHP 5.6, it is in the reverse order. In
PHP 7.0, results are ::

Array
(

[0] => 1
[1] => 2
[2] => 3

)

In PHP 5.6, results are ::

Array
(

[0] => 3
[1] => 2
[2] => 1

)

<?php

$x = array();
list($x[], $x[], $x[]) = [1, 2, 3];

print_r($x);

?>

Suggestions

• Refactor code to avoid using append in a list() call

Specs

Short name Php/ListWithAppends
Rulesets All, Changed Behavior, CompatibilityPHP70
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Changed Behavior PHP 7.0 - More
Precision Very high
Features list, append
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 959

https://www.php.net/list
https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.633 List With Keys

Setting keys when using list() is a PHP 7.1 feature.

<?php

// PHP 7.1 and later only
list('a' => $a, 'b' => $b) = ['b' => 1, 'c' => 2, 'a' => 3];

?>

Specs

Short name Php/ListWithKeys
Rulesets All, Appinfo, CE, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, Compatibility-

PHP55, CompatibilityPHP56, CompatibilityPHP70
Exakat
since

0.8.4

PHP Ver-
sion

With PHP 7.1 and more recent

Severity Major
Time To Fix Quick (30 mins)
Changed
Behavior

PHP 7.1 - More

Precision Very high
Features list, keys
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.634 List With Reference

Support for references in list calls is not backward compatible with older versions of PHP. The support
was introduced in PHP 7.3.

<?php

$array = [1,2,3];

[$c, &$d, $e] = $a;

$d++;
$c++;
print_r($array);
/*
displays
Array
(

[0] => 1 // Not a reference to $c, unchanged
[1] => 3 // Reference from $d
[2] => 3

)
(continues on next page)

960 Chapter 14. Rules

https://www.php.net/list
https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

*/
?>

See also list() Reference Assignment.

Suggestions

• Avoid using references in list for backward compatibility

Specs

Short
name

Php/ListWithReference

Rule-
sets

All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56, Compat-
ibilityPHP70, CompatibilityPHP71, CompatibilityPHP72

Exakat
since

1.1.6

PHP
Version

With PHP 7.3 and more recent

Severity Major
Time To
Fix

Slow (1 hour)

Preci-
sion

Very high

Fea-
tures

list, reference

Avail-
able in

Entreprise Edition, Exakat Cloud

14.2.635 Local Globals

A global variable is used locally in a method.

Either the global keyword has been forgotten, or the local variable should be renamed in a less ambiguous manner.

Having both a global and a local variable with the same name is legit. PHP keeps the contexts separated, and it processes
them independently.

However, in the mind of the coder, it is easy to mistake the local variable $x and the global variable $x. May they be
given different meaning, and this is an error-prone situation.

It is recommended to keep the global variables’s name distinct from the local variables.

<?php

// This is actualy a global variable
$variable = 1;
$globalVariable = 2;

function foo() {
(continues on next page)

14.2. List of Rules 961

https://wiki.php.net/rfc/list_reference_assignment
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error

Exakat Documentation, Release 1

(continued from previous page)

global $globalVariable2;

$variable = 4;
$localVariable = 3;

// This always displays 423, instead of 123
echo $variable .' ' . $globalVariable . ' ' . $localVariable;

}

?>

Suggestions

• Add the global keyword for that variable

• Change the name of the variable for another one, which is not a global variable

Specs

Short name Variables/LocalGlobals
Rulesets All
Exakat since 1.1.2
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features global
Available in Entreprise Edition, Exakat Cloud

14.2.636 Locally Unused Property

Those properties are defined in a class, and this class doesn’t have any method that makes use of them.

While this is syntactically correct, it is unusual that defined resources are used in a child class. It may be worth moving
the definition to another class, or to move accessing methods to the class.

<?php

class foo {
public $unused, $used;// property $unused is never used in this class

function bar() {
$this->used++; // property $used is used in this method

}
}

class foofoo extends foo {
function bar() {

$this->unused++; // property $unused is used in this method, but defined in the␣
(continues on next page)

962 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

→˓parent class
}

}

?>

Suggestions

• Move the property definition to the child classes

• Move some of the child method, using the property, to the parent class

Specs

Short name Classes/LocallyUnusedProperty
Rulesets All, Dead code
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features property
Available in Entreprise Edition, Exakat Cloud

14.2.637 Locally Used Property

List of properties that are used in the class where they are defined.

<?php

class foo {
public $unused, $used;// property $unused is never used in this class

function bar() {
$this->used++; // property $used is used in this method

}
}

$foo = new Foo();
$foo->unused = 'here'; // property $unused is used outside the class definition
?>

14.2. List of Rules 963

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Classes/LocallyUsedProperty
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features property
Available in Entreprise Edition, Exakat Cloud

14.2.638 Locally Used Property In Trait

List of properties that are used in the trait where they are defined. A property should be used at least once
in the trait of its definition.

<?php

trait foo {
public $unused, $used;// property $unused is never used in this trait

function bar() {
$this->used++; // property $used is used in this method

}
}

class X {
use foo;

}

$foo = new X();
$foo->unused = 'here'; // property $unused is used outside the trait definition
?>

Specs

Short name Traits/LocallyUsedProperty
Rulesets All, Changed Behavior
Exakat since 1.3.5
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features trait, property
Available in Entreprise Edition, Exakat Cloud

964 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.639 Logical Mistakes

Avoid logical mistakes within long expressions.

Sometimes, the logic is not what it seems. It is important to check the actual impact of every part of the logical
expression. Do not hesitate to make a table with all possible cases. If those cases are too numerous, it may be time to
rethink the whole expression. Inspired by an article from Andrey Karpov.

<?php

// Always true
if ($a != 1 || $a != 2) { }

// $a == 1 is useless
if ($a == 1 || $a != 2) {}

// Always false
if ($a == 1 && $a == 2) {}

// $a != 2 is useless
if ($a == 1 && $a != 2) {}

?>

See also Logical Expressions in C/C++. Mistakes Made by Professionals.

Suggestions

• Change the expressions for them to have a real meaning

Specs

Short name Structures/LogicalMistakes
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Critical
Time To Fix Quick (30 mins)
Precision High
Examples Dolibarr, Cleverstyle
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 965

http://www.viva64.com/en/b/0390/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.640 Logical Operators Favorite

PHP has two sets of logical operators : letters (and, or, xor) and chars (&&, ||, ^).

The analyzed code has less than 10% of one of the two sets : for consistency reasons, it is recommended to make them
all the same.

Warning : the two sets of operators have different precedence levels. Using and or && is not exactly the same, especially
and not only, when assigning the results to a variable. Using and or && are also the target of other analysis.

<?php

$a1 = $b and $c;
$a1 = $b and $c;
$a1 = $b and $c;
$a1 = $b or $c;
$a1 = $b OR $c;
$a1 = $b and $c;
$a1 = $b and $c;
$a1 = $b and $c;
$a1 = $b or $c;
$a1 = $b OR $c;
$a1 = $b ^ $c;

?>

See also Logical Operators and Operators Precedence.

Suggestions

• Pick a favorite, and enforce it

Specs

Short name Php/LetterCharsLogicalFavorite
Rulesets All, Changed Behavior, Preferences, Top10
Exakat since 0.12.4
PHP Version All
Severity
Time To Fix
Precision High
Features logical-operator
Available in Entreprise Edition, Exakat Cloud

966 Chapter 14. Rules

https://www.php.net/manual/en/language.operators.logical.php
https://www.php.net/manual/en/language.operators.precedence.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.641 Logical Should Use Symbolic Operators

Logical operators come in two flavors : and / &&, || / or, ^ / xor. However, they are not exchangeable, as
&& and and have different precedence.

It is recommended to use the symbol operators, rather than the letter ones.

<?php

// Avoid lettered operator, as they have lower priority than expected
$a = $b and $c;
// $a === 3 because equivalent to ($a = $b) and $c;

// safe way to write the above :
$a = ($b and $c);

$a = $b && $c;
// $a === 1

?>

See also Logical Operators.

Suggestions

• Change the letter operators to the symbol one : and => &&, or => ||, xor => ^. Review the new expressions as
processing order may have changed.

• Add parenthesis to make sure that the order is the expected one

Specs

Short name Php/LogicalInLetters
Rulesets All, Analyze, CE, CI-checks, Suggestions, Top10, php-cs-fixable
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features logical
ClearPHP no-letter-logical
Examples Cleverstyle, OpenConf
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 967

https://www.php.net/manual/en/language.operators.logical.php
https://github.com/dseguy/clearPHP/tree/master/rules/no-letter-logical.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.642 Logical To in_array

Multiple exclusive comparisons with or` may be replaced by faster alternative.

• isset() and an array which keys are the target comparisons

• array_key_exists() and an array which keys are the target comparisons

• strpos() call, with all the target values merged into a string

• str_contains() call, with all the target values merged into a string

• switch() call, with each case being an assignation

• match() call

• in_array() call, with each values in an array

While each alternative has its performance gain, they make the code more readable by bringing the alternative values
into one simple list.

As little as three or comparisons are slower than using an alternative. The more calls, the slower is as string of or.
Also, the further the target value is in the or list, the slower it is to find it. Although, it is not easy to control that value.

This analysis also reports in_array() calls with arrays of a single element : those should be turned into a or call, or
have more values in the array, or have the array published as a constant. This is a micro-optimisation : speed gain is
low, and marginal. Code centralisation is a more significant advantage.

Thanks to Frederic Bouchery for extending the alternatives of that analysis.

<?php

$targetValues = array('a', 'b', 'c', 'd');
$needle = 'd'; // for example

// isset() & array_key_exists()
$targets = array_flip($targetValues); // This might be a slow operation
isset($targs[$a]);
array_key_exists($a, $targs);

// strpos() & str_contains
$targets = implode('', $targeValues);
strpos($targets, $needle) !== 0
str_contains($targets, $needle) !== 0

// switch()
switch($needle) {

case 'a': // Lots of typing to do
case 'b':
case 'c':
case 'd':

$result = true;
break;

default:
$result = false;
break;

}

(continues on next page)

968 Chapter 14. Rules

https://www.www.php.net/isset
https://www.php.net/array_key_exists
https://www.php.net/strpos
https://www.php.net/str_contains
https://www.php.net/manual/en/control-structures.switch.php
https://www.php.net/manual/en/control-structures.match.php
https://www.php.net/in_array
https://www.php.net/in_array
https://twitter.com/FredBouchery/

Exakat Documentation, Release 1

(continued from previous page)

// match()
// surprisingly, slitghly slower than switch()
$result = match($needle) {

'a', 'b', 'c', 'd' => true,
default => false

};

// in_array()
// Set the list of alternative in a variable, property or constant.
$result = in_array($a, $valid_values, true); // use third argument when you can

// slowest and hard to read
$result = $a == 'a' || $a == 'b' || $a == 'c' || $a == 'd');

?>

See also in_array(), isset(), match(), switch() and strpos().

Suggestions

• Replace the list of comparisons with a in_array() call on an array filled with the various values

• Replace the list of comparisons with a strpos() call on an string joined with the various values

• Replace the list of comparisons with a match() call on an string joined with the various values

• Replace the list of comparisons with a switch() call on an string joined with the various values

• Replace the list of comparisons with a isset() call on a hash whose keys are the various values

Specs

Short name Performances/LogicalToInArray
Rulesets All, Analyze, Changed Behavior
Exakat since 0.12.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Examples Zencart
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 969

https://www.php.net/in_array
https://www.php.net/isset
https://www.php.net/match
https://www.php.net/switch
https://www.php.net/strpos
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.643 Lone Blocks

Grouped code without a commanding structure is useless and may be removed.

Blocks are compulsory when defining a structure, such as a class, a function or a switch. They are most often used with
flow control instructions, like if then or foreach.

Blocks are also valid syntax that group several instructions together, though they have no effect at all. They are unusual
enough to confuse the reader.

Most often, it is a ruin from a previous flow control instruction, whose condition was removed or commented. They
should be removed.

<?php

// Lone block without artefact
{
$a = 3;
$c = 4;

}

// Lone block with commented out loop
//foreach($a as $b)
{

$b = 1;
}

?>

Suggestions

• Remove the useless curly brackets

Specs

Short name Structures/LoneBlock
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features block
Examples ThinkPHP, Tine20
Available in Entreprise Edition, Community Edition, Exakat Cloud

970 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.644 Long Arguments

Long arguments should be put in variable, to preserve readability.

When literal arguments are too long, they break the hosting structure by moving the next argument too far on the right.
Whenever possible, long arguments should be set in a local variable to keep the readability. Literal strings and heredoc
strings, including variables, that are over 50 chars longs are reported here.

<?php

// Now the call to foo() is easier to read.
$reallyBigNumber = <<<BIGNUMBER
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
BIGNUMBER
foo($reallyBigNumber, 2, '12345678901234567890123456789012345678901234567890');

// where are the next arguments ?
foo(
→˓'123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
→˓', 2, '123456789012345678901234567890123456789012345678901234567890');

// This is still difficult to read
foo(<<<BIGNUMBER
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
BIGNUMBER
, 2, '123456789012345678901234567890123456789012345678901234567890');

?>

Name Default Type Description
codeTooLong 100 integer Minimum size of a functioncall or a methodcall to be considered too long.

Suggestions

• Put the long arguments in a separate variable, and use the variable in the second expression, reducing its total
length

Specs

Short name Structures/LongArguments
Rulesets All, Analyze
Exakat since 0.9.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features argument
Examples Cleverstyle, Contao
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 971

https://www.php.net/manual/en/control-structures.break.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.645 Long Preparation For Throw

When throwing an exception, move the preparing code in the exception. This will keep the throw call
simple.

<?php

// Examples extracted from Alain Schlesser's blog
public function render($view): string {

if (! $this->views->has($view)) {
switch (gettype($view)) {
case 'object':

$view = get_class($view);
case 'string':

$message = sprintf(
'The requested View "%s" does not exist.',
$view

);
break;

default:
$message = sprintf(
'An unknown View type of "%s" was requested.',
$view

);
}

throw new ViewWasNotFound($message);
}

echo $this->views->get($view)
->render();

}

?>

Name Default Type Description
preparationLineCount 8 integer Minimal number of lines before the throw.

See also Structuring PHP Exceptions session and Best practices for handling exceptional behavior.

972 Chapter 14. Rules

https://www.php.net/exception
https://www.php.net/exception
https://phpconference.com/blog/structuring-php-exceptions/
https://www.nikolaposa.in.rs/blog/2016/08/17/exceptional-behavior-best-practices/

Exakat Documentation, Release 1

Suggestions

• Move the preparation into the Exception to keep the throw simple

Specs

Short name Exceptions/LongPreparation
Rulesets All, Changed Behavior, Suggestions
Exakat since 2.2.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features throw, exception
Available in Entreprise Edition, Exakat Cloud

14.2.646 Lost References

Either avoid references, or propagate them correctly.

When assigning a referenced variable with another reference, the initial reference is lost, while the intend was to transfer
the content. Do not reassign a reference with another reference. Assign new content to the reference to change its value.

<?php

function foo(&$lostReference, &$keptReference)
{

$c = 'c';

// $lostReference was a reference to $bar, but now, it is a reference to $c
$lostReference =& $c;
// $keptReference was a reference to $bar : it is still now, though it contains the␣

→˓actual value of $c now
$keptReference = $c;

}

$bar = 'bar';
$bar2 = 'bar';
foo($bar, $bar2);

//displays bar c, instead of bar bar
print $bar. ' '.$bar2;

?>

14.2. List of Rules 973

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Always assign new value to an referenced argument, and don’t reassign a new reference

Specs

Short name Variables/LostReferences
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features reference
Examples WordPress
Available in Entreprise Edition, Exakat Cloud

14.2.647 Lowered Access Level

A visibility was lowered. While this is a PHP feature, lowering visibility means that the data is now
available to more actors than previously set up, and it might yield surprises to part of the code that still
rely on the previous visibility.

This applies to all visibility’s structures : class constant, properties and methods.

<?php

class Foo {
public $publicProperty;
protected $protectedProperty;
private $privateProperty;

}

class Bar extends Foo {
private $publicProperty;
private $protectedProperty;
private $privateProperty; // This one is OK

}
?>

See also Visibility and Understanding the concept of visibility in object oriented php.

974 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.visibility.php
https://torquemag.io/2016/05/understanding-concept-visibility-object-oriented-php/

Exakat Documentation, Release 1

Suggestions

• Sync the visibility between the classes

• Use a different name for the public properties

Specs

Short name Classes/LoweredAccessLevel
Rulesets All, Class Review, IsExt, IsPHP, IsStub, Suggestions
Exakat since 2.4.2
PHP Version All
Severity Critical
Time To Fix Quick (30 mins)
Precision Very high
Features visibility
Available in Entreprise Edition, Exakat Cloud

14.2.648 Magic Constant Usage

There are eight magical constants that change depending on where they are used. For example, the value of
__LINE__ depends on the line that it’s used on in your script. These special constants are case-insensitive.

• __LINE__

• __FILE__

• __DIR__

• __FUNCTION__

• __CLASS__

• __TRAIT__

• __METHOD__

• __NAMESPACE__

<?php

echo 'This code is in file '__FILE__.', line '.__LINE__;

?>

See also Magic Constants.

14.2. List of Rules 975

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.constants.predefined.php

Exakat Documentation, Release 1

Specs

Short name Constants/MagicConstantUsage
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features magic-constant
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.649 Magic Method Returntype Is Restricted

Some magic method have compulsory return types.

• __destruct() : void

• __construct() : void

• __unserialize() : void

• __unset() : void

• __set() : void

• __serialize() : array

• __isset() : bool

• __toString() : string

The others may use mixed, or a more restrictive one.

See also Magic Methods.

Suggestions

• Use the right return type for the magic method

• Do not use any return type

Specs

14.2.650 Magic Methods

List of PHP magic methods being used. The magic methods are

__call(), __callStatic(), __get(), __set(), __isset(), __unset(), __sleep(), __wakeup(), __toString(), __invoke(),
__set_state(), __clone() and __debugInfo().

__construct and __destruct are omitted here, as they are routinely used to create and destroy objects.

976 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.decon.php
https://www.php.net/manual/en/language.oop5.decon.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php

Exakat Documentation, Release 1

<?php

class foo{
// PHP Magic method, called when cloning an object.
function __clone() {}

}
?>

Specs

Short name Classes/MagicMethod
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features magic-method
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.651 Magic Properties

List of magic properties used in the code. A magic property is a property called on a object, whose class
doesn’t define that properties, and define the related magic properties __get and __set. Static properties
cannot be magic.

Some classes define the magic methods for magic property, but do not use them.

<?php

class x {
public $normal = 1;

// Two classic magic properties
function __get($name) {}

function __set($name, $value) {}
}

$x = new X;

// Magic propery, so __set is called;
$x->magic = 1;

// Not a magic property.
$x->normal = 2;

?>

14.2. List of Rules 977

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

Specs

Short name Classes/MagicProperties
Rulesets All, Inventory
Exakat since 1.9.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features magic-property
Available in Entreprise Edition, Exakat Cloud

14.2.652 Magic Visibility

Magic methods must be declared with public visibility. They cannot be private or protected.

Magic methods cannot be declared as static. They are always associated with an instance of a class and cannot be called
statically.

<?php

class foo{
// magic method must bt public and non-static
public static function __clone($name) { }

// magic method can't be private
private function __get($name) { }

// magic method can't be protected
private function __set($name, $value) { }

// magic method can't be static
public static function __isset($name) { }

}

?>

See also Magic methods and PHP Magic Methods Explained.

Specs

Short name Classes/toStringPss
Rulesets All, Changed Behavior, CompatibilityPHP70
Exakat since 0.8.4
PHP Version With PHP 5.4 and older
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features visibility, magic-method
Available in Entreprise Edition, Exakat Cloud

978 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.magic.php
https://atakde.medium.com/php-magic-methods-explained-bac7053c007d
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.653 Mail Usage

Report usage of mail from PHP.

The analysis is based on mail() function and various classes used to send mail.

<?php
// The message
$message = "Line 1\r\nLine 2\r\nLine 3";

// In case any of our lines are larger than 70 characters, we should use wordwrap\(\)
$message = wordwrap($message, 70, "\r\n");

// Send
mail('caffeinated@example.com', 'My Subject', $message);
?>

See also mail.

Specs

Short name Structures/MailUsage
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features mail
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.654 Make All Statics

This links each static keyword to all possible classes definition.

It checks the :: operator, with for static constant, static properties, static methods and class operator.

It also checks for new calls.

Specs

Short name Complete/MakeAllStatics
Rulesets All, NoDoc
Exakat since 2.4.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features static
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 979

https://www.php.net/mail
https://www.php.net/mail
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.655 Make Class Method Definition

This command links a method call to its method definition.

This command may not detect all possible link for the methods. It may be missing information about the nature of the
object.

This command may also produce multiple definitions link, when the definition are ambiguous.

<?php

class x {
function foo() {

// This links to the bar() method
return $this->bar();

}

function bar() {
// This links to the link() method
return $this->bar();

}
}

?>

Specs

Short name Complete/MakeClassMethodDefinition
Rulesets All, Changed Behavior, NoDoc
Exakat since 1.9.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.656 Make Functioncall With Reference

Mark parameters as isModified if the functioncall uses reference.

This works on PHP native functions and custom functions.

This doesn’t work on dynamic calls nor methods yet.

<?php

function foo($a, &$b) {}

// $b is marked as modified
foo($a, $b);

?>

980 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Complete/MakeFunctioncallWithReference
Rulesets All, CE, NoDoc
Exakat since 1.9.7
PHP Version All
Severity
Time To Fix
Precision Very high
Features reference
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.657 Make Global A Property

Calling global (or $GLOBALS) in methods is slower and less testable than setting the global to a property,
and using this property.

Using properties is slightly faster than calling global or $GLOBALS, though the gain is not important.

Setting the property in the constructor (or in a factory), makes the class easier to test, as there is now a single point of
configuration.

<?php

// Wrong way
class fooBad {

function x() {
global $a;
$a->do();
// Or $GLOBALS['a']->do();

}
}

class fooGood {
private $bar = null;

function __construct() {
global $bar;
$this->bar = $bar;
// Even better, do this via arguments

}

function x() {
$this->a->do();

}
}

?>

14.2. List of Rules 981

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Avoid using global variables, and use properties instead

• Remove the usage of these global variables

Specs

Short name Classes/MakeGlobalAProperty
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features class, global-variable
Available in Entreprise Edition, Exakat Cloud

14.2.658 Make Magic Concrete

Speed up execution by replacing magic calls by concrete properties.

Magic properties are managed dynamically, with __get() and __set(). They replace property access by a methodcall,
and they are much slower than the first.

When a property name is getting used more often, it is worth creating a concrete property, and skip the method call.
The threshold for magicMemberUsage is 1, by default.

<?php

class x {
private $values = array('a' => 1,

'b' => 2);

function __get($name) {
return $this->values[$name] ?? '';

}
}

$x = new x();
// Access to 'a' is repeated in the code, at least 'magicMemberUsage' time (cf␣
→˓configuration below)
echo $x->a;

?>

Name De-
fault

Type Description

magicMem-
berUsage

1 inte-
ger

Minimal number of magic member usage across the code, to trigger a con-
crete property.

982 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php

Exakat Documentation, Release 1

See also Memoize MagicCall.

Suggestions

• Make frequently used properties concrete; keep the highly dynamic as magic

Specs

Short name Classes/MakeMagicConcrete
Rulesets All, Performances
Exakat since 1.8.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features magic-method
Available in Entreprise Edition, Exakat Cloud

14.2.659 Make One Call With Array

Avoid calling the same functions several times by batching the calls with arrays.

Calling the same function to chain modifications is slower than calling the same function once, with all the transfor-
mations at the same time. Some PHP functions accept scalars or arrays, and using the later is more efficient. Potential
replacements :

Function Replacement
str_replace() str_ireplace() substr_replace()
preg_replace() preg_replace_callback()

str_replace() str_replace() substr_replace() preg_replace()
preg_replace_callback_array()

<?php

$string = 'abcdef';

//str_replace() accepts arrays as arguments
$string = str_replace(['a', 'b', 'c'],

['A', 'B', 'C'],
$string);

// Too many calls to str_replace
$string = str_replace('a', 'A', $string);
$string = str_replace('b', 'B', $string);
$string = str_replace('c', 'C', $string);

// Too many nested calls to str_replace
$string = str_replace('a', 'A', str_replace('b', 'B', str_replace('c', 'C',
→˓$string)));

?>

14.2. List of Rules 983

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/str_replace
https://www.php.net/str_ireplace
https://www.php.net/substr_replace
https://www.php.net/preg_replace
https://www.php.net/preg_replace_callback
https://www.php.net/str_replace
https://www.php.net/str_replace
https://www.php.net/substr_replace
https://www.php.net/preg_replace
https://www.php.net/preg_replace_callback_array

Exakat Documentation, Release 1

Suggestions

• Use str_replace() with arrays as arguments.

• Use preg_replace() with arrays as arguments.

• Use preg_replace_callback() for merging multiple complex calls.

Specs

Short name Performances/MakeOneCall
Rulesets All, Changed Behavior, Performances
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features csv
Examples HuMo-Gen, Edusoho
Available in Entreprise Edition, Exakat Cloud

14.2.660 Makes Class Constant Definition

This rule adds DEFINITION link between class constant definitions and their usage. These links are used
later to identify the values delivered by the constant.

<?php

class x {
public const A = 1;

}

// Link to the constant definition
echo x::A;

// Cannot find the original class
echo $x::A;

?>

984 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Complete/MakeClassConstantDefinition
Rulesets All, CE, Changed Behavior, NoDoc
Exakat since 1.9.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features class-constant
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.661 Malformed Octal

Those numbers starts with a 0, so they are using the PHP octal convention. Therefore, one can’t use 8 or
9 figures in those numbers, as they don’t belong to the octal base. The resulting number will be truncated
at the first erroneous figure. For example, 090 is actually 0, and 02689 is actually 22.

Also, note that very large octal, usually with more than 21 figures, will be turned into a real number and undergo a
reduction in precision.

<?php

// A long way to write 0 in PHP 5
$a = 0890;

// A fatal error since PHP 7

?>

Suggestions

• Fix the octal

• Use another base to represent the number

Specs

Short name Type/MalformedOctal
Rulesets All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56
Exakat since 0.8.4
PHP Version With PHP 7.0 and older
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features octal
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 985

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.662 Manipulates INF

This code handles INF situations. INF represents the infinity, when used in a float context. It happens
when a calculation returns a number that is much larger than the maximum allowed float (not integer), or
a number that is not a Division by 0.

<?php

// pow returns INF, as it is equivalent to 1 / 0 ^ 2
$a = pow(0,-2); //

// exp returns an actual value, but won't be able to represent it as a float
$a = exp(PHP_INT_MAX);

// 0 ^ -1 is like 1 / 0 but returns INF.
$a = pow(0, -1);

var_dump(is_infinite($a));

// This yields a Division by zero exception
$a = 1 / 0;

?>

See also Math predefined constants.

Specs

Short name Php/IsINF
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.10.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features class, interface
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.663 Manipulates NaN

This code handles Not-a-Number situations. Not-a-Number, also called NaN, happens when a calculation
can’t return an actual float.

<?php

// acos returns a float, unless it is not possible.
$a = acos(8);

var_dump(is_nan($a));

?>

986 Chapter 14. Rules

https://www.php.net/INF
https://www.php.net/INF
https://www.php.net/manual/en/math.constants.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

See also Floats.

Suggestions

• Add the third argument, and set it to true

Specs

Short name Php/IsNAN
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.10.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features float
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.664 Mass Creation Of Arrays

Literal creation of an array, by assigning a lot of index.

<?php

$row['name'] = $name;
$row['last'] = $last;
$row['address'] = $address;

?>

Specs

Short name Arrays/MassCreation
Rulesets All
Exakat since 1.1.8
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features array
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 987

https://www.php.net/manual/en/language.types.float.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.665 Max Level Of Nesting

Avoid nesting structures too deep, as it hurts readability.

Nesting structures are : if/then, switch, for, foreach, while, do. . .while. Ternary operator, try/catch are not considered
a nesting structures.

Closures, and more generally, functions definitions are counted separatedly.

This analysis checks for 4 levels of nesting, by default. This may be changed by configuration.

<?php

// 5 levels of indentation
function foo() {

if (1) {
if (2) {

if (3) {
if (4) {

if (5) {
51;

} else {
5;

}
} else {

4;
}

} else {
3;

}
} else {

2;
}

} else {
1;

}
}

// 2 levels of indentation
function foo() {

if (1) {
if (2) {

// 3 levels of indentation
return function () {

if (3) {
if (4) {

if (5) {
51;

} else {
5;

}
} else {

4;
}

} else {
(continues on next page)

988 Chapter 14. Rules

Exakat Documentation, Release 1

(continued from previous page)

3;
}

}
} else {

2;
}

} else {
1;

}
}

?>

Name Default Type Description
maxLevel 4 integer Maximum level of nesting for control flow structures in one scope.

See also Indentation and Spacing in PHP <https://courses.cs.washington.edu/courses/cse154/17au/styleguide/php/spacing-
indentation-php.html>.

Suggestions

• Refactor code to avoid nesting

• Export some nested blocks to an external method or function

Specs

Short name Structures/MaxLevelOfIdentation
Rulesets All, Analyze
Exakat since 1.9.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features indentation
Available in Entreprise Edition, Exakat Cloud

14.2.666 Maybe Missing New

This functioncall looks like a class instantiation that is missing the new keyword.

Any function definition was found for that function, but a class with that name was. New is probably missing.

<?php

// Functioncall
$a = foo();

(continues on next page)

14.2. List of Rules 989

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// Class definition
class foo {}
// Function definition
function foo {}

// Functioncall
$a = BAR;

// Function definition
class bar {}
// Constant definition
const BAR = 1;

?>

Suggestions

• Add the new

• Rename the class to distinguish it from the function

• Rename the function to distinguish it from the class

Specs

Short name Structures/MissingNew
Rulesets All, Analyze, Changed Behavior
Exakat since 1.0.4
PHP Version All
Severity Critical
Time To Fix Instant (5 mins)
Precision Medium
Features new
Available in Entreprise Edition, Exakat Cloud

14.2.667 Mbstring Third Arg

Some mbstring functions use the third argument for offset, not for encoding.

Those are the following functions :

• mb_strrichr()

• mb_stripos()

• mb_strrpos()

• mb_strstr()

990 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/mb_strrichr
https://www.php.net/mb_stripos
https://www.php.net/mb_strrpos
https://www.php.net/mb_strstr

Exakat Documentation, Release 1

• mb_stristr()

• mb_strpos()

• mb_strripos()

• mb_strrchr()

• mb_strrichr()

• mb_substr()

<?php

// Display BC
echo mb_substr('ABC', 1 , 2, 'UTF8');

// Yields Warning: mb_substr() expects parameter 3 to be int, string given
// Display 0 (aka, substring from 0, for length (int) 'UTF8' => 0)
echo mb_substr('ABC', 1 ,'UTF8');

?>

Suggestions

• Add a third argument

• Use the default encoding (aka, omit both third AND fourth argument)

Specs

Short name Structures/MbstringThirdArg
Rulesets All, Analyze, CE, CI-checks
Exakat since 1.9.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features mbstring
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.668 Mbstring Unknown Encoding

The encoding used is not known to the ext/mbstring extension.

This analysis takes in charge all mbstring encoding and aliases. The full list of supported mbstring encoding is
available with mb_list_encodings(). Each encoding alias is available with mb_encoding_aliases().

<?php

// Invalid encoding
$str = mb_strtolower($str, 'utf_8');

(continues on next page)

14.2. List of Rules 991

https://www.php.net/mb_stristr
https://www.php.net/mb_strpos
https://www.php.net/mb_strripos
https://www.php.net/mb_strrchr
https://www.php.net/mb_strrichr
https://www.php.net/mb_substr
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/mb_list_encodings
https://www.php.net/mb_encoding_aliases

Exakat Documentation, Release 1

(continued from previous page)

// Valid encoding
$str = mb_strtolower($str, 'utf8');
$str = mb_strtolower($str, 'UTF8');
$str = mb_strtolower($str, 'UTF-8');

?>

See also ext/mbstring.

Suggestions

• Use a valid mbstring encoding

Specs

Short name Structures/MbstringUnknownEncoding
Rulesets All, Analyze, CE, CI-checks
Exakat since 1.9.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features encoding, mbstring
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.669 Mbstring Unknown Encodings

mbstring functions require one of its supported encoding as parameter.

For example, mb_chr() requires encoding as second parameter. The supported encodings are available with
mb_list_encodings() and mb_encoding_aliases().

A wrong encoding generates a fatal error. Here are some of the dropped encodings, depending on PHP versions:

• PHP 7.0
– auto

• PHP 8.0
– pass

• PHP 8.1
– wchar

– byte2be

– byte2le

– byte4be

– byte4le

– jis-ms

992 Chapter 14. Rules

http://www.php.net/manual/en/book.mbstring.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/mb_chr
https://www.php.net/mb_list_encodings
https://www.php.net/mb_encoding_aliases
https://www.php.net/error

Exakat Documentation, Release 1

– cp50220raw

• PHP 8.2
– qprint

– base64

– uuencode

– html-entities

<?php

print mb_chr(128024, 'UTF-8')); // emoji of an elephant

//Argument #2 ($encoding) must be a valid encoding, "elephpant" given
print mb_chr($value, 'elephpant'));

}
?>

Suggestions

• Use a valid encoding for the PHP version.

Specs

Short name Structures/MbStringNonEncodings
Rulesets All, Analyze, Changed Behavior
Exakat since 2.5.0
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features mbstring, encoding
Available in Entreprise Edition, Exakat Cloud

14.2.670 Md5 Strings

List of all the MD5 values hard coded in the application.

MD5 values are detected as hexadecimal strings, of length 32. No attempt at recognizing the origin value is made, so
any such strings, including dummy ‘11111111111111111111111111111111’ are reported.

<?php
// 32
$a = '0cc175b9c0f1b6a831c399e269771111';

?>

See also MD5.

14.2. List of Rules 993

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/md5

Exakat Documentation, Release 1

Specs

Short name Type/Md5String
Rulesets All, Appinfo, CE, Inventory
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features md5
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.671 Memoize MagicCall

Cache calls to magic methods in local variable. Local cache is faster than calling again the magic method
as soon as the second call, provided that the value hasn’t changed.

__get is slower, as it turns a simple member access into a full method call. The caching is not possible if the processing
of the object changes the value of the property.

<?php

class x {
private $values = array();

function __get($name) {
return $this->values[$name];

}
// more code to set values to this class

}

function foo(x $b) {
$a = $b->a;
$c = $b->c;

$d = $c; // using local cache, no new access to $b->__get($name)
$e = $b->a; // Second access to $b->a, through __get

}

function bar(x $b) {
$a = $b->a;
$c = $b->c;

$b->bar2(); // this changes $b->a and $b->c, but we don't see it

$d = $b->c;
$e = $b->a; // Second access to $b->a, through __get

}

?>

994 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Name De-
fault

Type Description

minMagicCallsTo-
Get

2 inte-
ger

Minimal number of calls of a magic property to make it worth locally
caching.

See also __get performance questions with PHP, Make Magic Concrete and Benchmarking magic.

Suggestions

• Cache the value in a local variable, and reuse that variable

• Make the property concrete in the class, so as to avoid __get() altogether

Specs

Short name Performances/MemoizeMagicCall
Rulesets All, Analyze, Changed Behavior, Class Review
Exakat since 1.8.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features memoization
Available in Entreprise Edition, Exakat Cloud

14.2.672 Merge If Then

Two nested if/then may be merged into one, by merging the two conditions. This is often a development
artifact.

<?php

// two merged conditions
if ($a == 1 && $b == 2) {

// doSomething()
}

// two distinct conditions
// two nesting
if ($a == 1) {

if ($b == 2) {
// doSomething()

}
}

?>

14.2. List of Rules 995

https://stackoverflow.com/questions/3330852/get-set-call-performance-questions-with-php
https://www.garfieldtech.com/blog/benchmarking-magic
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Merge the two structures into one

Specs

Short name Structures/MergeIfThen
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 1.9.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features if-then
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.673 Method Collision Traits

Two or more traits are included in the same class, and they have methods collisions.

Those collisions should be solved with a use expression. When they are not, PHP stops execution with a fa-
tal error : Trait method M has not been applied, because there are collisions with other trait
methods on C.

The code shown lints, but doesn’t execute.

<?php

trait A {
public function A() {}
public function M() {}

}

trait B {
public function B() {}
public function M() {}

}

class C {
use A, B;

}

class D {
use A, B{

B::M insteadof A;
};

}

?>

See also Traits.

996 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/manual/en/language.oop5.traits.php

Exakat Documentation, Release 1

Specs

Short name Traits/MethodCollisionTraits
Rulesets All, Analyze, Changed Behavior, LintButWontExec
Exakat since 1.4.2
PHP Version All
Severity Critical
Time To Fix Quick (30 mins)
Precision High
Features method, trait, method-collision
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.674 Method Could Be Private Method

The following methods are never used outside their class of definition. Given the analyzed code, they could
be set as private.

Note that dynamic properties (such as $x->$y) are not taken into account.

<?php

class foo {
public function couldBePrivate() {}
public function cantdBePrivate() {}

function bar() {
// couldBePrivate is used internally.
$this->couldBePrivate();

}
}

class foo2 extends foo {
function bar2() {

// cantdBePrivate is used in a child class.
$this->cantdBePrivate();

}
}

//couldBePrivate() is not used outside
$foo = new foo();

//cantdBePrivate is used outside the class
$foo->cantdBePrivate();

?>

14.2. List of Rules 997

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Classes/CouldBePrivateMethod
Rulesets All, Class Review
Exakat since 0.12.11
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features private, method
Available in Entreprise Edition, Exakat Cloud

14.2.675 Method Could Be Static

A method that doesn’t make any usage of $this could be turned into a static method.

While static methods are usually harder to handle, recognizing the static status is a first step before turning the method
into a standalone function.

<?php

class foo {
static $property = 1;

// legit static method
static function staticMethod() {

return self::$property;
}

// This is not using $this, and could be static
function nonStaticMethod() {

return self::$property;
}

// This is not using $this nor self, could be a standalone function
function nonStaticMethod() {

return self::$property;
}

}

?>

998 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

Suggestions

• Make the method static

• Make the method a standalone function

• Make use of $this in the method : may be it was forgotten.

Specs

Short name Classes/CouldBeStatic
Rulesets All, Analyze, Class Review
Exakat since 1.5.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features static
Examples FuelCMS, ExpressionEngine
Available in Entreprise Edition, Exakat Cloud

14.2.676 Method Has Fluent Interface

Mark a method when it only returns $this.

Fluent interfaces allows for chaining methods calls. This implies that $this is always returned, so that the next method
call is done on the same object.

<?php

$object = new foo();
$object->this()

->is()
->a()
->fluent()
->interface();

class foo {
function this() {

// doSomething
return $this;

}

function is() {
// doSomethingElse
return $this;

}

/// Etc. for a(), fluent(), interface()...
}

?>

14.2. List of Rules 999

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/manual/en/language.oop5.basic.php

Exakat Documentation, Release 1

See also Fluent Interfaces in PHP and Fluent Interfaces are Evil.

Specs

Short name Functions/HasFluentInterface
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features class
Available in Entreprise Edition, Exakat Cloud

14.2.677 Method Is A Generator

This rule marks functions, methods, . . . that are using yield and yield from keywords. The usage of
that keyword makes them Generator <https://www.php.net/manual/en/class.`generator.php>`_, as is show
by the compulsory return type of Generator.

<?php

function generator() {
yield from generator2();

return 3;
}

function generator2() {
yield 1;
yield 2;

}

?>

See also Generators overview.

Specs

Short name Functions/IsGenerator
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features generator, yield, yield-from
Available in Entreprise Edition, Community Edition, Exakat Cloud

1000 Chapter 14. Rules

http://mikenaberezny.com/2005/12/20/fluent-interfaces-in-php/
https://ocramius.github.io/blog/fluent-interfaces-are-evil/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/functions.arguments.php#functions.variable-arg-list
https://www.php.net/generator
https://www.php.net/manual/en/language.generators.overview.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.678 Method Is Not An If

When a method consists only in one if statement, it might be worth refactoring.

Each of the blocks of the if/then structure may be turned into their own method, so has to keep operations distinct.

Then, the condition can be used as part of a larger method.

<?php

function foo($a) {
if ($a === 1) {

return 1;
} else {

return 2;
}

}

?>

Suggestions

• Export the blocks to distinct functions

• Bail out early

Specs

Short name Functions/MethodIsNotAnIf
Rulesets All, Analyze
Exakat since 2.5.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Available in Entreprise Edition, Exakat Cloud

14.2.679 Method Is Not For Fluent Interface

Mark a method when it contains at least one return that doesn’t return $this. Such method cannot be used
for fluent interface, which always require the current object to be returned.

Null is not accepted here: it would break the execution of the method call chains if it was returned.

<?php

class x {
// fluent interface : $this is chainable
function foo() {

return $this;
}

(continues on next page)

14.2. List of Rules 1001

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/manual/en/control-structures.break.php

Exakat Documentation, Release 1

(continued from previous page)

// Not for fluent interface : the method may return something else
function goo($a) {

if ($a == true) {
return $this;

} else {
return 3;

}
}

}

?>

Specs

Short name Functions/HasNotFluentInterface
Rulesets All, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features method, fluent-interface
Available in Entreprise Edition, Exakat Cloud

14.2.680 Method Is Overwritten

This rule marks a method that is overwritten in a child class.

<?php

class A {
function intactMethodA() {} // Not overwritten in any children
function overwrittenMethodInAA() {} // overwritten in AA

}

class AA extends A {
function intactMethodAA() {} // Not overwritten, because no extends
function overwrittenMethodInAA() {} // Not overwritten, because no extends

}

?>

1002 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Classes/MethodIsOverwritten
Rulesets All
Exakat since 0.10.9
PHP Version All
Severity
Time To Fix
Precision Very high
Features inheritance
Available in Entreprise Edition, Exakat Cloud

14.2.681 Method Property Confusion

There might be confusion between a property and a method when they bear the same name. While it is
a valid PHP syntax, using the same name for properties and methods leads to possible confusion in the
code.

<?php

class x {
private $query = 1;

function query() : void {}

function foo() {
// The property is useless : it may be a call to the method, in fact
$this->query;

// The method call returns nothing : PHP replaces it with NULL.
$c = $this->query();

}
}

?>

Suggestions

• Change the name : either the property, or the method

14.2. List of Rules 1003

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Classes/MethodPropertyConfusion
Rulesets All, Changed Behavior, Semantics
Exakat since 2.5.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.682 Method Signature Must Be Compatible

Make sure methods signature are compatible.

PHP generates the infamous Fatal error at execution : Declaration of FooParent\:\:Bar() must be
compatible with FooChildren\:\:Bar()

<?php

class x {
function xa() {}

}

class xxx extends xx {
function xa($a) {}

}

?>

Suggestions

• Fix the child class method() signature.

• Fix the parent class method() signature, after checking that it won’t affect the other children.

Specs

Short name Classes/MethodSignatureMustBeCompatible
Rulesets All, Analyze, LintButWontExec
Exakat since 1.2.9
PHP Version All
Severity Critical
Time To Fix Quick (30 mins)
Precision High
Features typehint, type-covariance, type-contravariance
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

1004 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.683 Method Usage

This rule reports method usages. The methods that are monitored are set with the parameter searchFor.

<?php

// searchFor = \X::foo
function bar(X $arg) {

$arg->foo();
}

?>

Name De-
fault

Type Description

search-
For

string Method to report in the codes : use static syntax to describe them : a::foo();
abc::goo().

Specs

Short name Custom/MethodUsage
Rulesets All, Changed Behavior
Exakat since 2.5.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Available in Entreprise Edition, Exakat Cloud

14.2.684 Method Used Below

Mark methods that are used in children classes.

This doesn’t mark the current class, nor the (grand-)`parent <https://www.php.net/manual/en/language.oop5.
paamayim-nekudotayim.php>`_ ones.

<?php

class foo {
// This method is used in children
protected function protectedMethod() {}

// This method is not used in children
protected function localProtectedMethod() {}

private function foobar() {
// protectedMethod is used here, but defined in parent
$this->localProtectedMethod();

}
(continues on next page)

14.2. List of Rules 1005

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

(continued from previous page)

}

class foofoo extends foo {
private function bar() {

// protectedMethod is used here, but defined in parent
$this->protectedMethod();

}
}

?>

See also inheritance.

Specs

Short name Classes/MethodUsedBelow
Rulesets All
Exakat since 0.12.11
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features method
Available in Entreprise Edition, Exakat Cloud

14.2.685 Methodcall On New

It is possible to call a method right at object instantiation.

This syntax was added in PHP 5.4+. Before, this was not possible : the object had to be stored in a variable first. This
syntax is interesting when the object is not reused, and may be discarded

<?php

// Data is collected
$data = data_source();

// Data is saved, but won't be reused from this databaseRow object. It may be ignored.
$result = (new databaseRow($data))->save();

// The actual result of the save() is collected and tested.
if ($result !== true) {

processSaveError($data);
}

?>

1006 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Php/MethodCallOnNew
Rulesets All, Changed Behavior, CompatibilityPHP53
Exakat since 0.8.4
PHP Version With PHP 5.4 and more recent
Severity Major
Time To Fix Quick (30 mins)
Changed Behavior PHP 5.4 - More
Precision Very high
Features new, methodcall
Available in Entreprise Edition, Exakat Cloud

14.2.686 Methods That Should Not Be Used

These methods and functions only throw an exception, or raise an error. As such, they are a warning that
such function or method shouldn’t be used.

Those functions could also be marked as deprecated, with an attribute or a phpdoc. This is not taken into account by
this analysis.

<?php

function obsoleteFoo() {
throw new exception('Don\'t use obsoleteFoo() but rather the new version of foo().');

}
?>

Specs

Short name Functions/CantUse
Rulesets All, CE, Changed Behavior
Exakat since 1.8.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features function, deprecated
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1007

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception
https://www.php.net/error
https://www.php.net/attribute
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.687 Methods Without Return

List of all the functions, closures, methods that have no explicit return.

Functions with the void or never return types, are omitted.

<?php

// With return null : Explicitly not returning
function withExplicitReturn($a = 1) {

$a++;
return null;

}

// Without indication
function withoutExplicitReturn($a = 1) {

$a++;
}

// With return type void : Explicitly not returning
function withExplicitReturnType($a = 1) : void {

$a++;
}

?>

See also return.

Suggestions

• Add the returntype ‘void’ to make this explicit behavior

Specs

Short name Functions/WithoutReturn
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features return, never
Available in Entreprise Edition, Exakat Cloud

1008 Chapter 14. Rules

https://www.php.net/manual/en/function.return.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.688 Mime Types

List of Mime Types that are mentioned in the code.

<?php

$mimeType = 'multipart/form-data';
$mimeType = 'image/jpeg';
$mimeType = 'application/zip';

header('Content-Type: '.$mimeType);

?>

See also Media Type and MIME..

Specs

Short name Type/MimeType
Rulesets All, Inventory
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.689 Minus One On Error

Some PHP native functions return -1 on error. They also return 1 in case of success, and 0 in case of
failure. This leads to confusions.

In case the native function is used as a condition without explicit comparison, PHP type cast the return value to a
boolean. In this case, -1 and 1 are both converted to true, and the condition applies. This means that an error situation
is mistaken for a successful event. This analysis searches for if/then structures, ternary operators inside while() /
do. . . `while() <https://www.php.net/manual/en/control-structures.while.php>`_ loops.

<?php

// Proper check of the return value
if (openssl_verify($data, $signature, $public) === 1) {

$this->loginAsUser($user);
}

// if this call fails, it returns -1, and is confused with true
if (openssl_verify($data, $signature, $public)) {

$this->loginAsUser($user);
}
?>

See also Can you spot the vulnerability? (openssl_verify) and Incorrect Signature Verification.

14.2. List of Rules 1009

https://en.wikipedia.org/wiki/Media_type
https://en.wikipedia.org/wiki/MIME
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/error
https://www.php.net/manual/en/control-structures.while.php
https://www.php.net/manual/en/control-structures.while.php
https://twitter.com/ripstech/status/1124325237967994880
https://snyk.io/vuln/SNYK-PHP-SIMPLESAMLPHPSIMPLESAMLPHPMODULEINFOCARD-70167

Exakat Documentation, Release 1

Suggestions

• Compare explicitly the return value to 1

Specs

Short name Security/MinusOneOnError
Rulesets All, Changed Behavior, Security
Exakat since 1.8.0
PHP Version All
Severity Critical
Time To Fix Instant (5 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.690 Mismatch Parameter And Type

When the name of the parameter contradicts the type of the parameter.

This is mostly semantics, so it will affect the coder and the auditor of the code. PHP is immune to those errors.

<?php

// There is a discrepancy between the typehint and the name of the variable
function foo(int $string) { }

// The parameter name is practising coding convention typehints
function bar(int $int) { }

?>

Suggestions

• Synch the name of the parameter and the typehint.

Specs

Short name Functions/MismatchParameterAndType
Rulesets All, Semantics
Exakat since 2.1.8
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features parameter, type, semantics
Available in Entreprise Edition, Exakat Cloud

1010 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.691 Mismatch Parameter Name

Parameter name change in overwritten method. This may lead to errors when using PHP 8.0 named argu-
ments.

PHP use the name of the parameter in the method whose code is executed. When the name change between the method
and the overwritten method, the consistency is broken.

Here is another example, in early PHP 8.0 (courtesy of Carnage).

<?php

class x {
function getValue($name) {}

}

class y extends x {
// consistent with the method above
function getValue($name) {}

}

class z extends x {
// inconsistent with the method above
function getValue($label) {}

}

?>

Suggestions

• Make sure all the names are the same, between methods

Specs

Short name Functions/MismatchParameterName
Rulesets All, Analyze, CE, Changed Behavior, CompatibilityPHP80
Exakat since 2.1.8
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features named-parameter
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1011

https://twitter.com/giveupalready
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.692 Mismatch Properties Typehints

Properties must match within the same family.

When a property is declared both in a parent class, and a child class, they must have the same type. The same type
includes a possible null value.

This doesn’t apply to private properties, which are only visible locally. This code will lint, but not execute.

<?php

// property $p is declared as an object of type a
class x {

protected A $p;
}

// property $p is declared again, this time without a type
class a extends x {

protected $p;
}
?>

Suggestions

• Remove some of the property declarations, and only keep it in the highest ranking parent

• Match the typehints of the property declarations

• Make the properties private

• Remove the child class (or the parent class)

Specs

Short name Classes/MismatchProperties
Rulesets All, Analyze, Class Review, LintButWontExec
Exakat since 2.1.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features property
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

1012 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.693 Mismatch Type And Default

The argument typehint and its default value don’t match.

The code may lint and load, and even work when the arguments are provided. Though, PHP won’t eventually execute
it.

Most of the mismatch problems are caught by PHP at linting time. It displays the following error message : ‘Argument
1 passed to foo() must be of the type integer, string given’.

The default value may be a constant (normal or class constant) : as such, PHP might find its value only at execution
time, from another include. As such, PHP doesn’t report anything about the situation at compile time.

The default value may also be a constant scalar expression : since PHP 7, some of the simple operators such as +,
-, , %, `* <https://www.php.net/manual/en/language.operators.arithmetic.php>`_, etc. are available to build default
values. Among them, the ternary operator and Coalesce. Again, those expression may be only evaluated at execution
time, when the value of the constants are known.

PHP reports typehint and default mismatch at compilation time, unless there is a static expression that can’t be resolved
within the compiled file : then it is checked only at runtime, leading to a Fatal error.

<?php

// bad definition : the string is actually an integer
const STRING = 3;

function foo(string $s = STRING) {
echo $s;

}

// works without problem
foo('string');

// Fatal error at compile time
foo();

// Fail only at execution time (missing D), and when default is needed
function foo2(string $s = D ? null : array()) {

echo $s;
}

?>

See also Type declarations, Wrong Type Returned, Mismatch Type And Default and Wrong Typed Property Default.

Suggestions

• Match the typehint with the default value

• Do not rely on PHP type juggling to change the type on the fly

14.2. List of Rules 1013

https://www.php.net/error
https://www.php.net/manual/en/language.operators.arithmetic.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/error
https://www.php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration

Exakat Documentation, Release 1

Specs

Short name Functions/MismatchTypeAndDefault
Rulesets All, Analyze, Changed Behavior, LintButWontExec, Typechecks
Exakat since 1.2.9
PHP Version All
Severity Critical
Time To Fix Slow (1 hour)
Precision Medium
Features type, default
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.694 Mismatched Default Arguments

Arguments are relayed from one method to the other, and the arguments have different default values.

Although it is possible to have different default values, it is worth checking why this is actually the case. This analysis
reports the original arguments. Starting from it, follow the usage of the argument in its method, and find calls to other
methods.

This analysis omits reporting argument when one of them does not have a default value.

<?php

function foo($a = null, $b = array()) {
// foo method calls directly bar.
// When argument are provided, it's OK
// When argument are omited, the default value is not the same as the next method
bar($a, $b);

}

function bar($c = 1, $d = array()) {

}

?>

Suggestions

• Synchronize default values to avoid surprises

• Drop some of the default values

1014 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Functions/MismatchedDefaultArguments
Rulesets All, Analyze, Typechecks
Exakat since 0.12.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features typehint, parameter
Examples SPIP
Available in Entreprise Edition, Exakat Cloud

14.2.695 Mismatched Ternary Alternatives

A ternary operator should yield the same type on both branches.

Ternary operator applies a condition, and yield two different results. Those results will then be processed by code that
expects the same types. It is recommended to match the types on both branches of the ternary operator.

<?php

// $object may end up in a very unstable state
$object = ($type == 'Type') ? new $type() : null;

//same result are provided by both alternative, though process is very different
$result = ($type == 'Addition') ? $a + $b : $a * $b;

//Currently, this is omitted
$a = 1;
$result = empty($condition) ? $a : 'default value';
$result = empty($condition) ? $a : getDefaultValue();

?>

Suggestions

• Use compatible data type in both branch of the alternative

• Turn the ternary into a if/then, with different processing

14.2. List of Rules 1015

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Structures/MismatchedTernary
Rulesets All, Analyze, Suggestions
Exakat since 0.12.1
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Examples phpadsnew, OpenEMR
Available in Entreprise Edition, Exakat Cloud

14.2.696 Mismatched Typehint

Relayed arguments don’t have the same typehint.

Typehint acts as a filter method. When an object is checked with a first class, and then checked again with a second
distinct class, the whole process is always false : $a can’t be of two different classes at the same time. Note : This
analysis currently doesn’t check generalisation of classes : for example, when B is a child of BB, it is still reported as
a mismatch.

<?php

// Foo() calls bar()
function foo(A $a, B $b) {

bar($a, $b);
}

// $a is of A typehint in both methods, but
// $b is of B then BB typehing
function bar(A $a, BB $b) {

}

?>

Suggestions

• Ensure that the default value match the expected typehint.

1016 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Functions/MismatchedTypehint
Rulesets All, Analyze, Typechecks
Exakat since 0.12.3
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features typehint
Examples WordPress
Available in Entreprise Edition, Exakat Cloud

14.2.697 Missing Abstract Method

Abstract methods must have a non-abstract version for the class to be complete. A class that is missing
one abstract definition cannot be instantiated.

<?php

// This is a valid definition
class b extends a {

function foo() {}
function bar() {}

}

// This compiles, but will emit a fatal error if instantiated
class c extends a {

function bar() {}
}

// This illustration lint but doesn't run.
// moving this class at the beginning of the code will make lint fail
abstract class a {

abstract function foo() ;
}

?>

See also Classes Abstraction.

Suggestions

• Implement the missing methods

• Remove the partially implemented class

• Mark the partially implemented class abstract

14.2. List of Rules 1017

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/abstract

Exakat Documentation, Release 1

Specs

Short name Classes/MissingAbstractMethod
Rulesets All, Analyze, Class Review
Exakat since 2.1.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features abstract
Available in Entreprise Edition, Exakat Cloud

14.2.698 Missing Assignation In Branches

A variable is assigned in one of the branch, but not the other. Such variable might be needed later, and
when going throw this branch, it won’t be available.

In this analysis, elseif() and branches that return or goto somewhere else are omitted.

<?php

if ($condition) {
$a = 1;
$b = 2;

} else {
$a = 3;

}

// $b might be missing
?>

Specs

Short name Structures/MissingAssignation
Rulesets All, Analyze, Changed Behavior
Exakat since 2.5.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Available in Entreprise Edition, Exakat Cloud

1018 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.699 Missing Attribute Attribute

A class that servers as attribute, should have the attribute #[`Attribute <https://www.php.net/
attribute>`_].

While not strictly required, it is still recommended to create an actual class for every attribute.

<?php

namespace Example;

use Attribute;

#[Attribute]
class MyAttribute
{
}

#Missing the above attribute
class MyOtherAttribute
{
}

?>

See also Declaring Attribute Classes.

Suggestions

• Add the Attribute attribute to those classes

Specs

Short name Attributes/MissingAttributeAttribute
Rulesets All, Analyze, Attributes, Changed Behavior, PHP recommendations
Exakat since 2.2.4
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features attribute
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1019

https://www.php.net/attribute
https://www.php.net/attribute
https://www.php.net/attribute
https://www.php.net/manual/en/language.attributes.classes.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.700 Missing Cases In Switch

It seems that some cases are missing in this switch structure.

When comparing two different switch() structures, it appears that some cases are missing in one of them. The set of
cases are almost identical, but one of the values are missing.

Switch() structures using strings as literals are compared in this analysis. When the discrepancy between two lists is
below 25%, both switches are reported. In the example, one may argue that the ‘c’ case is actually handled by the
‘default’ case. Otherwise, business logic may request that omission.

<?php

// This switch operates on a, b, c, d and default
switch($a) {

case 'a': doSomethingA(); break 1;
case 'b': doSomethingB(); break 1;
case 'c': doSomethingC(); break 1;
case 'd': doSomethingD(); break 1;
default: doNothing();

}

// This switch operates on a, b, d and default
switch($o->p) {

case 'a': doSomethingA(); break 1;
case 'b': doSomethingB(); break 1;

case 'd': doSomethingD(); break 1;
default: doNothing();

}

?>

Suggestions

• Add the missing cases

• Add comments to mention that missing cases are processed in the default case

Specs

Short name Structures/MissingCases
Rulesets All, Analyze
Exakat since 0.10.7
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Examples Tikiwiki
Available in Entreprise Edition, Exakat Cloud

1020 Chapter 14. Rules

https://www.php.net/manual/en/control-structures.switch.php
https://www.php.net/manual/en/control-structures.switch.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.701 Missing Include

The included files doesn’t exists in the repository. The inclusions target a files that doesn’t exist.

The analysis works with every type of inclusion : include(), require(), include_once() and require_once(). It also works
with parenthesis when used as parameter delimiter.

The analysis doesn’t take into account include_path. This may yield false positives. Missing included files may lead
to a fatal error, a warning or other error later in the execution.

<?php

include 'non_existent.php';

// variables are not resolved. This won't be reported.
require ($path.'non_existent.php');

?>

Name De-
fault

Type Description

con-
stant_or_variable_name

100 in-
te-
ger

Literal value to be used when including files. For example, by configuring
‘Files_MissingInclude[HOME_DIR] = /tmp/myDir/;’, then ‘include HOME_DIR .
my_class.php; will be actually be used as ‘/tmp/myDir/my_class.php’. Constants must
be configured with their correct case. Variable must be configured with their initial ‘$’.
Configure any number of variable and constant names.

Specs

Short name Files/MissingInclude
Rulesets All, Analyze
Exakat since 1.1.2
PHP Version All
Severity Critical
Time To Fix Instant (5 mins)
Precision Very high
Features include
Available in Entreprise Edition, Exakat Cloud

14.2.702 Missing Parenthesis

Adding parenthesis to addition expressions make them more readable and to prevent bugs.

In the expressions below, the code is legit, although it is prone to misunderstanding.

<?php

// Missing some parenthesis!!
if (!$a instanceof Stdclass) {

print "Not\n";
(continues on next page)

14.2. List of Rules 1021

https://www.php.net/error
https://www.php.net/error
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

} else {
print "Is\n";

}

// Could this addition be actually,
$c = -$a + $b;

// this one ?
$c = -($a + $b);

// or this one ?
$c = $b - $a;

?>

See also Operators Precedence.

Suggestions

• Use parenthesis to show intent in the addition expression

Specs

Short name Structures/MissingParenthesis
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 1.2.6
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision High
Features parenthesis, readability
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.703 Missing Some Returntype

The specified typehints are not compatible with the returned values.

The code of the method may return other types, which are not specified and will lead to a PHP fatal error. It is the case
for insufficient typehints, when a typehint is missing, or inconsistent typehints, when the method returns varied types.
The analysis reports a method when it finds other return types than the one expected. In the case of multiple typehints,
as for the last example, the PHP code may require an upgrade to PHP 8.0.

<?php

// correct return typehint
function fooSN() : ?string {

return shell_exec('ls -hla');
}

(continues on next page)

1022 Chapter 14. Rules

https://www.php.net/manual/en/language.operators.precedence.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error

Exakat Documentation, Release 1

(continued from previous page)

// insufficient return typehint
// shell_exec() may return null or string. Here, only string in specified for fooS, and␣
→˓that may lead to a Fatal error
function fooS() : string {

return shell_exec('ls -hla');
}

// inconsistent return typehint
function bar() : int {

return rand(0, 10) ? 1 : "b";
}

?>

Suggestions

• Update the typehint to accept more types

• Update the code of the method to fit the expected returntype

Specs

Short name Typehints/MissingReturntype
Rulesets All, Analyze, CE, CI-checks
Exakat since 2.1.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features return-typehint
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.704 Missing Type In Definition

This rule reports any missing typehints, on parameters, return value, property or class constants. It is
recommended to add types to all possible structures to make the type system more efficient.

__construct() and __destruct() should not use typehints, and are omitted.

Class constants are typed starting with PHP 8.3

<?php

// No type on return type
// n type on parameter
function missing($parameter) {

/// code
}

?>

14.2. List of Rules 1023

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.decon.php
https://www.php.net/manual/en/language.oop5.decon.php

Exakat Documentation, Release 1

Suggestions

• Add a useful typehint

• Add the mixed typehint

Specs

Short name Typehints/MissingTypehints
Rulesets All
Exakat since 2.3.6
PHP Version With PHP 7.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features parameter, property, return-value
Available in Entreprise Edition, Exakat Cloud

14.2.705 Missing Typehint

No typehint was found for a parameter, a return type for a method or a property.

void is considered a specified typehint, and is not reported here.

<?php

class x {
private $no_property;

function foo($no_typehint) : void {}

function no_return_type() {}
}
?>

See also Type Declaration.

Suggestions

• Add a type to the argument, property or method

1024 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration

Exakat Documentation, Release 1

Specs

Short name Functions/MissingTypehint
Rulesets All, Typechecks
Exakat since 2.0.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features typehint
Available in Entreprise Edition, Exakat Cloud

14.2.706 Missing Visibility

Class constants, properties and methods usage may be controlled by the visibility option. When omitted,
it is by default public.

When omitted, it should be added to make its configuration explicit.

<?php

class x {
// property is private
private $property = 1;

// This method is public, and should bear the 'public' option
function foo() {}

}

?>

See also Visibility.

Suggestions

• Add the public visibility

• Actually review the code and set a pragmatic visibility

• Set the visibility to private and wait for a request of access

14.2. List of Rules 1025

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.visibility.php

Exakat Documentation, Release 1

Specs

Short name Classes/MissingVisibility
Rulesets All, Changed Behavior, Class Review
Exakat since 2.3.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features visibility
Related rule Ambiguous Visibilities
Available in Entreprise Edition, Exakat Cloud

14.2.707 Missing __isset() Method

When using empty() on magic properties, the magic method __isset() must be implemented.

<?php

class foo {
function __get($name) { return 'foo'; }
// No __isset method

}

// Return TRUE, until __isset() exists
var_dump(
empty((new foo)->bar);

);

?>

See also When empty is not empty.

Suggestions

• Implement __isset() method when using empty on magic properties

Specs

Short name Php/MissingMagicIsset
Rulesets All, Analyze, Changed Behavior, Class Review
Exakat since 2.2.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features magic-method, isset
Available in Entreprise Edition, Exakat Cloud

1026 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.magic.php
https://freek.dev/1057-when-empty-is-not-empty
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.708 Mistaken Concatenation

A unexpected structure is built for initialization. It may be a typo that creates an unwanted expression.

<?php

// This 'cd' is unexpected. Isn't it 'c', 'd' ?
$array = array('a', 'b', 'c'. 'd');
$array = array('a', 'b', 'c', 'd');

// This 4.5 is unexpected. Isn't it 4, 5 ?
$array = array(1, 2, 3, 4.5);
$array = array(1, 2, 3, 4, 5);

?>

Specs

Short name Arrays/MistakenConcatenation
Rulesets All, Coding conventions
Exakat since 1.0.8
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Features array, concatenation
Available in Entreprise Edition, Exakat Cloud

14.2.709 Misused Yield

When chaining generator <https://www.php.net/`generator>`_, one must use the yield from keyword.

Forgetting the yield from keyword cancels the generator <https://www.php.net/`generator>`_ nature of the functioncall
and nothing is emited.

Using yield on a generator <https://www.php.net/`generator>`_, yields . . . the generator
<https://www.php.net/`generator>`_, not the values of the generator <https://www.php.net/`generator>`_.

It is legit to yield a generator <https://www.php.net/`generator>`_, for later usage. This is just very uncommon, and
worth a check.

<?php

function foo() {
yield 1;
// Goo is called, but not run as a generator
goo();

}

function hoo() {
yield 1;

(continues on next page)

14.2. List of Rules 1027

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/generator
https://www.php.net/generator
https://www.php.net/generator
https://www.php.net/manual/en/functions.arguments.php#functions.variable-arg-list
https://www.php.net/generator
https://www.php.net/generator
https://www.php.net/generator
https://www.php.net/generator

Exakat Documentation, Release 1

(continued from previous page)

// Goo is yield, but not run as a generator
yield goo();

}

function goo() {
yield 3;

}

?>

Suggestions

• Use the yield from keyword

Specs

Short name Structures/MisusedYield
Rulesets All, Analyze, Changed Behavior
Exakat since 2.5.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features yield-from
Available in Entreprise Edition, Exakat Cloud

14.2.710 Mixed Concat And Interpolation

Mixed usage of concatenation and string interpolation is error prone. It is harder to read, and leads to
overlooking the concatenation or the interpolation.

Fixing this issue has no impact on the output. It makes code less error prone.

There are some situations where using concatenation are compulsory : when using a constant, calling a function,
running a complex expression or make use of the escape sequence. You may also consider pushing the storing of such
expression in a local variable.

<?php

// Concatenation string
$a = $b . 'c' . $d;

// Interpolation strings
$a = "{$b}c{$d}"; // regular form
$a = "{$b}c$d"; // irregular form

// Mixed Concatenation and Interpolation string
$a = "{$b}c" . $d;
$a = $b . "c$d";

(continues on next page)

1028 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/error

Exakat Documentation, Release 1

(continued from previous page)

$a = $b . "c{$d}";

// Mixed Concatenation and Interpolation string with constant
$a = "{$b}c" . CONSTANT;

?>

Suggestions

• Only use one type of variable usage : either interpolation, or concatenation

Specs

Short name Structures/MixedConcatInterpolation
Rulesets All, Analyze, Coding conventions
Exakat since 0.11.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features interpolation, concat
Examples SuiteCrm, Edusoho
Available in Entreprise Edition, Exakat Cloud

14.2.711 Mixed Keys In Array

Avoid mixing constants and literals in array keys.

When defining default values in arrays, it is recommended to avoid mixing constants and literals, as PHP may mistake
them and overwrite the previous with the latter.

Either switch to a newer version of PHP (5.5 or newer), or make sure the resulting array hold the expected data. If not,
reorder the definitions.

<?php

const ONE = 1;

$a = [1 => 2,
ONE => 3];

?>

14.2. List of Rules 1029

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Use only literals or constants when building the array

Specs

Short name Arrays/MixedKeys
Rulesets All, CompatibilityPHP53, CompatibilityPHP54
Exakat since 0.8.4
PHP Version With PHP 5.6 and more recent
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features array
Available in Entreprise Edition, Exakat Cloud

14.2.712 Mixed Keyword

Never becomes a PHP keyword. It is used for typing functions which never returns anything (either dies
or throw an exception).

It should be avoided in classes, traits and interfaces. Methods, anonymous classes (sic), namespaces and functions are
OK.

Setting a never class in a namespaces doesn’t make it legit.

<?php

// This is OK
function never() { }

// This is no OK
class never { }

?>

See also mixed.

Suggestions

• Rename the classes, traits and interfaces with a different name.

1030 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception
hhttps://www.php.net/manual/en/language.types.declarations.php#language.types.declarations.mixed

Exakat Documentation, Release 1

Specs

Short name Php/MixedKeyword
Rulesets All, CompatibilityPHP80, CompatibilityPHP81
Exakat since 2.3.0
PHP Version With PHP 8.0 and older
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features mixed
Available in Entreprise Edition, Exakat Cloud

14.2.713 Mixed Typehint Usage

Usage of the mixed typehint.

<?php

function foo() : mixed {
switch(rand(0, 3)) {

case 0:
return false;

case 1:
return 'a';

case 2:
return [];

default:
return null;

}
}

?>

See also Type declarations.

Specs

Short name Php/MixedUsage
Rulesets All, Appinfo
Exakat since 2.3.0
PHP Version With PHP 8.1 and more recent
Severity
Time To Fix
Precision Very high
Features mixed
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1031

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.types.declarations.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.714 Mkdir Default

mkdir() gives universal access to created folders, by default. It is recommended to gives limited set of
rights (0755, 0700), or to explicitly set the rights to 0777.

<?php

// By default, this dir is 777
mkdir('/path/to/dir');

// Explicitely, this is wanted. It may also be audited easily
mkdir('/path/to/dir', 0777);

// This dir is limited to the current user.
mkdir('/path/to/dir', 0700);

?>

See also Why 777 Folder Permissions are a Security Risk.

Suggestions

• Always use the lowest possible privileges on folders

• Don’t use the PHP default : at least, make it explicit that the ‘universal’ rights are voluntary

Specs

Short name Security/MkdirDefault
Rulesets All, Changed Behavior, Security
Exakat since 0.12.2
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features dir
Examples Mautic, OpenEMR
Available in Entreprise Edition, Exakat Cloud

14.2.715 Modernize Empty With Expression

empty() accepts expressions as argument. This feature was added in PHP 5.5.

There is no need to store the expression in a variable before testing, unless it is reused later.

<?php

// PHP 5.5+ empty() usage
if (empty(foo($b . $c))) {

doSomethingWithoutA();
}

(continues on next page)

1032 Chapter 14. Rules

https://www.php.net/mkdir
https://www.spiralscripts.co.uk/Blog/why-777-folder-permissions-are-a-security-risk.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// Compatible empty() usage
$a = foo($b . $c);
if (empty($a)) {

doSomethingWithoutA();
}

// $a2 is reused, storage is legit
$a2 = strtolower($b . $c);
if (empty($a2)) {

doSomething();
} else {

echo $a2;
}

?>

See also empty() and empty() supports arbitrary expressions.

Suggestions

• Avoid the temporary variable, and use directly empty()

Specs

Short name Structures/ModernEmpty
Rulesets All, Analyze
Exakat since 0.8.6
PHP Version With PHP 5.5 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features empty
Available in Entreprise Edition, Exakat Cloud

14.2.716 Modified Typed Parameter

Reports modified parameters, which have a non-scalar typehint. Such variables should not be changed
within the body of the method. Unlike typed properties, which always hold the expected type, typed
parameters are only guaranteed type at the beginning of the method block.

This problem doesn’t apply to scalar types : by default, PHP pass scalar parameters by value, not by reference. Class
types are always passed by reference.

This problem is similar to Don’t Unset Properties : the static specification of the property may be unset, leading to
confusing ‘undefined property’, while the class hold the property definition.

<?php

(continues on next page)

14.2. List of Rules 1033

https://www.php.net/empty
https://www.php.net/manual/en/migration55.new-features.php#migration55.new-features.empty
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

(continued from previous page)

class x {

function foo(Y $y) {
// $y is type Y

// A cast version of $y is stored into $yAsString. $y is untouched.
$yAsString = (string) $y;

// $y is of type 'int', now.
$y = 1;

// Some more code

// display the string version.
echo $yAsString;
// so, Y $y is now raising an error
echo $y->name;

}
}

?>

Suggestions

• Use different variable names when converting a parameter to a different type.

• Only use methods and properties calls on a typed parameter.

Specs

Short name Functions/ModifyTypedParameter
Rulesets All, Analyze, Class Review
Exakat since 2.1.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features typehint, parameter
Available in Entreprise Edition, Exakat Cloud

1034 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.717 Modify Immutable

A class, marked as immutable, is being modified.

This attribute is supported as a PHPdoc comment, @immutable, and as a PHP 8.0 `attribute.

<?php

/** @Immutable */
#[Immutable]
class x {

public $x = 1, $y, $z;
}

$x = new X;
// $x->x is modified, while it should not
$x->x = 2 + $x->z;

// $x->z is read only, as expected

?>

See also phpstorm-stubs/meta/attributes/Immutable.php and PhpStorm 2020.3 EAP #4: Custom PHP 8 Attributes.

Suggestions

• Removed the modification

• Clone the immutable object

Specs

Short name Attributes/ModifyImmutable
Rulesets All, Analyze, Attributes, Changed Behavior
Exakat since 2.2.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features attribute
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1035

https://www.php.net/attribute
https://www.php.net/attribute
https://github.com/JetBrains/phpstorm-stubs/blob/master/meta/attributes/Immutable.php
https://blog.jetbrains.com/phpstorm/2020/10/phpstorm-2020-3-eap-4/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.718 Mono Or Multibytes Favorite

PHP handles strings wity bytes, and also support multibytes with the mbstring extension. This analysis
reports when the mono or the multi byte version has dominance.

The dominant one is reported when it has over 90% of usage. The remaining cases should be uniformed, so has to make
this code consistent. Sometimes, the same code may make usage of both the versions, depending on the manipulated
string. For example, array index as single bytes strings, while user labels as multi-bytes.

The following functions are used for the analysis :

• mb_substr() => substr()()

• mb_strtolower() => strtolower()

• mb_strtoupper() => strtoupper()

• mb_strlen() => strlen()

• mb_strpos() => strpos()

• mb_strrpos() => strrpos()

• mb_stripos() => stripos()

• mb_strripos() => strripos()

• mb_strstr() => strstr()

• mb_stristr() => stristr()

• mb_strrchr() => strrchr()

• mb_substr_count() => substr_count()

• mb_chr() => chr()

• mb_ord() => ord()

• mb_parse_str() => parse_str()

This rule doesn’t detect mb_string overloading, which remplace some of the mono-bytes functions by their mbstring
counterpart, without changing the calls in the code.

<?php

echo strlen($string) . PHP_EOL;

echo mb_strlen($string) . PHP_EOL;

?>

Suggestions

• Make the code uniform by using one of the two versions of string functions

1036 Chapter 14. Rules

https://www.php.net/mb_substr
https://www.php.net/substr
https://www.php.net/mb_strtolower
https://www.php.net/strtolower
https://www.php.net/mb_strtoupper
https://www.php.net/strtoupper
https://www.php.net/mb_strlen
https://www.php.net/strlen
https://www.php.net/mb_strpos
https://www.php.net/strpos
https://www.php.net/mb_strrpos
https://www.php.net/strrpos
https://www.php.net/mb_stripos
https://www.php.net/stripos
https://www.php.net/mb_strripos
https://www.php.net/strripos
https://www.php.net/mb_strstr
https://www.php.net/strstr
https://www.php.net/mb_stristr
https://www.php.net/stristr
https://www.php.net/mb_strrchr
https://www.php.net/strrchr
https://www.php.net/mb_substr_count
https://www.php.net/substr_count
https://www.php.net/mb_chr
https://www.php.net/chr
https://www.php.net/mb_ord
https://www.php.net/ord
https://www.php.net/mb_parse_str
https://www.php.net/parse_str

Exakat Documentation, Release 1

Specs

Short name Structures/strOrMbFavorite
Rulesets All, Preferences
Exakat since 2.5.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Available in Entreprise Edition, Exakat Cloud

14.2.719 More Than One Level Of Indentation

According to PHP Object Calisthenics, one level of indentation is sufficient.

It helps to abide by the Single Responsibility rule and increase reuse.

<?php

class foo {
function multipleLevels($array) {

$return = array();
foreach($array as $b) {

// This is a second level of indentation
if ($this->check($b)) { continue; }
$return[] = $b;

}
return $return;

}

function oneLevel($array) {
$return = array_filter($array, array($this, 'check'));
return $return;

}

}

?>

14.2. List of Rules 1037

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Structures/OneLevelOfIndentation
Rulesets All
Exakat since 0.8.9
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features indentation
Available in Entreprise Edition, Exakat Cloud

14.2.720 Multidimensional Arrays

Multidimensional arrays are arrays of arrays. Each level of array is called a dimension. The number of
dimensions is arbitrary, though it is recommende not to abuse it beyond 4.

<?php
$x[1][2] = $x[2][3][4];

?>

See also Type array and Using Multidimensional Arrays in PHP.

Specs

Short name Arrays/Multidimensional
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Features array, multidimensional-array
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.721 Multiline Expressions

List of expressions that are spread across several lines. The default is 2.

Structures that commonly accept several lines, like match(), switch(), classes, functions, closures, constant definitions,
etc. are omitted.

Multiline expressions, like complex expressions, tend to be less readable. Although, some multiline expressions are
written to make them more readable, compared to a one-line complex expression.

<?php

// foo is not reported for the multiline expression
function foo() {

(continues on next page)

1038 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.types.array.php
https://www.elated.com/articles/php-multidimensional-arrays/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.match.php
https://www.php.net/manual/en/control-structures.switch.php

Exakat Documentation, Release 1

(continued from previous page)

// this echo is reported
echo $a .

$b .
$c;

}

?>

Name Default Type Description
min 2 integer Minimal number of lines in an expression to report.

Suggestions

• Reduce the size of the expression by moving it to a method

• Reduce the size of the expression by splitting it into several ones

Specs

Short name Structures/MultilineExpressions
Rulesets All, Changed Behavior, Suggestions
Exakat since 2.6.1
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Related rule Too Complex Expression
Available in Entreprise Edition, Exakat Cloud

14.2.722 Multiple Alias Definitions

Some aliases are representing different classes across the repository. This leads to potential confusion.

Across an application, it is recommended to use the same namespace for one alias. Failing to do this lead to the same
keyword to represent different values in different files, with different behavior. Those are hard to find bugs.

<?php

namespace A {
use d\d; // aka D

}

// Those are usually in different files, rather than just different namespaces.

namespace B {
use b\c as D; // also D. This could be named something else

}
(continues on next page)

14.2. List of Rules 1039

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

?>

Suggestions

• Give more specific names to classes

• Use an alias ‘use AB ac BC’ to give locally another name

Specs

Short name Namespaces/MultipleAliasDefinitions
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Examples ChurchCRM, Phinx
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.723 Multiple Alias Definitions Per File

Avoid aliasing the same name with different aliases. This leads to confusion.

<?php

// first occurrence
use name\space\ClasseName;

// when this happens, several other uses are mentioned

// name\space\ClasseName has now two names
use name\space\ClasseName as anotherName;

?>

See also :ref:`No title for `Namespaces/MultipleAliasDefinition`_ <No anchor for `Names-
paces/MultipleAliasDefinition`_>`.

1040 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Namespaces/MultipleAliasDefinitionPerFile
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 0.10.3
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features alias
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.724 Multiple Catch

Indicates if a try structure have several catch statement.

<?php

// This try has several catch
try {

doSomething();
} catch (RuntimeException $e) {

processRuntimeException();
} catch (OtherException $e) {

processOtherException();
}

?>

Specs

Short name Structures/MultipleCatch
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Features try
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1041

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.725 Multiple Class Declarations

It is possible to declare several times the same class in the code. PHP will not mention it until execution
time, since declarations may be conditional.

It is recommended to avoid declaring several times the same class in the code. The best practice is to separate them
with namespaces, they are for here for that purpose. In case those two classes are to be used interchangeably, the best
is to use an abstract class or an interface.

<?php

$a = 1;

// Conditional declaration
if ($a == 1) {

class foo {
function method() { echo 'class 1';}

}
} else {

class foo {
function method() { echo 'class 2';}

}
}

(new foo())->method();
?>

See also class.

Suggestions

• Store classes with different names in different namespaces

• Change the name of the classes and give them a common interface to allow from common behavior

Specs

Short name Classes/MultipleDeclarations
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features class
Available in Entreprise Edition, Community Edition, Exakat Cloud

1042 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.basic.php#language.oop5.basic.class
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.726 Multiple Classes In One File

It is regarded as a bad practice to store several classes in the same file. This is usually done to make life of
__autoload() easier.

It is often unexpected to find class foo in the bar.php file. This is also the case for interfaces and traits.

One good reason to have multiple classes in one file is to reduce include time by providing everything into one nice
include.

<?php

// three classes in the same file
class foo {}
class bar {}
class foobar{}

?>

See also Is it a bad practice to have multiple classes in the same file?.

Suggestions

• Split the file into smaller files, one for each class

Specs

Short name Classes/MultipleClassesInFile
Rulesets All, Appinfo, CE, Coding conventions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features class
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.727 Multiple Constant Definition

Some constants are defined several times in your code. This will lead to a fatal error, if they are defined
during the same execution.

Multiple definitions may happens at bootstrap, when the application code is collecting information about the current
environment. It may also happen at inclusion time, which one set of constant being loaded, while other definition are
not, avoiding conflict. Both are false positive.

<?php

// OS is defined twice.
if (PHP_OS == 'Windows') {

define('OS', 'Win');
(continues on next page)

14.2. List of Rules 1043

https://stackoverflow.com/questions/360643/is-it-a-bad-practice-to-have-multiple-classes-in-the-same-file
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error

Exakat Documentation, Release 1

(continued from previous page)

} else {
define('OS', 'Other');

}

?>

See also class.

Suggestions

• Move the constants to a class, and include the right class based on control flow.

• Give different names to the constants, and keep the condition close to utilisation.

• Move the constants to an external configuration file : it will be easier to identify that those constants may change.

Specs

Short name Constants/MultipleConstantDefinition
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features class
Examples Dolibarr, OpenConf
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.728 Multiple Declaration Of Strict_types

At least two declare() commands are declaring strict_types in one file. Only one is sufficient, and should
be the first expression in the file.

Indeed, any strict_types set to 1 will have the final word. Setting strict_types to 0 will not revert the configuration,
wherever is this call made.

<?php
declare(strict_types=1);
declare(strict_types=1);

// rest of the code

?>

See also Declare.

1044 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.basic.php#language.oop5.basic.class
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.declare.php

Exakat Documentation, Release 1

Suggestions

• Remove all but one of them. Keep the first one.

Specs

Short name Php/MultipleDeclareStrict
Rulesets All, Analyze, Changed Behavior
Exakat since 2.1.8
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features declare, strict_types
Available in Entreprise Edition, Exakat Cloud

14.2.729 Multiple Definition Of The Same Argument

A method’s signature is holding twice (or more) the same argument. For example, function x ($a, $a) {
. . . }.

This is accepted as is by PHP 5, and the last parameter’s value will be assigned to the variable. PHP 7.0 and more recent
has dropped this feature, and reports a fatal error when linting the code. However, this is not common programming
practise : all arguments should be named differently.

<?php
function x ($a, $a) { print $a; };
x(1,2); => display 2

// special case with a closure :
function ($a) use ($a) { print $a; };
x(1,2); => display 2

?>

See also Prepare for PHP 7 error messages (part 3).

Suggestions

• Give different names to different parameters

14.2. List of Rules 1045

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/functions.arguments.php#functions.variable-arg-list
https://www.php.net/error
https://www.exakat.io/prepare-for-php-7-error-messages-part-3/

Exakat Documentation, Release 1

Specs

Short name Functions/MultipleSameArguments
Rulesets All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56
Exakat since 0.8.4
PHP Version With PHP 7.0 and older
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Features class
ClearPHP all-unique-arguments
Available in Entreprise Edition, Exakat Cloud

14.2.730 Multiple Exceptions Catch()

It is possible to have several distinct exceptions class caught by the same catch, preventing code repetition.

This is a new feature since PHP 7.1. This is a backward incompatible feature of PHP 7.1.

<?php

// PHP 7.1 and more recent
try {

throw new someException();
} catch (Single $s) {

doSomething();
} catch (oneType | anotherType $s) {

processIdentically();
} finally {

}

// PHP 7.0 and older
try {

throw new someException();
} catch (Single $s) {

doSomething();
} catch (oneType $s) {

processIdentically();
} catch (anotherType $s) {

processIdentically();
} finally {

}

?>

1046 Chapter 14. Rules

https://github.com/dseguy/clearPHP/tree/master/rules/all-unique-arguments.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short
name

Exceptions/MultipleCatch

Rulesets All, Appinfo, CE, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, Compatibility-
PHP55, CompatibilityPHP56, CompatibilityPHP70

Exakat
since

0.8.4

PHP
Version

All

Severity Major
Time To
Fix

Quick (30 mins)

Preci-
sion

Very high

Features try-catch, exception
Avail-
able in

Entreprise Edition, Community Edition, Exakat Cloud

14.2.731 Multiple Functions Declarations

Some functions are declared multiple times in the code.

PHP accepts multiple definitions for the same functions, as long as they are not in the same file (linting error), or not
included simultaneously during the execution.

This creates to several situations in which the same functions are defined multiple times : the function may be com-
patible with various PHP version, but their implementation may not. Or the function is part of a larger library, and
sometimes only need without the rest of the library.

It is recommended to avoid having several functions with the same name in one repository. Turn those functions into
methods and load them when needed.

<?php

namespace a {
function foo() {}

}

// Other file
namespace a {

function foo() {}
function bar() {}

}

?>

14.2. List of Rules 1047

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error

Exakat Documentation, Release 1

Specs

Short name Functions/MultipleDeclarations
Rulesets All, Appinfo, CE
Exakat since 0.12.0
PHP Version All
Severity
Time To Fix
Precision Very high
Features declaration
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.732 Multiple Identical Closure

Several closures are defined with the same code.

It may be interesting to check if a named function could be defined from them. This analysis also reports functions and
methods that look like the closures : they may be considered for switch.

<?php

// the first squares, with closure
$squares= array_map(function ($a) {return $a * $a; }, range(0, 10));

// later, in another file...
// another identical closure
$squaring = function ($x) { return $x * $x; };
foo($x, $squaring);

?>

See also class.

Suggestions

• Create a function with the body of those closures, and replace the closures by the function’s name.

Specs

Short name Functions/MultipleIdenticalClosure
Rulesets All, Inventory
Exakat since 1.5.8
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Medium
Features class
Available in Entreprise Edition, Exakat Cloud

1048 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.basic.php#language.oop5.basic.class
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.733 Multiple Identical Trait Or Interface

There is no need to use the same trait, or implements the same interface more than once in a class.

Up to PHP 7.4, this doesn’t raise any warning. Traits are only imported once, and interfaces may be implemented as
many times as wanted.

Since PHP 7.4, multiple implementations of the same interface in one class is reported at compilation time. It is possible
to repeat the implementation in various levels of a class hierarchy (aka, same implements in a class and a parent).

This only applies in a single class: there are no checks in a class, or interface hierarchy.

<?php

class foo {
use aTrait, aTrait, aTrait;
use aTrait;

}

class bar implements anInterface, anInterface, anInterface {

}

?>

See also Already Parents Interface.

Suggestions

• Remove the duplicate trait or interface

Specs

Short name Classes/MultipleTraitOrInterface
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features trait
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1049

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.734 Multiple Index Definition

Indexes that are defined multiple times in the same array.

They are indeed overwriting each other. This is most probably a typo.

<?php
// Multiple identical keys
$x = array(1 => 2,

2 => 3,
1 => 3);

// Multiple identical keys (sneaky version)
$x = array(1 => 2,

1.1 => 3,
true => 4);

// Multiple identical keys (automated version)
$x = array(1 => 2,

3, // This will be index 2
2 => 4); // this index is overwritten

?>

Name De-
fault

Type Description

arrayMax-
Size

15000 inte-
ger

Maximal size of arrays to be analyzed. This will speed up analysis, and leave the
largest arrays untouched.

Suggestions

• Review your code and check that arrays only have keys defined once.

• Review carefully your code and check indirect values, like constants, static constants.

Specs

Short name Arrays/MultipleIdenticalKeys
Rulesets All, Analyze, CE, CI-checks, Rector
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features array, index
Examples Magento, MediaWiki
Available in Entreprise Edition, Community Edition, Exakat Cloud

1050 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.735 Multiple Property Declaration

The same property is declared in various classes, at least two, in the same class hierarchy. The declarations
must be compatible one another, and one of them should be sufficient.

Generally, the higher declaration should be the one to stay.

Keeping one definition makes it clear which class is responsible for that property. It also keep the code more flexible
in case of an update on the property: only one place to change it.

<?php

class x {
// redeclared in y
public $p = 1;

// declared only in x;
public $q;

}

class y extends x {
// redeclared in x
public $p = 2;

// declared only in y;
public $q;

}

?>

Suggestions

• Remove all but one of the declarations

• Change the name of some of the properties, to keep their meaning separate

Specs

Short name Classes/MultiplePropertyDeclaration
Rulesets All, Changed Behavior, Class Review
Exakat since 2.6.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features dry
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1051

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.736 Multiple Property Declaration On One Line

Multiple properties are defined on the same line. They could be defined independently, on separate ex-
pressions.

Keeping properties separate helps documenting and refactoring them independently.

<?php

// multiple definition on one expression
class point {

private $x, $y, $z;

// more code
}

// one line, one definition
class point2 {

private $x;

private $y;

private $z;

// more code
}

?>

Suggestions

• Split the definitions to one by line

Specs

Short name Classes/MultiplePropertyDeclarationOnOneLine
Rulesets All, Coding conventions
Exakat since 2.2.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

1052 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.737 Multiple Returns

Functions and methods that have multiple return statement.

This makes it difficult to maintain : since the function may be short-circuited early, some later instruction may be
omitted.

Ideally, guard clauses, which check if arguments are valid or not at the beginning of the method are the only exception
to this rule. Currently, the engine doesn’t spot guard clauses.

<?php

function foo() {
// This is a guard clause, that checks arguments.
if ($a < 0) {

return false;
}

$b = 0;
for($i = 0; $i < $a; $i++) {

$b += bar($i);
}

return $b;
}
?>

See also Single Function Exit Point.

Specs

Short name Functions/MultipleReturn
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features return
Available in Entreprise Edition, Exakat Cloud

14.2.738 Multiple Similar Calls

Several calls are made to functions or methods in a row. They may have different arguments, though having
a lot of similar calls in a row may indicate that a loop is needed.

Alternatively, some native PHP functions use an arbitrary number of arguments to avoid multiple calls to the same
function. For example, it is possible to call array_merge() once, or a loop on .= may be replaced with a call to implode().

<?php

echo $a[1];
(continues on next page)

14.2. List of Rules 1053

https://www.php.net/exception
https://www.php.net/engine
http://wiki.c2.com/?SingleFunctionExitPoint
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_merge
https://www.php.net/implode

Exakat Documentation, Release 1

(continued from previous page)

echo $a[2];
echo $a[3];
echo $a[4];
echo $a[5];

// This could be
foreach($a as $v) {

echo $v;
}

if (isset($a) && isset($b) && isset($c) && isset($d)) { }

// This could be coded as
if (isset($a, $b, $c, $d)) { }

?>

Suggestions

• Move the calls to a loop

• Tactically use one call to a function with multiple arguments. For example, isset() with multiple arguments.

Specs

Short name Structures/MultipleSimilarCalls
Rulesets All, Changed Behavior, Suggestions
Exakat since 2.3.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.739 Multiple Type Cases In Switch

This reports switch() instructions, which have several types in cases.

This might generate compatibility errors, as the comparison may succeed in different ways, depending on PHP versions.
This is particularly the case for PHP 8.0, and values such as ‘0’, ‘’, 0, null, and false. This situation doesn’t affect match(),
as it uses a strict type comparison, unlike switch().

<?php

switch($a) {
case 1:

break;

case 'a':
(continues on next page)

1054 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.switch.php
https://www.php.net/manual/en/control-structures.match.php
https://www.php.net/manual/en/control-structures.switch.php

Exakat Documentation, Release 1

(continued from previous page)

break;
}

?>

Suggestions

• Make all the types identical in the cases.

• Switch to match() call, to include a type check

Specs

Short name Structures/MultipleTypeCasesInSwitch
Rulesets All, CompatibilityPHP80
Exakat since 2.5.1
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features switch
Available in Entreprise Edition, Exakat Cloud

14.2.740 Multiple Type Variable

Avoid using the same variable with different types of data.

It is recommended to use different names for differently typed data, while processing them. This prevents errors where
one believe the variable holds the former type, while it has already been cast to the later.

Incrementing variables, with math operations or concatenation, is OK : the content changes, but not the type. And
casting the variable without storing it in itself is OK.

<?php

// $x is an array
$x = range('a', 'z');
// $x is now a string
$x = join('', $x);
$c = count($x); // $x is not an array anymore

// $letters is an array
$letters = range('a', 'z');
// $alphabet is a string
$alphabet = join('', $letters);

// Here, $letters is cast by PHP, but the variable is changed.
if ($letters) {

(continues on next page)

14.2. List of Rules 1055

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$count = count($letters); // $letters is still an array
}

?>

Suggestions

• Use a class that accepts one type of argument, and exports another type of argument.

• Use different variable for each type of data format : $rows (for array), $list (for implode(‘’, $rows))

• Pass the final result as argument to another method, avoiding the temporary variable

Specs

Short name Structures/MultipleTypeVariable
Rulesets All, Analyze
Exakat since 0.12.15
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features variable, type
Examples Typo3, Vanilla
Available in Entreprise Edition, Exakat Cloud

14.2.741 Multiple Unset()

Unset() accepts multiple arguments, unsetting them one after each other. It is more efficient to call unset()
once, than multiple times.

<?php

// One call to unset only
unset($a, $b, $c, $d);

// Too many calls to unset
unset($a);
unset($b);
unset($c);
unset($d);

?>

See also unset.

1056 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/unset

Exakat Documentation, Release 1

Suggestions

• Merge all unset into one call

Specs

Short name Structures/MultipleUnset
Rulesets All, Suggestions, php-cs-fixable
Exakat since 1.7.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features unset
Available in Entreprise Edition, Exakat Cloud

14.2.742 Multiple Usage Of Same Trait

The same trait is used several times. One trait usage is sufficient.

PHP doesn’t raise any error when traits are included multiple times.

<?php

// C is used twice, and could be dropped from B
trait A { use B, C;}
trait B { use C;}

?>

See also Traits.

Suggestions

• Remove any multiple traits from use expressions

• Review the class tree, and remove any trait mentioned multiple times

Specs

Short name Traits/MultipleUsage
Rulesets All, Changed Behavior, Suggestions
Exakat since 1.5.7
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features trait
Examples NextCloud
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1057

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/manual/en/language.oop5.traits.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.743 Multiples Identical Case

Some cases are defined multiple times, but only one will be processed. Check the list of cases, and remove
the extra one.

Exakat finds the value of the cases as much as possible, and ignore any dynamic cases (using variables). It is also pos-
sible to write a valid switch statement, with all identical cases, and yet, different meaning each time. This is considered
an edge case, and shall be manually removed.

<?php

const A = 1;

case ($x) {
case 1 :

break;
case true: // This is a duplicate of the previous

break;
case 1 + 0: // This is a duplicate of the previous

break;
case 1.0 : // This is a duplicate of the previous

break;
case A : // The A constant is actually 1

break;
case $y : // This is not reported.

break;
default:

}
?>

Suggestions

• Remove the double case

• Change the case to another and rightful value

Specs

Short name Structures/MultipleDefinedCase
Rulesets All, Analyze, CE, CI-checks, Rector
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features switch
ClearPHP no-duplicate-case
Examples SugarCrm, ExpressionEngine
Available in Entreprise Edition, Community Edition, Exakat Cloud

1058 Chapter 14. Rules

https://github.com/dseguy/clearPHP/tree/master/rules/no-duplicate-case.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.744 Multiply By One

Multiplying by 1 is a fancy type cast.

If it is used to type cast a value to number, then casting (int) or (float) is clearer. This behavior may change with PHP
7.1, which has unified the behavior of all hidden casts.

<?php

// Still the same value than $m, but now cast to integer or float
$m = $m * 1;

// Still the same value than $m, but now cast to integer or float
$n *= 1;

// make typecasting clear, and merge it with the producing call.
$n = (int) $n;

?>

See also Type Juggling.

Suggestions

• Typecast to (int) or (float) for better readability

• Skip useless math operation altogether

Specs

Short name Structures/MultiplyByOne
Rulesets All, Analyze, CE, CI-checks, Rector
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features neutral-element
ClearPHP no-useless-math
Examples SugarCrm, Edusoho
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1059

https://www.php.net/manual/en/language.types.type-juggling.php
https://github.com/dseguy/clearPHP/tree/master/rules/no-useless-math.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.745 Must Call Parent Constructor

Some PHP native classes require a call to parent\:\:`__construct() <https://www.php.net/
manual/en/language.oop5.decon.php>`_ to be stable.

As of PHP 7.3, two classes currently need that call : SplTempFileObject and SplFileObject.

The error is only emitted if the class is instantiated, and a parent class is called.

<?php

class mySplFileObject extends \SplFileObject {
public function __construct() {

// Forgottent call to parent::__construct()
}

}

(new mySplFileObject())->passthru();
?>

See also Why, php? WHY???.

Suggestions

• Add a call to the parent’s constructor

• Remove the extension of the parent class

Specs

Short name Php/MustCallParentConstructor
Rulesets All, Analyze, Changed Behavior
Exakat since 1.4.1
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features parent
Available in Entreprise Edition, Exakat Cloud

14.2.746 Must Return Methods

The following methods are expected to return a value that will be used later. Without return, they are
useless.

Methods that must return are : __get(), __isset(), __sleep(), __toString(), __set_state(), __invoke(), __debugInfo().

Methods that may not return, but are often expected to : __call(), __callStatic().

<?php

class foo {
(continues on next page)

1060 Chapter 14. Rules

https://www.php.net/error
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://gist.github.com/everzet/4215537
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php

Exakat Documentation, Release 1

(continued from previous page)

public function __isset($a) {
// returning something useful
return isset($this->$var[$a]);

}

public function __get($a) {
$this->$a++;
// not returning...

}

public function __call($name, $args) {
$this->$name(...$args);
// not returning anything, but that's OK

}

}
?>

Suggestions

• Add a return expression, with a valid data type

• Remove the return typehint

Specs

Short name Functions/MustReturn
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, LintButWontExec
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features magic-method
Note This issue may lint but will not run
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.747 Named Argument And Variadic

Variadic argument must be the last in the list of arguments. Since PHP 8.1, it is possible to use named
arguments after a variadic argument.

<?php
// named arguments may be after the variadic
foo(...$a, a: 1);

// positional arguments MUST be before the variadic
foo(...$a, 1);

(continues on next page)

14.2. List of Rules 1061

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// Normal way
foo(1, ...$a);

?>

Suggestions

• Always put the variadic at the end of the argument list

Specs

Short name Php/NamedArgumentAndVariadic
Rulesets All, Changed Behavior, CompatibilityPHP80, CompatibilityPHP81
Exakat since 2.5.0
PHP Version With PHP 8.1 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.748 Named Parameter Usage

Named parameters is a way to call a method, by specifying the name of the argument, instead of their
position order.

Named parameters works for both custom methods and PHP native functions.

<?php

// named parameters
foo(a : 1, b : 2);
foo(b : 2, a : 1);

// positional parameters
foo(1, 2);

function foo($a, $b) { }

?>

1062 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short
name

Php/NamedParameterUsage

Rule-
sets

All, Appinfo, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56,
CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73, Compatibility-
PHP74

Ex-
akat
since

2.3.0

PHP
Ver-
sion

With PHP 8.0 and more recent

Sever-
ity

Minor

Time
To
Fix

Quick (30 mins)

Preci-
sion

Very high

Fea-
tures

named-parameter

Avail-
able
in

Entreprise Edition, Exakat Cloud

14.2.749 Named Regex

Captured subpatterns may be named, for easier reference.

From the manual : It is possible to name a subpattern using the syntax (?P<name>pattern). This subpattern will then
be indexed in the matches array by its normal numeric position and also by name. PHP 5.2.2 introduced two alternative
syntaxes (?<name>pattern) and (?'name'pattern).

Naming subpatterns makes it easier to know what is read from the results of the subpattern : for example, $r['name']
has more meaning than $r[1].

Named subpatterns may also be shifted in the regex without impact on the resulting array.

<?php

$x = 'abc';
preg_match_all('/(?<name>a)/', $x, $r);
print_r($r[1]);
print_r($r['name']);

preg_match("/(?<name>a)(?'sub'b)/", $x, $s);
print $s[2];
print $s['sub'];

?>

See also Subpatterns.

14.2. List of Rules 1063

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/regexp.reference.subpatterns.php

Exakat Documentation, Release 1

Suggestions

• Use named regex, and stop using integer-named subpatterns

Specs

Short name Structures/NamedRegex
Rulesets All, Suggestions
Exakat since 1.4.9
PHP Version All
Severity
Time To Fix
Precision High
Features regex
Examples Phinx, shopware
Available in Entreprise Edition, Exakat Cloud

14.2.750 Namespaces

Inventory of all namespaces.

<?php

namespace My/Personal/Name;

class Name {}
?>

Specs

Short name Namespaces/NamespaceUsage
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

1064 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.751 Namespaces Glossary

List of all the defined namespaces in the code, using the namespace keyword.

Global namespaces are mentioned when they are explicitly used.

<?php

// One reported namespace
namespace one\name\space {}

// This global namespace is reported, as it is explicit
namespace { }

?>

Specs

Short name Namespaces/Namespacesnames
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.752 Native Alias Functions Usage

PHP manual recommends to avoid function aliases.

Some PHP native functions have several names, and both may be used the same way. However, one of the names is
the main name, and the others are aliases. Aliases may be removed or change or dropped in the future. Even if this is
not forecast, it is good practice to use the main name, instead of the aliases. Aliases are compiled in PHP, and do not
provide any performances over the normal function.

Aliases are more likely to be removed later, but they have been around for a long time.

<?php

// official way to count an array
$n = count($array);

// official way to count an array
$n = sizeof($array);

?>

See also List of function aliases.

14.2. List of Rules 1065

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/aliases.php

Exakat Documentation, Release 1

Suggestions

• Always use PHP recommended functions

Specs

Short name Functions/AliasesUsage
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features native
ClearPHP no-aliases
Examples Cleverstyle, phpMyAdmin
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.753 Negative Power

The power operator ** has higher precedence than the sign operators + and -.

This means that -2 ** 2 == -4. It is in fact, -(2 ** 2).

When using negative power, it is clearer to add parenthesis or to use the pow() function, which has no such ambiguity :

<?php

// -2 to the power of 2 (a square)
pow(-2, 2) == 4;

// minus 2 to the power of 2 (a negative square)
-2 ** 2 == -(2 ** 2) == 4;

?>

Suggestions

• Avoid negative number, as operands of **

• Use parenthesis with negative numbers and **

1066 Chapter 14. Rules

https://github.com/dseguy/clearPHP/tree/master/rules/no-aliases.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.operators.arithmetic.php
https://www.php.net/manual/en/language.operators.arithmetic.php
https://www.php.net/manual/en/language.operators.arithmetic.php
https://www.php.net/pow

Exakat Documentation, Release 1

Specs

Short name Structures/NegativePow
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Features power
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.754 Negative Start Index In Array

Negative starting index in arrays changed in PHP 8.0. Until then, they were ignored, and automatic index
started always at 0. Since PHP 8.0, the next index is calculated.

The behavior will break code that relies on automatic index in arrays, when a negative index is used for a starter.

<?php

$x = [-5 => 2];
$x[] = 3;

print_r($x);

/*
PHP 7.4 and older
Array
(

[-5] => 2
[0] => 3

)
*/

/*
PHP 8.0 and more recent
Array
(

[-5] => 2
[-4] => 3

)
*/

?>

See also PHP RFC: Arrays starting with a negative index.

14.2. List of Rules 1067

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.break.php
https://wiki.php.net/rfc/negative_array_index

Exakat Documentation, Release 1

Suggestions

• Explicitly create the index, instead of using the automatic indexing

• Add an explicit index of 0 in the initial array, to set the automatic process in the right track

• Avoid using specified index in array, conjointly with automatic indexing.

Specs

Short name Arrays/NegativeStart
Rulesets All, CE, Changed Behavior, CompatibilityPHP80
Exakat since 2.1.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Changed Behavior PHP 8.0 - More
Precision Very high
Features index
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.755 Nested Attributes

Nested attribute are attribute in attributes.

Nested attributes are not available in PHP 8.0 and older. It is reported as an invalid constant expression.

<?php
// Extracted from PHP 8.1 addendum (https://www.php.net/releases/8.1/en.php#new_in_
→˓initializers)
class User
{

#[\Assert\All(
new \Assert\NotNull,
new \Assert\Length(min: 6))

]
public string $name = '';

}
?>

See also PHP RFC: New in initializers and New initializers.

1068 Chapter 14. Rules

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/attribute
https://www.php.net/attribute
https://wiki.php.net/rfc/new_in_initializers

Exakat Documentation, Release 1

Specs

Short name Attributes/NestedAttributes
Rulesets All, Appinfo, Changed Behavior, CompatibilityPHP73, CompatibilityPHP74, Compatibility-

PHP80
Exakat since 2.3.1
PHP Version With PHP 8.1 and more recent
Severity
Time To Fix
Changed Behav-
ior

PHP 8.1 - More

Precision Very high
Features new-in-initializer, nested-attribute
Available in Entreprise Edition, Exakat Cloud

14.2.756 Nested Ifthen

Three levels of ifthen is too much. The method should be split into smaller functions.

<?php

function foo($a, $b) {
if ($a == 1) {

// Second level, possibly too much already
if ($b == 2) {

}
}

}

function bar($a, $b, $c) {
if ($a == 1) {

// Second level.
if ($b == 2) {

// Third level level.
if ($c == 3) {

// Too much
}

}
}

}

?>

Name Default Type Description
nestedIfthen 3 integer Maximal number of acceptable nesting of if-then structures

See also No title for Structures/TooManyIf.

14.2. List of Rules 1069

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/nestedAttributes.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Structures/NestedIfthen
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features if-then
Examples LiveZilla, MediaWiki
Available in Entreprise Edition, Exakat Cloud

14.2.757 Nested Loops

Nested loops happens when a loop (while, do..while, for, foreach), is used inside another loop.

Such structure tends to require a lot of processing, as the size of both loops have to be multiplied to estimate the actual
payload. They should be avoided as much as possible. This may no be always possible, though.

Nested loops are worth a check for performances reasons, as they will process a lot of times the same instructions.

<?php

// Nested loops
foreach($array as $a) {

foreach ($letters as $b) {
// This is performed count($array) * count($letters) times.
doSomething();

}
}

?>

Specs

Short name Structures/NestedLoops
Rulesets All, Appinfo, CE, Performances
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features nesting
Available in Entreprise Edition, Community Edition, Exakat Cloud

1070 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.758 Nested Match

Nested match calls makes the code difficult to read. It is recommended to avoid nesting match calls.

<?php

$a = match($b) {
1 => 3,
3 => 'ab',
5 => match($c) {

6 => new X,
7 => [],

}
default => false,

};

?>

Suggestions

• Merge the two match() in one.

• Replace the nested match call by a method call.

Specs

Short name Structures/NestedMatch
Rulesets All, Analyze, Changed Behavior
Exakat since 2.6.5
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.759 Nested Ternary

Ternary operators should not be nested too deep.

They are a convenient instruction to apply some condition, and avoid a if() structure. It works best when it is simple,
like in a one liner.

However, ternary operators tends to make the syntax very difficult to read when they are nested. It is then recommended
to use an if() structure, and make the whole code readable. This is a separate analysis from PHP’s preventing nested
ternaries without parenthesis.

<?php

// Simple ternary expression
echo ($a == 1 ? $b : $c) ;

// Nested ternary expressions
(continues on next page)

14.2. List of Rules 1071

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

echo ($a === 1 ? $d === 2 ? $b : $d : $d === 3 ? $e : $c) ;
echo ($a === 1 ? $d === 2 ? $f ===4 ? $g : $h : $d : $d === 3 ? $e : $i === 5 ? $j : $k)␣
→˓;

//Previous expressions, written as a if / Then expression
if ($a === 1) {

if ($d === 2) {
echo $b;

} else {
echo $d;

}
} else {

if ($d === 3) {
echo $e;

} else {
echo $c;

}
}

if ($a === 1) {
if ($d === 2) {

if ($f === 4) {
echo $g;

} else {
echo $h;

}
} else {

echo $d;
}

} else {
if ($d === 3) {

echo $e;
} else {

if ($i === 5) {
echo $j;

} else {
echo $k;

}
}

}

?>

Name Default Type Description
minNestedTernary 2 integer Minimal number of nested ternary to report.

See also Nested Ternaries are Great and Nested Ternary Without Parenthesis.

1072 Chapter 14. Rules

https://medium.com/javascript-scene/nested-ternaries-are-great-361bddd0f340

Exakat Documentation, Release 1

Suggestions

• Replace ternaries by if/then structures.

• Replace ternaries by a functioncall : this provides more readability, offset the actual code, and gives room for
making it different.

Specs

Short name Structures/NestedTernary
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features ternary
ClearPHP no-nested-ternary
Examples SPIP, Zencart
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.760 Nested Ternary Without Parenthesis

It is not allowed to nest ternary operator within itself, without parenthesis. This has been implemented in
PHP 7.4.

The reason behind this feature is to keep the code expressive. See the Warning message for more explanations

<?php

$a ? 1 : ($b ? 2 : 3);

// Still valid, as not ambiguous
$a ? $b ? 1 : 2 : 3;

// Produces a warning
//Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or␣
→˓`a ? b : (c ? d : e)`
$a ? 1 : $b ? 2 : 3;

?>

See also PHP RFC: Deprecate left-associative ternary operator.

14.2. List of Rules 1073

https://github.com/dseguy/clearPHP/tree/master/rules/no-nested-ternary.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://wiki.php.net/rfc/ternary_associativity

Exakat Documentation, Release 1

Suggestions

• Add parenthesis to nested ternary calls

Specs

Short name Php/NestedTernaryWithoutParenthesis
Rulesets All, Appinfo, CE, Changed Behavior, CompatibilityPHP74, Deprecated
Exakat since 1.9.4
PHP Version With PHP 7.4 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features ternary, parenthesis
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.761 Never Called Parameter

This analysis reports when a parameter is never used at calltime.

Such parameter has a default value, and always falls back to it. As such, it may be turned into a local variable.

A never called parameter is often planned for future use, though, so far, the code base doesn’t make use of it. It also
happens that the code use it, but is not part of the analyzed code base, such as a plugin system.

This issue is silent: it doesn’t yield any error. It is also difficult to identify, as it requires checking all the usage of the
method.

This analysis checks for actual usage of the parameter, from the outside of the method. This is different from checking
if the parameter is used inside the method.

<?php

// $b may be turned into a local var, it is unused
function foo($a, $b = 1) {

return $a + $b;
}

// whenever foo is called, the 2nd arg is not mentioned
foo($a);
foo(3);
foo('a');
foo($c);

?>

See also Unused Parameter, Cancelled Parameter and Parameter Hiding.

1074 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error

Exakat Documentation, Release 1

Suggestions

• Drop the unused argument in the method definition

• Actually use the argument when calling the method

• Drop the default value, and check warnings that mention usage of this parameter

Specs

Short name Functions/NeverUsedParameter
Rulesets All, Analyze, Rector, Suggestions
Exakat since 1.0.6
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features silent
Examples Piwigo
Related rule Could Be Class Constant
Available in Entreprise Edition, Exakat Cloud

14.2.762 Never Keyword

Never becomes a PHP keyword. It is used for typing functions which never returns anything (either dies
or throw an exception).

It should be avoided in namespaces, classes, traits and interfaces. Methods, constants and functions are OK.

<?php

// This is OK
function never() { }

// This is no OK
class never { }

?>

See also never and PHP RFC: noreturn type.

Suggestions

• Rename the classes, traits and interfaces with a different name.

14.2. List of Rules 1075

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception
https://www.php.net/manual/en/language.types.declarations.php#language.types.declarations.never
https://wiki.php.net/rfc/noreturn_type

Exakat Documentation, Release 1

Specs

Short name Php/NeverKeyword
Rulesets All, Analyze, Appinfo, Changed Behavior, CompatibilityPHP81
Exakat since 2.3.0
PHP Version With PHP 8.1 and older
Severity Major
Time To Fix Slow (1 hour)
Changed Behavior PHP 8.1 - More
Precision Very high
Features never
Available in Entreprise Edition, Exakat Cloud

14.2.763 Never Typehint Usage

Never is a typehint, which characterize methods that never return a value. It will either terminate the
execution or throw an exception.

<?php

function redirect(string $url): never {
header('Location: ' . $url);
exit();

}

?>

See also The “never” Return Type for PHP.

1076 Chapter 14. Rules

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception
https://betterprogramming.pub/the-never-return-type-for-php-802fbe2fa303

Exakat Documentation, Release 1

Specs

Short
name

Php/NeverTypehintUsage

Rule-
sets

All, Appinfo, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Com-
patibilityPHP56, CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73,
CompatibilityPHP74, CompatibilityPHP80

Ex-
akat
since

2.3.0

PHP
Ver-
sion

With PHP 8.1 and more recent

Sever-
ity
Time
To
Fix
Pre-
ci-
sion

Very high

Fea-
tures

typehint

Avail-
able
in

Entreprise Edition, Exakat Cloud

14.2.764 Never Used Properties

Properties that are never used. They are defined in a class or a trait, but they never actually used.

Properties are considered used when they are used locally, in the same class as their definition, or in a parent class : a
parent class is always included with the current class.

On the other hand, properties which are defined in a class, but only used in children classes is considered unused, since
children may also avoid using it.

<?php

class foo {
public $usedProperty = 1;

// Never used anywhere
public $unusedProperty = 2;

function bar() {
// Used internally
++$this->usedProperty;

}
}

class foo2 extends foo {
(continues on next page)

14.2. List of Rules 1077

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

(continued from previous page)

function bar2() {
// Used in child class
++$this->usedProperty;

}
}

// Used externally
++$this->usedProperty;

?>

Suggestions

• Drop unused properties

• Change the name of the unused properties

• Move the properties to children classes

• Find usage for unused properties

Specs

Short name Classes/PropertyNeverUsed
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features property
Examples WordPress
Available in Entreprise Edition, Exakat Cloud

14.2.765 New Constants In PHP 7.2

The following constants are now native in PHP 7.2. It is advised to avoid using such names for constant
before moving to this new version.

• PHP_OS_FAMILY

• PHP_FLOAT_DIG

• PHP_FLOAT_EPSILON

• PHP_FLOAT_MAX

• PHP_FLOAT_MIN

• SQLITE3_DETERMINISTIC

• CURLSSLOPT_NO_REVOKE

• CURLOPT_DEFAULT_PROTOCOL

1078 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• CURLOPT_STREAM_WEIGHT

• CURLMOPT_PUSHFUNCTION

• CURL_PUSH_OK

• CURL_PUSH_DENY

• CURL_HTTP_VERSION_2TLS

• CURLOPT_TFTP_NO_OPTIONS

• CURL_HTTP_VERSION_2_PRIOR_KNOWLEDGE

• CURLOPT_CONNECT_TO

• CURLOPT_TCP_FASTOPEN

• DNS_CAA

See also New global constants in 7.2.

Suggestions

• Move the constants to a new namespace

• Remove the old constants

• Rename the old constants

Specs

Short name Php/Php72NewConstants
Rulesets All, Changed Behavior, CompatibilityPHP72
Exakat since 0.10.7
PHP Version With PHP 7.2 and older
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features constant
Available in Entreprise Edition, Exakat Cloud

14.2.766 New Constants In PHP 7.4

The following constants are now native in PHP 7.4. It is advised to avoid using such names for constant
before moving to this new version.

• MB_ONIGURUMA_VERSION

• SO_LABEL

• SO_PEERLABEL

• SO_LISTENQLIMIT

• SO_LISTENQLEN

• SO_USER_COOKIE

• PHP_WINDOWS_EVENT_CTRL_C

14.2. List of Rules 1079

https://www.php.net/manual/en/migration72.constants.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• PHP_WINDOWS_EVENT_CTRL_BREAK

• TIDY_TAG_ARTICLE

• TIDY_TAG_ASIDE

• TIDY_TAG_AUDIO

• TIDY_TAG_BDI

• TIDY_TAG_CANVAS

• TIDY_TAG_COMMAND

• TIDY_TAG_DATALIST

• TIDY_TAG_DETAILS

• TIDY_TAG_DIALOG

• TIDY_TAG_FIGCAPTION

• TIDY_TAG_FIGURE

• TIDY_TAG_FOOTER

• TIDY_TAG_HEADER

• TIDY_TAG_HGROUP

• TIDY_TAG_MAIN

• TIDY_TAG_MARK

• TIDY_TAG_MENUITEM

• TIDY_TAG_METER

• TIDY_TAG_NAV

• TIDY_TAG_OUTPUT

• TIDY_TAG_PROGRESS

• TIDY_TAG_SECTION

• TIDY_TAG_SOURCE

• TIDY_TAG_SUMMARY

• TIDY_TAG_TEMPLATE

• TIDY_TAG_TIME

• TIDY_TAG_TRACK

• TIDY_TAG_VIDEO

• STREAM_CRYPTO_METHOD_TLSv1_3_CLIENT

• STREAM_CRYPTO_METHOD_TLSv1_3_SERVER

• STREAM_CRYPTO_PROTO_TLSv1_3

• T_COALESCE_EQUAL

• T_FN

See also New global constants in 7.4.

1080 Chapter 14. Rules

https://www.php.net/manual/en/migration74.constants.php

Exakat Documentation, Release 1

Suggestions

• Move the constants to a new namespace

• Remove the old constants

• Rename the old constants

Specs

Short name Php/Php74NewConstants
Rulesets All, CE, CompatibilityPHP74
Exakat since 1.8.4
PHP Version With PHP 7.4 and older
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features constant
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.767 New Dynamic Class Constant Syntax

PHP has a dedicated syntax to access dynamically class constant values. This was added in PHP 8.3. It
prevents using the a call to the function constant().

<?php

class x {
const A = 1;

}

$a = 'A';
echo x::{$a}; // displays 1

?>

14.2. List of Rules 1081

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short
name

Classes/NewDynamicConstantSyntax

Rule-
sets

All, Appinfo, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56,
CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73, Compatibility-
PHP74, CompatibilityPHP80, CompatibilityPHP81, CompatibilityPHP82

Ex-
akat
since

2.5.3

PHP
Ver-
sion

With PHP 8.3 and more recent

Sever-
ity

Minor

Time
To
Fix

Quick (30 mins)

Pre-
ci-
sion

Very high

Fea-
tures

class-constant

Avail-
able
in

Entreprise Edition, Exakat Cloud

14.2.768 New Functions In PHP 5.4

PHP introduced new functions in PHP 5.4. If there are defined functions with such names, there will be a
conflict when upgrading. It is advised to change those functions’ name.

• hex2bin()

• http_response_code()

• get_declared_traits()

• getimagesizefromstring()

• stream_set_chunk_size()

• socket_import_stream()

• trait_exists()

• header_register_callback()

• class_uses()

• session_status()

• session_register_shutdown()

• mysqli_error_list()

• mysqli_stmt_error_list()

1082 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/hex2bin
https://www.php.net/http_response_code
https://www.php.net/get_declared_traits
https://www.php.net/getimagesizefromstring
https://www.php.net/stream_set_chunk_size
https://www.php.net/socket_import_stream
https://www.php.net/trait_exists
https://www.php.net/header_register_callback
https://www.php.net/class_uses
https://www.php.net/session_status
https://www.php.net/session_register_shutdown
https://www.php.net/mysqli_error_list
https://www.php.net/mysqli_stmt_error_list

Exakat Documentation, Release 1

• libxml_set_external_entity_loader()

• ldap_control_paged_result()

• ldap_control_paged_result_response()

• transliterator_create()

• transliterator_create_from_rules()

• transliterator_create_inverse()

• transliterator_get_error_code()

• transliterator_get_error_message()

• transliterator_list_ids()

• transliterator_transliterate()

• zlib_decode()

• zlib_encode()

<?php

$zipped = zlib_encode($longText);

$raw = zlib_decode($zipped);

?>

Specs

Short name Php/Php54NewFunctions
Rulesets All, CompatibilityPHP53
Exakat since 0.8.4
PHP Version With PHP 5.3 and older
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.769 New Functions In PHP 5.5

PHP introduced new functions in PHP 5.5. If you have already defined functions with such names, you
will get a conflict when trying to upgrade. It is advised to change those functions’ name.

• array_column()

• boolval()

• cli_get_process_title()

• cli_set_process_title()

• curl_escape()

• curl_file_create()

14.2. List of Rules 1083

https://www.php.net/libxml_set_external_entity_loader
https://www.php.net/transliterator_create
https://www.php.net/transliterator_create_from_rules
https://www.php.net/transliterator_create_inverse
https://www.php.net/transliterator_get_error_code
https://www.php.net/transliterator_get_error_message
https://www.php.net/transliterator_list_ids
https://www.php.net/transliterator_transliterate
https://www.php.net/zlib_decode
https://www.php.net/zlib_encode
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_column
https://www.php.net/boolval
https://www.php.net/cli_get_process_title
https://www.php.net/cli_set_process_title
https://www.php.net/curl_escape
https://www.php.net/curl_file_create

Exakat Documentation, Release 1

• curl_multi_setopt()

• curl_multi_strerror()

• curl_pause()

• curl_reset()

• curl_share_close()

• curl_share_init()

• curl_share_setopt()

• curl_strerror()

• curl_unescape()

• datefmt_format_object()

• datefmt_get_calendar_object()

• datefmt_get_timezone()

• datefmt_set_timezone()

• hash_pbkdf2()

• imageaffinematrixconcat()

• imageaffinematrixget()

• imagecrop()

• imagecropauto()

• imageflip()

• imagepalettetotruecolor()

• imagescale()

• intlcal_add()

• intlcal_after()

• intlcal_before()

• intlcal_clear()

• intlcal_create_instance()

• intlcal_equals()

• intlcal_field_difference()

• intlcal_from_date_time()

• intlcal_get_actual_maximum()

• intlcal_get_actual_minimum()

• intlcal_get_available_locales()

• intlcal_get_day_of_week_type()

• intlcal_get_error_code()

• intlcal_get_error_message()

• intlcal_get_first_day_of_week()

1084 Chapter 14. Rules

https://www.php.net/curl_multi_setopt
https://www.php.net/curl_multi_strerror
https://www.php.net/curl_pause
https://www.php.net/curl_reset
https://www.php.net/curl_share_close
https://www.php.net/curl_share_init
https://www.php.net/curl_share_setopt
https://www.php.net/curl_strerror
https://www.php.net/curl_unescape
https://www.php.net/datefmt_format_object
https://www.php.net/datefmt_get_calendar_object
https://www.php.net/datefmt_get_timezone
https://www.php.net/datefmt_set_timezone
https://www.php.net/hash_pbkdf2
https://www.php.net/imageaffinematrixconcat
https://www.php.net/imageaffinematrixget
https://www.php.net/imagecrop
https://www.php.net/imagecropauto
https://www.php.net/imageflip
https://www.php.net/imagepalettetotruecolor
https://www.php.net/imagescale
https://www.php.net/intlcal_add
https://www.php.net/intlcal_after
https://www.php.net/intlcal_before
https://www.php.net/intlcal_clear
https://www.php.net/intlcal_create_instance
https://www.php.net/intlcal_equals
https://www.php.net/intlcal_field_difference
https://www.php.net/intlcal_from_date_time
https://www.php.net/intlcal_get_actual_maximum
https://www.php.net/intlcal_get_actual_minimum
https://www.php.net/intlcal_get_available_locales
https://www.php.net/intlcal_get_day_of_week_type
https://www.php.net/intlcal_get_error_code
https://www.php.net/intlcal_get_error_message
https://www.php.net/intlcal_get_first_day_of_week

Exakat Documentation, Release 1

• intlcal_get_greatest_minimum()

• intlcal_get_keyword_values_for_locale()

• intlcal_get_least_maximum()

• intlcal_get_locale()

• intlcal_get_maximum()

• intlcal_get_minimal_days_in_first_week()

• intlcal_get_minimum()

• intlcal_get_now()

• intlcal_get_repeated_wall_time_option()

• intlcal_get_skipped_wall_time_option()

• intlcal_get_time_zone()

• intlcal_get_time()

• intlcal_get_type()

• intlcal_get_weekend_transition()

• intlcal_get()

• intlcal_in_daylight_time()

• intlcal_is_equivalent_to()

• intlcal_is_lenient()

• intlcal_is_set()

• intlcal_is_weekend()

• intlcal_roll()

• intlcal_set_first_day_of_week()

• intlcal_set_lenient()

• intlcal_set_repeated_wall_time_option()

• intlcal_set_skipped_wall_time_option()

• intlcal_set_time_zone()

• intlcal_set_time()

• intlcal_set()

• intlcal_to_date_time()

• intlgregcal_create_instance()

• intlgregcal_get_gregorian_change()

• intlgregcal_is_leap_year()

• intlgregcal_set_gregorian_change()

• intltz_count_equivalent_ids()

• intltz_create_default()

• intltz_create_enumeration()

14.2. List of Rules 1085

https://www.php.net/intlcal_get_greatest_minimum
https://www.php.net/intlcal_get_keyword_values_for_locale
https://www.php.net/intlcal_get_least_maximum
https://www.php.net/intlcal_get_locale
https://www.php.net/intlcal_get_maximum
https://www.php.net/intlcal_get_minimal_days_in_first_week
https://www.php.net/intlcal_get_minimum
https://www.php.net/intlcal_get_now
https://www.php.net/intlcal_get_repeated_wall_time_option
https://www.php.net/intlcal_get_skipped_wall_time_option
https://www.php.net/intlcal_get_time_zone
https://www.php.net/intlcal_get_time
https://www.php.net/intlcal_get_type
https://www.php.net/intlcal_get_weekend_transition
https://www.php.net/intlcal_get
https://www.php.net/intlcal_in_daylight_time
https://www.php.net/intlcal_is_equivalent_to
https://www.php.net/intlcal_is_lenient
https://www.php.net/intlcal_is_set
https://www.php.net/intlcal_is_weekend
https://www.php.net/intlcal_roll
https://www.php.net/intlcal_set_first_day_of_week
https://www.php.net/intlcal_set_lenient
https://www.php.net/intlcal_set_repeated_wall_time_option
https://www.php.net/intlcal_set_skipped_wall_time_option
https://www.php.net/intlcal_set_time_zone
https://www.php.net/intlcal_set_time
https://www.php.net/intlcal_set
https://www.php.net/intlcal_to_date_time
https://www.php.net/intlgregcal_create_instance
https://www.php.net/intlgregcal_get_gregorian_change
https://www.php.net/intlgregcal_is_leap_year
https://www.php.net/intlgregcal_set_gregorian_change
https://www.php.net/intltz_count_equivalent_ids
https://www.php.net/intltz_create_default
https://www.php.net/intltz_create_enumeration

Exakat Documentation, Release 1

• intltz_create_time_zone_id_enumeration()

• intltz_create_time_zone()

• intltz_from_date_time_zone()

• intltz_get_canonical_id()

• intltz_get_display_name()

• intltz_get_dst_savings()

• intltz_get_equivalent_id()

• intltz_get_error_code()

• intltz_get_error_message()

• intltz_get_gmt()

• intltz_get_id()

• intltz_get_offset()

• intltz_get_raw_offset()

• intltz_get_region()

• intltz_get_tz_data_version()

• intltz_get_unknown()

• intltz_has_same_rules()

• intltz_to_date_time_zone()

• intltz_use_daylight_time()

• json_last_error_msg()

• mysqli_begin_transaction()

• mysqli_release_savepoint()

• mysqli_savepoint()

• openssl_pbkdf2()

• password_get_info()

• password_hash()

• password_needs_rehash()

• password_verify()

• pg_escape_identifier()

• pg_escape_literal()

• socket_cmsg_space()

• socket_recvmsg()

• socket_sendmsg()

1086 Chapter 14. Rules

https://www.php.net/intltz_create_time_zone_id_enumeration
https://www.php.net/intltz_create_time_zone
https://www.php.net/intltz_from_date_time_zone
https://www.php.net/intltz_get_canonical_id
https://www.php.net/intltz_get_display_name
https://www.php.net/intltz_get_dst_savings
https://www.php.net/intltz_get_equivalent_id
https://www.php.net/intltz_get_error_code
https://www.php.net/intltz_get_error_message
https://www.php.net/intltz_get_gmt
https://www.php.net/intltz_get_id
https://www.php.net/intltz_get_offset
https://www.php.net/intltz_get_raw_offset
https://www.php.net/intltz_get_region
https://www.php.net/intltz_get_tz_data_version
https://www.php.net/intltz_get_unknown
https://www.php.net/intltz_has_same_rules
https://www.php.net/intltz_to_date_time_zone
https://www.php.net/intltz_use_daylight_time
https://www.php.net/json_last_error_msg
https://www.php.net/mysqli_begin_transaction
https://www.php.net/mysqli_release_savepoint
https://www.php.net/mysqli_savepoint
https://www.php.net/openssl_pbkdf2
https://www.php.net/password_get_info
https://www.php.net/password_hash
https://www.php.net/password_needs_rehash
https://www.php.net/password_verify
https://www.php.net/pg_escape_identifier
https://www.php.net/pg_escape_literal
https://www.php.net/socket_cmsg_space
https://www.php.net/socket_recvmsg
https://www.php.net/socket_sendmsg

Exakat Documentation, Release 1

Specs

Short name Php/Php55NewFunctions
Rulesets All, CompatibilityPHP53, CompatibilityPHP54
Exakat since 0.8.4
PHP Version With PHP 5.5 and older
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.770 New Functions In PHP 5.6

PHP introduced new functions in PHP 5.6. If you have already defined functions with such names, you
will get a conflict when trying to upgrade. It is advised to change those functions’ name.

• gmp_root()

• gmp_rootrem()

• ldap_escape()

• oci_get_implicit_resultset()

• openssl_x509_fingerprint()

• openssl_spki_new()

• openssl_spki_verify()

• openssl_spki_export_challenge()

• openssl_spki_export()

Specs

Short name Php/Php56NewFunctions
Rulesets All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55
Exakat since 0.8.4
PHP Version With PHP 5.6 and older
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1087

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/gmp_root
https://www.php.net/gmp_rootrem
https://www.php.net/ldap_escape
https://www.php.net/oci_get_implicit_resultset
https://www.php.net/openssl_x509_fingerprint
https://www.php.net/openssl_spki_new
https://www.php.net/openssl_spki_verify
https://www.php.net/openssl_spki_export_challenge
https://www.php.net/openssl_spki_export
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.771 New Functions In PHP 7.0

The following functions are now native functions in PHP 7.0. It is advised to change them before moving
to this new version.

• get_resources()

• gc_mem_caches()

• preg_replace_callback_array()

• posix_setrlimit()

• random_bytes()

• random_int()

• intdiv()

• error_clear_last()

Specs

Short name Php/Php70NewFunctions
Rulesets All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56
Exakat since 0.8.4
PHP Version With PHP 7.0 and older
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features function
Available in Entreprise Edition, Exakat Cloud

14.2.772 New Functions In PHP 7.1

The following functions are now native functions in PHP 7.1. It is advised to change them before moving
to this new version.

• curl_share_strerror()

• curl_multi_errno()

• curl_share_errno()

• mb_ord()

• mb_chr()

• mb_scrub()

• is_iterable()

1088 Chapter 14. Rules

https://www.php.net/get_resources
https://www.php.net/gc_mem_caches
https://www.php.net/preg_replace_callback_array
https://www.php.net/posix_setrlimit
https://www.php.net/random_bytes
https://www.php.net/random_int
https://www.php.net/intdiv
https://www.php.net/error_clear_last
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/curl_share_strerror
https://www.php.net/curl_multi_errno
https://www.php.net/curl_share_errno
https://www.php.net/mb_ord
https://www.php.net/mb_chr
https://www.php.net/mb_scrub
https://www.php.net/is_iterable

Exakat Documentation, Release 1

Suggestions

• Remove usage of the mentioned functions

• Use a polyfill to recreate the feature without relying on the function

Specs

Short name Php/Php71NewFunctions
Rulesets All, CompatibilityPHP71
Exakat since 0.8.4
PHP Version With PHP 7.1 and older
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features function, native
Available in Entreprise Edition, Exakat Cloud

14.2.773 New Functions In PHP 7.2

The following functions are now native functions in PHP 7.2. It is advised to change custom functions that
are currently created, and using those names, before moving to this new version.

• mb_ord()

• mb_chr()

• mb_scrub()

• stream_isatty()

• proc_nice() (Windows only)

Suggestions

• Move custom functions with the same name to a new namespace

• Change the name of any custom functions with the same name

• Add a condition to the functions definition to avoid conflict

Specs

Short name Php/Php72NewFunctions
Rulesets All, CompatibilityPHP72
Exakat since 0.10.7
PHP Version With PHP 7.2 and older
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features function, native
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1089

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/mb_ord
https://www.php.net/mb_chr
https://www.php.net/mb_scrub
https://www.php.net/stream_isatty
https://www.php.net/proc_nice
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.774 New Functions In PHP 7.3

New functions are added to new PHP version.

The following functions are now native functions in PHP 7.3. It is compulsory to rename any custom function that was
created in older versions. One alternative is to move the function to a custom namespace, and update the use list at the
beginning of the script.

• net_get_interfaces()

• gmp_binomial()

• gmp_lcm()

• gmp_perfect_power()

• gmp_kronecker()

• openssl_pkey_derive()

• is_countable()

• ldap_exop_refresh()

Suggestions

• Move custom functions with the same name to a new namespace

• Change the name of any custom functions with the same name

• Add a condition to the functions definition to avoid conflict

Specs

Short
name

Php/Php73NewFunctions

Rule-
sets

All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56, Compati-
bilityPHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73

Exakat
since

0.10.7

PHP
Ver-
sion

With PHP 7.3 and older

Sever-
ity

Major

Time
To Fix

Quick (30 mins)

Preci-
sion

Very high

Fea-
tures

function, native

Avail-
able in

Entreprise Edition, Exakat Cloud

1090 Chapter 14. Rules

https://www.php.net/net_get_interfaces
https://www.php.net/gmp_binomial
https://www.php.net/gmp_lcm
https://www.php.net/gmp_perfect_power
https://www.php.net/gmp_kronecker
https://www.php.net/openssl_pkey_derive
https://www.php.net/is_countable
https://www.php.net/ldap_exop_refresh
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.775 New Functions In PHP 7.4

New functions are added to new PHP version.

The following functions are now native functions in PHP 7.4. It is compulsory to rename any custom function that was
created in older versions. One alternative is to move the function to a custom namespace, and update the use list at the
beginning of the script.

• mb_str_split()

• password_algos()

Suggestions

• Move custom functions with the same name to a new namespace

• Change the name of any custom functions with the same name

• Add a condition to the functions definition to avoid conflict

Specs

Short name Php/Php74NewFunctions
Rulesets All, CE, CompatibilityPHP74
Exakat since 1.8.0
PHP Version With PHP 7.3 and older
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features function, native
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.776 New Functions In PHP 8.0

New functions are added to new PHP version.

The following functions are now native functions in PHP 8.0. It is compulsory to rename any custom function that was
created in older versions. One alternative is to move the function to a custom namespace, and update the use list at the
beginning of the script.

• str_contains()

• fdiv()

• preg_last_error_msg()

14.2. List of Rules 1091

https://www.php.net/mb_str_split
https://www.php.net/password_algos
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/str_contains
https://www.php.net/fdiv
https://www.php.net/preg_last_error_msg

Exakat Documentation, Release 1

Suggestions

• Move custom functions with the same name to a new namespace

• Change the name of any custom functions with the same name

• Add a condition to the functions definition to avoid conflict

Specs

Short name Php/Php80NewFunctions
Rulesets All, CE, CompatibilityPHP74
Exakat since 2.0.8
PHP Version With PHP 8.0 and older
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features function, native
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.777 New Functions In PHP 8.1

New functions are added to new PHP version.

The following functions are now native functions in PHP 8.1. It is compulsory to rename any custom function that was
created in older versions. One alternative is to move the function to a custom namespace, and update the use list at the
beginning of the script.

• array_is_list()

• enum_exists()

• fsync()

• fdatasync()

• imagecreatefromavif()

• imageavif()

• mysqli_fetch_column()

• sodium_crypto_core_ristretto255_add()

• sodium_crypto_core_ristretto255_from_hash()

• sodium_crypto_core_ristretto255_is_valid_point()

• sodium_crypto_core_ristretto255_random()

• sodium_crypto_core_ristretto255_scalar_add()

• sodium_crypto_core_ristretto255_scalar_complement()

• sodium_crypto_core_ristretto255_scalar_invert()

• sodium_crypto_core_ristretto255_scalar_mul()

• sodium_crypto_core_ristretto255_scalar_negate()

• sodium_crypto_core_ristretto255_scalar_random()

1092 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_is_list
https://www.php.net/enum_exists
https://www.php.net/fsync
https://www.php.net/fdatasync
https://www.php.net/imagecreatefromavif
https://www.php.net/imageavif
https://www.php.net/mysqli_fetch_column
https://www.php.net/sodium_crypto_core_ristretto255_add
https://www.php.net/sodium_crypto_core_ristretto255_from_hash
https://www.php.net/sodium_crypto_core_ristretto255_is_valid_point
https://www.php.net/sodium_crypto_core_ristretto255_random
https://www.php.net/sodium_crypto_core_ristretto255_scalar_add
https://www.php.net/sodium_crypto_core_ristretto255_scalar_complement
https://www.php.net/sodium_crypto_core_ristretto255_scalar_invert
https://www.php.net/sodium_crypto_core_ristretto255_scalar_mul
https://www.php.net/sodium_crypto_core_ristretto255_scalar_negate
https://www.php.net/sodium_crypto_core_ristretto255_scalar_random

Exakat Documentation, Release 1

• sodium_crypto_core_ristretto255_scalar_reduce()

• sodium_crypto_core_ristretto255_scalar_sub()

• sodium_crypto_core_ristretto255_sub()

• sodium_crypto_scalarmult_ristretto255()

• sodium_crypto_scalarmult_ristretto255_base()

• sodium_crypto_stream_xchacha20()

• sodium_crypto_stream_xchacha20_keygen()

• sodium_crypto_stream_xchacha20_xor()

<?php

$array = [1,2,3];
var_dump(array_is_list($array)); // true

?>

Suggestions

• Move custom functions with the same name to a new namespace

• Change the name of any custom functions with the same name

• Add a condition to the functions definition to avoid conflict

Specs

Short name Php/Php81NewFunctions
Rulesets All, Analyze, CompatibilityPHP81
Exakat since 2.3.0
PHP Version With PHP 8.1 and older
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features function, native
Available in Entreprise Edition, Exakat Cloud

14.2.778 New Functions In PHP 8.2

New functions are added to new PHP version.

The following functions are now native functions in PHP 8.2. It is compulsory to rename any custom function that was
created in older versions. One alternative is to move the function to a custom namespace, and update the use list at the
beginning of the script.

• curl_upkeep()

• mysqli_execute_query()

• odbc_connection_string_is_quoted()

14.2. List of Rules 1093

https://www.php.net/sodium_crypto_core_ristretto255_scalar_reduce
https://www.php.net/sodium_crypto_core_ristretto255_scalar_sub
https://www.php.net/sodium_crypto_core_ristretto255_sub
https://www.php.net/sodium_crypto_scalarmult_ristretto255
https://www.php.net/sodium_crypto_scalarmult_ristretto255_base
https://www.php.net/sodium_crypto_stream_xchacha20
https://www.php.net/sodium_crypto_stream_xchacha20_keygen
https://www.php.net/sodium_crypto_stream_xchacha20_xor
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/curl_upkeep
https://www.php.net/mysqli_execute_query
https://www.php.net/odbc_connection_string_is_quoted

Exakat Documentation, Release 1

• odbc_connection_string_should_quote()

• odbc_connection_string_quote()

• ini_parse_quantity()

• memory_reset_peak_usage()

• sodium_crypto_stream_xchacha20_xor_ic()

<?php

// Such function will not be possible in PHP 8.2 anymore
function memory_reset_peak_usage() {}

?>

Suggestions

• Move custom functions with the same name to a new namespace

• Change the name of any custom functions with the same name

• Add a condition to the functions definition to avoid conflict

Specs

Short name Php/Php82NewFunctions
Rulesets All, Changed Behavior, CompatibilityPHP82
Exakat since 2.3.0
PHP Version With PHP 8.2 and older
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features function, native
Available in Entreprise Edition, Exakat Cloud

14.2.779 New Functions In PHP 8.3

New functions are added to new PHP version.

The following functions are now native functions in PHP 8.3. It is compulsory to rename any custom function that was
created in older versions. One alternative is to move the function to a custom namespace, and update the use list at the
beginning of the script.

• json_validate()

• mysqli_execute_query()

• posix_sysconf()

• posix_pathconf()

• posix_fpathconf()

• socket_atmark()

1094 Chapter 14. Rules

https://www.php.net/odbc_connection_string_should_quote
https://www.php.net/odbc_connection_string_quote
https://www.php.net/ini_parse_quantity
https://www.php.net/memory_reset_peak_usage
https://www.php.net/sodium_crypto_stream_xchacha20_xor_ic
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/json_validate
https://www.php.net/mysqli_execute_query
https://www.php.net/posix_sysconf
https://www.php.net/posix_pathconf
https://www.php.net/posix_fpathconf
https://www.php.net/socket_atmark

Exakat Documentation, Release 1

<?php

if (json_validate($json)) {
$data = json_decode($json);

} else {
print Error : This is not a valid JSON;

}

?>

Suggestions

• Move custom functions with the same name to a new namespace

• Change the name of any custom functions with the same name

• Add a condition to the functions definition to avoid conflict

Specs

Short name Php/Php83NewFunctions
Rulesets All, Changed Behavior, CompatibilityPHP83
Exakat since 2.5.2
PHP Version With PHP 8.3 and older
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features function, native
Available in Entreprise Edition, Exakat Cloud

14.2.780 New Initializers

Parameters, static variables and global constants may be initialized with an object.

This feature is available in PHP 8.1 and more recent. It is reported as an invalid constant expression in older PHP
versions.

<?php

function foo($a = new A) {
static $static = new B;

}

const A = new C;

?>

See also PHP RFC: New in initializers and `Nested Attributes`_.

14.2. List of Rules 1095

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://wiki.php.net/rfc/new_in_initializers

Exakat Documentation, Release 1

Specs

Short name Php/NewInitializers
Rulesets All, Appinfo, CompatibilityPHP73, CompatibilityPHP74, CompatibilityPHP80
Exakat since 2.3.1
PHP Version With PHP 8.1 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features new-in-initializer, nested-attribute
Available in Entreprise Edition, Exakat Cloud

14.2.781 New Line Style

New lines may be written with the sequence n or with the constant PHP_EOL.

When one of those alternatives is used over 90% of the time, it is considered as standard : the remaining are reported.

n are only located when used alone, in “n” (including the double quotes). When n is used inside a double-quoted string,
its replacement with PHP_EOL would be cumbersome : as such, they are ignored by this analyzer.

<?php

// This may be repeated over 10 times
$a = "PHP is a great language\n";
$a .= "\n";

// This only appears once in the code : this line is reported.
$b = $a.PHP_EOL.$c;

?>

Specs

Short name Structures/NewLineStyle
Rulesets All, Preferences
Exakat since 0.9.8
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Exakat Cloud

1096 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/PHP_EOL
https://www.php.net/PHP_EOL
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.782 New Object Then Immediate Call

This rule reports immediate calls on a new object. This can be simplified with a parenthesis structure,
including with the assignation inside the parenthesis.

It is also being discussed to drop the parenthesis altogether.

<?php

$a = new Foo();
$a->bar();

($a = new Foo())->bar();

?>

See also new MyClass()->method() without parentheses.

Suggestions

• Condense the two expressions into one

Specs

Short name Classes/NewThenCall
Rulesets All, Analyze, Class Review
Exakat since 2.6.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.783 New On Functioncall Or Identifier

Object instantiation with new works with or without arguments. Both are valid in PHP.

The analyzed code has less than 10% of one of the two forms : for consistency reasons, it is recommended to make
them all the same.

<?php

$a = new stdClass();

// Parenthesis are used when arguments are compulsory
$mysql = new MySQLI($host, $user, $pass);

// Parenthesis are omitted when no arguments are available
// That also makes the instantiation look different
$b = new stdClass;

(continues on next page)

14.2. List of Rules 1097

https://twitter.com/pronskiy/status/1739646806407999653
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

?>

Name Default Type Description
threshold 10 integer Maximal percentage for a syntax to be considered to be fixed.

Specs

Short name Classes/NewOnFunctioncallOrIdentifier
Rulesets All, Preferences
Exakat since 0.9.8
PHP Version All
Severity
Time To Fix
Precision Very high
Features new
Available in Entreprise Edition, Exakat Cloud

14.2.784 New Order

Order in which new calls must be called. When a class uses another class type in its constructor, this means
the second class must be instantiated before creating the first. This creates an order for classes.

<?php

class x {}

// class Y has precedence over class X, as it needs to be called first to get to X
class y {

function foo() {
return new x();

}
}

?>

1098 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Dump/NewOrder
Rulesets All, CE, Changed Behavior, Dump
Exakat since 2.0.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features new
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.785 Next Month Trap

Avoid using +1 month with strtotime().

strtotime() calculates the next month by incrementing the month number. For day number that do not exist from one
month to the next, strtotime() fixes them by setting them in the next-next month.

This happens to January, March, May, July, August and October. January is also vulnerable for 29 (not every year), 30
and 31.

To use ‘+1 month’, rely on ‘first day of next month’ or ‘last day of next month’ to extract the next month’s name. For
longer interfaces, start from ‘first day of next month’. Note that Datetime and DatetimeImmutable are also subject
to the same trap.

<?php

// Base date is October 31 => 10/31
// +1 month adds +1 to 10 => 11/31
// Since November 31rst doesn't exists, it is corrected to 12/01.
echo date('F', strtotime('+1 month',mktime(0,0,0,$i,31,2017))).PHP_EOL;

// Base date is October 31 => 10/31
echo date('F', strtotime('first day of next month',mktime(0,0,0,$i,31,2017))).PHP_EOL;

?>

See also It is the 31st again.

Suggestions

• Review strtotime() usage for month additions

• Base your calculations for the next/previous months on the first day of the month (or any day before the 28th)

• Avoid using ‘+n month’ with Datetime() after the 28th of any month (sic)

14.2. List of Rules 1099

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/strtotime
https://www.php.net/strtotime
https://www.php.net/strtotime
https://twitter.com/rasmus/status/925431734128197632

Exakat Documentation, Release 1

Specs

Short name Structures/NextMonthTrap
Rulesets All, Analyze, CE, CI-checks, Top10
Exakat since 1.0.1
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision High
Features date
Examples Contao, Edusoho
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.786 No Append On Source

Do not append new elements to an array in a foreach loop. Since PHP 7.0, the array is still used as a source,
and will be augmented, and used again.

Thanks to Frederic Bouchery for the reminder.

<?php

// Relying on the initial copy
$a = [1];
$initial = $a;
foreach($initial as $v) {

$a[] = $v + 1;
}

// Keep new results aside
$a = [1];
$tmp = [];
foreach($a as $v) {

$tmp[] = $v + 1;
}
$a = array_merge($a, $tmp);
unset($tmp);

// Example, courtesy of Frederic Bouchery
// This is an infinite loop
$a = [1];
foreach($a as $v) {

$a[] = $v + 1;
}

?>

See also foreach and What will this code return? #PHP.

1100 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://twitter.com/FredBouchery/
https://www.php.net/manual/en/control-structures.foreach.php
https://twitter.com/FredBouchery/status/1135480412703211520

Exakat Documentation, Release 1

Suggestions

• Use a copy of the source, to avoid modifying it during the loop

• Store the new values in a separate storage

Specs

Short name Structures/NoAppendOnSource
Rulesets All, Analyze
Exakat since 1.8.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features class
Available in Entreprise Edition, Exakat Cloud

14.2.787 No Boolean As Default

Default values should always be set up with a constant name.

Class constants and constants improve readability when calling the methods or comparing values and statuses.

<?php

const CASE_INSENSITIVE = true;
const CASE_SENSITIVE = false;

function foo($case_insensitive = true) {
// doSomething()

}

// Readable code
foo(CASE_INSENSITIVE);
foo(CASE_SENSITIVE);

// unreadable code : is true case insensitive or case sensitive ?
foo(true);
foo(false);

?>

See also FlagArgument and Clean code: The curse of a boolean parameter.

14.2. List of Rules 1101

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.martinfowler.com/bliki/FlagArgument.html
https://medium.com/@amlcurran/clean-code-the-curse-of-a-boolean-parameter-c237a830b7a3

Exakat Documentation, Release 1

Suggestions

• Use constants or class constants to give value to a boolean literal

• When constants have been defined, use them when calling the code

• Split the method into two methods, one for each case

Specs

Short name Functions/NoBooleanAsDefault
Rulesets All, Analyze
Exakat since 0.10.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features boolean, default-value
Examples OpenConf
Available in Entreprise Edition, Exakat Cloud

14.2.788 No Choice

A conditional structure is being used, and both alternatives are the same, leading to the illusion of choice.

Either the condition is useless, and may be removed, or the alternatives need to be distinguished.

<?php

if ($condition == 2) {
doSomething();

} else {
doSomething();

}

$condition == 2 ? doSomething() : doSomething();

?>

Suggestions

• Remove the conditional, and call the expression directly

• Replace one of the alternative with a distinct call

• Remove the whole conditional : it may end up being useless

• Extract the common elements of the condition to make them obvious

1102 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Structures/NoChoice
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, Rector, Top10
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision High
Examples NextCloud, Zencart
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.789 No Class As Typehint

Avoid using concrete classes as typehint : always use interfaces or abstract classes. This way, different
classes, or versions of classes may be passed as argument. The typehint is not linked to an implementation,
but to signatures.

A class is needed when the object is with properties : interfaces do not allow the specifications of properties.

<?php

class X {
public $p = 1;

function foo() {}
}

interface i {
function foo();

}

// X is a class : any update in the code requires changing / subclassing X or the rest␣
→˓of the code.
function bar(X $x) {

$x->foo();
}

// I is an interface : X may implements this interface without refactoring and pass
// later, newer versions of X may get another name, but still implement I, and still pass
function bar2(I $x) {

$x->foo();
}

function bar3(I $x) {
echo $x->p;

}

?>

See also Type hinting for interfaces.

14.2. List of Rules 1103

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
http://phpenthusiast.com/object-oriented-php-tutorials/type-hinting-for-interfaces

Exakat Documentation, Release 1

Suggestions

• Create an interface with the important methods, and use that interface

• Create an abstract class, when public properties are also needed

Specs

Short name Functions/NoClassAsTypehint
Rulesets All, Typechecks
Exakat since 0.11.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features typehint, class
Examples Vanilla, phpMyAdmin
Available in Entreprise Edition, Exakat Cloud

14.2.790 No Class In Global

Avoid defining structures in Global namespace. Always prefer using a namespace. This will come handy
later, either when publishing the code, or when importing a library, or even if PHP reclaims that name.

<?php

// Code prepared for later
namespace Foo {

class Bar {}
}

// Code that may conflict with other names.
namespace {

class Bar {}
}

?>

Suggestions

• Use a specific namespace for your classes

1104 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Php/NoClassInGlobal
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 0.10.9
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features class, global-scope
Examples Dolphin
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.791 No Constructor In Interface

PHP manual recommends not adding constructors to interfaces.

‘Although they are supported, including constructors in interfaces is strongly discouraged. Doing so significantly re-
duces the flexibility of the object implementing the interface. Additionally, constructors are not enforced by inheritance
rules, which can cause inconsistent and unexpected behavior.’

```
```

<?php

interface with {
function __construct();

}

?>

See also Object Interfaces.

Suggestions

• Remove the constructor from the interface

Specs

Short name Interfaces/NoConstructorInInterface
Rulesets All, Class Review, PHP recommendations
Exakat since 2.4.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features interface
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1105

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.interfaces.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.792 No Count With 0

Comparing count(), strlen() or mb_strlen() to 0 is a waste of resources. There are three distinct situations.

When comparing count() with 0, with ===, ==, !==, !=, it is more efficient to use empty(). empty() is a language
construct that checks if a value is present, while count() actually load the number of element. When comparing count()
strictly with 0 and >, it is more efficient to use !(empty()) Comparing count(), strlen() or mb_strlen() with other
values than 0 cannot be replaced with a comparison with empty().

Note that this is a micro-optimisation : since PHP keeps track of the number of elements in arrays (or number of chars
in strings), the total computing time of both operations is often lower than a ms. However, both functions tends to be
heavily used, and may even be used inside loops.

<?php

// Checking if an array is empty
if (count($array) == 0) {

// doSomething();
}
// This may be replaced with
if (empty($array)) {

// doSomething();
}

?>

See also count, strlen and mb_strlen.

Suggestions

• Use empty() on the data

• Compare the variable with a default value, such as an empty array

Specs

Short name Performances/NotCountNull
Rulesets All, Changed Behavior, Performances
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features count
Examples Contao, WordPress
Available in Entreprise Edition, Exakat Cloud

1106 Chapter 14. Rules

https://www.php.net/count
https://www.php.net/strlen
https://www.php.net/mb_strlen
https://www.php.net/count
https://www.php.net/count
https://www.php.net/count
https://www.php.net/count
https://www.php.net/strlen
https://www.php.net/mb_strlen
https://www.php.net/count
https://www.php.net/strlen
https://www.php.net/mb_strlen
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.793 No Default For Referenced Parameter

Parameters with reference should not have a default value.

When they have a default value, that default value is not a reference, and it will not have impact on the calling context.

Then, the parameter behaves like a reference when the argument is provided, and not as a reference when the parameter
is not provided. This makes sense : no parameter in, no parameter out.

<?php

function foo(&$i = 1) {
++$i;

}

// $i is 1, but it is not available in the calling context
foo();

// $i is 1, but it is not available in the calling context
$i = 1;
foo($i);

echo $i; // $i is now 2

?>

Suggestions

• Remove the reference

• Make that parameter a local variable

• Remove the default value

Specs

Short name Functions/NoDefaultForReference
Rulesets All, Analyze
Exakat since 2.4.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features reference
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1107

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.794 No Direct Access

This expression protects files against direct access. It will kill the process if it realizes this is not supposed
to be directly accessed.

Those expressions are used in applications and framework, to prevent direct access to definition files.

<?php

// CONSTANT_EXEC is defined in the main file of the application
defined('CONSTANT_EXEC') or die('Access not allowed'); : Constant used!

?>

Specs

Short name Structures/NoDirectAccess
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.795 No Direct Call To Magic Method

PHP features magic methods, which are methods related to operators.

Magic methods, such as __get(), related to =, or __clone(), related to clone, are supposed to be used in an object
environment, and not with direct call.

It is recommended to use the magic method with its intended usage, and not to call it directly. For example, typecast
to string instead of calling the __toString() method.

Accessing those methods in a static way is also discouraged.

<?php
// Write
print $x->a;

// instead of
print $x->__get('a');

class Foo {
private $b = "secret";

public function __toString() {
return strtoupper($this->b);

}
}

$bar = new Foo();
(continues on next page)

1108 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

(continued from previous page)

echo (string) $bar;

?>

See also Magical PHP: __call.

Specs

Short name Classes/DirectCallToMagicMethod
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.796 No Direct Usage

The results of the following functions shouldn’t be used directly, but checked first.

For example, glob() returns an array, unless some error happens, in which case it returns a boolean (false). In such
case, however rare it is, plugging glob() directly in a foreach() loops will yield errors.

<?php
// Used without check :
foreach(glob('.') as $file) { /* do Something */ }.

// Used without check :
$files = glob('.');
if (!is_array($files)) {

foreach($files as $file) { /* do Something */ }.
}

?>

Suggestions

• Check the return of the function before using it, in particular for false, or array().

14.2. List of Rules 1109

https://www.garfieldtech.com/blog/magical-php-call
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/glob
https://www.php.net/error
https://www.php.net/glob
https://www.php.net/manual/en/control-structures.foreach.php

Exakat Documentation, Release 1

Specs

Short name Structures/NoDirectUsage
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Examples Edusoho, XOOPS
Available in Entreprise Edition, Exakat Cloud

14.2.797 No ENT_IGNORE

Certain characters have special significance in HTML, and should be represented by HTML entities if they
are to preserve their meanings.

ENT_IGNORE is a configuration option for htmlspecialchars(), that ignore any needed character replacement. This
mean the raw input will now be processed by PHP, or a target browser.

It is recommended to use the other configuration options : ENT_COMPAT, ENT_QUOTES, ENT_NOQUOTES,
ENT_SUBSTITUTE, ENT_DISALLOWED, ENT_HTML401, ENT_XML1, ENT_XHTML or ENT_HTML5.

<?php

// This produces a valid HTML tag
$new = htmlspecialchars("Test", ENT_IGNORE);
echo $new; // Test

// This produces a valid string, without any HTML special value
$new = htmlspecialchars("Test", ENT_QUOTES);
echo $new; // Test

?>

See also htmlspecialchars and Deletion of Code Points.

Suggestions

• Use of the the other options

1110 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/ENT_IGNORE
https://www.php.net/htmlspecialchars
https://www.php.net/htmlspecialchars
http://unicode.org/reports/tr36/#Deletion_of_Noncharacters

Exakat Documentation, Release 1

Specs

Short name Security/NoEntIgnore
Rulesets All, Changed Behavior, Security
Exakat since 1.9.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features html-escape
Available in Entreprise Edition, Exakat Cloud

14.2.798 No Empty Regex

PHP regex don’t accept empty regex, nor regex with alphanumeric delimiter.

Most of those errors happen at execution time, when the regex is build dynamically, but still may end empty. At compile
time, such error are made when the code is not tested before commit.

<?php

// No empty regex
preg_match('', $string, $r);

// Delimiter must be non-alphanumerical
preg_replace('1abc1', $string, $r);

// Delimiter must be non-alphanumerical
preg_replace('1'.$regex.'1', $string, $r);

?>

See also PCRE and Delimiters.

Suggestions

• Fix the regex by adding regex delimiters

Specs

Short name Structures/NoEmptyRegex
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.11.1
PHP Version All
Severity Critical
Time To Fix Quick (30 mins)
Precision Very high
Features class
Examples Tikiwiki
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1111

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/pcre
https://www.php.net/manual/en/regexp.reference.delimiters.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.799 No Empty String With explode()

explode() doesn’t allow empty strings as separator. Until PHP 8.0, it would make a warning, and return
false. After that version, it raises a ValueError.

To break a string into individual characters, it is possible to use the array notation on strings, or to use the str_split()
function.

<?php

explode('', "a");

?>

Suggestions

• Check for empty strings (or equivalent) before using explode()

• Use the array notation to access individual chars

• Use str_split() to break the string into an array

Specs

Short name Structures/NoEmptyStringWithExplode
Rulesets All, Analyze, Changed Behavior
Exakat since 2.5.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Changed Behavior PHP 8.0 - More
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.800 No Hardcoded Hash

Hash should never be hardcoded.

Hashes may be MD5, SHA1, SHA512, Bcrypt or any other. Such values must be easily changed, for security reasons,
and the source code is not the safest place to hide it.

<?php

// Those strings may be sha512 hashes.
// it is recomemdned to check if they are static or should be put into configuration
$init512 = array(// initial values for SHA512

'6a09e667f3bcc908', 'bb67ae8584caa73b', '3c6ef372fe94f82b', 'a54ff53a5f1d36f1',
);

// strings which are obvious conversion are ignored
$decimal = intval('87878877', 12);

?>

1112 Chapter 14. Rules

https://www.php.net/explode
https://www.php.net/valueerror
https://www.php.net/manual/en/control-structures.break.php
https://www.php.net/str_split
https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

See also Salted Password Hashing - Doing it Right and Hash-Buster.

Suggestions

• Put any hardcoded hash in a configuration file, a database or a environment variable. An external source.

Specs

Short name Structures/NoHardcodedHash
Rulesets All, Analyze, Security
Exakat since 0.8.4
PHP Version All
Severity Critical
Time To Fix Slow (1 hour)
Precision Very high
Features class
Examples shopware, SugarCrm
Available in Entreprise Edition, Exakat Cloud

14.2.801 No Hardcoded Ip

Do not leave hard coded IP in your code.

It is recommended to move such configuration in external files or databases, for each update. This may also come handy
when testing. 127.0.0.1, \:\:1 and \:\:0 are omitted, and not considered as a violation.

<?php

// This IPv4 is hardcoded.
$ip = '183.207.224.50';
// This IPv6 is hardcoded.
$ip = '2001:0db8:85a3:0000:0000:8a2e:0370:7334';

// This looks like an IP
$thisIsNotAnIP = '213.187.99.50';
$thisIsNotAnIP = '2133:1387:9393:5330';

?>

See also Use of Hardcoded IPv4 Addresses and Never hard code sensitive information.

14.2. List of Rules 1113

https://crackstation.net/hashing-security.htm
https://github.com/s0md3v/Hash-Buster
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://docs.microsoft.com/en-us/windows/desktop/winsock/use-of-hardcoded-ipv4-addresses-2
https://wiki.sei.cmu.edu/confluence/display/java/MSC03-J.+Never+hard+code+sensitive+information

Exakat Documentation, Release 1

Suggestions

• Move the hardcoded IP to an external source : environment variable, configuration file, database.

• Remove the hardcoded IP and ask for it at execution.

• Use a literal value for default messages in form.

Specs

Short name Structures/NoHardcodedIp
Rulesets All, Analyze, Security
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features ip
Examples OpenEMR, NextCloud
Available in Entreprise Edition, Exakat Cloud

14.2.802 No Hardcoded Path

It is not recommended to use hardcoded literals when designating files. Full paths are usually tied to one
file system organization. As soon as the organisation changes or must be adapted to any external constraint,
the path is not valid anymore.

Either use __FILE__ and __DIR__ to make the path relative to the current file; use a DOC_ROOT as a configuration
constant that will allow the moving of the script to another folder; finally functions like sys_get_temp_dir() produce a
viable temporary folder.

Relative paths are relative to the current execution directory <https://www.php.net/`directory>`_, and not the current
file. This means they may differ depending on the location of the start of the application, and are sensitive to chdir()
and chroot() usage.

<?php

// This depends on the current executed script
file_get_contents('token.txt');

// Exotic protocols are ignored
file_get_contents('jackalope://file.txt');

// Some protocols are ignored : http, https, ftp, ssh2, php (with memory)
file_get_contents('http://www.php.net/');
file_get_contents('php://memory/');

// glob() with special chars * and ? are not reported
glob('./*/foo/bar?.txt');
// glob() without special chars * and ? are reported
glob('/foo/bar/');

?>

1114 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.constants.predefined.php
https://www.php.net/manual/en/language.constants.predefined.php
https://www.php.net/sys_get_temp_dir
https://www.php.net/directory
https://www.php.net/chdir
https://www.php.net/chroot

Exakat Documentation, Release 1

Suggestions

• Add __DIR__ before the path to make it relative to the current file

• Add a configured prefix before the path to point to any file in the system

• Use sys_get_temp_dir() for temporary data

• Use include_path argument function, such as fie_get_contents(), to have the file located in configurable direc-
tories.

Specs

Short name Structures/NoHardcodedPath
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features path, hardcoded
ClearPHP no-hardcoded-path
Examples Tine20, Thelia
Available in Entreprise Edition, Exakat Cloud

14.2.803 No Hardcoded Port

When connecting to a remove server, port is an important information. It is recommended to make this
configurable (with constant or configuration), to as to be able to change this value without changing the
code.

<?php

// Both configurable IP and hostname
$connection = ssh2_connect($_ENV['SSH_HOST'], $_ENV['SSH_PORT'], $methods,

→˓$callbacks);

// Both hardcoded IP and hostname
$connection = ssh2_connect('shell.example.com', 22, $methods, $callbacks);

if (!$connection) die('Connection failed');
?>

14.2. List of Rules 1115

https://github.com/dseguy/clearPHP/tree/master/rules/no-hardcoded-path.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Move the port to a configuration file, an environment variable

Specs

Short name Structures/NoHardcodedPort
Rulesets All, Analyze, Security
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features port
Examples WordPress
Available in Entreprise Edition, Exakat Cloud

14.2.804 No Initial S In Variable Names

The initial capital S in a variable name, may easily be mistaken with the dollar sign. This rules reports all
variables that use a capital S as first letter after the dollar sign, to avoid this problem.

<?php

$$ocket = $Socket;

?>

Suggestions

• Avoid using an initial capital S in variable and static property names.

Specs

Short name Variables/NoInitialS
Rulesets All, Semantics
Exakat since 2.5.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

1116 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.805 No Keyword In Namespace

PHP keywords were not allowed in namespaces’ names. As a whole, or as a part of the namespace. The
syntax was relaxed in PHP 8.0.

This rule is only useful to keep compatibility with previous versions. It leads to a compilation error.

While some keywords are highly specific to PHP, such as endswitch or __halt_compiler, others are more common
such as empty(), isset(), use, global, function. . . Usage of PHP keyword was also relaxed for method’ name.

<?php

namespace if {}
namespace endswitch {}

namespace a\empty\b {}

namespace end {}

?>

Suggestions

• Avoid supporting older PHP versions while having keywords in the namespaces

• Change the namespaces to use other words than keywords

Specs

Short name Namespaces/NoKeywordInNamespace
Rulesets All, Changed Behavior, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73, Compat-

ibilityPHP74
Exakat
since

2.4.9

PHP Ver-
sion

With PHP 8.0 and more recent

Severity Minor
Time To
Fix

Quick (30 mins)

Precision Very high
Related
rule

Php7 Relaxed Keyword

Available
in

Entreprise Edition, Exakat Cloud

14.2. List of Rules 1117

https://www.php.net/error
https://www.www.php.net/isset
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.806 No List With String

list() can’t be used anymore to access particular offset in a string. This should be done with substr() or
$string[$offset] syntax.

<?php

$x = 'abc';
list($a, $b, $c) = $x;

//list($a, $b, $c) = 'abc'; Never works

print $c;
// PHP 5.6- displays 'c'
// PHP 7.0+ displays nothing

?>

See also PHP 7.0 Backward incompatible changes.

Suggestions

• Use str_split() to break a string into bytes

• Use substr() or $string[$offset] syntax to access specific bytes in the string

Specs

Short name Php/NoListWithString
Rulesets All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compat-

ibilityPHP56
Exakat
since

0.8.4

PHP Ver-
sion

With PHP 7.0 and older

Severity Major
Time To
Fix

Instant (5 mins)

Precision High
Features list
Available
in

Entreprise Edition, Exakat Cloud

1118 Chapter 14. Rules

https://www.php.net/list
https://www.php.net/substr
https://www.php.net/manual/en/migration70.incompatible.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.807 No Literal For Reference

Method arguments and return values may be by reference. Then, they need to be a valid variable.

Objects are always passed by reference, so there is no need to explicitly declare it.

Expressions, including ternary operator, produce value, and can’t be used by reference directly. This is also the case
for expression that include one or more reference.

Wrongly passing a value as a reference leads to a PHP Notice.

<?php

// variables, properties, static properties, array items are all possible
$a = 1;
foo($a);

//This is not possible, as a literal can't be a reference
foo(1);

function foo(&$int) { return $int; }

// This is not a valid reference
function &bar() { return 2; }
function &bar2() { return 2 + $r; }

?>

See also References.

Suggestions

• Remove the reference in the method signature (argument or return value)

• Make the argument an object, by using a typehint (non-scalar)

• Put the value into a variable prior to call (or return) the method

Specs

Short name Functions/NoLiteralForReference
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 1.9.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features reference, literal
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1119

https://www.php.net/references
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.808 No Magic Method For Enum

Enumeration cannot have magic methods, nor a constructor. Enumeration cases are created as needed, and
magic methods are interfering with the default behavior of enumerations.

<?php

enum a {
function __construct($a) {}

}

?>

See also Enumeration Methods.

Suggestions

• Remove the method

Specs

Short name Enums/NoMagicMethod
Rulesets All, Analyze, Class Review, LintButWontExec
Exakat since 2.4.2
PHP Version With PHP 8.1 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features enumeration, magic-method
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.809 No Magic Method With Array

Magic method __set() doesn’t work for array syntax.

When overloading properties, they can only be used for scalar values, excluding arrays. Under the hood, PHP uses
__get() to reach for the name of the property, and doesn’t recognize the following index as an array. It yields an error
: “Indirect modification of overloaded property”.

It is possible to use the array syntax with a magic property : by making the __get returns an array, the syntax will
actually extract the expected item in the array.

This is not reported by linting.

In this analysis, only properties that are found to be magic are reported. For example, using the b property outside the
class scope is not reported, as it would yield too many false-positives.

<?php

class c {
private $a;

(continues on next page)

1120 Chapter 14. Rules

https://www.php.net/manual/en/language.enumerations.methods.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error

Exakat Documentation, Release 1

(continued from previous page)

private $o = array();

function __get($name) {
return $this->o[$name];

}

function foo() {
// property b doesn't exists
$this->b['a'] = 3;

print_r($this);
}

// This method has no impact on the issue
function __set($name, $value) {

$this->o[$name] = $value;
}

}

$c = new c();
$c->foo();

?>

See also Overload.

Suggestions

• Use a distinct method to append a new value to that property

• Assign the whole array, and not just one of its elements

Specs

Short name Classes/NoMagicWithArray
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, LintButWontExec
Exakat since 0.12.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Medium
Features magic-method
Note This issue may lint but will not run
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1121

https://www.php.net/manual/en/language.oop5.overloading.php#object.get
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.810 No Max On Empty Array

Using max() or min() on an empty array leads to a valueError exception.

Until PHP 8, max() and min() would return null in case of empty array. This might be confusing with actual values,
as an array can contain null. null has a specific behavior when comparing with other values, and should be avoided
with max() and sorts. Until PHP 8.0, a call on an empty array would return null, and a warning.

<?php

// Throws a value error
$a = max([]);

$array = [];
if (empty($array)) {

$a = null;
} else {

$a = max($array);
}

var_dump(min([-1, null])); // NULL
var_dump(max([-1, null])); // -1
var_dump(max([1, null])); // 1

?>

Suggestions

• Check the content of the array before giving it to max() or min()

Specs

Short name Structures/NoMaxOnEmptyArray
Rulesets All, Changed Behavior, CompatibilityPHP80
Exakat since 2.5.2
Severity Minor
Time To Fix Quick (30 mins)
Changed Behavior PHP 8.0 - More
Precision High
Available in Entreprise Edition, Exakat Cloud

1122 Chapter 14. Rules

https://www.php.net/max
https://www.php.net/min
https://www.php.net/exception
https://www.php.net/max
https://www.php.net/min
https://www.php.net/max
https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.811 No More Curly Arrays

Only use square brackets to access array elements. The usage of curly brackets for array access is depre-
cated since PHP 7.4.

<?php

$array = [1,2,3];

// always valid
echo $array[1];

// deprecated in PHP 7.4
echo $array{1};

?>

See also Deprecate curly brace syntax and Deprecate curly brace syntax for accessing array elements and string offsets.

Suggestions

• Always use square brackets to access particular index in an array

Specs

Short name Php/NoMoreCurlyArrays
Rulesets All, CE, CompatibilityPHP74
Exakat since 1.9.2
PHP Version With PHP 8.0 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features array-curly-braces
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.812 No Named Parameters

Named parameters were introduced in PHP 8.0. They introduce a strong coupling between the parameter
names and the calling structure: changing the parameter name breaks the call.

To avoid this, case by base, PHP.watch introduced the no-named-parameters PHP doc commend, which allows
method owners to signal that the calls should not use the named parameters.

This analysis explicit named parameters. Named parameters in arrays are still to do.

<?php

/**
* no-named-parameters
*/

function goo($a) {}
(continues on next page)

14.2. List of Rules 1123

https://derickrethans.nl/phpinternalsnews-19.html
https://wiki.php.net/rfc/deprecate_curly_braces_array_access
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

goo(a:1); // This is forbidden

?>

Suggestions

• Remove the name of the parameter; check the order of the parameters.

Specs

Short name Attributes/NoNamedArguments
Rulesets All
Exakat since 2.6.7
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features named-parameter
Available in Entreprise Edition, Exakat Cloud

14.2.813 No Need For Else

Else is not needed when the Then ends with a break. A break may be the following keywords : break,
continue, return, goto. Any of these send the execution somewhere in the code. The else block is then
executed as the main sequence, only if the condition fails.

<?php

function foo() {
// Else may be in the main sequence.
if ($a1) {

return $a1;
} else {

$a++;
}

// Same as above, but negate the condition : if (!$a2) { return $a2; }
if ($a2) {

$a++;
} else {

return $a2;
}

// This is OK
if ($a3) {

return;
}

// This has no break
(continues on next page)

1124 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.break.php
https://www.php.net/manual/en/control-structures.break.php
https://www.php.net/manual/en/control-structures.break.php
https://www.php.net/manual/en/control-structures.continue.php

Exakat Documentation, Release 1

(continued from previous page)

if ($a4) {
$a++;

} else {
$b++;

}

// This has no else
if ($a5) {

$a++;
}

}
?>

See also Object Calisthenics, rule # 2.

Suggestions

• Remove else block, but keep the code

Specs

Short name Structures/NoNeedForElse
Rulesets All, Analyze
Exakat since 0.10.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features if-then
Examples Thelia, ThinkPHP
Available in Entreprise Edition, Exakat Cloud

14.2.814 No Need For Triple Equal

There is no need for the identity comparison when the methods returns the proper type.

<?php

// foo() returns a string.
if ('a' === foo()) {

// doSomething()
}

function foo() : string {
return 'a';

}

?>

14.2. List of Rules 1125

http://williamdurand.fr/2013/06/03/object-calisthenics/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Structures/NoNeedForTriple
Rulesets All, Analyze
Exakat since 2.1.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.815 No Need For get_class()

There is no need to call get_class() to build a static call. The argument of get_class() may be used directly.

<?php

//
$a->b::$c

// This is too much code
get_class($a->b)::$c

?>

See also Scope Resolution Operator (::).

Suggestions

• Use get_called_class(), which may carry different class names

• Use self, static or parent keywords, if you are already in the current class

• Use the argument of get_class() directly

Specs

Short name Structures/NoNeedGetClass
Rulesets All, Suggestions
Exakat since 1.8.1
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features class
Available in Entreprise Edition, Exakat Cloud

1126 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/get_class
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/get_class
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.816 No Net For Xml Load

Simplexml and ext/DOM load all external entities from the web, by default. This is dangerous, in particular
when loading unknown XML code.

Look at this XML code below : it is valid. It defines an entity xxe, that is filled with a file, read on the system and
base64 encoded.:

<!DOCTYPE replace [<!ENTITY xxe SYSTEM "php://filter/convert.base64-encode/
→˓resource=index.php">]>
<replace>&xxe;</replace>

This file could be processed with the following code : note, you can replace ‘index.php’ in the above entity by any valid
filepath.

Here, PHP tries to load the XML file, finds the entity, then solves the entity by encoding a file called index.php. The
source code of the file is not used as data in the XML file.

At that point, the example illustrates how a XXE works : by using the XML engine to load external resources, and
preprocessing the XML code. in fact, there is only one change to make this XML code arbitrarily injected ::

<!DOCTYPE replace [<!ENTITY writer SYSTEM "https://www.example.com/entities.dtd"&
→˓gt;]>
<replace>&xxe;</replace>

With the above example, the XML code is static (as, it never changes), but the ‘xxe’ definitions are loaded from a
remove website, and are completely under the attacker control.

<?php
$dom = new DOMDocument();
$dom->loadXML($xml, LIBXML_NOENT | LIBXML_DTDLOAD);
$info = simplexml_import_dom($dom);

print base64_decode($info[0]);
?>

See also XML External Entity„ XML External Entity (XXE) Processing and Detecting and exploiting XXE in SAML
Interfaces.

Suggestions

• Strip out any entity when using external XML

• Forbid any network to the XML engine, by configuring the XML engine without network access

14.2. List of Rules 1127

https://www.php.net/engine
https://www.php.net/manual/en/language.oop5.static.php
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/XXE%20injection
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Processing
https://web-in-security.blogspot.nl/2014/11/detecting-and-exploiting-xxe-in-saml.html
https://web-in-security.blogspot.nl/2014/11/detecting-and-exploiting-xxe-in-saml.html

Exakat Documentation, Release 1

Specs

Short name Security/NoNetForXmlLoad
Rulesets All, Changed Behavior, Security
Exakat since 1.0.11
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision High
Features xml
Available in Entreprise Edition, Exakat Cloud

14.2.817 No Null For Index

Avoid using null value as an index in an array. PHP actually cast it to the empty string. This means that
later, it might be impossible to find the null in the list of keys.

<?php

$a = [];
$a[null] = 1;

print_r(array_keys($a));
// [''] empty string

?>

Suggestions

• Always checks for null values. Given it then a valid value.

Specs

Short name Structures/NoNullForIndex
Rulesets All, Analyze, Changed Behavior
Exakat since 2.5.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Available in Entreprise Edition, Exakat Cloud

1128 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.818 No Null For Native PHP Functions

Null is not acceptable anymore as an argument, for PHP native functions that require a non-nullable argu-
ment.

Until PHP 8.1, it was magically turned into an empty string.

<?php

$haystack = 'abc';
// $needle was omitted...
echo strpos($haystack, $needle);

?>

See also PHP RFC: Deprecate passing null to non-nullable arguments of internal functions.

Specs

Short name Php/NoNullForNative
Rulesets All, Analyze, Changed Behavior, CompatibilityPHP81, Deprecated
Exakat since 2.2.5
PHP Version With PHP 8.1 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features null
Available in Entreprise Edition, Exakat Cloud

14.2.819 No Null With Null Safe Operator

When building an expression with a null-safe operator, it may fail and produce a NULL as a result. When
the last method of the expression also returns null (or void, which is transformed in null), then it is not
possible to differentiate between a failure and a valid execution of the method.

As such, it is recommended to avoid finishing with a method that returns null, in an expression that uses a null-safe
operator.

<?php

class x {
function foo($a) : ?int {

if ($a % 2) {
return $a;

} else {
return null;

}
}

}

$x = x::getInstance(x::class);
(continues on next page)

14.2. List of Rules 1129

https://wiki.php.net/rfc/deprecate_null_to_scalar_internal_arg
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.types.null.php
https://www.php.net/result

Exakat Documentation, Release 1

(continued from previous page)

$result = $x?->foo($a);

// Is that an error or a valid result ?
if ($result === null) { }

?>

Suggestions

• Avoid using the null-safe operator in that expression

• Make the last property / method in the expression not return null

Specs

Short name Classes/NoNullWithNullSafeOperator
Rulesets All, Analyze, Changed Behavior, Class Review
Exakat since 2.6.4
PHP Version 8.1
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features nullsafe-object-operator
Available in Entreprise Edition, Exakat Cloud

14.2.820 No Object As Index

PHP accepts objects as index, though it will report various error messages when this happens.

Thanks to George Peter Banyard for the inspiration.

<?php

$s = 'Hello';
$o = new stdClass();

try {
$s[$o] = 'A';

} catch (\Throwable $e) {
echo $e->getMessage(), "\n";
//Cannot access offset of type stdClass on string

}

?>

See also Use an object as an offet.

1130 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://twitter.com/Girgias
https://twitter.com/Girgias/status/1405519800575553540

Exakat Documentation, Release 1

Suggestions

• Filter values being used as index

• Filter values being used as array

Specs

Short name Structures/NoObjectAsIndex
Rulesets All, Analyze
Exakat since 2.2.2
PHP Version With PHP 8.1 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features index
Available in Entreprise Edition, Exakat Cloud

14.2.821 No Parenthesis For Language Construct

Some PHP language constructs, such are include, require, include_once, require_once, print,
echo don’t need parenthesis. They accept parenthesis, but it is may lead to strange situations.

It it better to avoid using parenthesis with echo, print, return, throw, yield, yield from, include, require,
include_once, require_once.

<?php

// This is an attempt to load 'foo.inc', or kill the script
include('foo.inc') or die();
// in fact, this is read by PHP as : include 1
// include 'foo.inc' or die();

?>

See also ON PHP LANGUAGE CONSTRUCTS AND PARENTHESES and include.

Suggestions

• Remove parenthesis

14.2. List of Rules 1131

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://tfrommen.de/on-php-language-constructs-and-parentheses/
https://www.php.net/manual/en/function.include.php

Exakat Documentation, Release 1

Specs

Short name Structures/NoParenthesisForLanguageConstruct
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, Suggestions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features parenthesis, language-construct, return, include
ClearPHP no-parenthesis-for-language-construct
Examples Phpdocumentor, phpMyAdmin
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.822 No Plus One

Incrementing a variable should be done with the ++ or – operators. Any other way, may be avoided.

This is a micro optimisation.

<?php

// Best way to increment
++$x; --$y;

// Second best way to increment, if the current value is needed :
echo $x++, $y--;

// Good but slow
$x += 1;
$x -= -1;

$y += -1;
$y -= 1;

// even slower
$x = $x + 1;
$y = $y - 1;

?>

1132 Chapter 14. Rules

https://github.com/dseguy/clearPHP/tree/master/rules/no-parenthesis-for-language-construct.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Structures/PlusEgalOne
Rulesets All, Changed Behavior, Coding conventions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.823 No Private Abstract Method In Trait

Method could not be both abstract and private in traits. This was changed in PHP 8.0 : the class might
overwrite the trait’s method, since it has precedence of it. And when the class doesn’t overwrite it, then
the class has an abstract method, and can’t be instantiated.

This might be important for backward incompatibility, although it doesn’t lint in previous versions.

<?php

trait t { abstract private function foo() ;}

class x {
use t;

// valid
private function foo() {}

}

// This is a hidden abstract class
class y {

use t;
}

?>

See also Abstract Trait Members.

14.2. List of Rules 1133

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.traits.php#language.oop5.traits.abstract

Exakat Documentation, Release 1

Specs

Short
name

Traits/NoPrivateAbstract

Rulesets All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compati-
bilityPHP56, CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73,
CompatibilityPHP74

Exakat
since

2.4.5

PHP
Version

With PHP 8.0 and more recent

Severity Minor
Time To
Fix

Quick (30 mins)

Changed
Behav-
ior

PHP 8.0 - More

Preci-
sion

Very high

Features trait, abstract
Avail-
able in

Entreprise Edition, Exakat Cloud

14.2.824 No Public Access

The properties below are declared with public access, but are never used publicly. They can be made
protected or private.

<?php

class foo {
public $bar = 1; // Public, and used in public space
public $neverInPublic = 3; // Public, but never used in outside the class

function bar() {
$neverInPublic++;

}
}

$x = new foo();
$x->bar = 3;
$x->bar();

?>

1134 Chapter 14. Rules

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Classes/NoPublicAccess
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features visibility
Available in Entreprise Edition, Exakat Cloud

14.2.825 No Readonly Assignation In Global

When a property is marked readonly, it may only be assigned within the class of definition.

It cannot be assigned outside this class, in the global scope. It is also immune to class invasion.

<?php

class x {
public readonly int $p;

function foo() {
$this->p -= 1; // OK

$x = new x;
$x->p = 1; // Not OK, even if $x is of type x

}
}

$x = new x;
$x->p = 1; // Not OK

?>

Specs

Short name Classes/NoReadonlyAssignationInGlobal
Rulesets All, Analyze, Changed Behavior, Class Review
Exakat since 2.4.2
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features readonly, class-invasion
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1135

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.826 No Real Comparison

Avoid comparing decimal numbers with ==, ===, !==, !=. Real numbers have an error margin which is
random, and makes it very difficult to match even if the compared value is a literal.

PHP uses an internal representation in base 2 : any number difficult to represent with this base (like 0.1 or 0.7) will
have a margin of error. Use precision formulas with abs() to approximate values with a given precision, or avoid reals
altogether.

<?php

$a = 1/7;
$b = 2.0;

// 7 * $a is a real, not an integer
var_dump(7 * $a === 1);

// rounding error leads to wrong comparison
var_dump((0.1 + 0.7) * 10 == 8);
// although
var_dump((0.1 + 0.7) * 10);
// displays 8

// precision formula to use with reals. Adapt 0.0001 to your precision needs
var_dump(abs(((0.1 + 0.7) * 10) - 8) < 0.0001);

?>

See also Floating point numbers.

Suggestions

• Cast the values to integer before comparing

• Compute the difference, and keep it below a threshold

• Use the gmp or the bcmath extension to handle high precision numbers

• Change the ‘precision’ directive of PHP : ini_set('precision', 30) to make number larger

• Multiply by a power of ten, before casting to integer for the comparison

• Use floor(), ceil() or round() to compare the numbers, with a specific precision

1136 Chapter 14. Rules

https://www.php.net/error
https://www.php.net/error
https://www.php.net/abs
https://www.php.net/manual/en/language.types.float.php#language.types.float

Exakat Documentation, Release 1

Specs

Short name Type/NoRealComparison
Rulesets All, Analyze, CE, CI-checks, PHP recommendations, Top10
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features real
ClearPHP no-real-comparison
Examples Magento, SPIP
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.827 No Reference For Static Property

Static properties used to behave independently when set to a reference value. This was fixed in PHP 7.3.

According to the PHP 7.3 changelog :

In PHP, static properties are shared between inheriting classes, unless the static property is explicitly overridden in a
child class. However, due to an implementation artifact it was possible to separate the static properties by assigning a
reference. This loophole has been fixed.

<?php

class Test {
public static $x = 0;

}
class Test2 extends Test { }

Test2::$x = &$x;
$x = 1;

var_dump(Test::$x, Test2::$x);
// Previously: int(0), int(1)
// Now: int(1), int(1)

?>

See also PHP 7.3 UPGRADE NOTES.

14.2. List of Rules 1137

https://github.com/dseguy/clearPHP/tree/master/rules/no-real-comparison.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://github.com/php/php-src/blob/3b6e1ee4ee05678b5d717cd926a35ffdc1335929/UPGRADING#L66-L81

Exakat Documentation, Release 1

Specs

Short
name

Php/NoReferenceForStaticProperty

Rulesets All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compati-
bilityPHP56, CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72

Exakat
since

1.4.9

PHP Ver-
sion

With PHP 7.3 and older

Severity Major
Time To
Fix

Slow (1 hour)

Changed
Behavior

PHP 7.3 - More

Precision Very high
Available
in

Entreprise Edition, Exakat Cloud

14.2.828 No Reference For Ternary

The ternary operator and the null coalescing operator are both expressions that only return values, and not
a reference.

This means that any provided reference will be turned into its value. While this is usually invisible, it will raise a
warning when a reference is expected. This is the case with methods returning a reference.

A PHP notice is generated when using a ternary operator or the null coalesce operator : Only variable references
should be returned by reference. The notice is also emitted when returning objects.

This applies to methods, functions and closures.

<?php

// This works
function &foo($a, $b) {

if ($a === 1) {
return $b;

} else {
return $a;

}
}

// This raises a warning, as the operator returns a value
function &foo($a, $b) { return $a === 1 ? $b : $a; }

?>

See also Null Coalescing Operator and Ternary Operator.

1138 Chapter 14. Rules

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.operators.comparison.php#language.operators.comparison.coalesce
https://www.php.net/manual/en/language.operators.comparison.php#language.operators.comparison.ternary

Exakat Documentation, Release 1

Suggestions

• Drop the reference at assignation time

• Drop the reference in the argument definition

• Drop the reference in the function return definition

Specs

Short name Php/NoReferenceForTernary
Rulesets All, Analyze, CE, CI-checks
Exakat since 1.0.8
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features class
Examples phpadsnew
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.829 No Reference On Left Side

Do not use references as the right element in an assignation.

This is the case for most situations : addition, multiplication, bitshift, logical, power, concatenation. Note that PHP
won’t compile the code if the operator is a short operator (+=, .=, etc.), nor if the & is on the right side of the operator.

<?php

$b = 2;
$c = 3;

$a = &$b + $c;
// $a === 2 === $b;

$a = $b + $c;
// $a === 5

?>

See also References Explained and Operator Precedence.

14.2. List of Rules 1139

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.references.php
https://www.php.net/manual/en/language.operators.precedence.php

Exakat Documentation, Release 1

Specs

Short name Structures/NoReferenceOnLeft
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.11.5
PHP Version All
Severity Critical
Time To Fix Quick (30 mins)
Precision Very high
Features reference
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.830 No Referenced Void

There is no point returning a reference with a void type. This is now reported as deprecated in PHP 8.1.

<?php

function &test(): void {}

?>

See also PHP RFC: Deprecations for PHP 8.1.

Suggestions

• Removes the reference operator from the function definition

Specs

Short name Functions/NoReferencedVoid
Rulesets All, Analyze, CompatibilityPHP81, Deprecated
Exakat since 2.2.4
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features void, reference
Available in Entreprise Edition, Exakat Cloud

1140 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://wiki.php.net/rfc/deprecations_php_8_1
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.831 No Return For Generator

Return is not allowed in a generator <https://www.php.net/`generator>`_ function. In PHP versions 5.5
and 5.6, they yield a fatal Error.

<?php

function generatorWithReturn() {
yield 1;
return 2;

}

?>

See also Generators overview.

Suggestions

• Remove usage of return in the generator

• Update PHP to version 7.0 or later

Specs

Short name Php/NoReturnForGenerator
Rulesets All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56
Exakat since 1.4.9
PHP Version From PHP 5.5 to 7.0
Severity Critical
Time To Fix Quick (30 mins)
Precision High
Features generator, yield
Available in Entreprise Edition, Exakat Cloud

14.2.832 No Return Or Throw In Finally

Avoid using return and throw in a finally block. Both command will interrupt the processing of the try catch
block, and any exception that was emitted will not be processed. This leads to unprocessed exceptions,
leaving the application in an unstable state.

Note that PHP prevents the usage of goto, break and continue within the finally block at linting phase. This is categorized
as a Security problem.

<?php
function foo() {

try {
// Exception is thrown here
throw new \Exception();

} catch (Exception $e) {
// This is executed AFTER finally
return 'Exception';

(continues on next page)

14.2. List of Rules 1141

https://www.php.net/generator
https://www.php.net/error
https://www.php.net/manual/en/language.generators.overview.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception
https://www.php.net/manual/en/control-structures.break.php
https://www.php.net/manual/en/control-structures.continue.php

Exakat Documentation, Release 1

(continued from previous page)

} finally {
// This is executed BEFORE catch
return 'Finally';

}
}

}

// Displays 'Finally'. No exception
echo foo();

function bar() {
try {

// Exception is thrown here
throw new \Exception();

} catch (Exception $e) {
// Process the exception.
return 'Exception';

} finally {
// clean the current situation
// Keep running the current function

}
return 'Finally';

}
}

// Displays 'Exception', with processed Exception
echo bar();

?>

See also Return Inside Finally Block.

Suggestions

• Move the return right after the try/catch/finally call

Specs

Short name Structures/NoReturnInFinally
Rulesets All, Security
Exakat since 0.12.1
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features finally, return
Available in Entreprise Edition, Exakat Cloud

1142 Chapter 14. Rules

https://www.owasp.org/index.php/Return_Inside_Finally_Block
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.833 No Return Used

The return value of the following methods are never used. The return argument may be dropped from the
code, as it is dead code.

This analysis supports functions and static methods, when a definition may be found. It doesn’t support method calls.

<?php

function foo($a = 1) { return 1; }

foo();
foo();
foo();
foo();
foo();
foo();

// This function doesn't return anything.
function foo2() { }

// The following function are used in an expression, thus the return is important
function foo3() { return 1;}
function foo4() { return 1;}
function foo5() { return 1;}

foo3() + 1;
$a = foo4();
foo(foo5());

?>

Suggestions

• Remove the return statement in the function

• Actually use the value returned by the method, for test or combination with other values

Specs

Short name Functions/NoReturnUsed
Rulesets All, Analyze, Suggestions
Exakat since 0.11.3
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features return
Examples SPIP, LiveZilla
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1143

https://www.php.net/manual/en/language.oop5.static.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.834 No Self Referencing Constant

It is not possible to use a constant to define itself in a class. It yields a fatal error at runtime.

The PHP error reads : Cannot declare `self <https://www.php.net/manual/en/language.oop5.
paamayim-nekudotayim.php>`_-referencing constant 'self\:\:C2'. Unlike PHP which is self-
referencing, self referencing variables can’t have a value : just don’t use that. The code may access an already
declared constant with self or with its class name. This error is not detected by linting. It is only detected at
instantiation time : if the class is not used, it won’t appear.

<?php
class a {

const C1 = 1; // fully defined constant
const C2 = self::C2; // self referencing constant
const C3 = a::C3 + 2; // self referencing constant

}
?>

Suggestions

• Give a literal value to this constant

• Give a constant value to this constant : other class constants or constant are allowed here.

Specs

Short name Classes/NoSelfReferencingConstant
Rulesets All, Analyze, Class Review, LintButWontExec
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features constant
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.835 No Spread For Hash

The spread operator ... only works on integer-indexed arrays.

<?php

// This is valid, as ``"-33"`` is cast to integer by PHP automagically
var_dump(...[1,"-33" => 2, 3]);

// This is not valid
var_dump(...[1,"C" => 2, 3]);

?>

1144 Chapter 14. Rules

https://www.php.net/error
https://www.php.net/error
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/error
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

See also Variable-length argument lists.

Suggestions

• Add a call to array_values() instead of the hash

• Check the arguments beforehand with array_is_list()

• Upgrade to PHP 8.1

Specs

Short name Arrays/NoSpreadForHash
Rulesets All, Analyze, Changed Behavior
Exakat since 1.9.3
PHP Version With PHP 8.1 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features ellipsis, array, array-spread
Available in Entreprise Edition, Exakat Cloud

14.2.836 No Static Variable In A Method

Refactor static variables into properties.

Inside a class, it is recommended to use the class properties, static or not, to hold values between calls to the method.
Inside a function, or a closure <https://www.php.net/`closure>`_, no such container is available, so static variables may
be useful. Although, a refactoring to a class is also recommended here.

Properties have clear definitions, and are less surprising than static variables. The static variable is easier to refactor
as a static property. It is also possible to refactor it as a property, although it may impact the behavior of the previous
code, or require extra work.

<?php

class barbar {
function foo() {

static $counter = 0;

// count the number of calls of this method
return ++$counter;

}
}

class bar {
static $counter = 0;

function foo() {
// count the number of calls of this method
return ++self::$counter;

}
(continues on next page)

14.2. List of Rules 1145

https://www.php.net/manual/en/functions.arguments.php#functions.variable-arg-list
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/closure
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

(continued from previous page)

}

?>

Suggestions

• Refactor the variable into a static property

• Refactor the variable into a property and then use dependency injection

Specs

Short name Variables/NoStaticVarInMethod
Rulesets All, Class Review, Suggestions
Exakat since 2.2.1
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features static-variable
Available in Entreprise Edition, Exakat Cloud

14.2.837 No String With Append

PHP 7 doesn’t allow the usage of [] with strings. [] is an array-only operator.

This was possible in PHP 5, but is now forbidden in PHP 7.

<?php

$string = 'abc';

// Not possible in PHP 7
$string[] = 'd';

?>

See also class.

Suggestions

• Use the concatenation operator . to append strings.

• Use the concatenation short assignement .= to append strings.

1146 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.basic.php#language.oop5.basic.class

Exakat Documentation, Release 1

Specs

Short name Php/NoStringWithAppend
Rulesets All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56
Exakat since 0.8.4
PHP Version With PHP 7.0 and more recent
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features string, append
Available in Entreprise Edition, Exakat Cloud

14.2.838 No Substr Minus One

Negative index were introduced in PHP 7.1. This syntax is not compatible with PHP 7.0 and older.

<?php
$string = 'abc';

echo $string[-1]; // c

echo $string[1]; // a

?>

See also Generalize support of negative string offsets.

Suggestions

• Use the -1 index in a string, instead of a call to substr()

Specs

Short
name

Php/NoSubstrMinusOne

Rulesets All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compati-
bilityPHP56, CompatibilityPHP70

Exakat
since

0.12.5

PHP Ver-
sion

With PHP 7.1 and more recent

Severity Major
Time To
Fix

Quick (30 mins)

Precision Very high
Available
in

Entreprise Edition, Exakat Cloud

14.2. List of Rules 1147

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://wiki.php.net/rfc/negative-string-offsets
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.839 No Valid Cast

This cast generates an error, as there is no way to convert an object to an int.

The result will be 1. This rule applies to float and int. This doesn’t apply to string cast, as the magic method __toString()
allows for such conversions.

<?php

$a = (int) foo();

function foo() : A {}

?>

Suggestions

• Create a method that convert the original object to the target type

Specs

Short name Structures/NoValidCast
Rulesets All, Analyze
Exakat since 2.5.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features cast
Available in Entreprise Edition, Exakat Cloud

14.2.840 No Variable Needed

This analysis reports methods where the local variables are not needed.

Such variables may be used to improve readability.

<?php

// The variable is not strictly necessary here
function foo($a) {

$k = $a->method(1, 0);
return $k;

}

?>

1148 Chapter 14. Rules

https://www.php.net/error
https://www.php.net/result
https://www.php.net/manual/en/language.oop5.magic.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Remove the variable

Specs

Short name Variables/NoVariableNeeded
Rulesets All, Semantics
Exakat since 2.5.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.841 No Weak SSL Crypto

When enabling PHP’s stream SSL, it is important to use a safe protocol.

All the SSL protocols (1.0, 2.0, 3.0), and TLS (1.0 are unsafe. The best is to use the most recent TLS, version 1.2.

stream_socket_enable_crypto() and curl_setopt() are checked. Using the TLS transport protocol of PHP will choose
the version by itself.

<?php

// This socket will use SSL v2, which
$socket = 'sslv2://www.example.com';
$fp = fsockopen($socket, 80, $errno, $errstr, 30);

?>

See also Insecure Transportation Security Protocol Supported (TLS 1.0), The 2018 Guide to Building Secure PHP
Software and Internet Domain: TCP, UDP, SSL, and TLS.

Suggestions

• Use TLS transport, with version 1.2

Specs

Short name Security/NoWeakSSLCrypto
Rulesets All, Changed Behavior, Security
Exakat since 1.9.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features ssl
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1149

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/stream_socket_enable_crypto
https://www.php.net/curl_setopt
https://www.netsparker.com/web-vulnerability-scanner/vulnerabilities/insecure-transportation-security-protocol-supported-tls-10/
https://paragonie.com/blog/2017/12/2018-guide-building-secure-php-software
https://paragonie.com/blog/2017/12/2018-guide-building-secure-php-software
https://www.php.net/manual/en/transports.inet.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.842 No array_merge() In Loops

array_merge() is memory intensive : every call will duplicate the arguments in memory, before merging
them.

To handle arrays that may be quite big, it is recommended to avoid using array_merge() in a loop. Instead, one should use
array_merge() with as many arguments as possible, making the merge a on time call. Note that array_merge_recursive()
and file_put_contents() are affected and reported the same way.

<?php

// A large multidimensional array
$source = ['a' => ['a', 'b', /*...*/],

'b' => ['b', 'c', 'd', /*...*/],
/*...*/
];

// Faster way
$b = array();
foreach($source as $key => $values) {

//Collect in an array
$b[] = $values;

}

// One call to array_merge
$b = call_user_func_array('array_merge', $b);
// or with variadic
$b = call_user_func('array_merge', ..$b);

// Fastest way (with above example, without checking nor data pulling)
$b = call_user_func_array('array_merge', array_values($source))
// or
$b = call_user_func('array_merge', ...array_values($source))

// Slow way to merge it all
$b = array();
foreach($source as $key => $values) {

$b = array_merge($b, $values);
}

?>

See also Speed up array_merge().

1150 Chapter 14. Rules

https://www.php.net/array_merge
https://www.php.net/array_merge
https://www.php.net/array_merge
https://www.php.net/array_merge_recursive
https://www.php.net/file_put_contents
https://www.exakat.io/en/speeding-up-array_merge/

Exakat Documentation, Release 1

Suggestions

• Store all intermediate arrays in a temporary variable, and use array_merge() once, with ellipsis or
call_user_func_array().

Specs

Short name Performances/ArrayMergeInLoops
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, Performances, Top10
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
ClearPHP no-array_merge-in-loop
Examples Tine20
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.843 No get_class() With Null

It is not possible to pass explicitly null to get_class() to get the current’s class name. Since PHP 7.2, one
must call get_class() without arguments to achieve that result.

<?php

class A {
public function f() {
// Gets the classname
$classname = get_class();

// Gets the classname and a warning
$classname = get_class(null);

}
}

$a = new A();
$a->f('get_class');

?>

14.2. List of Rules 1151

https://github.com/dseguy/clearPHP/tree/master/rules/no-array_merge-in-loop.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/get_class
https://www.php.net/get_class
https://www.php.net/result

Exakat Documentation, Release 1

Specs

Short
name

Structures/NoGetClassNull

Rule-
sets

All, Analyze, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56,
CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72

Exakat
since

1.0.4

PHP
Version

All

Sever-
ity

Major

Time
To Fix

Instant (5 mins)

Preci-
sion

Very high

Fea-
tures

null

Avail-
able in

Entreprise Edition, Exakat Cloud

14.2.844 No isset() With empty()

empty() actually does the job of isset() too.

From the manual : No warning is generated if the variable does not exist. That means empty()
is essentially the concise equivalent to !`isset(<https://www.www.php.net/isset>`_$var)
|| $var == false. The main difference is that isset() only works with variables, while empty() works with other
structures, such as constants.

<?php

// Enough validation
if (!empty($a)) {

doSomething();
}

// Too many tests
if (isset($a) && !empty($a)) {

doSomething();
}

?>

See also Isset and empty.

1152 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.www.php.net/isset
https://www.www.php.net/isset
http://www.php.net/isset
http://www.php.net/empty

Exakat Documentation, Release 1

Suggestions

• Only use isset(), just drop the empty()

• Only use empty(), just drop the empty()

• Use a null value, so the variable is always set

Specs

Short name Structures/NoIssetWithEmpty
Rulesets All, Analyze, CE, CI-checks, PHP recommendations
Exakat since 0.8.7
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features class
Examples XOOPS
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.845 No mb_substr In Loop

Do not use loops on mb_substr().

mb_substr() always starts at the beginning of the string to search for the nth char, and recalculate everything. This means
that the first iterations are as fast as substr() (for comparison), while the longer the string, the slower mb_substr().

The recommendation is to use preg_split() with the u option, to split the string into an array. This save multiple
recalculations.

<?php

// Split the string by characters
$array = preg_split('//u', $string, -1, PREG_SPLIT_NO_EMPTY);
foreach($array as $c) {

doSomething($c);
}

// Slow version
$nb = mb_strlen($mb);
for($i = 0; $i < $nb; ++$i) {

// Fetch a character
$c = mb_substr($string, $i, 1);
doSomething($c);

}

?>

See also Optimization: How I made my PHP code run 100 times faster and How to iterate UTF-8 string in PHP?.

14.2. List of Rules 1153

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/mb_substr
https://www.php.net/mb_substr
https://www.php.net/substr
https://www.php.net/mb_substr
https://www.php.net/preg_split
https://mike42.me/blog/2018-06-how-i-made-my-php-code-run-100-times-faster
https://stackoverflow.com/questions/3666306/how-to-iterate-utf-8-string-in-php

Exakat Documentation, Release 1

Suggestions

• Use preg_split() and loop on its results.

Specs

Short name Performances/MbStringInLoop
Rulesets All, Changed Behavior, Performances
Exakat since 1.9.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features csv
Available in Entreprise Edition, Exakat Cloud

14.2.846 Non Ascii Variables

PHP allows certain characters in variable names. The variable name must only include letters, figures,
underscores and ASCII characters from 128 to 255.

In practice, letters outside the scope of the intervalle [a-zA-Z0-9_] are rare, and require more care when editing the
code or passing it from OS to OS.

Also, certain letter might appear similar to the roman ones, and be part of a different alphabet. This is the case, for
example, of the cyrillic alphabet, where (cyrillic A, U+0410) is actually different from A (Latin A, U+0041). Some
dashes and spaces may be valid in PHP variable names, and look very confusing.

<?php

// person, in Simplified Chinese
class {

// An actual working class in PHP.
public function __construct() {

echo __CLASS__;
}

}

// people = new person();
$ = new ();

?>

See also Variables.

1154 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.variables.basics.php

Exakat Documentation, Release 1

Suggestions

• Make sure those special chars have actual meaning.

Specs

Short name Variables/VariableNonascii
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Examples Magento
Available in Entreprise Edition, Exakat Cloud

14.2.847 Non Breakable Space In Names

PHP allows non-breakable spaces in structures names, such as class, interfaces, traits, and variables.

This may be a nice trick to make names more readable outside code context, like long-named methods for tests. Original
post by Matthieu Napoli. .

<?php

class class with non breakable spaces {}

class ClassWithoutNonBreakableSpaces {}

?>

See also Using non-breakable spaces in test method names and PHP Variable Names.

Specs

Short name Structures/NonBreakableSpaceInNames
Rulesets All, Appinfo, CE
Exakat since 0.12.0
PHP Version All
Severity
Time To Fix
Precision Very high
Features non-breakable-space
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1155

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
http://mnapoli.fr/using-non-breakable-spaces-in-test-method-names/
http://schappo.blogspot.nl/2015/06/php-variable-names.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.848 Non Integer Nor String As Index

Report usage of non-integer and non-string types as index in an array syntax.

PHP arrays only accept integers and strings as keys. PHP convert the other types to integer or string, and that may lead
to surprises when reading the arrays.

<?php

function foo (float $index, array $array) {
$array[$index];

}

?>

Specs

Short name Structures/NonIntStringAsIndex
Rulesets All, Analyze, Changed Behavior
Exakat since 2.6.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Low
Available in Entreprise Edition, Exakat Cloud

14.2.849 Non Nullable Getters

A getter needs to be nullable when a property is injected.

In particular, if the injection happens with a separate method, there is a time where the object is not consistent, and the
property holds a default non-object value.

<?php

class Consistent {
private $db = null;

function __construct(Db $db) {
$this->db = $db;
// Object is immediately consistent

}

// Db might be null
function getDb() {

return $this->db;
}

}

class Inconsistent {
private $db = null;

(continues on next page)

1156 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

function __construct() {
// No initialisation

}

// This might be called on time, or not
// This typehint cannot be nullable, nor use null as default
function setDb(DB $db) {

return $this->db;
}

// Db might be null
function getDb() {

return $this->db;
}

}
?>

Suggestions

• Remove the nullable option and the tests on null.

Specs

Short name Classes/NonNullableSetters
Rulesets All, Analyze, Class Review
Exakat since 1.9.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features injection
Available in Entreprise Edition, Exakat Cloud

14.2.850 Non Static Methods Called In A Static

Static methods have to be declared as such (using the static keyword). Then, one may call them without
instantiating the object.

PHP 7.0, and more recent versions, yield a deprecated error : Non-`static <https://www.php.net/manual/en/
language.oop5.static.php>`_ method A\:\:B() should not be called statically.

PHP 5 and older doesn’t check that a method is static or not : at any point, the code may call one method statically. It
is a bad idea to call non-static method statically. Such method may make use of special variable $this, which will be
undefined. PHP will not check those calls at compile time, nor at running time.

It is recommended to update this situation : make the method actually static, or use it only in object context.

Note that this analysis reports all static method call made on a non-static method, even within the same class or class
hierarchy. PHP silently accepts static call to any in-family method.

14.2. List of Rules 1157

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/error
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

<?php
class x {

static public function sm() { echo __METHOD__.\n; }
public public sm() { echo __METHOD__.\n; }

}

x::sm(); // echo x::sm

// Dynamic call
['x', 'sm']();
[\x::class, 'sm']();

$s = 'x::sm';
$s();

?>

See also Static Keyword.

Suggestions

• Call the method the correct way

• Define the method as static

Specs

Short
name

Classes/NonStaticMethodsCalledStatic

Rulesets All, Analyze, CE, CI-checks, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Com-
patibilityPHP56, IsExt, IsPHP, IsStub

Exakat
since

0.8.4

PHP Ver-
sion

All

Severity Minor
Time To
Fix

Quick (30 mins)

Precision Medium
Features static
Exam-
ples

Dolphin, Magento

Avail-
able in

Entreprise Edition, Community Edition, Exakat Cloud

1158 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.static.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.851 Non-constant Index In Array

Undefined constants revert as strings in Arrays. They are also called barewords.

In $array[index], PHP cannot find index as a constant, but, as a default behavior, turns it into the string index.

This default behavior raise concerns when a corresponding constant is defined, either using define() or the const keyword
(outside a class). The definition of the index constant will modify the behavior of the index, as it will now use the
constant definition, and not the ‘index’ string.

It is recommended to make index a real string (with ‘ or “), or to define the corresponding constant to avoid any future
surprise.

Note that PHP 7.2 removes the support for this feature.

<?php

// assign 1 to the element index in $array
// index will fallback to string
$array[index] = 1;
//PHP Notice: Use of undefined constant index - assumed 'index'

echo $array[index]; // display 1 and the above error
echo "$array[index]"; // display 1
echo "$array['index']"; // Syntax error

define('index', 2);

// now 1 to the element 2 in $array
$array[index] = 1;

?>

See also PHP RFC: Deprecate and Remove Bareword (Unquoted) Strings and Syntax.

Suggestions

• Declare the constant to give it an actual value

• Turn the constant name into a string

Specs

Short name Arrays/NonConstantArray
Rulesets All, Analyze, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features array
Examples Dolibarr, Zencart
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1159

https://www.php.net/define
https://wiki.php.net/rfc/deprecate-bareword-strings
https://www.php.net/manual/en/language.constants.syntax.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.852 Non-lowercase Keywords

The usual convention is to write PHP keywords (like as, foreach, switch, case, break, etc.) all in
lowercase.

PHP understands them in lowercase, UPPERCASE or WilD Case, so there is nothing compulsory here. Although, it
will look strange to many.

Some keywords are missing from this analysis : extends, implements, as. This is due to the internal engine, which
doesn’t keep track of them in its AST representation.

<?php

// usual PHP convention
foreach($array as $element) {

echo $element;
}

// unusual PHP conventions
Foreach($array AS $element) {

eCHo $element;
}

?>

Suggestions

• Use lowercase only PHP keywords, except for constants such as __CLASS__.

Specs

Short name Php/UpperCaseKeyword
Rulesets All, Changed Behavior, Coding conventions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features case
Available in Entreprise Edition, Exakat Cloud

14.2.853 Nonexistent Variable In compact()

Compact() doesn’t warn when it tries to work on an nonexistent variable. It just ignores the variable.

This behavior changed in PHP 7.3, and compact() now emits a warning when the compacted variable doesn’t exist. For
performances reasons, this analysis only works inside methods and functions.

<?php

function foo($b = 2) {
(continues on next page)

1160 Chapter 14. Rules

https://www.php.net/engine
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/compact
https://www.php.net/compact

Exakat Documentation, Release 1

(continued from previous page)

$a = 1;
// $c doesn't exists, and is not compacted.
return compact('a', 'b', 'c');

}
?>

See also compact and PHP RFC: Make compact function reports undefined passed variables.

Suggestions

• Fix the name of variable in the compact() argument list

• Remove the name of variable in the compact() argument list

Specs

Short name Php/CompactInexistant
Rulesets All, Changed Behavior, CompatibilityPHP73, Suggestions
Exakat since 1.2.9
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features compact
Available in Entreprise Edition, Exakat Cloud

14.2.854 Normal Methods

Spot normal Methods.

<?php

class foo{
// Normal method
private function bar() {}

// Static method
private static function barbar() {}

}

?>

14.2. List of Rules 1161

http://www.php.net/compact
https://wiki.php.net/rfc/compact
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Classes/NormalMethods
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features method
Available in Entreprise Edition, Exakat Cloud

14.2.855 Not A Scalar Type

int is the actual PHP scalar type, not integer.

PHP 7 introduced several scalar types, in particular int, bool, string and float. Those three types are easily
mistaken with integer, boolean, real and double.

Unless those classes actually exists, PHP emits some strange error messages. Thanks to Benoit Viguier for the
original idea for this analysis.

<?php

// This expects a scalar of type 'integer'
function foo(int $i) {}

// This expects a object of class 'integer'
function abr(integer $i) {}

?>

See also Type declarations and PHP RFC: Scalar Type Hints.

Suggestions

• Do not use int as a class name, an interface name or a trait name.

Specs

Short name Php/NotScalarType
Rulesets All, Changed Behavior, PHP recommendations, Typechecks
Exakat since 1.0.7
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Features scalar-typehint
Available in Entreprise Edition, Exakat Cloud

1162 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://twitter.com/b_viguier/status/940173951908700161
https://www.php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration
https://wiki.php.net/rfc/scalar_type_hints
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.856 Not Equal Is Not !==

Not and Equal operators, used separately, don’t amount to the different operator !==.

!$a == $b first turns $a``into the opposite boolean, then compares this boolean value to ``$b.
On the other hand, $a !== $b compares the two variables for type and value, and returns a boolean. Note that the
instanceof operator may be use with this syntax, due to operator precedence.

<?php

if ($string != 'abc') {
// doSomething()

}

// Here, string will be an boolean, leading
if (!$string == 'abc') {

// doSomething()
}

// operator priority may be confusing
if (!$object instanceof OneClass) {

// doSomething()
}
?>

See also Operator Precedence.

Suggestions

• Use the != or !==

• Use parenthesis

Specs

Short name Structures/NotEqual
Rulesets All, Analyze, CE, CI-checks
Exakat since 2.0.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features comparison
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1163

https://www.php.net/manual/en/language.operators.precedence.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.857 Not Not

Double not makes a boolean, not a true.

This is a wrong casting to boolean. PHP supports (boolean) to do the same, faster and cleaner.

<?php
// Explicit code
$b = (boolean) $x;
$b = (bool) $x;

// Wrong type casting
$b = !!$x;

?>

See also Logical Operators and Type Juggling.

Suggestions

• Use (bool) casting operator for that

• Don’t typecast, and let PHP handle it. This works in situations where the boolean is immediately used.

Specs

Short name Structures/NotNot
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features logical-operator, cast
ClearPHP no-implied-cast
Examples Cleverstyle, Tine20
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.858 Not Or Tilde

There are two NOT operator in PHP : ! and ~. The first is a logical operator, and returns a boolean. The
second is a bit-wise operator, and flips each bit.

Although they are distinct operations, there are situations where they provide the same results. In particular, when
processing booleans.

Yet, ! and ~ are not the same. ~ has a higher priority, and will not yield to instanceof, while ! does.

The analyzed code has less than 10% of one of them : for consistency reasons, it is recommended to make them all the
same.

1164 Chapter 14. Rules

https://www.php.net/manual/en/language.operators.logical.php
https://www.php.net/manual/en/language.types.type-juggling.php
https://github.com/dseguy/clearPHP/tree/master/rules/no-implied-cast.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

<?php

// be consistent
if (!$condition) {

doSomething();
}

if (~$condition) {
doSomething();

}

?>

See also Bitwise Operators, Logical Operators and Operators Precedences.

Suggestions

• Use the ! in logical expressions

• Use the ~ in bitwise expressions, with integers for example

Specs

Short name Structures/NotOrNot
Rulesets All, Preferences
Exakat since 1.8.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features logical-operator, bitwise-operator
Available in Entreprise Edition, Exakat Cloud

14.2.859 Not Same Name As File

The class, interface or trait in this file as a different name, case included, than the file name.

In the following example, the file name is Foo.php.

<?php

// normal host of this file
class Foo {

// some code
}

// case-typo this file
class foo {

// some code
}

(continues on next page)

14.2. List of Rules 1165

https://www.php.net/manual/en/language.operators.bitwise.php
https://www.php.net/manual/en/language.operators.logical.php
https://www.php.net/manual/en/language.operators.precedence.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// strangely stored class
class foo {

// some code
}

// This is valid name, but there is also a Foo class, and other classe in this file.
interface Foo {}

?>

Specs

Short name Classes/SameNameAsFile
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features class
Available in Entreprise Edition, Exakat Cloud

14.2.860 Nowdoc Delimiter Glossary

List of all the delimiters used to build a Nowdoc string.

<?php
$nowdoc = <<<'EOD'

EOD;

?>

See also Nowdoc and Heredoc.

Specs

Short name Type/Nowdoc
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features nowdoc, heredoc
Available in Entreprise Edition, Community Edition, Exakat Cloud

1166 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.types.string.php#language.types.string.syntax.nowdoc
https://www.php.net/manual/en/language.types.string.php#language.types.string.syntax.heredoc
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.861 Null On New

Until PHP 7, some classes instantiation could yield null, instead of throwing an exception.

After issuing a ‘new’ with those classes, it was important to check if the returned object were null or not. No exception
were thrown. This inconsistency has been cleaned in PHP 7 : see See Internal Constructor Behavior

<?php

// Example extracted from the wiki below
$mf = new MessageFormatter('en_US', '{this was made intentionally incorrect}');
if ($mf === null) {

echo 'Surprise!';
}

?>

See also PHP RFC: Constructor behaviour of internal classes.

Suggestions

• Remove the check on null after a new instantiation

Specs

Short name Classes/NullOnNew
Rulesets All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56
Exakat since 0.8.4
PHP Version With PHP 7.0 and older
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Features class, new, null
Available in Entreprise Edition, Exakat Cloud

14.2.862 Null Or Boolean Arrays

Null, int, floats, booleans are valid with PHP array syntx. Yet, they only produces null values. They also
did not emits any warning until PHP 7.4.

Older code used to initialize variables as null, sometimes explictly, and then, use them as arrays. The current support
for this syntax is for backward compatibility.

Illegal keys, such as another array, will also generate a NULL value, instead of a Fatal error.

<?php

// outputs NULL
var_dump(null[0]);
var_dump(null[[]]);

(continues on next page)

14.2. List of Rules 1167

https://www.php.net/exception
https://www.php.net/exception
https://wiki.php.net/rfc/internal_constructor_behaviour
https://wiki.php.net/rfc/internal_constructor_behaviour
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.types.null.php
https://www.php.net/error

Exakat Documentation, Release 1

(continued from previous page)

const MY_CONSTANT = true;
// outputs NULL
var_dump(MY_CONSTANT[10]);

?>

See also Null and True.

Suggestions

• Avoid using the array syntax on null and boolean

• Avoid using null and boolean on constant that are expecting arrays

Specs

Short name Arrays/NullBoolean
Rulesets All, Analyze
Exakat since 1.8.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features null, boolean, float, int, array
Available in Entreprise Edition, Exakat Cloud

14.2.863 Null Type Favorite

Null typed may be written in two ways : with ? or with union type and null.

The analyzed code has less than 10% of one of them : for consistency reasons, it is recommended to make them all the
same.

<?php

function foo(?A $a) : B|null {
// some code

}

?>

1168 Chapter 14. Rules

https://twitter.com/Chemaclass/status/1144588647464951808
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Functions/NullTypeFavorite
Rulesets All, Changed Behavior, Preferences
Exakat since 2.3.2
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features null
Available in Entreprise Edition, Exakat Cloud

14.2.864 Nullable With Constant

Arguments are automatically nullable with a literal null. They used to also be nullable with a constant null,
before PHP 8.0.

<?php

// Extracted from https://github.com/php/php-src/blob/master/UPGRADING

// Replace
function test(int $arg = CONST_RESOLVING_TO_NULL) {}
// With
function test(?int $arg = CONST_RESOLVING_TO_NULL) {}
// Or
function test(int $arg = null) {}

?>

Suggestions

• Use the valid syntax

Specs

Short name Functions/NullableWithConstant
Rulesets All, CE, CompatibilityPHP80
Exakat since 2.1.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features constant
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1169

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.865 Nullable Without Check

Nullable typed argument or properties should be checked before usage. When they are null, they probably
won’t behave like the other type, and lead to an error.

<?php

// This will emit a fatal error when $a = null
function foo(?A $a) {

return $a->m();
}

// This is stable
function foo(?A $a) {

if ($a === null) {
return 42;

} else {
return $a->m();

}
}

?>

See also Null Return Types.

Suggestions

• Add a check on return value

Specs

Short name Functions/NullableWithoutCheck
Rulesets All, Class Review
Exakat since 2.0.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features null, return-typehint
Available in Entreprise Edition, Exakat Cloud

1170 Chapter 14. Rules

https://www.php.net/error
https://afilina.com/learn/nulls/return-types
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.866 Numeric Literal Separator

Integer and floats may be written with internal underscores. This way, it is possible to separate large
number into smaller groups, and make them more readable.

Numeric Literal Separators were introduced in PHP 7.4 and are not backward compatible.

<?php
$a = 1_000_000_000; // A billion
$a = 1000000000; // A billion too...

$b = 107_925_284.88; // 6 light minute to kilometers = 107925284.88 kilometers
$b = 107925284.88; // Same as above
?>

See also PHP RFC: Numeric Literal Separator.

Specs

Short name Php/IntegerSeparatorUsage
Rulesets All, Appinfo, CE, Changed Behavior, CompatibilityPHP73
Exakat since 1.9.0
PHP Version With PHP 7.4 and more recent
Severity
Time To Fix
Precision Very high
Features integer-separator
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.867 Objects Don’t Need References

There is no need to add references to parameters for objects, as those are always passed by reference when
used as arguments.

Reference operator is needed when the object are replaced inside the method with a new value (or a clone), as whole.
Calls to methods or property modifications do not require extra reference.

Reference operator is also needed when one of the types is scalar : this include null, and the hidden null type : that is
when the default value is null.

This rule applies to arguments in methods, and to foreach() blind variables.

<?php
$object = new stdClass();
$object->name = 'a';

foo($object);
print $object->name; // Name is 'b'

// No need to make $o a reference
function foo(&$o) {

$o->name = 'b';
(continues on next page)

14.2. List of Rules 1171

https://wiki.php.net/rfc/numeric_literal_separator
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.foreach.php

Exakat Documentation, Release 1

(continued from previous page)

}

// $o is assigned inside the function : the parameter must have a &, or the new␣
→˓object won't make it out of the foo3 scope
function foo3(&$o) {

$o = new stdClass;
}

$array = array($object);
foreach($array as &$o) { // No need to make this a reference

$o->name = 'c';
}

?>

See also Passing by reference.

Suggestions

• Remove the reference

• Assign the argument with a new value

Specs

Short name Structures/ObjectReferences
Rulesets All, Analyze, CE, CI-checks, Top10
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features reference
ClearPHP no-references-on-objects
Examples Zencart, XOOPS
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.868 Octal Glossary

List of all the integer values using the octal format : an integer starting with an initial 0.

Putting an initial 0 is often innocuous, but in PHP, 0755 and 755 are not the same. The second is actually 1363 in octal,
and will not provide the expected privileges.

<?php

$a = 1234; // decimal number
$a = 0123; // octal number (equivalent to 83 decimal)

(continues on next page)

1172 Chapter 14. Rules

https://www.php.net/manual/en/language.references.pass.php
https://github.com/dseguy/clearPHP/tree/master/rules/no-references-on-objects.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// silently valid for PHP 5.x
$a = 01283; // octal number (equivalent to 10 decimal)

?>

See also Integers.

Specs

Short name Type/Octal
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features integer
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.869 Old Style Constructor

PHP classes used to have the method bearing the same name as the class acts as the constructor. That was
PHP 4, and early PHP 5.

The manual issues a warning about this syntax : Old style constructors are DEPRECATED in PHP 7.0,
and will be removed in a future version. You should always use `__construct() <https://
www.php.net/manual/en/language.oop5.decon.php>`_ in new code. This is no more the case in PHP 5,
which relies on __construct() to do so. Having this old style constructor may bring in confusion, unless you are
also supporting old time PHP 4.

Note that classes with methods bearing the class name, but inside a namespace are not following this convention, as
this is not breaking backward compatibility. Those are excluded from the analyze.

<?php

namespace {
// Global namespace is important
class foo {

function foo() {
// This acts as the old-style constructor, and is reported by PHP

}
}

class bar {
function __construct() { }
function bar() {

// This doesn't act as constructor, as bar has a __construct() method
}

}
}

(continues on next page)

14.2. List of Rules 1173

https://www.php.net/manual/en/language.types.integer.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

namespace Foo\Bar{
class foo {

function foo() {
// This doesn't act as constructor, as bar is not in the global namespace

}
}

}

?>

See also Constructors and Destructors.

Suggestions

• Remove old style constructor and make it __construct()

• Remove old libraries and use a modern component

Specs

Short name Classes/OldStyleConstructor
Rulesets All, Analyze, Appinfo, CE, CompatibilityPHP80
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features constructor
ClearPHP no-php4-class-syntax
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.870 Old Style __autoload()

Avoid __autoload(), only use spl_register_autoload().

__autoload() is deprecated since PHP 7.2 and possibly removed in later versions. spl_register_autoload() was intro-
duced in PHP 5.1.0.

__autoload() may only be declared once, and cannot be modified later. This creates potential conflicts between libraries
that try to set up their own autoloading schema.

On the other hand, spl_register_autoload() allows registering and unregistering multiple autoloading functions or meth-
ods.

Do not use the old __autoload() function, but rather the new spl_register_autoload() function.

<?php

// Modern autoloading.
function myAutoload($class){}

(continues on next page)

1174 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.decon.php
https://github.com/dseguy/clearPHP/tree/master/rules/no-php4-class-syntax.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

spl_register_autoload('myAutoload');

// Old style autoloading.
function __autoload($class){}

?>

See also Autoloading Classes.

Suggestions

• Move to spl_register_autoload()

• Remove usage of the old __autoload() function

• Modernize usage of old libraries

Specs

Short name Php/oldAutoloadUsage
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Features autoload
ClearPHP use-smart-autoload
Examples Piwigo
Available in Entreprise Edition, Exakat Cloud

14.2.871 One Dot Or Object Operator Per Line

Rule #4 of Object Calisthenics : Only one -> or . per line.

This analysis will also catch the following cases : When kept, simple, this rule has some edge cases which are left to
the reader.

<?php

// Those should be on different lines for readability
$a->foo()->bar()->getFinal();

$a->foo()
->bar()
->getFinal();

// Those should be on different lines for readability
$concatenation = 'a' . 'b' . $c . 'd';

(continues on next page)

14.2. List of Rules 1175

https://www.php.net/manual/en/language.oop5.autoload.php
https://github.com/dseguy/clearPHP/tree/master/rules/use-smart-autoload.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$concatenation = 'a' .
'b' .
$c .
'd';

?>

Specs

Short name Structures/OneDotOrObjectOperatorPerLine
Rulesets All
Exakat since 0.8.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.872 One Expression Brackets Consistency

Brackets around one-line expressions are not consistent.

PHP makes bracket optional when a control structure pilot only one expression. Both are semantically identical.

This analysis reports code that uses brackets while the vast majority of other expressions uses none. Or the contrary.
Another analysis, [Structures/Bracketless], reports the absence of brackets as an error.

<?php

// One expression with brackets
for($i = 0; $i < 10; $i++) { $c++; }

// One expression without bracket
for($i2 = 0; $i2 < 10; $i2++) $c++;

?>

Specs

Short name Structures/OneExpressionBracketsConsistency
Rulesets All, Preferences
Exakat since 0.9.5
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Exakat Cloud

1176 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.873 One If Is Sufficient

Nested conditions may be rewritten another way, to reduce the amount of code.

Nested conditions are equivalent to an && condition. As such, they may be switched. When one of the condition has
no explicit else, then it is lighter to write it as the first condition. This way, it is written once, and not repeated.

<?php

// Less conditions are written here.
if($b == 2) {

if($a == 1) {
++$c;

}
else {

++$d;
}

}

// ($b == 2) is double here
if($a == 1) {

if($b == 2) {
++$c;

}
}
else {

if($b == 2) {
++$d;

}
}

?>

Suggestions

• Switch the if. . . then conditions, to reduce the amount of conditions to read.

Specs

Short name Structures/OneIfIsSufficient
Rulesets All, Suggestions
Exakat since 1.2.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Examples Tikiwiki
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1177

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.874 One Letter Functions

One letter functions seems to be really short for a meaningful name. This may happens for very high usage
functions, so as to keep code short, but such functions should be rare.

<?php

// Always use a meaningful name
function addition($a, $b) {

return $a + $b;
}

// One letter functions are rarely meaningful
function f($a, $b) {

return $a + $b;
}

?>

Suggestions

• Use full names for functions

• Remove the function name altogether : use a closure

Specs

Short name Functions/OneLetterFunctions
Rulesets All, Coding conventions, Semantics
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features function, semantics
Examples ThinkPHP, Cleverstyle
Available in Entreprise Edition, Exakat Cloud

14.2.875 One Object Operator Per Line

Avoid using more than one operator -> per line, to prevent information overload.

<?php

// Spread operators on multiple lines
$object->firstMethodCall()

->property
->secondMethodCall();

// This is not readable
(continues on next page)

1178 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$object->firstMethodCall()->property->secondMethodCall();

// This is OK, as objects are different.
$a2->b2($c2->d2, $e2->f2);

?>

Specs

Short name Classes/OneObjectOperatorPerLine
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.876 One Variable String

These strings only contains one variable or property or array.

When the goal is to convert a variable to a string, it is recommended to use the type casting (string) operator : it is then
clearer to understand the conversion. It is also marginally faster, though very little.

<?php

$a = 0;
$b = "$a"; // This is a one-variable string

// Better way to write the above
$b = (string) $a;

// Alternatives :
$b2 = "$a[1]"; // This is a one-variable string
$b3 = "$a->b"; // This is a one-variable string
$c = "d";
$d = "D";
$b4 = "{$$c}";
$b5 = "{$a->foo()}";

?>

See also Strings and Type Juggling.

14.2. List of Rules 1179

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.types.string.php
https://www.php.net/manual/en/language.types.type-juggling.php

Exakat Documentation, Release 1

Suggestions

• Drop the surrounding string, keep the variable (or property. . .)

• Include in the string any concatenation that comes unconditionally after or before

• Convert the variable to a string with the (type) operator

Specs

Short name Type/OneVariableStrings
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features string, variable, interpolation
Examples Tikiwiki, NextCloud
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.877 Only First Byte

When assigning a char to a string with an array notation, only the first byte is used.

<?php
$str = 'xy';

// first letter is now a
$str[0] = 'a';

// second letter is now b, c is ignored
$str[1] = 'bc';

?>

See also String access and modification by character.

Suggestions

• Remove extra bytes when assigning to a string

• Use concatenation

• Use strpos() and substr() functions

• Use explode(), implode() functions and array manipulations

1180 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.types.string.php#language.types.string.substr

Exakat Documentation, Release 1

Specs

Short name Structures/OnlyFirstByte
Rulesets All, Analyze, Changed Behavior
Exakat since 2.2.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Changed Behavior PHP 8.0 - More
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.878 Only Static Methods Class

Marks a class that has only static methods.

<?php

class x {
static function foo() {}
static function goo() {}
static function hoo() {}

}

?>

Specs

Short name Classes/OnlyStaticMethods
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features class, static
Available in Entreprise Edition, Exakat Cloud

14.2.879 Only Variable For Reference

When a method is requesting an argument to be a reference, it cannot be called with a literal value.

The call must be made with a variable, or any assimilated data container : array, property or static property. Note that
PHP may detect this error at linting time, if the method is defined after being called : at that point, PHP will only check
the problem during execution. This is definitely the case for methods, compared to functions or static methods.

<?php

(continues on next page)

14.2. List of Rules 1181

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/error
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

(continued from previous page)

// This is not possible
foo(1,2);

// This is working
foo($a, $b);

function foo($a, &$b) {}

?>

See also Passing arguments by reference.

Suggestions

• Put the literal value in a variable before calling the method.

• Omit the arguments, when it won’t be used.

Specs

Short name Functions/OnlyVariableForReference
Rulesets All, Analyze, LintButWontExec
Exakat since 1.4.6
PHP Version All
Severity Critical
Time To Fix Quick (30 mins)
Precision Medium
Features variable, reference
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.880 Only Variable Passed By Reference

When an argument is expected by reference, it is compulsory to provide a container. A container may be
a variable, an array, a property or a static property.

This may be linted by PHP, when the function definition is in the same file as the function usage. This is silently linted
if definition and usage are separated, if the call is dynamical or made as a method. This analysis currently covers
functioncalls and static methodcalls, but omits methodcalls.

<?php

function foo(&$bar) { /**/ }

function &bar() { /**/ }

// This is not possible : strtolower() returns a value
foo(strtolower($string));

(continues on next page)

1182 Chapter 14. Rules

https://www.php.net/manual/en/functions.arguments.php#functions.arguments.by-reference
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

(continued from previous page)

// This is valid : bar() returns a reference
foo(bar($string));

?>

See also Passing arguments by reference.

Suggestions

• Store the previous result in a variable, and then call the function.

Specs

Short name Functions/OnlyVariablePassedByReference
Rulesets All, Analyze, IsExt, IsPHP, IsStub
Exakat since 0.11.3
PHP Version All
Severity Critical
Time To Fix Slow (1 hour)
Precision High
Features reference, parameter
Examples Dolphin, PhpIPAM
Available in Entreprise Edition, Exakat Cloud

14.2.881 Only Variable Passed By Reference

Some methods require a variable as argument. Those arguments are passed by reference, and they must
operate on a variable, or any data container (property, array element).

This means that literal values, constants cannot be used as argument. This is also the case of literal values, returned by
other methods.

This is also the case of isset(), althought with a different error message.

<?php

echo end([1,2,3]);

function foo() {
return [4,5,6];

}

echo end(foo());

?>

14.2. List of Rules 1183

https://www.php.net/manual/en/functions.arguments.php#functions.arguments.by-reference
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error

Exakat Documentation, Release 1

Suggestions

• Put the value in a variable before using it with the function.

Specs

Short name Php/OnlyVariablePassedByReference
Rulesets All, Analyze, Changed Behavior, LintButWontExec
Exakat since 2.6.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.882 Only Variable Returned By Reference

Function can’t return literals by reference.

When a function returns a reference, it is only possible to return variables, properties or static properties.

Anything else, like literals or static expressions, yield a warning at execution time.

<?php

// Can't return a literal number
function &foo() {

return 3 + rand();
}

// bar must return values that are stored in a
function &bar() {

$a = 3 + rand();
return $a;

}

?>

Specs

Short name Structures/OnlyVariableReturnedByReference
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features reference
Available in Entreprise Edition, Exakat Cloud

1184 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.883 OpenSSL Ciphers Used

List of all the OpenSSL ciphers used in the code.

It is important to always use valid cipher modes for SSL. In case of non-existent cipher, the cipher and decipher operation
will not happen. Ciphers are marked as weak after their security is breached, and shall be removed from OpenSSL,
and later, from PHP.

By reviewing this inventory, it is possible to detect forgotten ciphers, and fix them.

The full list of available ciphers for the PHP installation is available with the function openssl_get_cipher_methods().

<?php
// PHP documentation example, for PHP 7.1 and more recent
//$key should have been previously generated in a cryptographically safe way, like␣
→˓openssl_random_pseudo_bytes
$plaintext = "message to be encrypted";
$cipher = "aes-128-gcm";
if (in_array($cipher, openssl_get_cipher_methods()))
{

$ivlen = openssl_cipher_iv_length($cipher);
$iv = openssl_random_pseudo_bytes($ivlen);
$ciphertext = openssl_encrypt($plaintext, $cipher, $key, $options=0, $iv, $tag);
//store $cipher, $iv, and $tag for decryption later
$original_plaintext = openssl_decrypt($ciphertext, $cipher, $key, $options=0, $iv,

→˓$tag);
echo $original_plaintext."\n";

}
?>

See also openssl_encrypt() and OpenSSL [PHP manual].

Specs

Short name Type/OpensslCipher
Rulesets All, Inventory
Exakat since 2.1.1
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features openssl
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1185

https://www.php.net/openssl_get_cipher_methods
https://www.php.net/manual/en/book.openssl.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.884 Openssl Encrypt Default Algorithm Change

openssl_pkcs7_encrypt() and openssl_cms_encrypt() will now default to using AES-128-CBC rather than
RC2-40. The RC2-40 cipher is considered insecure and not enabled by default in OpenSSL 3.

This means that the default argument of OPENSSL_CIPHER_RC2_40 is replaced by
OPENSSL_CIPHER_AES_128_CBC.

<?php
// extracted from the PHP documentation
// encrypt it
if (openssl_pkcs7_encrypt("msg.txt", "enc.txt", $key,

array("To" => "nighthawk@example.com", // keyed syntax
"From: HQ <hq@example.com>", // indexed syntax
"Subject" => "Eyes only"))) {

// message encrypted - send it!
exec(ini_get("sendmail_path") . " < enc.txt");

}
?>

Suggestions

• Explicitly set the 5th and 6th argument of the functioncalls to avoid a disruption.

• Update the target service to handle the new cipher algorithm.

Specs

Short name Php/OpensslEncryptAlgoChange
Rulesets All, Changed Behavior, CompatibilityPHP81
Exakat since 2.2.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features cryptography, openssl
Available in Entreprise Edition, Exakat Cloud

14.2.885 Optimize Explode()

Limit explode() results at call time. explode() returns an array, after breaking the argument into smaller
strings, with a delimiter.

By default, explode() breaks the whole string into smaller strings, and returns the array. When not all the elements of
the returned array are necessary, using the third argument of explode() speeds up the process, by removing unnecessary
work. Limiting explode() has no effect when the operation is already exact : it simply prevents explode() to cut more
than needed if the argument is unexpectedly large.

This optimisation applies to split(), preg_split() and mb_split(), too.

This is a micro optimisation, unless the exploded string is large.

1186 Chapter 14. Rules

https://www.php.net/openssl_pkcs7_encrypt
https://www.php.net/openssl_cms_encrypt
https://www.php.net/OPENSSL_CIPHER_RC2_40
https://www.php.net/OPENSSL_CIPHER_AES_128_CBC
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/explode
https://www.php.net/explode
https://www.php.net/explode
https://www.php.net/explode
https://www.php.net/explode
https://www.php.net/explode
https://www.php.net/preg_split
https://www.php.net/mb_split

Exakat Documentation, Release 1

<?php

$string = '1,2,3,4,5,';

// explode() returns 2 elements, which are then assigned to the list() call.
list($a, $b) = explode(',', $string, 2);

// explode() returns 6 elements, only two of which are then assigned to the list() call.␣
→˓The rest are discarded.
list($a, $b) = explode(',', $string, 2);

// it is not possible to skip the first elements, but it is possible to skip the last␣
→˓ones.
echo explode(',', $string, 2)[1];

// This protects PHP, in case $string ends up with a lot of commas
$string = foo(); // usually '1,2' but not known
list($a, $b) = explode(',', $string, 2);
?>

See also Cryptography Extensions.

Suggestions

• Add a limit to explode() call

Specs

Short name Performances/OptimizeExplode
Rulesets All, Changed Behavior, Performances
Exakat since 2.1.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features crypto
Available in Entreprise Edition, Exakat Cloud

14.2.886 Optional Parameter

An optional parameter is a method argument that has both a typehint and a default value.

Such argument is optional, as it may be omitted. When this is the case, the code has to differentiate between the default
behavior or the actual usage. It is recommended to avoid providing a default value, and use a null object.

<?php

class foo {
function methodWithOptionalArgument(bar $x = null) {

if ($x === null) {
(continues on next page)

14.2. List of Rules 1187

https://www.php.net/manual/en/refs.crypto.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// default behavior
} else {

// normal behavior
}

}

function methodWithCompulsoryArgument(bar $x) {
// normal behavior
// $x is always a bar.

}
}
?>

Specs

Short name Functions/OptionalParameter
Rulesets All
Exakat since 0.12.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features parameter, optional-parameter
Available in Entreprise Edition, Exakat Cloud

14.2.887 Or Die

Classic old style failed error management.

Interrupting a script will leave the application with a blank page, will make your life miserable for testing. Just don’t
do that.

<?php

// In case the connexion fails, this kills the current script
mysql_connect('localhost', $user, $pass) or die();

?>

See also pg_last_error and PDO::exec.

1188 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/manual/en/function.pg-last-error.php
https://www.php.net/manual/en/pdo.exec.php

Exakat Documentation, Release 1

Suggestions

• Throw an exception

• Trigger an error with trigger_error()

• Use your own error mechanism

Specs

Short name Structures/OrDie
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
ClearPHP no-implied-if
Examples Tine20, OpenConf
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.888 Order Of Declaration

The order used to declare members and methods has a great impact on readability and maintenance. How-
ever, practices varies greatly. As usual, being consistent is the most important and useful.

The suggested order is the following : traits, constants, properties, methods. Optional characteristics, like final, static. . .
are not specified. Special methods names are not specified.

<?php

class x {
use traits;

const CONSTANTS = 1;
const CONSTANTS2 = 1;
const CONSTANTS3 = 1;

private $property = 2;
private $property2 = 2;
private $property3 = 2;

public function foo() {}
public function foo2() {}
public function foo3() {}
public function foo4() {}

}

?>

14.2. List of Rules 1189

https://github.com/dseguy/clearPHP/tree/master/rules/no-implied-if.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

Suggestions

• Always declare class elements (traits, constants, properties, methods) in the same order.

Specs

Short name Classes/OrderOfDeclaration
Rulesets All, Coding conventions
Exakat since 0.11.7
PHP Version All
Severity
Time To Fix
Precision Medium
Features class, anonymous-class, abstract
Available in Entreprise Edition, Exakat Cloud

14.2.889 Overload Existing Names

Imported alias have precedence over existing ones, and as such, may replace existing features with unex-
pected ones.

This example shows how to replace strtolower() with strtoupper() while keeping the main code intact. This might be
very confusing code. This behavior is important for backward compatibility, and also to avoid naming conflicts when
the coding has been done with a PHP installation which do not have some specific declaration. For example, a source
may define an ‘Event’ class, which will be in conflict when the ext/event library is installed.

This feature is also useful to mock some native PHP structures, during tests.

This rule relies on the PDFF configuration to check for external existing structures.

<?php

// Replacing a PHP classic with another one
use function strtoupper as strtolower;

echo strtolower('pHp');
// displays PHP

?>

Suggestions

• Use another local name than the general name

• Always code in a namespace to avoid conflict

1190 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/strtolower
https://www.php.net/strtoupper

Exakat Documentation, Release 1

Specs

Short name Namespaces/OverloadExistingNames
Rulesets All, Analyze, IsExt, IsPHP, IsStub, Semantics
Exakat since 2.4.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features use-alias
Available in Entreprise Edition, Exakat Cloud

14.2.890 Override

Override is a native PHP attribute. It was introduced in PHP 8.3, and was not available before.

In fact, static analysis can perform that check on previous versions of PHP.

Override signals that the class has a method which overrides the parent’s definition. If there is no such method in a
parent, an error is raised.

This analysis is not valid after PHP 8.3, as PHP does that itself.

<?php

class x {
function foo() {}

}

class y extends x {
// OK, there is a method in the class above
#[Override]
function foo() {}

// KO, there is no such method in the class above
#[Override]
function hoo() {}

}

?>

See also PHP RFC: Marking overridden methods (#[Override]) and PHP 8.3 RFC: Marking overridden methods
(#[Override]).

14.2. List of Rules 1191

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/override
https://www.php.net/attribute
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/override
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/error
https://wiki.php.net/rfc/marking_overriden_methods
https://php.watch/rfcs/marking_overriden_methods
https://php.watch/rfcs/marking_overriden_methods

Exakat Documentation, Release 1

Suggestions

• Change the name of the current method to match an existing one

• Remove the method

• Remove the attribute

Specs

Short name Attributes/Override
Rulesets All, Attributes
Exakat since 2.6.1
PHP Version From PHP 8.0 to 8.3
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.891 Overwriting Variable

Replacing the content of a variable by something different is prone to errors. For example, it is not obvious
if the $text variable is plain text or HTML text.

Besides, it is possible that the source is needed later, for extra processing.

Note that accumulators, like += .= or [] etc., that are meant to collect lots of values with consistent type are OK.

<?php

// Confusing
$text = htmlentities($text);

// Better
$textHTML = htmlentities($text);

?>

Specs

Short name Variables/Overwriting
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features variable
Available in Entreprise Edition, Exakat Cloud

1192 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.892 Overwritten Class Constants

Those class constants are overwriting a parent class’s constant. This may lead to confusion, as the value
of the constant may change depending on the way it is called.

<?php

class foo {
const C = 1;

}

class bar extends foo {
const C = 2;

function x() {
// depending on the access to C, value is different.
print self::C.' '.static::C.' '.parent::C;

}
}

?>

Suggestions

• Remove the constant in the interface

• Remove the constant in the class

• Rename one of the constants

Specs

Short name Classes/OverwrittenConst
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Features class-constant, overwrite
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1193

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.893 Overwritten Constant

This command adds OVERWRITE link between class constant definitions.

A constant is overwritten by another when it is defined in one of the parent class or parent interface.

The A constant will be linked between classes x and y, with an OVERWRITE link.

<?php

class x {
protected const A = 1;

}

class y extends x {
protected const A = 1;

}

?>

Specs

Short name Complete/OverwrittenConstants
Rulesets All, CE, NoDoc
Exakat since 1.9.2
PHP Version All
Severity
Time To Fix
Precision Very high
Features inheritance, final, class, class-constant
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.894 Overwritten Exceptions

In catch blocks, it is good practice to avoid overwriting the incoming exception, as information about the
exception will be lost.

<?php

try {
doSomething();

} catch (SomeException $e) {
// $e is overwritten
$e = new anotherException($e->getMessage());
throw $e;

} catch (SomeOtherException $e) {
// $e is chained with the next exception
$e = new Exception($e->getMessage(), 0, $e);
throw $e;

}
(continues on next page)

1194 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception
https://www.php.net/exception

Exakat Documentation, Release 1

(continued from previous page)

?>

Suggestions

• Use another variable name to create new values inside the catch

• Use anonymous catch clause (no variable caught) in PHP 8.0, to make this explicit

Specs

Short name Exceptions/OverwriteException
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, Suggestions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features exception
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.895 Overwritten Foreach Var

When using standard blind variable names, nested foreach may lead to overwriting the variables.

Careful coding may take advantage of that feature. Though, it tends to be error prone, and will generate bugs if the
code is refactored.

<?php

foreach($array as $key => $value) {
foreach($array as $key2 => $value) {

// $value is now the one of the 2nd foreach, not the first.

}
}

?>

14.2. List of Rules 1195

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error

Exakat Documentation, Release 1

Suggestions

• Change the name of one of the blind variable to use a distinct name

• Remove usage of one of the double variable

• Remove the nested foreach()

• Move the nested foreach() to a method

Specs

Short name Structures/OverwrittenForeachVar
Rulesets All, Analyze
Exakat since 2.3.2
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features foreach
Available in Entreprise Edition, Exakat Cloud

14.2.896 Overwritten Literals

The same variable is assigned a literal twice. It is possible that one of the assignation is too many.

This analysis doesn’t take into account the distance between two assignations : it may report false positives when the
variable is actually used for several purposes, and, as such, assigned twice with different values.

<?php

function foo() {
// Two assignations in a short sequence : one is too many.
$a = 1;
$a = 2;

for($i = 0; $i < 10; $i++) {
$a += $i;

}
$b = $a;

// New assignation. $a is now used as an array.
$a = array(0);

}

?>

1196 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Remove one of the assignation (the earliest)

Specs

Short name Variables/OverwrittenLiterals
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Features literal
Available in Entreprise Edition, Exakat Cloud

14.2.897 Overwritten Methods

This command adds OVERWRITE link between methods definitions of classes.

The foo method will be linked between classes x and y, with an OVERWRITE link.

<?php

class x {
protected function foo() {}

}

class y extends x {
protected function foo() {}

}

?>

Specs

Short name Complete/OverwrittenMethods
Rulesets All, NoDoc
Exakat since 1.9.2
PHP Version All
Severity
Time To Fix
Precision Very high
Features class, inheritance, method
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1197

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.898 Overwritten Properties

This command adds OVERWRITE link between property definitions of classes.

The $p property will be linked between classes x and y, with an OVERWRITE link.

<?php

class x {
protected $p = 1;

}

class y extends x {
protected $p = 1;

}

?>

Specs

Short name Complete/OverwrittenProperties
Rulesets All, CE, Changed Behavior, NoDoc
Exakat since 1.9.2
PHP Version All
Severity
Time To Fix
Precision Very high
Features class, property, inheritance
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.899 Overwritten Source And Value

In a foreach(), it is best to keep source and values distinct. Otherwise, they overwrite each other.

Since PHP 7.0, PHP makes a copy of the original source, then works on it. This makes possible to use the same name
for the source and the values. When the source is used as the value, the elements in the array are successively assigned
to itself. After the loop, the original array has been replaced by its last element.

The same applies to the index, or to any variable in a list() structure, used in a foreach().

<?php

// displays 0-1-2-3-3
$array = range(0, 3);
foreach($array as $array) {

print $array . '-';
}
print_r($array);

/* displays 0-1-2-3-Array
(continues on next page)

1198 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.foreach.php
https://www.php.net/list
https://www.php.net/manual/en/control-structures.foreach.php

Exakat Documentation, Release 1

(continued from previous page)

(
[0] => 0
[1] => 1
[2] => 2
[3] => 3

)
*/
$array = range(0, 3);
foreach($array as $v) {

print $v . '-';
}
print_r($array);

?>

Suggestions

• Keep the source, the index and the values distinct

Specs

Short name Structures/ForeachSourceValue
Rulesets All, Analyze
Exakat since 1.8.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features foreach
Examples ChurchCRM, ExpressionEngine
Available in Entreprise Edition, Exakat Cloud

14.2.900 PHP 7.0 New Classes

Those classes are now declared natively in PHP 7.0 and should not be declared in custom code.

There are 8 new classes :

• Error

• ParseError

• TypeError

• ArithmeticError

• DivisionByZeroError

• ClosedGeneratorException

• ReflectionGenerator

• ReflectionType

14.2. List of Rules 1199

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• AssertionError

<?php

namespace {
// Global namespace
class Error {

// Move to a namespace
// or, remove this class

}
}

namespace B {
class Error {

// This is OK : in a namespace
}

}

?>

See also New Classes and Interfaces.

Suggestions

• Move the current classes with the same names into a distinct domain name

• Change the name of the class

Specs

Short name Php/Php70NewClasses
Rulesets All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56
Exakat since 0.8.4
PHP Version With PHP 7.0 and older
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features class
Available in Entreprise Edition, Exakat Cloud

14.2.901 PHP 7.0 New Interfaces

The following interfaces are introduced in PHP 7.0. They shouldn’t be defined in custom code.

• Throwable <https://www.php.net/manual/en/class.`throwable.php>`_

• SessionUpdateTimestampHandlerInterface

1200 Chapter 14. Rules

https://www.php.net/manual/en/migration70.classes.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/throwable
https://www.php.net/sessionupdatetimestamphandlerinterface

Exakat Documentation, Release 1

Specs

Short name Php/Php70NewInterfaces
Rulesets All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56
Exakat since 0.8.4
PHP Version With PHP 7.0 and older
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features interface
Available in Entreprise Edition, Exakat Cloud

14.2.902 PHP 7.0 Removed Directives

List of directives that are removed in PHP 7.0.

See also Removed INI directives.

Suggestions

• Remove the code related to those directives

Specs

Short name Php/Php70RemovedDirective
Rulesets All, CompatibilityPHP70, CompatibilityPHP71
Exakat since 0.8.4
PHP Version With PHP 7.0 and more recent
Severity Major
Time To Fix Slow (1 hour)
Precision High
Features directive
Available in Entreprise Edition, Exakat Cloud

14.2.903 PHP 7.0 Removed Functions

The following PHP native functions were removed in PHP 7.0.

• ereg()

• ereg_replace()

• eregi()

• eregi_replace()

• split()

• spliti()

• sql_regcase()

14.2. List of Rules 1201

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/migration70.incompatible.php#migration70.incompatible.removed-ini-directives
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• magic_quotes_runtime()

• set_magic_quotes_runtime()

• call_user_method()

• call_user_method_array()

• set_socket_blocking()

• mcrypt_ecb()

• mcrypt_cbc()

• mcrypt_cfb()

• mcrypt_ofb()

• datefmt_set_timezone_id()

• imagepsbbox()

• imagepsencodefont()

• imagepsextendfont()

• imagepsfreefont()

• imagepsloadfont()

• imagepsslantfont()

• imagepstext()

This analysis skips redefined PHP functions : when a replacement for a removed PHP function was created, with
condition on the PHP version, then its usage is considered valid.

See also PHP 7.0 Removed Functions.

Suggestions

• Replace the old functions with modern functions

• Remove the usage of the old functions

• Create an alternative function by wiring the old name to a new feature

Specs

Short name Php/Php70RemovedFunctions
Rulesets All, CompatibilityPHP70, CompatibilityPHP71
Exakat since 0.8.4
PHP Version With PHP 7.0 and older
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

1202 Chapter 14. Rules

https://www.php.net/magic_quotes_runtime
https://www.php.net/set_magic_quotes_runtime
https://www.php.net/manual/en/migration70.incompatible.php#migration70.incompatible.removed-functions
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.904 PHP 7.0 Scalar Typehints

New scalar typehints were introduced : bool, int, float, string.

They cannot be used before PHP 7.0, and will be confused with classes or interfaces.

<?php

function foo(string $name) {
print "Hello $name";

}

foo("Damien");
// display 'Hello Damien'

foo(33);
// displays an error

?>

See also Scalar type declarations and PHP 7 SCALAR TYPE DECLARATIONS.

Specs

Short name Php/PHP70scalartypehints
Rulesets All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compat-

ibilityPHP56
Exakat
since

1.3.5

PHP Ver-
sion

With PHP 7.0 and more recent

Severity Critical
Time To
Fix

Quick (30 mins)

Precision Very high
Features class
Available
in

Entreprise Edition, Exakat Cloud

14.2.905 PHP 7.1 Microseconds

PHP supports microseconds in DateTime class and date_create() function. This was introduced in PHP
7.1.

In previous PHP versions, those dates only used seconds, leading to lazy comparisons : This code displays true in PHP
7.0 and older, (unless the code was run too close from the next second). In PHP 7.1, this is always false.

This is also true with DateTime : This evolution impacts mostly exact comparisons (== and ===). Non-equality (!=
and !==) will probably be always true, and should be reviewed.

<?php

(continues on next page)

14.2. List of Rules 1203

https://www.php.net/manual/en/migration70.new-features.php#migration70.new-features.scalar-type-declarations
https://tutorials.kode-blog.com/php-7-scalar-type-declarations
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/date_create

Exakat Documentation, Release 1

(continued from previous page)

$now = date_create();
usleep(10); // wait for 0.001 ms
var_dump($now == date_create());

?>

See also Backward incompatible changes.

Suggestions

• Check direct comparisons of date

Specs

Short name Php/Php71microseconds
Rulesets All, Changed Behavior, CompatibilityPHP71
Exakat since 0.8.9
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Changed Behavior PHP 7.1 - More
Precision Very high
Features microtime
Available in Entreprise Edition, Exakat Cloud

14.2.906 PHP 7.1 Removed Directives

List of directives that are removed in PHP 7.1.

See also Removed INI directives.

Suggestions

• Remove the code related to those directives

Specs

Short name Php/Php71RemovedDirective
Rulesets All, CompatibilityPHP71
Exakat since 0.8.4
PHP Version With PHP 7.1 and more recent
Severity Major
Time To Fix Slow (1 hour)
Precision High
Features directive
Available in Entreprise Edition, Exakat Cloud

1204 Chapter 14. Rules

https://www.php.net/manual/en/migration71.incompatible.php
https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/migration71.incompatible.php#migration71.incompatible.removed-ini-directives
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.907 PHP 7.1 Scalar Typehints

A new scalar typehint was introduced : iterable.

It can’t be used before PHP 7.1, and will be confused with classes or interfaces.

<?php

function foo(iterable $iterable) {
foreach ($iterable as $value) {

echo $value.PHP_EOL;
}

}

foo(range(1,20));
// works with array

foo(new ArrayIterator([1, 2, 3]));
// works with an iterator

foo((function () { yield 1; })());
// works with a generator

?>

See also iterable pseudo-type and The iterable Pseudo-Type.

Specs

Short
name

Php/PHP71scalartypehints

Rulesets All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compati-
bilityPHP56, CompatibilityPHP70

Exakat
since

1.3.5

PHP Ver-
sion

With PHP 7.1 and more recent

Severity Critical
Time To
Fix

Quick (30 mins)

Precision Very high
Features class
Available
in

Entreprise Edition, Exakat Cloud

14.2. List of Rules 1205

https://www.php.net/manual/en/migration71.new-features.php#migration71.new-features.iterable-pseudo-type
https://knpuniversity.com/screencast/php7/iterable-type
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.908 PHP 7.2 Deprecations

Several functions are deprecated in PHP 7.2.

• parse_str() with no second argument

• assert() on strings

• Usage of gmp_random(), create_function(), each()

• Usage of (unset)

• Usage of $php_errormsg

• directive mbstring.func_overload (not supported yet)

Deprecated functions and extensions are reported in a separate analysis.

See also Deprecations for PHP 7.2.

Suggestions

• Remove the deprecated functions, and replace them with a new feature

• Use a replacement function to emulate this old behavior

Specs

Short name Php/Php72Deprecation
Rulesets All, CompatibilityPHP72
Exakat since 0.9.9
PHP Version With PHP 7.2 and older
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features feature
Available in Entreprise Edition, Exakat Cloud

14.2.909 PHP 7.2 Object Keyword

‘object’ is a PHP keyword. It can’t be used for class, interface or trait name.

This is the case since PHP 7.2.

<?php

// Valid until PHP 7.2
class object {}

// Altough it is really weird anyway...

?>

See also List of Keywords.

1206 Chapter 14. Rules

https://www.php.net/parse_str
https://www.php.net/assert
https://www.php.net/each
https://wiki.php.net/rfc/deprecations_php_7_2
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/reserved.keywords.php

Exakat Documentation, Release 1

Specs

Short name Php/Php72ObjectKeyword
Rulesets All, CompatibilityPHP72
Exakat since 0.8.4
PHP Version With PHP 7.2 and older
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.910 PHP 7.2 Removed Functions

The following PHP native functions were removed in PHP 7.2.

• png2wbmp()

• jpeg2wbmp()

• create_function()

• gmp_random()

• each()

This analysis skips redefined PHP functions : when a replacement for a removed PHP function was created, with
condition on the PHP version, then its usage is considered valid.

See also PHP 7.2 Removed Functions and Deprecated features in PHP 7.2.x.

Suggestions

• Replace the old functions with modern functions

• Remove the usage of the old functions

• Create an alternative function by wiring the old name to a new feature

Specs

Short name Php/Php72RemovedFunctions
Rulesets All, CompatibilityPHP72
Exakat since 0.9.9
PHP Version With PHP 7.2 and older
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1207

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/each
https://www.php.net/manual/en/migration72.incompatible.php#migration72.incompatible.removed-functions
https://www.php.net/manual/en/migration72.deprecated.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.911 PHP 7.2 Scalar Typehints

A new scalar typehint was introduced : object.

It can’t be used before PHP 7.2, and will be confused with classes or interfaces.

<?php

function test(object $obj) : object
{

return new SplQueue();
}

test(new StdClass());

?>

See also New object type and PHP 7.2 and Object Typehint.

Specs

Short
name

Php/PHP72scalartypehints

Rulesets All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compatibil-
ityPHP56, CompatibilityPHP70, CompatibilityPHP71

Exakat
since

1.3.5

PHP
Version

With PHP 7.2 and more recent

Severity Critical
Time To
Fix

Quick (30 mins)

Preci-
sion

Very high

Features class
Avail-
able in

Entreprise Edition, Exakat Cloud

14.2.912 PHP 7.3 Last Empty Argument

PHP allows the last element of any functioncall to be empty. The argument is then not send.

This was introduced in PHP 7.3, and is not backward compatible.

The last empty line is easier on the VCS, allowing clearer text diffs.

<?php

function foo($a, $b) {
print_r(func_get_args());

}

(continues on next page)

1208 Chapter 14. Rules

https://www.php.net/manual/en/migration72.new-features.php#migration72.new-features.iterable-pseudo-type
http://blog.tekmi.nl/php-7-2-and-object-typehint/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

foo(1,
2,
);

foo(1);

?>

See also Allow a trailing comma in function calls and Trailing commas.

Specs

Short
name

Php/PHP73LastEmptyArgument

Rulesets All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compati-
bilityPHP56, CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72

Exakat
since

1.1.7

PHP Ver-
sion

With PHP 7.3 and more recent

Severity Critical
Time To
Fix

Quick (30 mins)

Changed
Behavior

PHP 7.3 - More

Precision Very high
Features class
Available
in

Entreprise Edition, Exakat Cloud

14.2.913 PHP 7.3 Removed Functions

The following PHP native functions were removed in PHP 7.3.

• image2wbmp()

This analysis skips redefined PHP functions : when a replacement for a removed PHP function was created, with
condition on the PHP version, then its usage is considered valid.

See also PHP 7.3 Removed Functions.

14.2. List of Rules 1209

https://wiki.php.net/rfc/trailing-comma-function-calls
https://www.puppetcookbook.com/posts/trailing-commas.html
https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/migration73.incompatible.php#migration73.incompatible.removed-functions

Exakat Documentation, Release 1

Suggestions

• Replace the old functions with modern functions

• Remove the usage of the old functions

• Create an alternative function by wiring the old name to a new feature

Specs

Short name Php/Php73RemovedFunctions
Rulesets All, CompatibilityPHP73
Exakat since 1.4.0
PHP Version With PHP 7.3 and older
Severity Critical
Time To Fix Slow (1 hour)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.914 PHP 7.4 Constant Deprecation

One constant is deprecated in PHP 7.4.

• CURLPIPE_HTTP1

See also Deprecations for PHP 7.2.

Suggestions

• Use CURLPIPE_MULTIPLEX or CURLPIPE_NOTHING

Specs

Short name Php/Php74Deprecation
Rulesets All, CE, CompatibilityPHP74
Exakat since 1.9.3
PHP Version With PHP 7.4 and older
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

1210 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/CURLPIPE_HTTP1
https://wiki.php.net/rfc/deprecations_php_7_2
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.915 PHP 7.4 Removed Directives

List of directives that are removed in PHP 7.4.

• allow_url_include

See also Deprecation allow_url_include.

Suggestions

• Stop using this directive

Specs

Short name Php/Php74RemovedDirective
Rulesets All, CE, CompatibilityPHP74, CompatibilityPHP80, CompatibilityPHP81
Exakat since 1.9.3
PHP Version With PHP 7.4 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Related rule PHP 8.0 Removed Directives, PHP 8.1 Removed Directives
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.916 PHP 7.4 Removed Functions

The following PHP native functions were deprecated in PHP 7.4.

• hebrevc()

• convert_cyr_string()

• ezmlm_hash()

• money_format()

• restore_include_path()

• get_magic_quotes_gpc()

• get_magic_quotes_runtime()

This analysis skips redefined PHP functions : when a replacement for a removed PHP function was created, with
condition on the PHP version, then its usage is considered valid.

<?php

// are the magic quotes in use? (before PHP 8.0)
var_dump(get_magic_quotes_gpc());

?>

See also PHP 7.4 Removed Functions and PHP 7.4 Deprecations : Introduction.

14.2. List of Rules 1211

https://wiki.php.net/rfc/deprecations_php_7_4#allow_url_include
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/hebrevc
https://www.php.net/convert_cyr_string
https://www.php.net/ezmlm_hash
https://www.php.net/money_format
https://www.php.net/restore_include_path
https://www.php.net/get_magic_quotes_gpc
https://www.php.net/get_magic_quotes_runtime
https://www.php.net/manual/en/migration74.incompatible.php#migration70.incompatible.removed-functions
https://wiki.php.net/rfc/deprecations_php_7_4#introduction

Exakat Documentation, Release 1

Specs

Short name Php/Php74RemovedFunctions
Rulesets All, CE, CompatibilityPHP74
Exakat since 1.9.0
PHP Version With PHP 7.3 and older
Severity Critical
Time To Fix Slow (1 hour)
Precision Very high
Features function, native
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.917 PHP 7.4 Reserved Keyword

fn is a new PHP keyword. In PHP 7.4, it is used to build the arrow functions. When used at an illegal
position, fn generates a Fatal error at compile time.

As a key word, fn is not allowed as constant name, function name, class name or inside namespaces. fn is fine for
method names. It may also be used for constants with define(), and constant() but it is not recommended.

<?php

// PHP 7.4 usage of fn
function array_values_from_keys($arr, $keys) {

return array_map(fn($x) => $arr[$x], $keys);
}

// PHP 7.3 usage of fn
const fn = 1;

function fn() {}

class x {
// This is valid in PHP 7.3 and 7.4
function fn() {}

}

?>

See also PHP RFC: Arrow Functions.

Specs

Short name Php/Php74ReservedKeyword
Rulesets All, CE, CompatibilityPHP74
Exakat since 1.9.2
PHP Version With PHP 7.4 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

1212 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/define
https://www.php.net/constant
https://wiki.php.net/rfc/arrow_functions
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.918 PHP 74 New Directives

List of directives that are new in PHP 7.4.

• zend.exception_ignore_args : From the php.ini : Allows to include or exclude arguments from
stack traces generated for exceptions. Default: Off

• opcache.preload_user

See also RFC Preload.

Suggestions

• Do not use those directives with PHP before version 7.4

Specs

Short name Php/Php74NewDirective
Rulesets All, CompatibilityPHP73
Exakat since 1.9.4
PHP Version With PHP 7.4 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features directive
Available in Entreprise Edition, Exakat Cloud

14.2.919 PHP 8.0 Removed Constants

The following PHP native constants were removed in PHP 8.0.

• INTL_IDNA_VARIANT_2003 (See Deprecate and remove INTL_IDNA_VARIANT_2003)

• MB_OVERLOAD_MAIL

• MB_OVERLOAD_STRING

• MB_OVERLOAD_REGEX

Suggestions

• Remove usage of those constants

14.2. List of Rules 1213

https://wiki.php.net/rfc/preload
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://wiki.php.net/rfc/deprecate-and-remove-intl_idna_variant_2003

Exakat Documentation, Release 1

Specs

Short name Php/Php80RemovedConstant
Rulesets All, CE, CompatibilityPHP80
Exakat since 1.6.8
PHP Version With PHP 8.0 and older
Severity Critical
Time To Fix Quick (30 mins)
Precision Very high
Features directive
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.920 PHP 8.0 Removed Directives

List of directives that are removed in PHP 8.0.

In PHP 8.0, track_errors was removed.

You can detect valid directives with ini_get(). This native function will return false, when the directive doesn’t exist,
while actual directive values will be returned as a string.

See Deprecation `track_errors <https://www.php.net/manual/en/migration80.incompatible.php`_.

<?php

var_dump(ini_get('track_errors'));

?>

Suggestions

• Remove usage of track_errors.

Specs

Short name Php/Php80RemovedDirective
Rulesets All, CE, CompatibilityPHP80, CompatibilityPHP81
Exakat since 2.1.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features directive
Related rule PHP 7.4 Removed Directives, PHP 8.1 Removed Directives
Available in Entreprise Edition, Community Edition, Exakat Cloud

1214 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/ini_get
https://www.php.net/manual/en/errorfunc.configuration.php#ini.track-errors
https://www.php.net/manual/en/migration80.incompatible
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.921 PHP 8.0 Removed Functions

The following PHP native functions were deprecated in PHP 8.0, and will be removed in PHP 9.0.

• image2wbmp()

• png2wbmp()

• jpeg2wbmp()

• ldap_sort()

• hebrevc()

• convert_cyr_string()

• ezmlm_hash()

• money_format()

• get_magic_quotes_gpc()

• get_magic_quotes_gpc_runtime()

• create_function()

• each()

• read_exif_data()

• gmp_random()

• fgetss()

• restore_include_path()

• gzgetss()

• mbregex_encoding()

• mbereg()

• mberegi()

• mbereg_replace()

• mberegi_replace()

• mbsplit()

• mbereg_match()

• mbereg_search()

• mbereg_search_pos()

• mbereg_search_regs()

• mbereg_search_init()

• mbereg_search_getregs()

• mbereg_search_getpos()

• mbereg_search_setpos()

See also Backward Incompatible Changes.

14.2. List of Rules 1215

https://www.php.net/hebrevc
https://www.php.net/convert_cyr_string
https://www.php.net/ezmlm_hash
https://www.php.net/money_format
https://www.php.net/get_magic_quotes_gpc
https://www.php.net/each
https://www.php.net/fgetss
https://www.php.net/restore_include_path
https://www.php.net/manual/en/migration80.incompatible.php#migration80.incompatible

Exakat Documentation, Release 1

Suggestions

• Remove the code related to those functions

Specs

Short name Php/Php80RemovedFunctions
Rulesets All, CE, CompatibilityPHP80
Exakat since 1.6.8
PHP Version With PHP 8.0 and older
Severity Major
Time To Fix Slow (1 hour)
Precision High
Features native-function
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.922 PHP 8.0 Resources Turned Into Objects

Multiple PHP native functions now return objects, not resources. Any check on those values with
is_resource() is now going to fail.

The affected functions are the following :

• curl_init()

• curl_multi_init()

• curl_share_init()

• deflate_init()

• enchant_broker_init()

• enchant_broker_request_dict()

• enchant_broker_request_pwl_dict()

• inflate_init()

• msg_get_queue()

• openssl_csr_new()

• openssl_csr_sign()

• openssl_pkey_new()

• openssl_x509_read()

• sem_get()

• shm_attach()

• shmop_open()

• socket_accept()

• socket_addrinfo_bind()

• socket_addrinfo_connect()

1216 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/is_resource
https://www.php.net/curl_init
https://www.php.net/curl_multi_init
https://www.php.net/curl_share_init
https://www.php.net/deflate_init
https://www.php.net/enchant_broker_init
https://www.php.net/enchant_broker_request_dict
https://www.php.net/enchant_broker_request_pwl_dict
https://www.php.net/inflate_init
https://www.php.net/msg_get_queue
https://www.php.net/openssl_csr_new
https://www.php.net/openssl_csr_sign
https://www.php.net/openssl_pkey_new
https://www.php.net/openssl_x509_read
https://www.php.net/sem_get
https://www.php.net/shm_attach
https://www.php.net/shmop_open
https://www.php.net/socket_accept
https://www.php.net/socket_addrinfo_bind
https://www.php.net/socket_addrinfo_connect

Exakat Documentation, Release 1

• socket_create_listen()

• socket_create()

• socket_import_stream()

• socket_wsaprotocol_info_import()

• xml_parser_create_ns()

• xml_parser_create()

See also Resource to object migration.

Suggestions

• Change the condition from is_resource() to instanceof

Specs

Short name Php/Php80RemovesResources
Rulesets All, CE, CompatibilityPHP80
Exakat since 2.2.0
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Medium
Features resource
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.923 PHP 8.0 Typehints

New scalar typehints were introduced : mixed and false.

They can’t be used before PHP 8.0, and will be confused with classes or interfaces, or generate a parse error.

<?php

function test(mixed $a) : false|other
{

//....
}

?>

See also PHP RFC: noreturn type.

14.2. List of Rules 1217

https://www.php.net/socket_create_listen
https://www.php.net/socket_create
https://www.php.net/socket_import_stream
https://www.php.net/xml_parser_create_ns
https://www.php.net/xml_parser_create
https://www.php.net/manual/en/migration80.incompatible.php#migration81.incompatible.resource2object
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://wiki.php.net/rfc/noreturn_type

Exakat Documentation, Release 1

Specs

Short
name

Php/PHP80scalartypehints

Rule-
sets

All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compatibili-
tyPHP56, CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73, Com-
patibilityPHP74

Ex-
akat
since

2.3.0

PHP
Ver-
sion

With PHP 8.1 and more recent

Sever-
ity

Minor

Time
To
Fix

Instant (5 mins)

Preci-
sion

Very high

Fea-
tures

mixed, false, typehint

Avail-
able
in

Entreprise Edition, Exakat Cloud

14.2.924 PHP 8.1 New Types

This rule reports usage of the new PHP 8.1 types. This is the never type.

This type is actually only available in return types in methods. This type is not available before version 8.1: as it was
not a reserved keyword, it might be used with a class.

<?php

function foo() : never {
die();

}

?>

1218 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short
name

Php/Php81NewTypes

Rule-
sets

All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compatibility-
PHP56, CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73, Compat-
ibilityPHP74, CompatibilityPHP80, CompatibilityPHP81

Ex-
akat
since

2.6.6

PHP
Ver-
sion

All

Sever-
ity

Minor

Time
To
Fix

Quick (30 mins)

Pre-
ci-
sion

Very high

Avail-
able
in

Entreprise Edition, Exakat Cloud

14.2.925 PHP 8.1 Removed Constants

The following PHP native constants were disabled in PHP 8.1. They are not removed, but they have no
more effect.

• MYSQLI_STMT_ATTR_UPDATE_MAX_LENGTH

• MYSQLI_STORE_RESULT_COPY_DATA

• FILE_BINARY

• FILE_TEXT

• FILTER_SANITIZE_STRING

See also PHP RFC: Deprecations for PHP 8.1.

Suggestions

• Remove usage of those constants

14.2. List of Rules 1219

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/MYSQLI_STMT_ATTR_UPDATE_MAX_LENGTH
https://www.php.net/MYSQLI_STORE_RESULT_COPY_DATA
https://www.php.net/FILE_BINARY
https://www.php.net/FILE_TEXT
https://www.php.net/FILTER_SANITIZE_STRING
https://wiki.php.net/rfc/deprecations_php_8_1

Exakat Documentation, Release 1

Specs

Short name Php/Php81RemovedConstant
Rulesets All, CompatibilityPHP81
Exakat since 1.6.8
PHP Version With PHP 8.1 and older
Severity Critical
Time To Fix Quick (30 mins)
Precision Very high
Features constant
Available in Entreprise Edition, Exakat Cloud

14.2.926 PHP 8.1 Removed Directives

List of directives that are removed in PHP 8.1.

In PHP 8.1, the following directives were removed :

• mysqlnd.fetch_data_copy

• filter.default

• filter.default_options

• auto_detect_line_endings

• oci8.old_oci_close_semantics

You can detect valid directives with ini_get(). This native function will return false, when the directive doesn’t exist,
while actual directive values will be returned as a string.

See also PHP RFC: Deprecations for PHP 8.1.

Suggestions

• Remove usage of the directives.

Specs

Short name Php/Php81RemovedDirective
Rulesets All, CompatibilityPHP81
Exakat since 2.2.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Related rule PHP 7.4 Removed Directives, PHP 8.0 Removed Directives
Available in Entreprise Edition, Exakat Cloud

1220 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/ini_get
https://wiki.php.net/rfc/deprecations_php_8_1
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.927 PHP 8.1 Removed Functions

The following PHP native functions were deprecated in PHP 8.1, and will be removed in PHP 9.0.

• image2wbmp()

• png2wbmp()

• jpeg2wbmp()

• ldap_sort()

• hebrevc()

• convert_cyr_string()

• ezmlm_hash()

• money_format()

• get_magic_quotes_gpc()

• get_magic_quotes_gpc_runtime()

• create_function()

• each()

• read_exif_data()

• gmp_random()

• fgetss()

• restore_include_path()

• gzgetss()

<?php

echo hebrevc(abc);

?>

Suggestions

• Avoid using those functions anymore

Specs

Short name Php/Php81RemovedFunctions
Rulesets All, CompatibilityPHP81
Exakat since 2.3.0
PHP Version With PHP 8.1 and older
Severity Major
Time To Fix Slow (1 hour)
Precision High
Features function, native-function
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1221

https://www.php.net/hebrevc
https://www.php.net/convert_cyr_string
https://www.php.net/ezmlm_hash
https://www.php.net/money_format
https://www.php.net/get_magic_quotes_gpc
https://www.php.net/each
https://www.php.net/fgetss
https://www.php.net/restore_include_path
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.928 PHP 8.1 Resources Turned Into Objects

Multiple PHP native functions now return objects, not resources. Any check on those values with
is_resource() is now going to fail.

The affected functions are the following :

• finfo_open()

• ftp_connect()

• imap_open()

• ldap_connect()

• ldap_list()

• ldap_search()

• ldap_first_entry()

• ldap_next_entry ()

• ldap_read()

• pg_connect()

• pg_pconnect()

• pg_query()

• pg_execute ()

• pg_lo_create()

• pspell_config_create()

• pspell_new()

• pspell_new_personal()

• pspell_new_config()

<?php

$pspell = new pspell_new(en, , , ,
(PSPELL_FAST|PSPELL_RUN_TOGETHER));

var_dump(is_resource($pspell)); // true in PHP 8.0,
// false in PHP 8.1

?>

See also UPGRADING PHP 8.1.

1222 Chapter 14. Rules

https://www.php.net/is_resource
https://www.php.net/finfo_open
https://www.php.net/ftp_connect
https://www.php.net/imap_open
https://www.php.net/ldap_connect
https://www.php.net/ldap_list
https://www.php.net/ldap_search
https://www.php.net/ldap_first_entry
https://www.php.net/ldap_read
https://www.php.net/pg_connect
https://www.php.net/pg_pconnect
https://www.php.net/pg_query
https://www.php.net/pg_lo_create
https://www.php.net/pspell_config_create
https://www.php.net/pspell_new
https://www.php.net/pspell_new_personal
https://www.php.net/pspell_new_config
https://www.php.net/manual/en/migration81.incompatible.php#migration81.incompatible.resource2object

Exakat Documentation, Release 1

Suggestions

• Change the condition from is_resource() to instanceof

Specs

Short name Php/Php81RemovesResources
Rulesets All, Changed Behavior, CompatibilityPHP80
Exakat since 2.2.0
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Changed Behavior PHP 8.1 - More
Precision Very high
Features resource
Available in Entreprise Edition, Exakat Cloud

14.2.929 PHP 8.1 Typehints

A new scalar typehint was introduced : never.

It can’t be used before PHP 8.1, and will be confused with classes or interfaces.

<?php

function test() : never
{

exit();
}

?>

See also PHP RFC: noreturn type.

14.2. List of Rules 1223

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://wiki.php.net/rfc/noreturn_type

Exakat Documentation, Release 1

Specs

Short
name

Php/PHP81scalartypehints

Rule-
sets

All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compatibili-
tyPHP56, CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73, Com-
patibilityPHP74, CompatibilityPHP80

Ex-
akat
since

2.3.0

PHP
Ver-
sion

With PHP 8.1 and more recent

Sever-
ity

Minor

Time
To
Fix

Instant (5 mins)

Pre-
ci-
sion

Very high

Fea-
tures

scalar-typehint

Avail-
able
in

Entreprise Edition, Exakat Cloud

14.2.930 PHP 8.2 New Types

This rule reports usage of the new PHP 8.2 types. This is the true type.

This type is not available before version 8.2.

<?php

function foo() : true {
return true;

}

?>

1224 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short
name

Php/Php82NewTypes

Rule-
sets

All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compatibility-
PHP56, CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73, Compat-
ibilityPHP74, CompatibilityPHP80, CompatibilityPHP81

Ex-
akat
since

2.6.6

PHP
Ver-
sion

All

Sever-
ity

Minor

Time
To
Fix

Quick (30 mins)

Pre-
ci-
sion

Very high

Avail-
able
in

Entreprise Edition, Exakat Cloud

14.2.931 PHP 80 Named Parameter Variadic

Named parameter with variadic have been renamed from 0 to ‘parameter name’ in PHP 8.0.

In PHP 7.0, with positional argument only, the content of $b is in an array, index 0. This is also true with PHP 8.0.

In PHP 8.0, with named arguments, the content of $b is in an array, index ‘b’;

Since the behavior of the variadic depends on the calling syntax (with or without named parameter), the receiving must
ensure the correct reception, and handle both cases.

<?php

function foo($a, ...$b) {
print_r($b);

}

foo(3, 4);
foo(3, b: 4); // PHP 8 only
foo(...[2, "b"=> [3, 4]]); // PHP 8 only

?>

14.2. List of Rules 1225

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Apply array_values() to the variadic arguments.

Specs

Short name Php/Php80NamedParameterVariadic
Rulesets All, CE, CompatibilityPHP80
Exakat since 2.2.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features variadic, parameter
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.932 PHP Alternative Syntax

This rule identifies the usage of alternative syntax in the code, for if then, switch, while, for and foreach.

Alternative syntax is another way to write the same expression. Alternative syntax is less popular than the normal one,
and associated with older coding practices.

<?php

// Normal syntax
if ($a == 1) {

print $a;
}

// Alternative syntax : identical to the previous one.
if ($a == 1) :

print $a;
endif;

?>

See also Alternative syntax.

Specs

Short name Php/AlternativeSyntax
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features alternative-syntax, foreach, while, do-while, for, switch
Available in Entreprise Edition, Community Edition, Exakat Cloud

1226 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.alternative-syntax.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.933 PHP Arrays Index

List of indexes used when manipulating PHP arrays in the code. These indices usually carry semantic
meanings, and should always be readable.

<?php

// HTTP_HOST is a PHP array index.
$ip = 'http'.$_SERVER['HTTP_HOST'].'/'.$row['path'];

//'path' is not a PHP index

?>

Specs

Short name Arrays/Phparrayindex
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Features array, index-array
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.934 PHP Bugfixes

This is the list of features, used in the code, that also received a bug fix in recent PHP versions.

Specs

Short name Php/MiddleVersion
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1227

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.935 PHP Constant Usage

List of PHP constants being used.

<?php

const MY_CONST = 'Hello';

// PHP_EOL (native PHP Constant)
// MY_CONST (custom constant, not reported)
echo PHP_EOL . MY_CONST;

?>

See also Predefined Constants.

Specs

Short name Constants/PhpConstantUsage
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features dynamic-constant, constant
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.936 PHP Echo Tag Usage

Usage of the short echo tab, that echo’s directly the following content.

<?= $variable; ?>

Specs

Short name Php/EchoTagUsage
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features short-echo-tag
Available in Entreprise Edition, Community Edition, Exakat Cloud

1228 Chapter 14. Rules

https://www.php.net/manual/en/reserved.constants.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.937 PHP Exception

Mark an exception as a native exception. They may come from PHP standard distribution or an extension.

<?php

// From the native set
$a = new LogicException('Logic error');
throw $a;

// From an extension
throw new ZookeeperException('Zookeeper error');

?>

See also Exceptions.

Specs

Short name Exceptions/IsPhpException
Rulesets All, Changed Behavior
Exakat since 1.5.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features exception
Available in Entreprise Edition, Exakat Cloud

14.2.938 PHP Handlers Usage

PHP has a number of handlers that may be replaced by customized code : session, shutdown, error, excep-
tion. They are noted here.

The example is adapted from the PHP documentation of set_error_handler().

<?php
// error handler function
function myErrorHandler($errno, $errstr, $errfile, $errline)
{

if (!(error_reporting() & $errno)) {
// This error code is not included in error_reporting, so let it fall
// through to the standard PHP error handler
return false;

}

switch ($errno) {
case E_USER_ERROR:

echo 'My ERROR [$errno] $errstr
'.PHP_EOL;
echo ' Fatal error on line '.$errline.' in file .'$errfile;
echo ', PHP ' . PHP_VERSION . ' (' . PHP_OS . ')
'.PHP_EOL;

(continues on next page)

14.2. List of Rules 1229

https://www.php.net/exception
https://www.php.net/exception
https://www.php.net/manual/en/language.exceptions.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/exception
https://www.php.net/exception
https://www.php.net/set_error_handler

Exakat Documentation, Release 1

(continued from previous page)

echo 'Aborting...
'.PHP_EOL;
exit(1);
break;

case E_USER_WARNING:
echo 'My WARNING ['.$errno.'] '.$errstr.'
'.PHP_EOL;
break;

case E_USER_NOTICE:
echo 'My NOTICE ['.$errno.'] '.$errstr.'
'.PHP_EOL;
break;

default:
echo 'Unknown error type: ['.$errno.'] $errstr
'.PHP_EOL;
break;

}

/* Don't execute PHP internal error handler */
return true;

}

// set to the user defined error handler
$old_error_handler = set_error_handler("myErrorHandler");

?>

See also set_error_handler.

Specs

Short name Php/SetHandlers
Rulesets All, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features handler
Available in Entreprise Edition, Exakat Cloud

1230 Chapter 14. Rules

http://www.php.net/set_error_handler
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.939 PHP Interfaces

List of PHP interfaces being used in the code.

<?php

// Countable is a PHP native interface
class Enumeration extends Countable {

function count() { return 1; }
}

?>

Specs

Short name Interfaces/Php
Rulesets All, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.940 PHP Keywords As Names

PHP has a set of reserved keywords. It is recommended not to use those keywords for names structures.

PHP does check that a number of structures, such as classes, methods, interfaces. . . can’t be named or called using
one of the keywords. However, in a few other situations, no check are enforced. Using keywords in such situation is
confusing.

<?php

// This keyword is reserved since PHP 7.2
class object {

// _POST is used by PHP for the $_POST variable
// This methods name is probably confusing,
// and may attract more than its share of attention
function _POST() {

}
}

?>

14.2. List of Rules 1231

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Name De-
fault

Type Description

reserved-
Names

string Other reserved names : all in a string, comma separated.

al-
lowedNames

string PHP reserved names that can be used in the code. All in a string, comma sepa-
rated.

See also List of Keywords, Predefined Classes, Predefined Constants, List of other reserved words and Predefined
Variables.

Suggestions

• Rename the structure

• Choose another naming convention to avoid conflict and rename the current structures

Specs

Short name Php/ReservedNames
Rulesets All, Changed Behavior, Semantics
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features reserved-name
Examples ChurchCRM, xataface
Available in Entreprise Edition, Exakat Cloud

14.2.941 PHP Native Attributes

This is the list of the PHP native attribute in use in the code. PHP native attribute depends on the PHP
version, as new attributes are added regularly.

<?php

#[Attribute]
class x {

function foo(#[SensitiveParameter] $a) {
// doSomething()

}
}

?>

See also PHP native attributes.

1232 Chapter 14. Rules

https://www.php.net/manual/en/reserved.keywords.php
https://www.php.net/manual/en/reserved.classes.php
https://www.php.net/manual/en/reserved.constants.php
https://www.php.net/manual/en/reserved.other-reserved-words.php
https://www.php.net/manual/en/reserved.variables.php
https://www.php.net/manual/en/reserved.variables.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/attribute
https://www.php.net/attribute
https://www.exakat.io/en/php-native-attributes-quick-reference/

Exakat Documentation, Release 1

Specs

Short name Attributes/PhpNativeAttributes
Rulesets All, Attributes, Changed Behavior
Exakat since 2.6.4
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features attribute
Available in Entreprise Edition, Exakat Cloud

14.2.942 PHP Native Class Type Compatibility

PHP enforces the method compatibility with native classes and interfaces.

This means that classes that extends native PHP classes or interfaces must declare compatible types. They can’t omit
typing, like it was the case until PHP 8.0. This is needed for compatibility with PHP 8.0. This is probably good for
older versions too, although it is not reported.

The attribute ReturnTypeWillChange is taken into account by this rule. Note that it is not detected when auditing
with PHP < 8.0, so it won’t have effect until this version. The attribute was declared in PHP 8.1, though it is also taken
into account when auditing with PHP 8.0.

<?php

class a extends RecursiveFilterIterator {

// fully declared method
function hasChildren(): bool {

return true;
}

// key() returns mixed. Omitting the type used to be quiet
function key() {}

// #[\ReturnTypeWillChange] is taken into account

}
?>

See also method-compatibility.

14.2. List of Rules 1233

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/attribute
https://www.php.net/attribute

Exakat Documentation, Release 1

Suggestions

• Make sure the methods are compatible or identical to the parent’s method signature.

Specs

Short name Php/NativeClassTypeCompatibility
Rulesets All, Analyze, Changed Behavior, CompatibilityPHP81
Exakat since 2.2.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features returntypewillchange, type-covariance, type-contravariance
Available in Entreprise Edition, Exakat Cloud

14.2.943 PHP Native Interfaces and Return Type

Native PHP interface which define a type, expect the derived methods to use the same time. In particular,
a mixed return type was added to the jsonSerialize() of the JsonSerialize PHP interface.

In PHP 8.1, the mixed return type is now enforced, and a deprecated notice is displayed.

One solution is to add the good return type, or to use the #[`ReturnTypeWillChange]` attribute. This rule covers the
following interfaces :

• ArrayAccess <https://www.php.net/manual/en/class.`arrayaccess.php>`_

• Countable

• Exception

• FilterIterator

• Iterator

• JsonSerializable

• php_user_filter

• SessionHandlerInterface

<?php
class MyJsonSerialize implements jsonserialize {

function jsonserialize() : int {}
}

?>

See also JsonSerializable::jsonSerialize.

1234 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/returntypewillchange
https://www.php.net/attribute
https://www.php.net/arrayaccess
https://www.php.net/countable
https://www.php.net/exception
https://www.php.net/filteriterator
https://www.php.net/iterator
https://www.php.net/jsonserializable
https://www.php.net/php_user_filter
https://www.php.net/sessionhandlerinterface
https://www.php.net/manual/en/jsonserializable.jsonserialize.php

Exakat Documentation, Release 1

Suggestions

• Add the mixed returntype to all implementation of the jsonSerialize method

• Add the #[ReturnTypeWillChange] attribute to the method

Specs

Short name Php/JsonSerializeReturnType
Rulesets All, Analyze, Changed Behavior, CompatibilityPHP81, Deprecated, LintButWontExec
Exakat since 2.3.0
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features json
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.944 PHP Overridden Function

It is possible to declare and use a function with the same name as a PHP native, in a namespace.

Within the declaration namespace, it is easy to confuse the local version and the global version, unless the function has
been prefixed with \.

When a piece of code use overridden function, any newcomer may be confused by the usage of classic PHP native
function in surprising situations.

It is recommended to avoid redeclare PHP native function in namespaces.

<?php

namespace A {
use function A\dirname as split;

function dirname($a, $b) { return __FUNCTION__; }

echo dirname('/a/b/c');
echo split('a', 'b');

echo \dirname('/a/b/c');
}

?>

14.2. List of Rules 1235

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Change the name of the function, in its declaration and usage.

Specs

Short name Php/OveriddenFunction
Rulesets All, Appinfo, CE, IsExt, IsPHP, IsStub
Exakat since 1.7.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features function
Configurable by php_core, php_extensions, stubs
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.945 PHP Sapi

List of PHP SAPI mentioned in the code. When those SAPI are mentioned in strings, they are usually
checked to take advantage of special characteristics. Check the code for portability.

<?php

require __DIR__.'/phpdbg.php';

$Phpdbg = new phpdbg();

?>

See also php_sapi_name().

Specs

Short name Type/Sapi
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features sapi
Available in Entreprise Edition, Exakat Cloud

1236 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/function.php-sapi-name.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.946 PHP Variables

This is the list of PHP predefined variables that are used in the application.

The web variables ($_GET, $_COOKIE, $_FILES) are quite commonly used, though sometimes replaced by some special
accessors. Others are rarely used.

<?php

// Reading an incoming email, with sanitation
$email = filter_var($_GET['email'], FILTER_SANITIZE_EMAIL);

?>

See also Predefined Variables.

Specs

Short name Variables/VariablePhp
Rulesets All, Appinfo
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features superglobal, global
Available in Entreprise Edition, Exakat Cloud

14.2.947 PHP5 Indirect Variable Expression

Indirect variable expressions changes between PHP 5 an 7.

The following structures are evaluated differently in PHP 5 and 7. It is recommended to review them or switch
to a less ambiguous syntax. +———————–+————————-+————————-+ | Expression |
PHP 5 interpretation | PHP 7 interpretation | +———————–+————————-+————————-
+ |$$foo[‘bar’][‘baz’] |${$foo[‘bar’][‘baz’]} |($$foo)[‘bar’][‘baz’] | |$foo->$bar[‘baz’] |$foo->{$bar[‘baz’]}
|($foo->$bar)[‘baz’] | |$foo->$bar[‘baz’]() |$foo->{$bar[‘baz’]}() |($foo->$bar)[‘baz’]() | |Foo::$bar[‘baz’]()
|Foo::{$bar[‘baz’]}() |(Foo::$bar)[‘baz’]() | +———————–+————————-+————————-+

<?php

// PHP 7
$foo = 'bar';
$bar['bar']['baz'] = 'foobarbarbaz';
echo $$foo['bar']['baz'];
echo ($$foo)['bar']['baz'];

// PHP 5
$foo['bar']['baz'] = 'bar';
$bar = 'foobarbazbar';
echo $$foo['bar']['baz'];

(continues on next page)

14.2. List of Rules 1237

https://www.php.net/manual/en/reserved.variables.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

echo $\{$foo['bar']['baz']\};

?>

See also Backward incompatible changes PHP 7.0.

Suggestions

• Avoid using complex expressions, mixing $$\, [0] and -> in the same expression

• Add curly braces {} to ensure that the precedence is the same between PHP 5 and 7. For example, $$v becomes
$\{$v\}

Specs

Short name Variables/Php5IndirectExpression
Rulesets All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56
Exakat since 0.8.4
PHP Version With PHP 7.0 and older
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features global
Available in Entreprise Edition, Exakat Cloud

14.2.948 PHP7 Dirname

dirname() has a second argument that represents the number of parent folder to follow. This prevent us
from using nested dirname() calls to reach an grand-parent direct.

<?php
$path = '/a/b/c/d/e/f';

// PHP 7 syntax
$threeFoldersUp = dirname($path, 3);

// PHP 5 syntax
$threeFoldersUp = dirname(dirname(dirname($path)));

// long path, with backtracking
$path = __DIR__.'/../../../abc';

// short path, with direct access
$path = dirname(__DIR__, 3).'/abc';

?>

See also dirname.

1238 Chapter 14. Rules

https://www.php.net/manual/en/migration70.incompatible.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/dirname
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/dirname
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/dirname

Exakat Documentation, Release 1

Suggestions

• Use dirname()’s second argument

Specs

Short
name

Structures/PHP7Dirname

Rulesets All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56, Sug-
gestions, php-cs-fixable

Exakat
since

0.8.4

PHP Ver-
sion

With PHP 7.0 and more recent

Severity Minor
Time To
Fix

Quick (30 mins)

Precision High
Examples OpenConf , MediaWiki
Available
in

Entreprise Edition, Exakat Cloud

14.2.949 PSR-11 Usage

PSR-11 describes a common interface for dependency injection containers.

It is supported by an set of interfaces, that one may use in the code.

<?php

namespace MyNamespace;

// MyContainerInterface implements the PSR-7 ServerRequestInterface.
// MyContainerInterface is more of a black hole than a real Container.
class MyContainerInterface implements \Psr\Container\ContainerInterface {

public function get($id) {}
public function has($id) {}

}

?>

See also PSR-11 : Dependency injection container.

14.2. List of Rules 1239

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://github.com/container-interop/fig-standards/blob/master/proposed/container.md

Exakat Documentation, Release 1

Specs

Short name Psr/Psr11Usage
Rulesets All, Appinfo, CE
Exakat since 0.11.5
PHP Version All
Severity
Time To Fix
Precision Very high
Features psr
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.950 PSR-13 Usage

PSR-13 describes a common interface for dependency injection containers.

It is supported by an set of interfaces, that one may use in the code.

<?php

namespace MyNamespace;

// MyLink implements the PSR-13 LinkInterface.
// MyLink is more of a black hole than a real Container.
class MyLink implements LinkInterface {

public function getHref() {}
public function isTemplated() {}
public function getRels() {}
public function getAttributes() {}

}

?>

See also PSR-13 : Link definition interface.

Specs

Short name Psr/Psr13Usage
Rulesets All, Appinfo, CE
Exakat since 0.11.6
PHP Version All
Severity
Time To Fix
Precision Very high
Features psr
Available in Entreprise Edition, Community Edition, Exakat Cloud

1240 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
http://www.php-fig.org/psr/psr-13/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.951 PSR-16 Usage

PSR-16 describes a simple yet extensible interface for a cache item and a cache driver. It is supported by
an set of interfaces, that one may use in the code.

<?php

namespace My\SimpleCache;

// MyCache implements the PSR-16 Simple cache.
// MyCache is more of a black hole than a real cache.
class MyCache implements Psr\SimpleCache\CacheInterface {

public function get($key, $default = null) {}
public function set($key, $value, $ttl = null) {}
public function delete($key) {}
public function clear() {}
public function getMultiple($keys, $default = null) {}
public function setMultiple($values, $ttl = null) {}
public function deleteMultiple($keys) {}
public function has($key) {}

}

?>

See also PSR-16 : Common Interface for Caching Libraries.

Specs

Short name Psr/Psr16Usage
Rulesets All, Appinfo, CE
Exakat since 0.11.6
PHP Version All
Severity
Time To Fix
Precision Very high
Features psr
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.952 PSR-3 Usage

PSR-3 describes a common interface for logging libraries.

It is supported by an set of interfaces, that one may use in the code.

<?php

namespace MyNamespace;

// MyLog implements the PSR-3 LoggerInterface.
// MyLog is more of a black hole than a real Log.
namespace ;

(continues on next page)

14.2. List of Rules 1241

http://www.php-fig.org/psr/psr-16/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

class MyLog implements \Psr\Log\LoggerInterface {
public function emergency($message, array $context = array()) {}
public function alert($message, array $context = array()) {}
public function critical($message, array $context = array()) {}
public function error($message, array $context = array()) {}
public function warning($message, array $context = array()) {}
public function notice($message, array $context = array()) {}
public function info($message, array $context = array()) {}
public function debug($message, array $context = array()) {}
public function log($level, $message, array $context = array()) {}

}

?>

See also PSR-3 : Logger Interface.

Specs

Short name Psr/Psr3Usage
Rulesets All, Appinfo, CE
Exakat since 0.11.6
PHP Version All
Severity
Time To Fix
Precision Very high
Features psr
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.953 PSR-6 Usage

PSR-6 is the cache standard for PHP.

The goal of PSR-6 is to allow developers to create cache-aware libraries that can be integrated into existing frameworks
and systems without the need for custom development.

It is supported by an set of interfaces, that one may use in the code.

<?php

namespace MyNamespace;

// MyCacheItem implements the PSR-7 CacheItemInterface.
// This MyCacheItem is more of a black hole than a real CacheItem.
class MyCacheItem implements \Psr\Cache\CacheItemInterface {

public function getKey() {}
public function get() {}
public function isHit() {}
public function set($value) {}
public function expiresAt($expiration) {}

(continues on next page)

1242 Chapter 14. Rules

http://www.php-fig.org/psr/psr-3/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

public function expiresAfter($time) {}
}

?>

See also PSR-6 : Caching.

Specs

Short name Psr/Psr6Usage
Rulesets All, Appinfo, CE
Exakat since 0.11.6
PHP Version All
Severity
Time To Fix
Precision Very high
Features psr
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.954 PSR-7 Usage

PSR-7 describes common interfaces for representing HTTP messages as described in RFC 7230 and RFC
7231, and URI for use with HTTP messages as described in RFC 3986.

It is supported by an set of interfaces, that one may use in the code.

<?php

namespace MyNamespace;

// MyServerRequest implements the PSR-7 ServerRequestInterface.
// MyServerRequest is more of a black hole than a real Server.
class MyServerRequest extends \Psr\Http\Message\ServerRequestInterface {

public function getServerParams() {}
public function getCookieParams() {}
public function withCookieParams(array $cookies) {}
public function getQueryParams() {}
public function withQueryParams(array $query) {}
public function getUploadedFiles() {}
public function withUploadedFiles(array $uploadedFiles) {}
public function getParsedBody() {}
public function withParsedBody($data) {}
public function getAttributes() {}
public function getAttribute($name, $default = null) {}
public function withAttribute($name, $value) {}
public function withoutAttribute($name) {}

}

?>

14.2. List of Rules 1243

http://www.php-fig.org/psr/psr-6/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc3986

Exakat Documentation, Release 1

See also PSR-7 : HTTP message interfaces.

Specs

Short name Psr/Psr7Usage
Rulesets All, Appinfo, CE
Exakat since 0.11.6
PHP Version All
Severity
Time To Fix
Precision Very high
Features psr
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.955 Pack Format Inventory

All format used in the code with pack() and unpack().

<?php

$binarydata = "\x04\x00\xa0\x00";
$array = unpack("cn", $binarydata);
$initial = pack("cn", ...$array);

?>

See also pack().

Specs

Short name Type/Pack
Rulesets All, Appinfo, CE, Inventory
Exakat since 1.5.0
PHP Version All
Severity
Time To Fix
Precision High
Features pack
Available in Entreprise Edition, Community Edition, Exakat Cloud

1244 Chapter 14. Rules

http://www.php-fig.org/psr/psr-7/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/pack
https://www.php.net/unpack
https://www.php.net/pack
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.956 Parameter Hiding

When a parameter is set to another variable, and never used.

While this is a legit syntax, parameter hiding tends to make the code confusing. The parameter itself seems to be
unused, while some extra variable appears.

Keep this code simple by removing the hiding parameter.

<?php

function substract($a, $b) {
// $b is given to $c;
$c = $b;

// $c is used, but $b would be the same
return $a - $c;

}

?>

Suggestions

• Remove the parameter alias and use the parameter

• Add some modifications to the alias parameter and use it

Specs

Short name Functions/ParameterHiding
Rulesets All, Semantics
Exakat since 1.9.8
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features parameter
Available in Entreprise Edition, Exakat Cloud

14.2.957 Parent First

When calling parent constructor, always put it first in the __construct method.

It ensures the parent is correctly build before the child start using values. This analysis doesn’t apply to Exceptions.

<?php

class father {
protected $name = null;

function __construct() {
(continues on next page)

14.2. List of Rules 1245

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

(continued from previous page)

$this->name = init();
}

}

class goodSon {
function __construct() {

// parent is build immediately,
parent::__construct();
echo "my name is ".$this->name;

}
}

class badSon {
function __construct() {

// This will fail.
echo "my name is ".$this->name;

// parent is build later,
parent::__construct();

}
}

?>

Suggestions

• Use parent::__construct as the first call in the constructor.

Specs

Short name Classes/ParentFirst
Rulesets All, Analyze, Suggestions
Exakat since 1.0.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features parent
Examples shopware, PrestaShop
Available in Entreprise Edition, Exakat Cloud

1246 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.958 Parent Is Not Static

The parent keyword behaves like self, not like static. It links to the parent of the defining expression, not
to the one being called.

This may skip the parent of the calling class, and create a Undefined method call, or yield the wrong ::class value. It
may also skip a local version of the method.

<?php

class w {
}

class x extends w {
function foo() {

parent::method();
}

// method() is in the parent of Y, but not in the one of X.
function method() {

print __METHOD__;
}

}

class y extends x {}

(new y)->foo();
// print W::method
(new y)->method();
// print x::method

?>

Suggestions

• Use self keyword

• Use static keyword

• Use hard-coded class name keyword

Specs

Short name Classes/ParentIsNotStatic
Rulesets All, Analyze, Class Review
Exakat since 2.4.3
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features self, static, parent
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1247

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.959 Parent, Static Or Self Outside Class

Parent, static and self keywords must be used within a class, a trait, an interface or an enum. They make
no sense outside a class or trait scope, as self and static refers to the current class and parent refers to one
of parent above.

PHP 7.0 and later detect some of their usage at compile time, and emits a fatal error. Static may be used in a function
or a closure <https://www.php.net/`closure>`_, but not globally.

<?php

class x {
const Y = 1;

function foo() {
// self is \x
echo self::Y;

}
}

const Z = 1;
// This lint but won't anymore
echo self::Z;

?>

Suggestions

• Make sure the keyword is inside a class context

Specs

Short name Classes/PssWithoutClass
Rulesets All, Analyze, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Changed Behavior PHP 7.0 - More
Precision Very high
Features parent, self, static, class
Available in Entreprise Edition, Exakat Cloud

1248 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/error
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/closure
https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.960 Parenthesis As Parameter

Using parenthesis around parameters used to silent some internal check. This is not the case anymore in
PHP 7, and should be fixed by removing the parenthesis and making the value a real reference.

<?php
// example extracted from the PHP manual
function getArray() {

return [1, 2, 3];
}

function squareArray(array &$a) {
foreach ($a as &$v) {

$v **\= 2;
}

}

// Generates a warning in PHP 7.
squareArray((getArray()));
?>

See also Parentheses around function arguments no longer affect behaviour.

Suggestions

• Remove the parenthesis when they are only encapsulating an argument

• Replace the parenthesis by the no-scream operator

Specs

Short name Php/ParenthesisAsParameter
Rulesets All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compat-

ibilityPHP56
Exakat
since

0.8.4

PHP Ver-
sion

With PHP 7.0 and older

Severity Major
Time To
Fix

Quick (30 mins)

Precision Very high
Features parenthesis, parameter
Available
in

Entreprise Edition, Exakat Cloud

14.2. List of Rules 1249

https://www.php.net/manual/en/migration70.incompatible.php#migration70.incompatible.variable-handling.parentheses
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.961 Path lists

List of all paths that were found in the code.

Path are identified with this regex : ^(.*/)([^/]*)\.\w+$. In particular, the directory
<https://www.php.net/`directory>`_ delimiter is / : Windows delimiter \ are not detected. URL are ignored
when the protocol is present in the literal : http://www.example.com is not mistaken with a file.

<?php

// the first argument is recognized as an URL
fopen('/tmp/my/file.txt', 'r+');

// the string argument is recognized as an URL
$source = 'https://www.other-example.com/';

?>

See also Dir predefined constants and Supported Protocols and Wrappers.

Specs

Short name Type/Path
Rulesets All, Appinfo, CE
Exakat since 1.5.8
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.962 Pathinfo() Returns May Vary

pathinfo() function returns an array whose content may vary. It is recommended to collect the values after
check, rather than directly.

The same applies to parse_url(), which returns an array with various index.

<?php

$file = '/a/b/.c';
//$extension may be missing, leading to empty $filename and filename in $extension
list($dirname, $basename, $extension, $filename) = array_values(pathinfo($file));

//Use PHP 7.1 list() syntax to assign correctly the values, and skip array_values()
//This emits a warning in case of missing index
['dirname' => $dirname,
'basename' => $basename,
'extension' => $extension,
'filename' => $filename] = pathinfo($file);

(continues on next page)

1250 Chapter 14. Rules

https://www.php.net/directory
https://www.php.net/directory
https://www.php.net/manual/en/dir.constants.php
https://www.php.net/manual/en/wrappers.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/pathinfo
https://www.php.net/parse_url

Exakat Documentation, Release 1

(continued from previous page)

//This works without warning
$details = pathinfo($file);
$dirname = $details['dirname'] ?? getpwd();
$basename = $details['basename'] ?? '';
$extension = $details['extension'] ?? '';
$filename = $details['filename'] ?? '';

?>

Suggestions

• Add a check on the return value of pathinfo() before using it.

Specs

Short name Php/PathinfoReturns
Rulesets All, Analyze, Changed Behavior
Exakat since 0.12.11
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features path
Examples NextCloud
Available in Entreprise Edition, Exakat Cloud

14.2.963 Pear Usage

Pear Usage : list of Pear packages in use.

<?php
require_once('MDB2.php');
$dsn = 'mysql://user:pass@host';
$mdb2 = &MDB2::factory($dsn);
$mdb2->setFetchMode(MDB2_FETCHMODE_ASSOC);

?>

See also PEAR.

14.2. List of Rules 1251

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
http://pear.php.net/

Exakat Documentation, Release 1

Specs

Short name Php/PearUsage
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features pear
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.964 Perl Regex

List of all the Perl Regex (PCRE-style).

Regex are spotted when they are literals : dynamically built regex, (including /$x/) are not reported.

<?php

preg_match('/[abc]/', $haystack);

preg_replace('#[0-9A-Z]+#is', $y, $z);

?>

See also `PCRE <https://www.php.net/manual/en/book.pcre.php>_.

Specs

Short name Type/Pcre
Rulesets All, Inventory
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Features regex
Available in Entreprise Edition, Exakat Cloud

1252 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.pcre.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.965 Phalcon Usage

This analysis reports usage of the Phalcon Framework. The report is based on the usage of Phalcon names-
pace, which may be provided by PHP code inclusion or the PHP extension.

<?php

use Phalcon\Mvc\Application;

// Register autoloaders

// Register services

// Handle the request
$application = new Application($di);

try {
$response = $application->handle();

$response->send();
} catch (\Exception $e) {

echo 'Exception: ', $e->getMessage();
}

?>

See also Phalcon.

Specs

Short name Vendors/Phalcon
Rulesets All, Appinfo, CE
Exakat since 1.0.3
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features framework
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.966 Php 7 Indirect Expression

This rule reports variable indirect expressions, that are interpreted differently in PHP 5 and PHP 7.

They should be checked, as they will behave differently between these PHP versions.

<?php

// Ambiguous expression :
$b = $$foo['bar']['baz'];
echo $b;

(continues on next page)

14.2. List of Rules 1253

https://phalconphp.com/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$foo = array('bar' => array('baz' => 'bat'));
$bat = 'PHP 5.6';

// In PHP 5, the expression above means :
$b = ${$foo['bar']['baz']};
$b = 'PHP 5.6';

$foo = 'a';
$a = array('bar' => array('baz' => 'bat'));

// In PHP 7, the expression above means :
$b = ($$foo)['bar']['baz'];
$b = 'bat';

?>

See also Changes to variable handling.

Suggestions

• Avoid using complex expressions, mixing $$, [0] and -> in the same expression

• Add curly braces {} to ensure that the precedence is the same between PHP 5 and 7. For example, $$v becomes
${$v}

Specs

Short
name

Variables/Php7IndirectExpression

Rulesets All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56, Com-
patibilityPHP70

Exakat
since

0.8.4

PHP Ver-
sion

With PHP 7.0 and more recent

Severity Major
Time To
Fix

Slow (1 hour)

Precision Very high
Available
in

Entreprise Edition, Exakat Cloud

1254 Chapter 14. Rules

https://www.php.net/manual/en/migration70.incompatible.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.967 Php 7.1 New Class

New classes, introduced in PHP 7.1. If classes where created with the same name, in current code, they
have to be moved in a namespace, or removed from code to migrate safely to PHP 7.1.

The new class is : ReflectionClassConstant. The other class is ‘Void’ : this is forbidden as a class name, as Void is
used for return type hint.

<?php

class ReflectionClassConstant {
// Move to a namespace, do not leave in global
// or, remove this class

}

?>

Specs

Short
name

Php/Php71NewClasses

Rulesets All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56, Com-
patibilityPHP70

Exakat
since

0.8.4

PHP Ver-
sion

With PHP 7.1 and older

Severity Major
Time To
Fix

Slow (1 hour)

Precision Very high
Features class
Available
in

Entreprise Edition, Exakat Cloud

14.2.968 Php 7.2 New Class

New classes, introduced in PHP 7.2. If classes where created with the same name, in current code, they
have to be moved in a namespace, or removed from code to migrate safely to PHP 7.2.

The new class is : HashContext.

<?php

namespace {
// Global namespace
class HashContext {

// Move to a namespace
// or, remove this class

}
}

(continues on next page)

14.2. List of Rules 1255

https://www.php.net/reflectionclassconstant
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/hashcontext

Exakat Documentation, Release 1

(continued from previous page)

namespace B {
class HashContext {

// This is OK : in a namespace
}

}

?>

See also New Classes and Interfaces.

Suggestions

• Move the current classes with the same names into a distinct domain name

• Change the name of the class

Specs

Short
name

Php/Php72NewClasses

Rule-
sets

All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compatibil-
ityPHP56, CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72

Exakat
since

1.0.4

PHP
Ver-
sion

With PHP 7.2 and older

Sever-
ity

Major

Time
To Fix

Slow (1 hour)

Preci-
sion

Very high

Fea-
tures

class

Avail-
able in

Entreprise Edition, Exakat Cloud

14.2.969 Php 7.4 New Classes

New classes, introduced in PHP 7.4. If classes where created with the same name, in current code, they
have to be moved in a namespace, or removed from code to migrate safely to PHP 7.4.

The new classes are :

• ReflectionReference

• WeakReference

1256 Chapter 14. Rules

https://www.php.net/manual/en/migration72.classes.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

<?php

namespace {
// Global namespace
class WeakReference {

// Move to a namespace
// or, remove this class

}
}

namespace B {
class WeakReference {

// This is OK : in a namespace
}

}

?>

See also New Classes and Interfaces.

Suggestions

• Move the current classes with the same names into a distinct domain name

• Change the name of the class

Specs

Short name Php/Php74NewClasses
Rulesets All, CE, CompatibilityPHP74
Exakat since 1.0.4
PHP Version With PHP 7.4 and older
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features class
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.970 Php 8.0 Only TypeHints

Three scalar typehints are introduced in version 8.0. They are mixed, false and null.

false represents a false boolean, and nothing else. It is more restrictive than a boolean, which accepts true too. null
is an alternative syntax to ? : it allows the type to be null. mixed is an special typehint which explicitly means any
type.

An interface stringable was also introduced to identify objects that may be turned into a string.

Both the above typehints are to be used in conjunction with other types : they can’t be used alone. In PHP 7.0, both
those values could not be used as a class or interface name, to avoid confusion with the actual booleans, nor null
value.

14.2. List of Rules 1257

https://www.php.net/manual/en/migration74.classes.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

<?php

// function accepts an A object, or null.
function foo(A|null $x) {}

// same as above
function foo2(A|null $x) {}

// returns an object of class B, or false
function bar($x) : false|B {}

?>

See also PHP RFC: Union Types 2.0.

Specs

Short
name

Php/Php80OnlyTypeHints

Rule-
sets

All, Appinfo, CE, Changed Behavior, CompatibilityPHP56, CompatibilityPHP70, CompatibilityPHP71,
CompatibilityPHP72, CompatibilityPHP73, CompatibilityPHP74

Exakat
since

2.0.9

PHP
Version

All

Sever-
ity

Minor

Time
To Fix

Quick (30 mins)

Preci-
sion

Very high

Fea-
tures

mixed, false, null

Avail-
able in

Entreprise Edition, Community Edition, Exakat Cloud

14.2.971 Php 8.0 Variable Syntax Tweaks

Several variable syntaxes are added in version 8.0. They extends the PHP 7.0 syntax updates, and fix a
number of edges cases.

In particular, new``and ``instanceof now support a way to inline the expression, rather than use a temporary
variable.

Magic constants are now accessible with array notation, just like another constant. It is also possible to use method
calls : although this is Syntacticly correct for PHP, this won’t be executed, as the left operand is a string, and not an
object.

<?php

// array name is dynamically build
(continues on next page)

1258 Chapter 14. Rules

https://wiki.php.net/rfc/union_types_v2
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

echo "foo$bar"[0];
// static method
"foo$bar"::baz();
// static property
"foo$bar"::$baz;

// Syntactly correct, but not executable
"foo$bar"->baz();

// expressions with instanceof and new
$object = new ("class_".$name);
$x instanceof ("class_$name");

// PHP 7.0 style
$className = "class_".$name;
$object = new $className;

?>

See also PHP RFC: Variable Syntax Tweaks and scalar_objects in PHP.

Specs

Short name Php/Php80VariableSyntax
Rulesets All, Appinfo, CE, CompatibilityPHP74
Exakat since 2.0.8
PHP Version With PHP 8.0 and more recent
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features variable
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.972 Php 8.3 New Classes

New classes, introduced in PHP 8.3. If classes where created with the same name, in current code, they
have to be moved in a namespace, or removed from code to migrate safely to PHP 8.3.

The new classes are :

• DateError

• DateObjectError

• DateRangeError

• DateException

• DateInvalidTimeZoneException

• DateInvalidOperationException

• DateMalformedStringException

14.2. List of Rules 1259

https://wiki.php.net/rfc/variable_syntax_tweaks
https://github.com/nikic/scalar_objects
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• DateMalformedIntervalStringException

• DateMalformedPeriodStringException

• Random\`IntervalBoundary <https://www.php.net/intervalboundary>`_

<?php

namespace {
// Global namespace
class DateError {

// Move to a namespace
// or, remove this class

}
}

namespace B {
class DateError {

// This is OK : in a namespace
}

}

?>

See also New Classes and Interfaces.

Suggestions

• Move the current classes with the same names into a distinct domain name

• Change the name of the class

Specs

Short name Php/Php83NewClasses
Rulesets All, Changed Behavior, CompatibilityPHP83
Exakat since 1.0.4
PHP Version With PHP 8.3 and older
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features class
Available in Entreprise Edition, Exakat Cloud

1260 Chapter 14. Rules

https://www.php.net/manual/en/migration83.classes.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.973 Php Ext Stub Property And Method

Provides isExt property to method call and properties access, based on typehints and local instantiation.

Specs

Short name Complete/PhpExtStubPropertyMethod
Rulesets All, Changed Behavior, NoDoc
Exakat since 2.1.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.974 Php Native Reference Variable

Native functions, such as sort() (first argument), or preg_match_all() (third argument), use reference.

<?php

$a = [3,1,2];
sort($a);
$a === [1,2,3];

?>

Specs

Short name Complete/PhpNativeReference
Rulesets All, Changed Behavior, NoDoc
Exakat since 1.9.1
PHP Version All
Severity
Time To Fix
Precision High
Features reference
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1261

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/sort
https://www.php.net/preg_match_all
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.975 Php7 Relaxed Keyword

Most of the traditional PHP keywords may be used inside classes, enums, traits and interfaces: they can
be used as constant or method name.

It is recommended to use this syntax cautiously, as it leads to a lot of surprises and confusion from unususpecting
developpers.

This was not the case in PHP 5, and will yield parse errors.

<?php

// Compatible with PHP 7.0 +
class foo {

const array = [];

// as is a PHP 5 keyword
public function as() {
print_r(self::array);

}
}

?>

See also Loosening Reserved Word Restrictions.

Specs

Short name Php/Php7RelaxedKeyword
Rulesets All, Appinfo, CE, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compatibility-

PHP56
Exakat
since

0.8.4

PHP Ver-
sion

With PHP 7.0 and more recent

Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features keyword, reserved-name
Related rule No Keyword In Namespace
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.976 Phpinfo

phpinfo() is a great function to learn about the current configuration of the server.

If left in the production code, it may lead to a critical leak, as any attacker gaining access to this data will know a lot
about the server configuration.

It is advised to never leave that kind of instruction in a production code.

phpinfo() may be necessary to access some specific configuration of the server : for example, Apache module list are
only available via phpinfo(), and apache_get(), when they are loaded.

1262 Chapter 14. Rules

https://www.php.net/manual/en/migration70.other-changes.php#migration70.other-changes.loosening-reserved-words
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/phpinfo
https://www.php.net/phpinfo
https://www.php.net/phpinfo

Exakat Documentation, Release 1

<?php

if (DEBUG) {
phpinfo();

}

?>

Suggestions

• Remove all usage of phpinfo()

• Add one or more constant to fine-tune the phpinfo(), and limit the amount of displayed information

• Replace phpinfo() with a more adapted method : get_loaded_extensions() to access the list of loaded extensions

Specs

Short name Structures/PhpinfoUsage
Rulesets All, Security
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features phpinfo
Examples Dolphin
Available in Entreprise Edition, Exakat Cloud

14.2.977 Plus Plus Used On Strings

Reports strings that are incremented with the post increment operator 's'++.

This spots issues of the famous feature of PHP : incrementing strings with letters.

This analysis checks for string to be incremented. It doesn’t check if the string is a numeric string, but does check the
type, implicit or explicit.

<?php

$a = 'a';
$a++;
print $a;
// prints b
?>

See also Incrementing/Decrementing Operators and Path to Saner Increment/Decrement operators.

14.2. List of Rules 1263

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.operators.increment.php
https://wiki.php.net/rfc/saner-inc-dec-operators

Exakat Documentation, Release 1

Specs

Short name Php/PlusPlusOnLetters
Rulesets All, Appinfo
Exakat since 2.5.1
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.978 Possible Alias Confusion

An alias is used for a class that doesn’t belong to the current namespace, while there is such a class. This
also applies to traits and interfaces.

When no alias is used, PHP will search for a class in the local space. Since classes, traits and interfaces are usually
stored one per file, it is a valid syntax to create an alias, even if this alias name is the name of a class in the same
namespace.

Yet, with an alias referring to a remote class, while a local one is available, it is possible to generate confusion.

<?php

// This should be in a separate file, but has been merged here, for display purposes.
namespace A {

//an alias from a namespace called C
use C\A as C_A;

//an alias from a namespace called C, which will superseed the local A\B class (see␣
→˓below)
use C\D as B;

}

namespace A {
// There is a class B in the A namespace
class B {}

}

?>

Suggestions

• Avoid using existing classes names for alias

• Use a coding convention to distinguish alias from names

1264 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Namespaces/AliasConfusion
Rulesets All, Changed Behavior, Semantics, Suggestions
Exakat since 2.1.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features semantics
Available in Entreprise Edition, Exakat Cloud

14.2.979 Possible Increment

This expression looks like a typo : a missing + would change the behavior.

The same pattern is not reported with -, as it is legit expression. + sign is usually understated, rather than explicit.

<?php

// could it be a ++$b ?
$a = +$b;

?>

See also Incrementing/Decrementing Operators and Arithmetic Operators.

Suggestions

• Drop the whole assignation

• Complete the addition with another value : $a = 1 + $b

• Make this a ++ operator : ++$b

• Make this a negative operator : -$b

• Make the casting explicit : (int) $b

Specs

Short name Structures/PossibleIncrement
Rulesets All, Suggestions
Exakat since 1.2.1
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Examples Zurmo, MediaWiki
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1265

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.operators.increment.php
https://www.php.net/manual/en/language.operators.arithmetic.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.980 Possible Infinite Loop

Loops on files that can’t be open results in infinite loop.

fgets(), and functions like fgetss(), fgetcsv(), fread(), return false when they finish reading, or can’t access the file.

In case the file is not accessible, comparing the result of the reading to something that is falsy, leads to a permanent
valid condition. The execution will only finish when the max_execution_time is reached. It is recommended to
check the file resources when they are opened, and always use === or !== to compare readings. feof() is also a reliable
function here.

<?php

$file = fopen('/path/to/file.txt', 'r');
// when fopen() fails, the next loops is infinite
// fgets() will always return false, and while will always be true.
while($line = fgets($file) != 'a') {

doSomething();
}

?>

Specs

Short name Structures/PossibleInfiniteLoop
Rulesets All, Analyze
Exakat since 1.1.5
PHP Version All
Severity Critical
Time To Fix Quick (30 mins)
Precision Very high
Features loop
Available in Entreprise Edition, Exakat Cloud

14.2.981 Possible Interfaces

This analyzer lists classes that may be a base to create interfaces.

Currently, classes with more than 1 defined method are used to identify possible interfaces. An interfaces are considered
when at least 2 methods are common in 3 classes.

Only the name of the method is used to identify possible methods. Signature and method options are not taken into
account.

<?php

class a {
function m1 () {}
function m2 () {}
function m3 () {}

}

(continues on next page)

1266 Chapter 14. Rules

https://www.php.net/fgets
https://www.php.net/fgetss
https://www.php.net/fgetcsv
https://www.php.net/fread
https://www.php.net/result
https://www.php.net/feof
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

class b {
function m1 () {}
function m2 () {}
function m4 () {}

}

// This class has not enough shared methods with other classes
class c {

function m1 () {}
function m4 () {}
function m5 () {}

}

?>

Suggestions

• Add those interfaces, and use the implements keyword in the mentioned classes.

Specs

Short name Interfaces/PossibleInterfaces
Rulesets All, Changed Behavior
Exakat since 2.0.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features interface
Available in Entreprise Edition, Exakat Cloud

14.2.982 Possible Missing Subpattern

When capturing subpatterns are the last ones in a regex, PHP doesn’t fill their spot in the resulting array.
This leads to a possible missing index in the result array.

The same applies to preg_replace() : the pattern may match the string, but no value is available is the corresponding
sub-pattern.

In PHP 7.4, a new option was added : PREG_UNMATCHED_AS_NULL, which always provides a value for the subpatterns.

<?php

// displays a partial array, from 0 to 1
preg_match('/(a)(b)?/', 'adc', $r);
print_r($r);
/*
Array
(

(continues on next page)

14.2. List of Rules 1267

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/result
https://www.php.net/preg_replace

Exakat Documentation, Release 1

(continued from previous page)

[0] => a
[1] => a

)
*/

// displays a full array, from 0 to 2
preg_match('/(a)(b)?/', 'abc', $r);
print_r($r);

/*
Array
(

[0] => ab
[1] => a
[2] => b

)
*/

// double 'b' when it is found
print preg_replace(',^a(b)?,', './$1$1', 'abc'); // prints ./abbc
print preg_replace(',^a(b)?,', './$1$1', 'adc'); // prints ./dc

?>

See also Bug #73948 Preg_match_all should return NULLs on trailing optional capture groups. and Bug #50887
preg_match , last optional sub-patterns ignored when empty.

Suggestions

• Add an always capturing subpatterns after the last ?

• Move the ? inside the parenthesis, so the parenthesis is always on, but the content may be empty

• Add a test on the last index of the resulting array, to ensure it is available when needed

• Use the PREG_UNMATCHED_AS_NULL option (PHP 7.4+)

Specs

Short name Php/MissingSubpattern
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, Top10
Exakat since 1.6.1
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features regex
Examples phpMyAdmin, SPIP
Available in Entreprise Edition, Community Edition, Exakat Cloud

1268 Chapter 14. Rules

https://bugs.php.net/bug.php?id=73948
https://bugs.php.net/bug.php?id=50887
https://bugs.php.net/bug.php?id=50887
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.983 Possible TypeError

Report possible errors when a string is given to a int or float typed container.

That error will be emitted when strict_types is active, or if the string cannot be formatted into a float or an int. Otherwise,
the code works as intended.

It is recommended to set a try/catch around those expressions, to catch them.

<?php

// This is OK, as the string will be successfully turned into a float
foo("12.34");

// This is KO, as the string will not bet turned into a float
foo("12.34a");

function foo(float $price) {
intdiv($price, 3);

}

?>

See also TypeError <https://www.php.net/manual/en/class.typeerror.php>.

Suggestions

• Add the try expression around the assignation, to catch the error

• Validate the incoming value to ensure it can be converted to the target type

• Cast the value to int or float

Specs

Short name Exceptions/PossibleTypeError
Rulesets All, Changed Behavior, Typechecks
Exakat since 2.5.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features typeerror
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1269

https://www.php.net/error
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.984 Pre-Calculate Use

In a closure <https://www.php.net/`closure>`_, it is faster to pass a final value, rather than calculate it at
call time.

In the use clause of the closure <https://www.php.net/`closure>`_, make sure that the passed variables do not require
any more processing, such as a call to another function or an extra expression.

This is a micro-optimisation. It has more potential with the closure <https://www.php.net/`closure>`_ used in a loop,
or an array function.

<?php

// $b->get is calculated inside the closure
$d = $b->get();
$f = function ($a) use ($d) {

return $d + $a;
}

// $b->get is calculated inside the closure
$f = function ($a) use ($b) {

return $b->get() + $a;
}
?>

Suggestions

• Inject the final value in the closure and avoid method calls inside the closure

Specs

Short name Performances/PreCalculateUse
Rulesets All, Changed Behavior, Performances
Exakat since 2.5.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features closure, micro-optimisation
Available in Entreprise Edition, Exakat Cloud

14.2.985 Pre-increment

When possible, use the pre-increment operator (++$i or --$i) instead of the post-increment operator
($i++ or $i--).

The latter needs an extra memory allocation that costs about 10% of performances. This is a micro-optimisation.
However, its usage is so widespread, including within loops, that it may eventually have an significant impact on
execution time. As such, it is recommended to adopt this rule, and only consider changing legacy code as they are
refactored for other reasons.

1270 Chapter 14. Rules

https://www.php.net/closure
https://www.php.net/closure
https://www.php.net/closure
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

<?php

// ++$i should be preferred over $i++, as current value is not important
for($i = 0; $i <10; ++$i) {

// do Something
}

// ++$b and $b++ have different impact here, since $a will collect $b + 1 or $b,␣
→˓respectively.
$a = $b++;

?>

Suggestions

• Use the pre increment when the new value is not reused.

Specs

Short name Performances/PrePostIncrement
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, Performances
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features increment
Examples ExpressionEngine, Traq
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.986 Prefix And Suffixes With Typehint

This analysis checks the relationship between methods prefixes and suffixes, with their corresponding
return typehint.

For example, a method with the signature function isACustomer() {} should return a boolean. That boolean can
then be read when calling the method : if ($user->isACustomer()) {}.

There are multiple such conventions that may be applied. For example, has* should return a boolean, set* should
return nothing (aka void), and get* shall return any kind of type. There are 2 parameters for this analysis. It is
recommended to customize them to get an better results, related to the naming conventions used in the code.

prefixedType is used for prefix in method names, which is the beginning of the name. suffixedType is used for
suffixes : the ending part of the name. Matching is case insensitive.

The prefix is configured as the index of the map, while the related type is configured as the value of the map.

prefixToType['is'] = 'bool'; will be use as is* shall use the bool typehint.

Multiple typehints may be used at the same time. PHP supports multiple types since PHP 8.0, and Exakat will support
them with any PHP version. Specify multiple types by separating them with comma. Any typehint not found in this
list will be reported, including null.

14.2. List of Rules 1271

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

PHP scalar types are available : string, int, void, etc. Explicit types, based on classes or interfaces, must use the
fully qualified name, not the short name. suffixToType['uuid'] = '\Uuid'; will be use as *uuid shall use the
\Uuid typehint.

When multiple rules applies, only one is reported.

<?php

class x {
// Easy to read convention
function isAUser() : bool {}

// shall return a boolean
function isACustomer() {}

// shall return a string, based on suffix 'name => string'
function getName() {}

// shall return a string, based on suffix 'name => string'
function getUsername() {}

// shall return \Uuid, based on prefix 'uuid => \Uuid'
function getUuid() {}

// shall return anything, based on no prefix nor suffix
function getBirthday() {}

}

?>

Name Default Type Description
pre-
fixed-
Type

prefixedType[‘is’] = ‘bool’; prefixedType[‘has’] = ‘bool’; prefixedType[‘set’] =
‘void’; prefixedType[‘list’] = ‘array’;

ini_hashList of pre-
fixes and their
expected return-
type

suf-
fixed-
Type

prefixedType[‘list’] = ‘bool’; prefixedType[‘int’] = ‘int’; prefixedType[‘string’] =
‘string’; prefixedType[‘name’] = ‘string’; prefixedType[‘description’] = ‘string’;
prefixedType[‘id’] = ‘int’; prefixedType[‘uuid’] = ‘Uuid’;

ini_hashList of suf-
fixes and their
expected return-
type

Specs

Short name Functions/PrefixToType
Rulesets All, Semantics
Exakat since 2.1.1
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

1272 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.987 Preprocess Arrays

Using long list of assignations for initializing arrays is significantly slower than the declaring them as an
array.

If the array has to be completed rather than created, it is also faster to use += when there are more than ten elements to
add.

<?php

// Slow way
$a = []; // also with $a = array();
$a[1] = 2;
$a[2] = 3;
$a[3] = 5;
$a[4] = 7;
$a[5] = 11;

// Faster way
$a = [1 => 2,

2 => 3,
3 => 5,
4 => 7,
5 => 11];

// Even faster way if indexing is implicit
$a = [2, 3, 5, 7, 11];

?>

Suggestions

• Preprocess the code so PHP doesn’t do it at execution time. Keep the detailed version into comments.

Specs

Short name Arrays/ShouldPreprocess
Rulesets All, Suggestions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features preprocess
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1273

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.988 Preprocessable

The following expressions are made of literals or already known values : they may be fully calculated
before running PHP.

By doing so, this will reduce the amount of work of PHP. This is a micro-optimisation, when this is used once, or the
amount of work is small. It may be kept for readability.

<?php

// Building an array from a string
$name = 'PHP'.' '.'7.2';

// Building an array from a string
$list = explode(',', 'a,b,c,d,e,f');

// Calculating a power
$kbytes = $bytes / pow(2, 10);

// This will never change
$name = ucfirst(strtolower('PARIS'));

?>

Suggestions

• Do the work yourself, instead of giving it to PHP

Specs

Short name Structures/ShouldPreprocess
Rulesets All, Analyze, Rector
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features preprocess, readability
Examples phpadsnew
Available in Entreprise Edition, Exakat Cloud

1274 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.989 Print And Die

Die() also prints.

When stopping a script with die(), it is possible to provide a message as first argument, that will be displayed at execu-
tion. There is no need to make a specific call to print or echo.

<?php

// die may do both print and die.
echo 'Error message';
die();

// exit may do both print and die.
print 'Error message';
exit;

// exit cannot print integers only : they will be used as status report to the system.
print 'Error message';
exit 1;

?>

Specs

Short name Structures/PrintAndDie
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features print, die
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.990 Printf Format Inventory

All format used in the code with printf(), vprintf(), sprintf(), scanf() and fscanf().

<?php

// Display a number with 2 digits
echo printf("%'.2d\n", 123);

?>

14.2. List of Rules 1275

https://www.php.net/die
https://www.php.net/die
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/printf
https://www.php.net/vprintf
https://www.php.net/sprintf
https://www.php.net/fscanf

Exakat Documentation, Release 1

Specs

Short name Type/Printf
Rulesets All, Appinfo, CE, Changed Behavior, Inventory
Exakat since 1.5.0
PHP Version All
Severity
Time To Fix
Precision Very high
Features printf
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.991 Printf Number Of Arguments

The number of arguments provided to printf(), vprintf() and vsprintf() doesn’t match the format string.

Extra arguments are ignored, and are dead code as such. Missing arguments are reported with a warning, and nothing
is displayed.

Omitted arguments produce an error.

<?php

// not enough arguments
printf(' a %s ', $a1);
// OK
printf(' a %s ', $a1, $a2);
// too many arguments
printf(' a %s ', $a1, $a2, $a3);

// not enough arguments
sprintf(' a %s ', $a1);
// OK
\sprintf(' a %s ', $a1, $a2);
// too many arguments
sprintf(' a %s ', $a1, $a2, $a3);

?>

See also printf, sprintf and vsprintf.

Suggestions

• Sync the number of argument with the format command

1276 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/printf
https://www.php.net/vprintf
https://www.php.net/vsprintf
https://www.php.net/error
https://www.php.net/printf
https://www.php.net/sprintf
https://www.php.net/vsprintf

Exakat Documentation, Release 1

Specs

Short name Structures/PrintfArguments
Rulesets All, Analyze, CE, CI-checks
Exakat since 1.0.1
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Medium
Features print
Examples PhpIPAM
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.992 Processing Collector

When accumulating data in a variable, within a loop, it is slow to apply repeatedly a function to the variable.

The example below illustrate the problem : $collector is build with element from $array. $collector actually
gets larger and larger, slowing the in_array() call each time.

It is better to apply the preg_replace() to $a, a short variable, and then, add $a to the collector.

<?php

// Fast way
$collector = '';
foreach($array as $a){

$a = preg_replace('/__(.*?)__/', '$1', $a);
$collector .= $a;

}

// Slow way
$collector = '';
foreach($array as $a){

$collector .= $a;
$collector = preg_replace('/__(.*?)__/', '$1', $collector);

}

?>

Suggestions

• Avoid applying the checks on the whole data, rather on the diff only.

14.2. List of Rules 1277

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/in_array
https://www.php.net/preg_replace

Exakat Documentation, Release 1

Specs

Short name Performances/RegexOnCollector
Rulesets All, Changed Behavior, Performances
Exakat since 1.2.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.993 Promoted Properties

Promoted properties is a way to declare the properties within the constructor, and have them assigned to
the constructing value at instantiation.

<?php

class CustomerDTO
{

public function __construct(
public string $name,
public string $email,
public DateTimeImmutable $birth_date,

) {}
}

?>

See also Constructor Promotion and PHP 8: Constructor property promotion.

Specs

Short name Classes/PromotedProperties
Rulesets All, Appinfo, Changed Behavior, Inventory
Exakat since 2.3.1
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features promoted-property
Available in Entreprise Edition, Exakat Cloud

1278 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.decon.php#language.oop5.decon.constructor.promotion
https://stitcher.io/blog/constructor-promotion-in-php-8
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.994 Propagate Constants

This command calculates constant expression values, and set them in the graph.

After running this command, B has intval of 3.

This command propagate const constants, class constants and define() constants, when possible.

<?php

const A = 1;
const B = A + 2;

?>

Specs

Short name Complete/PropagateConstants
Rulesets All, Changed Behavior, NoDoc
Exakat since 1.9.2
PHP Version All
Severity
Time To Fix
Precision High
Features constant, static-constant-expression
Available in Entreprise Edition, Exakat Cloud

14.2.995 Properties Declaration Consistence

Properties may be declared all at once, or one by one.

The analyzed code has less than 10% of one of them : for consistency reasons, it is recommended to make them all the
same.

It happens that choosing unique declarations or multiple depends on coding style and files.

<?php

class x {
// Some declarations are made by batch
private $a1 = 1,

$a2 = 2;
public $c = 1, $c2 = 2, $c4 = 3;

// Most declarations are made one by one
protected $b = 1;
protected $b1 = 1;
protected $b2 = 1;
protected $b3 = 1;
protected $b4 = 1;
protected $b5 = 1;
protected $b6 = 1;

(continues on next page)

14.2. List of Rules 1279

https://www.php.net/define
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

protected $b7 = 1;
protected $b8 = 1;
protected $b9 = 1;
protected $b10 = 1;
protected $b11 = 1;
protected $b12 = 1;
protected $b13 = 1;
protected $b14 = 1;
protected $b15 = 1;
protected $b16 = 1;
protected $b17 = 1;
protected $b18 = 1;
protected $b19 = 1;

}
?>

See also PSR-12: Properties and constants.

Suggestions

• Make the declaration consistent : one or multiple.

Specs

Short name Classes/PPPDeclarationStyle
Rulesets All, Preferences
Exakat since 1.2.1
PHP Version All
Severity
Time To Fix
Precision Very high
Features property
Available in Entreprise Edition, Exakat Cloud

14.2.996 Property Cannot Be Readonly

This analysis reports different situations where a property is readonly, and has some impossible code.

Two cases are reported : + a self-updated property, where it is updated with a value that is created from it-
self. The most obvious is $this->a = `$this <https://www.php.net/manual/en/language.oop5.basic.
php>`_->a; (which is reported as an error by PHP), and $this->a = foo(`$this <https://www.php.net/
manual/en/language.oop5.basic.php>`_->a); is the most common. + a property which is set in the constructor,
yet has a distinct method where it is updated too.

Most of thoses cases are dead code.

<?php

(continues on next page)

1280 Chapter 14. Rules

https://www.php-fig.org/psr/psr-12/#43-properties-and-constants
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/error

Exakat Documentation, Release 1

(continued from previous page)

class x {
private readonly $p;
private readonly $q;

function __construct($p) {
$this->p = $p; // normal assignation

}

function foo() {
$this->q = bar($this->q); // this is not possible with readonly
$this->q++; // this is not possible with readonly
$this->q[] = 2; // this is not possible with readonly

}
}

?>

Suggestions

• Remove the impossible code

Specs

Short name Classes/CannotBeReadonly
Rulesets All, Changed Behavior, Class Review
Exakat since 2.6.1
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features readonly, dead-code
Available in Entreprise Edition, Exakat Cloud

14.2.997 Property Could Be Local

A property only used in one method may be turned into a local variable.

Public an protected properties are omitted here : they may be modified somewhere else, in the code. This analysis may
be upgraded to support those properties, when tracking of such properties becomes available.

Classes where only one non-magic method is available are omitted.

Traits with private properties are processed the same way.

<?php

class x {
private $foo = 1;

(continues on next page)

14.2. List of Rules 1281

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// Magic method, and constructor in particular, are omitted.
function __construct($foo) {

$this->foo = $foo;
}

function bar() {
$this->foo++;

return $this->foo;
}

function barbar() {}
}

?>

Suggestions

• Remove the property and make it an argument in the method

• Use that property elsewhere

Specs

Short name Classes/PropertyCouldBeLocal
Rulesets All, Analyze, Class Review
Exakat since 1.1.7
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features property
Examples Mautic, Typo3
Available in Entreprise Edition, Exakat Cloud

14.2.998 Property Could Be Private

The following properties are never used outside their class of definition. Given the analyzed code, they
could be set as private.

Note that dynamic properties (such as $x->$y) are not taken into account.

<?php

class foo {
public $couldBePrivate = 1;
public $cantdBePrivate = 1;

function bar() {
(continues on next page)

1282 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// couldBePrivate is used internally.
$this->couldBePrivate = 3;

}
}

class foo2 extends foo {
function bar2() {

// cantdBePrivate is used in a child class.
$this->cantdBePrivate = 3;

}
}

//$couldBePrivate is not used outside
$foo = new foo();

//$cantdBePrivate is used outside the class
$foo->cantdBePrivate = 2;

?>

Suggestions

• Remove the unused property

• Use the private property

• Change the visibility to allow access the property from other part of the code

Specs

Short name Classes/CouldBePrivate
Rulesets All, Class Review
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features visibility
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1283

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.999 Property Export

With a reference, it is possible to export a property and modify it from the outside. This requires the
handling of the reference with a method and a variable.

The result is a suprising modification of the original object, even if its visibility is private.

<?php

class x {
private $p = [];

function &foo() {
return $this->p;

}

function print() {
print_r($this->p);

}
}

$x = new x();
$export = &$x->foo();
$export[] = 2;

$x->print();
// property $p has been modified in $x
// $x->p === [2];

?>

Suggestions

• Avoid modifying an object without its knowledge

Specs

Short name Classes/ExportProperty
Rulesets All, Changed Behavior, Class Review
Exakat since 2.6.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

1284 Chapter 14. Rules

https://www.php.net/result
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1000 Property Invasion

Property invasion exports a reference from an object, for external and direct modifications.

With a method that returns a reference, a link is created between an external variable and the private property. That
way, it is possible to modify the object, without calling a property, or a method.

<?php

class x {
private $p = 1;

function &get() {
return $this->p;

}
}

$x = new x;
$y = &$x->get();
$y = 2;

print $x->get(); // 2

?>

Suggestions

• Invading private properties and methods in PHP

Specs

Short name Classes/PropertyInvasion
Rulesets All, Class Review
Exakat since 2.5.1
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features object-invasion
Available in Entreprise Edition, Exakat Cloud

14.2.1001 Property Names

Variables are used in property definitions, when they are located in a class.

<?php

static $x; // not a property, a static variable

class foo {
static $x; // now, this is a static property

(continues on next page)

14.2. List of Rules 1285

https://freek.dev/2192-invading-private-properties-and-methods-in-php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

public $y, $z = 1; // normal properties

public function bar() {
static $x; // again, a static variable

}
}

?>

See also Properties.

Specs

Short name Classes/PropertyDefinition
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features property
Available in Entreprise Edition, Exakat Cloud

14.2.1002 Property Used Above

Property used in the parent classes. If the definition of the property is in the child class, then the parent
should not know about it and make usage of it.

It may also be used in the current class, or its children, though this is not reported by this analyzer.

<?php

class A {
public function foo() {

$this->pb++;
}

}

class B extends A {
protected $pb = 0; // property used above
protected $pb2 = 0; // property NOT used above

}

?>

See also Property Used Below.

1286 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.properties.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

Suggestions

• Move the definition of the property to the upper class

• Move the usage of the property to the lower class

Specs

Short name Classes/PropertyUsedAbove
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix Slow (1 hour)
Precision Medium
Features property, inheritance
Available in Entreprise Edition, Exakat Cloud

14.2.1003 Property Used Below

This rule marks properties that are used in children classes.

This analysis doesn’t mark the current class, nor the parent or grand parent classes.

<?php

class foo {
// This property is used in children
protected protectedProperty = 1;

// This property is not used in children
protected localProtectedProperty = 1;

private function foobar() {
// protectedProperty is used here, but defined in parent
$this->localProtectedProperty = 3;

}
}

class foofoo extends foo {
private function bar() {

// protectedProperty is used here, but defined in parent
$this->protectedProperty = 3;

}
}

?>

See also Property Used Above.

14.2. List of Rules 1287

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

Specs

Short name Classes/PropertyUsedBelow
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Medium
Features property
Available in Entreprise Edition, Exakat Cloud

14.2.1004 Property Used In One Method Only

Properties should be used in several methods. When a property is used in only one method, this should
have be of another shape.

Properties used in one method only may be used several times, and read only. This may be a class constant. Such
properties are meant to be overwritten by an extending class, and that’s possible with class constants.

Properties that read and written may be converted into a variable, static to the method. This way, they are kept close to
the method, and do not pollute the object’s properties. This analysis consider that using the current object with a cast
or with the get_object_vars() function is also a usage, and skip those properties.

Note : properties used only once are not returned by this analysis. They are omitted, and are available in the analysis
`Used Once Property`_.

<?php

class foo {
private $once = 1;
const ONCE = 1;
private $counter = 0;

function bar() {
// $this->once is never used anywhere else.
someFunction($this->once);
someFunction(self::ONCE); // Make clear that it is a

}

function bar2() {
static $localCounter = 0;
$this->counter++;

// $this->once is only used here, for distinguising calls to someFunction2
if ($this->counter > 10) { // $this->counter is used only in bar2, but it may be␣

→˓used several times
return false;

}
someFunction2($this->counter);

// $localCounter keeps track for all the calls
(continues on next page)

1288 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/get_object_vars

Exakat Documentation, Release 1

(continued from previous page)

if ($localCounter > 10) {
return false;

}
someFunction2($localCounter);

}
}

?>

Suggestions

• Drop the property, and inline the value

• Drop the property, and make the property a local variable

• Use the property in another method

Specs

Short name Classes/PropertyUsedInOneMethodOnly
Rulesets All, Analyze
Exakat since 0.10.3
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features property
Examples Contao
Available in Entreprise Edition, Exakat Cloud

14.2.1005 Property Variable Confusion

Within a class, there is both a property and variables bearing the same name.

The property and the variable may easily be confused one for another and lead to a bug.

Sometimes, when the property is going to be replaced by the incoming argument, or data based on that argument, this
naming schema is made on purpose, indicating that the current argument will eventually end up in the property. When
the argument has the same name as the property, no warning is reported.

<?php
class Object {

private $x;

function SetData() {
$this->x = $x + 2;

}
}
?>

14.2. List of Rules 1289

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Use different names for the properties and variables

• Adopt and apply a naming convention for variables and properties.

Specs

Short name Structures/PropertyVariableConfusion
Rulesets All, Semantics
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features property, variable, semantics
Examples PhpIPAM
Available in Entreprise Edition, Exakat Cloud

14.2.1006 Protocol lists

List of all protocols that were found in the code.

From the manual : PHP comes with many built-in wrappers for various URL-style protocols for use with the filesystem
functions such as fopen(), copy(), file_exists() and filesize().

<?php
// Example from the PHP manual, with the glob:// wrapper

// Loop over all *.php files in ext/spl/examples/ directory
// and print the filename and its size
$it = new DirectoryIterator("glob://ext/spl/examples/*.php");
foreach($it as $f) {

printf("%s: %.1FK\n", $f->getFilename(), $f->getSize()/1024);
}
?>

See also Supported Protocols and Wrappers.

Specs

Short name Type/Protocols
Rulesets All, Appinfo, CE
Exakat since 2.1.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features protocol
Available in Entreprise Edition, Community Edition, Exakat Cloud

1290 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/fopen
https://www.php.net/copy
https://www.php.net/file_exists
https://www.php.net/filesize
https://www.php.net/manual/en/wrappers.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1007 Public Reach To Private Methods

This rule reports the ways to reach private and protected methods, by using only public methods.

Each internal is reported here, with the origin and destination. When connecting the calls from methods to method, it
is possible to draw the path from public methods to private methods.

This class map is useful to prepare tests and improve coverage by targeting public methods that may use restricted
methods.

Note that conditions will apply (pun intended) : a link between two methods only means that one may call the other,
given the right conditions.

Specs

Short name Dump/PublicReach
Rulesets All, Changed Behavior
Exakat since 2.3.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features visibility
Available in Entreprise Edition, Exakat Cloud

14.2.1008 Queries In Loops

Avoid querying databases in a loop.

Querying an external database in a loop usually leads to performances problems. This is also called the ‘n + 1 problem’.

This problem applies also to prepared statement : when such statement are called in a loop, they are slower than
one-time large queries.

It is recommended to reduce the number of queries by making one query, and dispatching the results afterwards. This
is true with SQL databases, graph queries, LDAP queries, etc. This optimisation is not always possible : for example,
some SQL queries may not be prepared, like DROP TABLE or DESC. UPDATE commands often update one row at a time,
and grouping such queries may be counter-productive or unsafe.

This analysis looks for query calls inside loops, and within one functioncall.

<?php

// Typical N = 1 problem : there will be as many queries as there are elements in $array
$ids = array(1,2,3,5,6,10);

$db = new SQLite3('mysqlitedb.db');

// all the IDS are merged into the query at once
$results = $db->query('SELECT bar FROM foo WHERE id in ('.implode(',', $id).')');
while ($row = $results->fetchArray()) {

var_dump($row);
}

(continues on next page)

14.2. List of Rules 1291

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// Typical N = 1 problem : there will be as many queries as there are elements in $array
$ids = array(1,2,3,5,6,10);

$db = new SQLite3('mysqlitedb.db');

foreach($ids as $id) {
$results = $db->query('SELECT bar FROM foo WHERE id = '.$id);
while ($row = $results->fetchArray()) {

var_dump($row);
}

}

?>

See also E N+1 PROBLEM IN ORMS SOLVING THE N+1 PROBLEM IN ORMS.

Suggestions

• Batch calls by using WHERE clauses and applying the same operation to all similar data

• Use native commands to avoid double query : REPLACE instead of SELECT-(UPDATE/INSERT), or UPSERT,
for example

Specs

Short name Structures/QueriesInLoop
Rulesets All, Analyze, Top10
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features query, loop
Examples TeamPass, OpenEMR
Available in Entreprise Edition, Exakat Cloud

14.2.1009 Raised Access Level

A visibility may be lowered, but not raised. Visibilities apply to properties, methods and class constants.

This error may be detected by PHP when the classes are in the same file, and declared in the right order : then, PHP
reports a compilation error. However, when the classes are separated in different files, as it is customary, PHP won’t
check this at linting time, yielding a fatal error at execution time.

<?php

class Foo {
public $publicProperty;

(continues on next page)

1292 Chapter 14. Rules

https://thecodingmachine.io/solving-n-plus-1-problem-in-orms
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/error
https://www.php.net/error

Exakat Documentation, Release 1

(continued from previous page)

protected $protectedProperty;
private $privateProperty;

}

class Bar extends Foo {
private $publicProperty;
private $protectedProperty;
private $privateProperty; // This one is OK

}
?>

See also Visibility and Understanding the concept of visibility in object oriented php.

Suggestions

• Lower the visibility in the child class

• Raise the visibility in the parent class

Specs

Short name Classes/RaisedAccessLevel
Rulesets All, Changed Behavior, Class Review, LintButWontExec
Exakat since 0.10.0
PHP Version All
Severity Critical
Time To Fix Quick (30 mins)
Precision Very high
Features visibility
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.1010 Random Without Try

random_int() and random_bytes() require a try/catch structure around them.

random_int() and random_bytes() emit Exceptions if they meet a problem. This way, failure can’t be mistaken with
returning an empty value, which leads to lower security. Since PHP 7.4, openssl_random_pseudo_bytes() has adopted
the same behavior. It is included in this analysis : check your PHP version for actual application.

<?php

try {
$salt = random_bytes($length);

} catch (TypeError $e) {
// Error while reading the provided parameter

} catch (Exception $e) {
// Insufficient random data generated

} catch (Error $e) {
(continues on next page)

14.2. List of Rules 1293

https://www.php.net/manual/en/language.oop5.visibility.php
https://torquemag.io/2016/05/understanding-concept-visibility-object-oriented-php/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/random_int
https://www.php.net/random_bytes
https://www.php.net/random_int
https://www.php.net/random_bytes
https://www.php.net/openssl_random_pseudo_bytes

Exakat Documentation, Release 1

(continued from previous page)

// Error with the provided parameter : <= 0
}

?>

Suggestions

• Add a try/catch structure around calls to random_int() and random_bytes().

Specs

Short name Structures/RandomWithoutTry
Rulesets All, Security
Exakat since 0.8.4
PHP Version With PHP 7.0 and more recent
Severity Critical
Time To Fix Quick (30 mins)
Precision Very high
Features random
Available in Entreprise Edition, Exakat Cloud

14.2.1011 Random extension

The random extension. It improves the random generators from the older PHP version, and provides a
OOP interface.

<?php

$rng = $is_production
? new Random\Engine\Secure()
: new Random\Engine\PCG64(1234);

$randomizer = new Random\Randomizer($rng);
$randomizer->shuffleString('foobar');

?>

See also PHP RFC: Random Extension 5.x.

1294 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://wiki.php.net/rfc/rng_extension

Exakat Documentation, Release 1

Specs

Short name Extensions/Extrandom
Rulesets All, Appinfo
Exakat since 2.4.7
PHP Version With PHP 8.2 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1012 Randomly Sorted Arrays

Those literal arrays are written in several places, but their items are in various orders.

This may reduce the reading and proofing of the arrays, and induce confusion. The random order may also be a residue
of development : both arrays started with different values, but they grew overtime to handle the same items. The way
they were written lead to the current order.

Unless order is important, it is recommended to always use the same order when defining literal arrays. This makes it
easier to match different part of the code by recognizing one of its literal.

<?php

// an array
$set = [1,3,5,9,10];

function foo() {
// an array, with the same values but different order, in a different context
$list = [1,3,5,10,9,];

}

// an array, with the same order than the initial one
$inits = [1,3,5,9,10];

?>

Name Default Type Description
maxSize 5 integer Maximal size of arrays to survey.

Suggestions

• Match the sorting order of the arrays. Choose any of them.

• Configure a constant and use it as a replacement for those arrays.

• Leave the arrays intact : the order may be important.

• For hash arrays, consider turning the array in a class.

14.2. List of Rules 1295

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Arrays/RandomlySortedLiterals
Rulesets All, Analyze, Suggestions
Exakat since 0.11.2
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features array
Examples Contao, Vanilla
Available in Entreprise Edition, Exakat Cloud

14.2.1013 Readonly Property Changed By Cloning

Readonly properties may be changed when cloning. This may happen in the __clone magic method.

In that method, a new object is being created. It is acting like a constructor, and may tweak some of the values of the
original object, before assigning them to the new object.

<?php

class x {
public readonly int $p;

function __construct($p) {
$this->p = $p;

}

function __clone() {
// This is possible in a clone, and only once
$this->p = $this->p + 1;

// This second call is not possible, as the property was set just above
$this->p = $this->p + 2;

}
}

$a = new x(1);
print_r(clone $a);

?>

1296 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short
name

Php/ReadonlyPropertyChangedByCloning

Rule-
sets

All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56, Compatibil-
ityPHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73, CompatibilityPHP74, Com-
patibilityPHP80, CompatibilityPHP81, CompatibilityPHP82

Ex-
akat
since

2.5.3

Sever-
ity

Minor

Time
To
Fix

Quick (30 mins)

Pre-
ci-
sion

High

Avail-
able
in

Entreprise Edition, Exakat Cloud

14.2.1014 Readonly Usage

Usage of the readonly option on classes and properties. Readonly is available on classes starting with PHP
8.2.

<?php

class x {
private readonly int $property = 1;

}

readonly class y {
private int $property = 1;

}

?>

See also Readonly properties.

14.2. List of Rules 1297

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.properties.php#language.oop5.properties.readonly-properties

Exakat Documentation, Release 1

Specs

Short name Classes/ReadonlyUsage
Rulesets All, Appinfo, Changed Behavior
Exakat since 2.3.5
PHP Version With PHP 8.1 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features readonly
Available in Entreprise Edition, Exakat Cloud

14.2.1015 Real Functions

Real functions, not methods.

Function keywords, that are not in a class, trait, interface, nor a closure <https://www.php.net/`closure>`_.

<?php

// a real Function
function realFunction () {}

// Those are not real functions
function ($closure) { }

class foo {
function isAClassMethod() {}

}

interface fooi {
function isAnInterfaceMethod() {}

}

trait foot {
function isATraitMethod() {}

}
?>

Specs

Short name Functions/RealFunctions
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features function
Available in Entreprise Edition, Exakat Cloud

1298 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/closure
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1016 Real Variables

Inventory of real variables. Global, Static and property declarations are skipped here.

This is a refined version of a search on T_VARIABLE token.

<?php

$realVariable = 1;

class foo {
private $property; // not a variable

private function bar() {
global $global; // not a variable
static $static; // not a variable

}
}

?>

Specs

Short name Variables/RealVariables
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1017 Recalled Condition

A recalled condition is a check that is made twice : once in the condition, then again in the body of the
structure, to collect the actual value.

Usually, the second call may be skipped by storing the value in a local variable. à

The second call may be necessary when the call is not idempotent.

This is a speed optimisation: when the call is a simple property fetch, or include a local cache, it is a micro-optimisation.
Otherwise, it has a good performance potential.

One of the option is to use an iffectation: an affectation in the condition. This serves as cache too. Otherwise, the
condition may be calculated and stored before the condition.

<?php

if (get('a')) {
$a = get('a');

(continues on next page)

14.2. List of Rules 1299

https://www.php.net/manual/en/language.oop5.static.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

echo "Here is a : $a\n";
}

?>

Suggestions

• Put the result of the call in a variable to cache it.

• Use an iffectation in the condition, both store the result and use it in the condition.

Specs

Short name Structures/RecalledCondition
Rulesets All, Changed Behavior, Performances
Exakat since 2.5.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features micro-optimisation, idempotent, iffectation
Available in Entreprise Edition, Exakat Cloud

14.2.1018 Recursive Functions

Recursive methods are methods that calls itself.

Usually, the method call itself directly. In rarer occasions, the method calls another method which calls it back; such
cycle are longer and not detected here.

Functions, methods, arrow functions and closures are identified as recursive. Higher level of recursion are not detected
(function a() calls function b(), calls function a(), etc.).

Functions are easy to identify as recursive. Methods have some blind spots : when the injected argument is of the same
class, it may lead to recursion too. On the other hand, calling the same method on a property is not sufficient, as the
property might not be $this.

<?php

// a recursive function ; it calls itself
function factorial($n) {

if ($n == 1) { return 1; }

return factorial($n - 1) * $n;
}
?>

1300 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Functions/Recursive
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features recursion
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1019 Recycled Variables

A recycled variable is a variable used for two distinct missions in a method. There is usually a first part,
with its own initialization, then, later in the method, a second part with a new initialization and a distinct
usage of the variable.

Recycled variables leads to confusion: with the new initialization, the variable changes its purpose. Yet, with the same
name, and with a bit of lost context, it is easy to confuse it later.

<?php

function foo() {
$variable = "initial"; // first initialisation
$variable = goo($variable); // processing the variable
hoo($variable); // sending the variable to a final destination

$variable = "second" ; // second initialisation
hoo2($variable); // sending the variable to a different final␣

→˓destination
}
?>

See also Please Don’t Recycle Local Variables.

14.2. List of Rules 1301

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://daedtech.com/please-dont-recycle-local-variables/

Exakat Documentation, Release 1

Suggestions

• Use distinct names for each variable

• Split the method into smaller methods and unique variable name usage

Specs

Short name Variables/RecycledVariables
Rulesets All, Analyze
Exakat since 2.3.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features variable, readability
Available in Entreprise Edition, Exakat Cloud

14.2.1020 Redeclared PHP Functions

Function that bear the same name as a PHP function, and that are declared.

This is useful when managing backward compatibility, like emulating an old function, or preparing for newer PHP
versions, like emulating new upcoming function.

<?php

if (version_compare(PHP_VERSION, 7.0) > 0) {
function split($separator, $string) {

return explode($separator, $string);
}

}

print_r(split(' ', '2 3'));

?>

Suggestions

• Check if it is still worth emulating that function

1302 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Functions/RedeclaredPhpFunction
Rulesets All, Analyze, Appinfo, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features function
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1021 Redeclared Static Variable

Static variables shall be declared only once. It is forbidden in PHP 8.3 and later. It was silently allowed in
PHP 8.2 and older.

<?php

function foo() {
static $a;
static $a;

}

?>

Suggestions

• Keep the last static call

• Keep the first static call

14.2. List of Rules 1303

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

Specs

Short
name

Variables/RedeclaredStaticVariable

Rule-
sets

All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56, Compatibil-
ityPHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73, CompatibilityPHP74, Com-
patibilityPHP80, CompatibilityPHP81, CompatibilityPHP82

Ex-
akat
since

2.5.3

Sever-
ity

Major

Time
To
Fix

Instant (5 mins)

Pre-
ci-
sion

Very high

Fea-
tures

static-variable

Avail-
able
in

Entreprise Edition, Exakat Cloud

14.2.1022 Redefined Class Constants

Redefined class constants.

Class constants may be redefined, though it is prone to errors when using them, as it is now crucial to use the right
class name to access the right value. It is recommended to use distinct names.

<?php

class a {
const A = 1;

}

class b extends a {
const A = 2;

}

class c extends c { }

echo a::A, ' ', b::A, ' ', c::A;
// 1 2 2

?>

1304 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Classes/RedefinedConstants
Rulesets All, CE, CI-checks, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features class-constant
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1023 Redefined Default

Classes allows properties to be set with a default value. When those properties get, unconditionally, another
value at constructor time, then one of the default value are useless. One of those definition should go : it
is better to define properties outside the constructor.

<?php

class foo {
public $redefined = 1;

public function __construct() {
$this->redefined = 2;

}
}

?>

Suggestions

• Move the default assignation to the property definition

• Drop the reassignation in the constructor

Specs

Short name Classes/RedefinedDefault
Rulesets All, CE, CI-checks, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features default-value
Examples Piwigo
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1305

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1024 Redefined Methods

Redefined methods are overwritten methods. Those methods are defined in different classes that are part
of the same classes hierarchy.

Protected and public redefined methods replace each other. Private methods are kept separated, and depends on the
caller to be distinguished.

<?php

class foo {
function method() {

return 1;
}

}

class bar extends foo {
function method() {

return 2;
}

}
?>

See also Object Inheritance.

Specs

Short name Classes/RedefinedMethods
Rulesets All, Appinfo, CE, Changed Behavior, Class Review
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1025 Redefined PHP Traits

List of all traits that bears name of a PHP trait. Although, at the moment (PHP 8.1), there are no PHP trait
defined.

1306 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.inheritance.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Traits/Php
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features trait
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1026 Redefined Private Property

Private properties are local to their defined class. PHP doesn’t forbid the re-declaration of a private property
in a child class.

However, having two or more properties with the same name, in the class hierarchy tends to be error prone. Methods
will be accessing properties with the same name, but with different values.

<?php

class A {
private $isReady = true;

}

class B {
private $isReady = false;

}

?>

Suggestions

• Remove the property in the children classes

• Rename the property in the children classes

• Change the visibility in the parent class

14.2. List of Rules 1307

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error

Exakat Documentation, Release 1

Specs

Short name Classes/RedefinedPrivateProperty
Rulesets All, IsExt, IsPHP, IsStub
Exakat since 1.2.3
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features private
Examples Zurmo
Available in Entreprise Edition, Exakat Cloud

14.2.1027 Redefined Property

Property redefined in a parent class.

Using heritage, it is possible to define several times the same property, at different levels of the hierarchy. When this is
the case, it is difficult to understand which class will actually handle the property.

In the case of a private property, the different instances will stay distinct. In the case of protected or public properties,
they will all share the same value.

It is recommended to avoid redefining the same property in a hierarchy.

<?php

class foo {
protected $aProperty = 1;

}

class bar extends foo {
// This property is redefined in the parent class, leading to potential confusion
protected $aProperty = 1;

}

?>

1308 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

Suggestions

• Remove of the definition

Specs

Short name Classes/RedefinedProperty
Rulesets All, Class Review
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features property
Available in Entreprise Edition, Exakat Cloud

14.2.1028 Reflection Export() Is Deprecated

export() method in Reflection classes is now deprecated. It is obsolete since PHP 7.4 and will disappear
in PHP 8.0.

The Reflector interface, which is implemented by all reflection classes, specifies two methods: __toString() and ex-
port().

<?php

ReflectionFunction::export('foo');
// same as
echo new ReflectionFunction('foo'), "\n";

$str = ReflectionFunction::export('foo', true);
// same as
$str = (string) new ReflectionFunction('foo');

?>

See also Reflection export() methods and Reflection.

Suggestions

• Cast the object to string

• Remove the call to export()

14.2. List of Rules 1309

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/reflection
https://www.php.net/reflector
https://www.php.net/reflection
https://www.php.net/manual/en/language.oop5.magic.php
https://wiki.php.net/rfc/deprecations_php_7_4#reflection_export_methods
https://www.php.net/manual/en/book.reflection.php

Exakat Documentation, Release 1

Specs

Short name Php/ReflectionExportIsDeprecated
Rulesets All, CE, Changed Behavior, CompatibilityPHP74
Exakat since 1.9.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Changed Behavior PHP 7.4 - More
Precision Very high
Features reflection
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1029 Regex Delimiter

PCRE regular expressions may use a variety of delimiters.

There seems to be a standard delimiter in the code, and some exceptions : one or several forms are dominant (> 90%),
while the others are rare.

The analyzed code has less than 10% of the rare delimiters. For consistency reasons, it is recommended to make them
all the same.

Generally, one or two delimiters are used, depending on the expected special chars in the scanned strings : for example,
/ tends to be avoided when parsing HTML.

Regex are literals, or partial literals, used in preg_match(), preg_match_all(), preg_replace(), preg_replace_callback(),
preg_replace_callback_array().

<?php

echo 'a';
echo 'b';
echo 'c';
echo 'd';
echo 'e';
echo 'f';
echo 'g';
echo 'h';
echo 'i';
echo 'j';
echo 'k';

// This should probably be written 'echo';
print 'l';

?>

See also Ideal regex delimiters in PHP.

1310 Chapter 14. Rules

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/preg_match
https://www.php.net/preg_match_all
https://www.php.net/preg_replace
https://www.php.net/preg_replace_callback
https://www.php.net/preg_replace_callback_array
http://codelegance.com/ideal-regex-delimiters-in-php/

Exakat Documentation, Release 1

Specs

Short name Structures/RegexDelimiter
Rulesets All, Preferences
Exakat since 0.10.5
PHP Version All
Severity
Time To Fix
Precision Very high
Features regex
Available in Entreprise Edition, Exakat Cloud

14.2.1030 Regex Inventory

All regular expressions used in the code. PHP relies on the PCRE extension to process them, with the
functions preg_match(), preg_replace(), etc.

mbstring regular expressions are also collected. POSIX regex are not listed : they were deprecated in PHP 7.0.

<?php

// PCRE regex used with preg_match
preg_match('/[abc]+/', $string);

// Mbstring regex, in the arabic range
if(mb_ereg('[\x{0600}-\x{06FF}]', $text))

?>

See also preg_match(), `ext/mbstring <http://www.php.net/manual/en/book.mbstring.php> `_ and `ext/pcre <http://
www.php.net/manual/en/book.pcre.php> `_.

Specs

Short name Type/Regex
Rulesets All, Appinfo, CE, Inventory
Exakat since 0.12.14
PHP Version All
Severity
Time To Fix
Precision High
Features regex
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1311

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/preg_match
https://www.php.net/preg_replace
https://www.php.net/preg_match
http://www.php.net/manual/en/book.mbstring.php
http://www.php.net/manual/en/book.pcre.php
http://www.php.net/manual/en/book.pcre.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1031 Regex On Arrays

Avoid using a loop with arrays of regex or values. There are several PHP function which work directly on
arrays, and much faster.

preg_grep() is able to extract all matching strings from an array, or non-matching strings. This usually saves a loop
over the strings.

preg_filter() is able to extract all strings from an array, matching at least one regex in an array. This usually saves a
double loop over the strings and the regex. The trick here is to provide ‘$0’ as replacement, leading preg_filter() to
replace the found string by itself.

Finally, preg_replace_callback() an preg_replace_callback_array() are also able to apply an array of regex to an array
of strings, and then, apply callbacks to the found values.

<?php

$regexs = ['/ab+c/', '/abd+/', '/abe+/'];
$strings = ['/abbbbc/', '/abd/', '/abeee/'];

// Directly extract all strings that match one regex
foreach($regexs as $regex) {

$results[] = preg_grep($regex, $strings);
}

// extract all matching regex, by string
foreach($strings as $string) {

$results[] = preg_filter($regexs, array_fill(0, count($regexs), '$0'), $string);
}

// very slow way to get all the strings that match a regex
foreach($regexs as $regex) {

foreach($strings as $string) {
if (preg_match($regex, $string)) {

$results[] = $string;
}

}
}

?>

See also preg_filter.

Suggestions

• Apply preg_match() to an array of string or regex, via preg_filter() or preg_grep().

• Apply preg_match() to an array of string or regex, via preg_replace_callback() or preg_replace_callback_array().

1312 Chapter 14. Rules

https://www.php.net/preg_grep
https://www.php.net/preg_filter
https://www.php.net/preg_filter
https://www.php.net/preg_replace_callback
https://www.php.net/preg_replace_callback_array
https://php.net/preg_filter

Exakat Documentation, Release 1

Specs

Short name Performances/RegexOnArrays
Rulesets All, Changed Behavior, Performances
Exakat since 1.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features regex
Available in Entreprise Edition, Exakat Cloud

14.2.1032 Register Globals

register_globals was a PHP directive that dumped all incoming variables from GET, POST, COOKIE
and FILES as global variables in the called scripts.

This lead to security failures, as the variables were often used but not filtered.

Though it is less often found in more recent code, register_globals is sometimes needed in legacy code, that
haven’t made the move to eradicate this style of coding. Backward compatible pieces of code that mimic the
register_globals features usually create even greater security risks by being run after scripts startup. At that point,
some important variables are already set, and may be overwritten by the incoming call, creating confusion in the script.

Mimicking register_globals is achieved with variables variables, extract(), parse_str() and im-
port_request_variables() (Up to PHP 5.4).

<?php

// Security warning ! This overwrites existing variables.
extract($_POST);

// Security warning ! This overwrites existing variables.
foreach($_REQUEST as $var => $value) {

$$var = $value;
}

?>

Suggestions

• Avoid implementing again register_globals

• Use a container to store and access commonly used values

14.2. List of Rules 1313

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/extract
https://www.php.net/parse_str

Exakat Documentation, Release 1

Specs

Short name Security/RegisterGlobals
Rulesets All, Changed Behavior, Security
Exakat since 0.8.4
PHP Version All
Severity Critical
Time To Fix Slow (1 hour)
Precision High
Features register-globals
Examples TeamPass, XOOPS
Available in Entreprise Edition, Exakat Cloud

14.2.1033 Relay Function

Relay function only delegates workload to another one.

Relay functions and methods are delegating the actual work to another function or method. They do not have any impact
on the results, besides exposing another name for the same feature. Relay functions are typical of transition API, where
an old API have to be preserved until it is fully migrated. Then, they may be removed, so as to reduce confusion, and
simplify the API.

<?php

function myStrtolower($string) {
return \strtolower($string);

}

?>

Suggestions

• Remove relay function, call directly the final function

• Remove the target function, and move the code here

• Add more logic to that function, like conditions or cache

Specs

Short name Functions/RelayFunction
Rulesets All, Inventory
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features function
Examples TeamPass, SPIP
Available in Entreprise Edition, Exakat Cloud

1314 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1034 Repeated Interface

A class should implements only once an interface. An interface can only extends once another interface.
In both cases, parent classes or interfaces must be checked.

PHP accepts multiple times the same interface in the implements clause. In fact, it doesn’t do anything beyond the
first implement. This code may compile, but won’t execute.

<?php

use i as j;

interface i {}

// Multiple ways to reference an interface
class foo implements i, \i, j {}

// This applies to interfaces too
interface bar extends i, \i, j {}

?>

See also Object Interfaces and The Basics.

Suggestions

• Remove the interface usage at the lowest class or interface

Specs

Short name Interfaces/RepeatedInterface
Rulesets All, Analyze, Changed Behavior, LintButWontExec
Exakat since 1.4.9
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features interface
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.1035 Repeated Regex

Repeated regex should be centralized.

When a regex is repeatedly used in the code, it is getting harder to update. Regex that are repeated at least once (aka,
used twice or more) are reported. Regex that are dynamically build are not reported.

<?php

// Regex used several times, at least twice.
(continues on next page)

14.2. List of Rules 1315

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.interfaces.php
https://www.php.net/manual/en/language.oop5.basic.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

preg_match('/^abc_|^square$/i', $_GET['x']);

//.......

preg_match('/^abc_|^square$/i', $row['name']);

// This regex is dynamically built, so it is not reported.
preg_match('/^circle|^'.$x.'$/i', $string);

// This regex is used once, so it is not reported.
preg_match('/^circle|^square$/i', $string);

?>

Suggestions

• Create a central library of regex

• Use the regex inventory to spot other regex that are close, and should be identical.

Specs

Short name Structures/RepeatedRegex
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.10.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features regex
Examples Vanilla, Tikiwiki
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1036 Repeated print()

Merge several print or echo in one call, to speed up the processing.

It is recommended to use echo with multiple arguments, or a concatenation with print, instead of multiple calls to print
echo, when outputting several blob of text.

<?php

//Write :
echo 'a', $b, 'c';
print 'a' . $b . 'c';

//Don't write :
print 'a';
print $b;

(continues on next page)

1316 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

print 'c';
?>

Suggestions

• Merge all prints into one echo call, separating arguments by commas.

• Collect all values in one variable, and do only one call to print or echo.

Specs

Short name Structures/RepeatedPrint
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, Suggestions, Top10
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features print
ClearPHP no-repeated-print
Examples Edusoho, HuMo-Gen
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1037 Reserved Keywords In PHP 7

PHP reserved names for class/trait/interface. They won’t be available anymore in user space starting with
PHP 7.

For example, string, float, false, true, null, resource,`. . . <https://www.php.net/manual/en/functions.arguments.php#
functions.variable-arg-list>`_ are not acceptable as class name.

<?php

// This doesn't compile in PHP 7.0 and more recent
class null { }

?>

See also List of other reserved words.

14.2. List of Rules 1317

https://github.com/dseguy/clearPHP/tree/master/rules/no-repeated-print.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/functions.arguments.php#functions.variable-arg-list
https://www.php.net/manual/en/functions.arguments.php#functions.variable-arg-list
https://www.php.net/manual/en/reserved.other-reserved-words.php

Exakat Documentation, Release 1

Suggestions

• Avoid using PHP reserved keywords as names for structures such as class, functions, etc.

Specs

Short name Php/ReservedKeywords7
Rulesets All, Changed Behavior, CompatibilityPHP70
Exakat since 0.8.4
PHP Version With PHP 7.0 and older
Severity Major
Time To Fix Slow (1 hour)
Changed Behavior PHP 7.0 - More
Precision Very high
Features class
Available in Entreprise Edition, Exakat Cloud

14.2.1038 Reserved Match Keyword

match is a new instruction in PHP 8.0.

For that, it becomes a reserved keyword, and cannot be used in various situations: type, class, function, global constant
name.

<?php

// Match as a standalone keyword is not possible
use X as Match;

// No more use as a type
function foo(match $a) : match {}
$a instanceof match;

// No use as method name
match(a, 4) ;

// Match in a Fully qualified name is OK
b\match ;

// Match as a property name or a class constant is OK
$match->match;
C::MATCH;

// Match as a method is OK
$method->match();
$static::match();

?>

See also Match expression V2.

1318 Chapter 14. Rules

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://wiki.php.net/rfc/match_expression_v2

Exakat Documentation, Release 1

Suggestions

• Change the name from Match to something else.

Specs

Short name Php/ReservedMatchKeyword
Rulesets All, CompatibilityPHP80
Exakat since 2.2.1
PHP Version With PHP 8.0 and older
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features match
Related rule Uses PHP 8 Match()
Available in Entreprise Edition, Exakat Cloud

14.2.1039 Reserved Methods

PHP has reserved all the methods names, starting with two underscores characters __.

While this is not explicitely enforced, using such names may create future conflict if PHP acquire features that rely on
them.

<?php

class x {
// One of the reserved and used PHP method
function __toString() {}

// One potential PHP reserved method
function __toArray() {}

}

?>

See also Magic methods.

Suggestions

• Change the name of the method and avoid prefixing it with __

14.2. List of Rules 1319

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.magic.php

Exakat Documentation, Release 1

Specs

Short name Php/ReservedMethods
Rulesets All, Changed Behavior, PHP recommendations
Exakat since 2.6.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features naming, magic-method
Available in Entreprise Edition, Exakat Cloud

14.2.1040 Resources Usage

List of situations that are creating resources.

<?php
// This functioncall creates a resource to use
$fp = fopen('/tmp/file.txt', 'r');

if (!is_resource($fp)){
thrown new RuntimeException('Could not open file.txt');

}
?>

Specs

Short name Structures/ResourcesUsage
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features resource
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1041 Restrict Global Usage

$GLOBALS access, as whole, is forbidden. In PHP 8.1, it is not possible to this as a variable, but only
access its individual values.

<?php
// Example extracted from the RFC (see link below)
// Continues to work:
foreach ($GLOBALS as $var => $value) {

echo $var . ' => ' . $value . PHP_EOL;
}

(continues on next page)

1320 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// Generates compile-time error:
$GLOBALS = [];
$GLOBALS += [];
$GLOBALS =& $x;
$x =& $GLOBALS;
unset($GLOBALS);

?>

See also Restrict $GLOBALS usage.

Suggestions

• Copy values individually from $GLOBALS

Specs

Short name Php/RestrictGlobalUsage
Rulesets All, Changed Behavior, CompatibilityPHP81
Exakat since 2.2.2
PHP Version With PHP 8.1 and more recent
Severity Major
Time To Fix Slow (1 hour)
Changed Behavior PHP 8.1 - More
Precision High
Features global
Available in Entreprise Edition, Exakat Cloud

14.2.1042 Results May Be Missing

preg_match() may return empty values, if the search fails. It is important to check for the existence of
results before assigning them to another variable, or using it.

Since PHP 7.2, it is possible to use the PREG_UNMATCHED_AS_NULL constant in the flag parameter to avoid this.

<?php
preg_match('/PHP ([0-9\.]+) /', $res, $r);
$s = $r[1];
// $s may end up null if preg_match fails.

?>

14.2. List of Rules 1321

https://wiki.php.net/rfc/restrict_globals_usage
https://php-changed-behaviors.readthedocs.io/en/latest/behavior/GLOBALSAssignement.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/preg_match

Exakat Documentation, Release 1

Suggestions

• Use a final always capturing parenthesis to avoid this

• Use the PREG_UNMATCHED_AS_NULL option (PHP 7.2)

Specs

Short name Structures/ResultMayBeMissing
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1043 Rethrown Exceptions

Throwing a caught exception is usually useless and dead code.

When exceptions are caught, they should be processed or transformed, but not rethrown as is.

Those issues often happen when a catch structure was positioned for debug purposes, but lost its usage later.

<?php

try {
doSomething();

} catch (Exception $e) {
throw $e;

}

?>

See also What are the best practices for catching and re-throwing exceptions?.

Suggestions

• Log the message of the exception for later usage.

• Remove the try/catch and let the rest of the application handle this exception.

• Chain the exception, by throwing a new exception, including the caught exception.

1322 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception
https://stackoverflow.com/questions/5551668/what-are-the-best-practices-for-catching-and-re-throwing-exceptions/5551828

Exakat Documentation, Release 1

Specs

Short name Exceptions/Rethrown
Rulesets All, Changed Behavior, Dead code
Exakat since 0.9.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features exception
Examples PrestaShop
Available in Entreprise Edition, Exakat Cloud

14.2.1044 Return True False

These conditional expressions return true/false, depending on the condition. This may be simplified by
dropping the control structure altogether.

This may be simplified with : This may be applied to assignations and ternary operators too.

<?php

if (version_compare($a, $b) >= 0) {
return true;

} else {
return false;

}

?>

Suggestions

• Return directly the comparison, without using the if/then structure

• Cast the value to (boolean) and use it instead of the ternary

Specs

Short name Structures/ReturnTrueFalse
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features boolean
Examples Mautic, FuelCMS
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1323

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1045 Return Typehint Usage

Spot usage of return typehint. It is a PHP 7.0 feature.

Return typehint were introduced in PHP 7.0, and are backward incompatible with PHP 5.x.

<?php

function foo($a) : stdClass {
return new \stdClass();

}

?>

See also RFC: Return Type Declarations and Return Type Declarations.

Specs

Short name Php/ReturnTypehintUsage
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version With PHP 7.0 and more recent
Severity
Time To Fix
Changed Behavior PHP 7.0 - More
Precision Very high
Features returntype
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1046 Return With Parenthesis

return statement doesn’t require parenthesis. PHP tolerates them with return statement, but it is recom-
mended not to use them.

From the PHP Manual : ‘Note: Note that since return is a language construct and not a function, the parentheses
surrounding its argument are not required and their use is discouraged.’.

<?php

function foo() {
$a = rand(0, 10);

// No need for parenthesis
return $a;

// Parenthesis are useless here
return ($a);

// Parenthesis are useful here: they are needed by the multplication.
return ($a + 1) * 3;

}
(continues on next page)

1324 Chapter 14. Rules

https://wiki.php.net/rfc/return_types
https://www.php.net/manual/en/functions.returning-values.php#functions.returning-values.type-declaration
https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

?>

See also PHP return(value); vs return value; and return.

Suggestions

• Remove the parenthesis

Specs

Short name Php/ReturnWithParenthesis
Rulesets All, Changed Behavior, Coding conventions, PHP recommendations, Suggestions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features return-value
Available in Entreprise Edition, Exakat Cloud

14.2.1047 Return void

Return returns null as default value. It is recommended to mention explicitly ‘null’ or find a meaningful
return such as a boolean or a default value instead.

<?php

function foo(&$a) {
++$a;
// No explicit return : it returns void

}

function bar(&$a) {
++$a;

// Explicit return : it returns null
return null

}

?>

See also Void functions.

14.2. List of Rules 1325

https://stackoverflow.com/questions/2921843/php-returnvalue-vs-return-value
https://www.php.net/manual/en/function.return.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/migration71.new-features.php#migration71.new-features.void-functions

Exakat Documentation, Release 1

Specs

Short name Structures/ReturnVoid
Rulesets All, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features void
Available in Entreprise Edition, Exakat Cloud

14.2.1048 Retyped Reference

A parameter with a reference may be typed differently, at the end of a method call.

It is possible for a referenced and typed parameter to be retyped during a method call. As such, the type of the used
variable might both be checked and changed.

Using such syntax will lead to confusion in the code. This works on all types, scalars or objects.

This rule will detect variables which are defined with a placeholder value, or even undefined, and are filled during the
method call.

<?php

$a = [1];
foo($a);
echo $a; // Now, $a is a string

function foo(array &$a) {
$a = "Now, I am a string";

}

?>

Suggestions

• Do not change a referenced variable’s type

• Set the called value to a compatible type.

1326 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Functions/RetypedReference
Rulesets All, Analyze
Exakat since 2.4.3
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision High
Features typehint
Available in Entreprise Edition, Exakat Cloud

14.2.1049 Reuse Existing Variable

A variable is already holding the content that is calculated again : it could be used again.

It is recommended to use the cached value. This saves some computation, in particular when used in a loop, and speeds
up the process. This is called memoization. Some expressions are not idempotent, and should not be cached. For
example, calls to time() or fgets() return different values with the same parameters.

This may be a micro-optimisation.

<?php

function foo($a) {
$b = strtolower($a);

// strtolower($a) is already calculated in $b. Just reuse the value.
if (strtolower($a) === 'c') {

doSomething();
}

}

?>

Suggestions

• Reuse the existing variable

Specs

Short name Structures/ReuseVariable
Rulesets All, Suggestions
Exakat since 1.1.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features memoization
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1327

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/time
https://www.php.net/fgets
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1050 Rewrote Final Class Constant

Final class constants can’t be rewriten in a child class.

It is possible to write code that lints, when the classes are in different files. Such overwrites will only be detected at
execution time.

<?php

class x {
final const A = 1;
const B = 1;

}

class y extends x {
const A = 1;
const B = 1;

}

?>

Suggestions

• Remove the final keyword

• Remove the rewritten constant

Specs

Short name Classes/RewroteFinalClassConstant
Rulesets All, Class Review
Exakat since 2.5.4
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features final
Available in Entreprise Edition, Exakat Cloud

14.2.1051 SQL queries

SQL queries, detected in literal strings.

SQL queries are detected with keywords, inside literals or concatenations.

<?php

// SQL in a string
$query = 'SELECT name FROM users WHERE id = 1';

// SQL in a concatenation
$query = 'SELECT name FROM '.$table_users.' WHERE id = 1';

(continues on next page)

1328 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// SQL in a Heredoc
$query = <<<SQL
SELECT name FROM $table_users WHERE id = 1
SQL;

?>

Specs

Short name Type/Sql
Rulesets All, Appinfo, CE, Inventory
Exakat since 0.10.1
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1052 Safe Curl Options

It is advised to always use CURLOPT_SSL_VERIFYPEER and CURLOPT_SSL_VERIFYHOSTwhen requesting
a SSL connection.

With those tests, the certificate is verified, and if it isn’t valid, the connection fails : this is a safe behavior.

<?php
$ch = curl_init();

curl_setopt($ch, CURLOPT_URL, https://www.php.net/);

// To be safe, always set this to true
curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, true);

curl_exec($ch);
curl_close($ch);
?>

See also Don’t turn off CURLOPT_SSL_VERIFYPEER, fix your PHP configuration, Certainty: Automated CAC-
ert.pem Management for PHP Software and Server-Side HTTPS Requests.

14.2. List of Rules 1329

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/connection
https://www.php.net/connection
https://www.saotn.org/dont-turn-off-curlopt_ssl_verifypeer-fix-php-configuration/
https://paragonie.com/blog/2017/10/certainty-automated-cacert-pem-management-for-php-software
https://paragonie.com/blog/2017/10/certainty-automated-cacert-pem-management-for-php-software
https://paragonie.com/blog/2017/12/2018-guide-building-secure-php-software#secure-server-side-https

Exakat Documentation, Release 1

Suggestions

• Always use CURLOPT_SSL_VERIFYPEER and HTTPS for communication with other servers

Specs

Short name Security/CurlOptions
Rulesets All, Changed Behavior, Security
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features curl, ssl, https
Examples OpenConf
Available in Entreprise Edition, Exakat Cloud

14.2.1053 Safe HTTP Headers

Avoid configuring HTTP headers with lax restriction from within PHP.

There are a lot of HTTP headers those days, targeting various vulnerabilities. To ensure backward compatibility, those
headers have a default mode that is lax and permissive. It is recommended to avoid using those from within the code.

<?php

//Good configuration, limiting access to origin
header('Access-Control-Allow-Origin: https://www.exakat.io');

//Configuration is present, but doesn't restrict anything : any external site is a␣
→˓potential source
header('Access-Control-Allow-Origin: *');

?>

See also Hardening Your HTTP Security Headers, How To Secure Your Web App With HTTP Headers and Security-
Headers.

Suggestions

• Remove usage of those headers

1330 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.keycdn.com/blog/http-security-headers
https://www.smashingmagazine.com/2017/04/secure-web-app-http-headers/
https://securityheaders.com/
https://securityheaders.com/

Exakat Documentation, Release 1

Specs

Short name Security/SafeHttpHeaders
Rulesets All, Changed Behavior, Security
Exakat since 1.5.5
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features http-header
Available in Entreprise Edition, Exakat Cloud

14.2.1054 Safe Phpvariables

Mark the safe PHP variables.

PHP superglobals are usually filled with external data that should be filtered. However, some values may be considered
safe, as they are under the control of the developer.

$_GET, $_POST, $_FILES, $_REQUEST, $_COOKIES are all considered unsafe. Their level of validation is checked in
other analysis.

$_SERVER is partially safe. It is valid for the following values : DOCUMENT_ROOT, REQUEST_TIME,
REQUEST_TIME_FLOAT, SCRIPT_NAME, SERVER_ADMIN, _.

<?php

// DOCUMENT_ROOT is a safe variable
echo $_SERVER['DOCUMENT_ROOT'];

// $_SERVER's PHP_SELF MUST be validated before usage
echo $_SERVER['PHP_SELF'];

// $_GET MUST be validated before usage
echo $_GET['_'];

?>

See also Predefined Variables.

Specs

Short name Php/SafePhpvars
Rulesets All, Changed Behavior
Exakat since 2.1.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features superglobal, php-variable
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1331

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/reserved.variables.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1055 Same Conditions In Condition

At least two consecutive if/then structures use identical conditions. The latter will probably be ignored.

This analysis returns false positive when there are attempt to fix a situation, or to call an alternative solution.

Conditions that are shared between if structures, but inside a logical OR expression are also detected.

<?php

if ($a == 1) { doSomething(); }
elseif ($b == 1) { doSomething(); }
elseif ($c == 1) { doSomething(); }
elseif ($a == 1) { doSomething(); }
else {}

// Also works on if then else if chains
if ($a == 1) { doSomething(); }
else if ($b == 1) { doSomething(); }
else if ($c == 1) { doSomething(); }
else if ($a == 1) { doSomething(); }
else {}

// Also works on if then else if chains
// Here, $a is common and sufficient in both conditions
if ($a || $b) { doSomething(); }
elseif ($a || $c) { doSomethingElse(); }

// This sort of situation generate false postive.
$config = load_config_from_commandline();
if (empty($config)) {

$config = load_config_from_file();
if (empty($config)) {

$config = load_default_config();
}

}

?>

Suggestions

• Merge the two conditions into one

• Make the two conditions different

1332 Chapter 14. Rules

Exakat Documentation, Release 1

Specs

Short name Structures/SameConditions
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Critical
Time To Fix Quick (30 mins)
Precision Very high
Examples TeamPass, Typo3
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1056 Same Name For Property And Method

A property and a method have the same name. While it is a valid naming scheme with PHP, it may lead
to confusion while codeing.

Such naming collision may appear with words that are the same as a verb (for method) and as a noun (for property).
For example, in English : query, work, debug, run, process, rain, polish, paint, etc,.

It may also happen during the life cycle of the class, as it is extended with new methods and properties, and little care
is give to semantic meaning of the names, beyond the task at hand. It is recommended to avoid those collisions, and
keep properties and methods named distinctly.

That problem do not happen to constants, which are mostly written uppercase. This rule is case-insensitive.

<?php

class x {
public $foo;
function foo() {}

}

$x = new X:
$x->p = $x->foo();

?>

See also Words That Are Both Nouns And Verbs.

Suggestions

• Fix any spelling in the names

• Rename the property or the method

14.2. List of Rules 1333

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.enchantedlearning.com/wordlist/nounandverb.shtml

Exakat Documentation, Release 1

Specs

Short name Classes/PropertyMethodSameName
Rulesets All, Analyze, Class Review, Semantics
Exakat since 2.4.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.1057 Same Variable Foreach

A foreach which uses its own source as a blind variable is actually broken.

Actually, PHP makes a copy of the source before it starts the loop. As such, the same variable may be used for both
source and blind value.

Of course, this is very confusing, to see the same variables used in very different ways.

The source will also be destroyed immediately after the blind variable has been turned into a reference.

<?php

$array = range(0, 10);
foreach($array as $array) {

print $array.PHP_EOL;
}

print_r($array); // display number from 0 to 10.

$array = range(0, 10);
foreach($array as &$array) {

print $array.PHP_EOL;
}

print_r($array); // display 10

?>

Suggestions

• Name the source and variable names distinctly

1334 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Structures/AutoUnsetForeach
Rulesets All, Analyze, CE, CI-checks
Exakat since 1.0.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features foreach
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1058 Scalar Are Not Arrays

It is wrong to use a scalar as an array, a Warning is emitted. PHP 7.4 emits a Warning in such situations.

Typehinted argument with a scalar are reported by this analysis. Also, nullable arguments, both with typehint and
return type hint.

<?php

// Here, $x may be null, and in that case, the echo will fail.
function foo(?A $x) {

echo $x[2];
}

?>

See also E_WARNING for invalid container read array-access.

Suggestions

• Update type hints to avoid scalar values

• Remove the array syntax in the code using the results

• Cast to string type, so the array notation is accessible

Specs

Short name Php/ScalarAreNotArrays
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, CompatibilityPHP74
Exakat since 1.9.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features array, array-object
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1335

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://wiki.php.net/rfc/notice-for-non-valid-array-container
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1059 Scalar Or Object Property

Property shouldn’t use both object and scalar syntaxes. When a property may be an object, it is recom-
mended to implement the Null Object pattern : instead of checking if the property is scalar, make it always
object.

<?php

class x {
public $display = 'echo';

function foo($string) {
if (is_string($this->display)) {

echo $this->string;
} elseif ($this->display instanceof myDisplayInterface) {

$display->display();
} else {

print "Error when displaying\n";
}

}
}

interface myDisplayInterface {
public function display($string); // does the display in its own way

}

class nullDisplay implements myDisplayInterface {
// implements myDisplayInterface but does nothing
public function display($string) {}

}

class x2 {
public $display = null;

public function __construct() {
$this->display = new nullDisplay();

}

function foo($string) {
// Keep the check, as $display is public, and may get wrong values
if ($this->display instanceof myDisplayInterface) {

$display->display();
} else {

print "Error when displaying\n";
}

}
}

// Simple class for echo
class echoDisplay implements myDisplayInterface {

// implements myDisplayInterface but does nothing
public function display($string) {

echo $string;
(continues on next page)

1336 Chapter 14. Rules

Exakat Documentation, Release 1

(continued from previous page)

}
}

?>

See also Null Object Pattern and The Null Object Pattern.

Suggestions

• Only use one type of syntax with your properties.

Specs

Short name Classes/ScalarOrObjectProperty
Rulesets All, Analyze
Exakat since 0.12.3
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features object, scalar-typehint
Examples SugarCrm
Available in Entreprise Edition, Exakat Cloud

14.2.1060 Scalar Typehint Usage

Spot usage of scalar type hint : int, float, boolean and string.

Scalar typehint are PHP 7.0 and more recent. Some, like object, is 7.2.

Scalar typehint were not supported in PHP 5 and older. Then, the typehint is treated as a class name.

<?php

function withScalarTypehint(string $x) {}

function withoutScalarTypehint(someClass $x) {}

?>

See also PHP RFC: Scalar Type Hints and Type declarations.

14.2. List of Rules 1337

https://en.wikipedia.org/wiki/Null_Object_pattern#PHP
https://www.sitepoint.com/the-null-object-pattern-polymorphism-in-domain-models/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://wiki.php.net/rfc/scalar_type_hints
https://www.php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration

Exakat Documentation, Release 1

Specs

Short name Php/ScalarTypehintUsage
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version With PHP 7.0 and more recent
Severity Major
Time To Fix Quick (30 mins)
Changed Behavior PHP 7.0 - More
Precision Very high
Features scalar-typehint, typehint
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1061 Scope Resolution Operator

The scope resolution operator ::class is faster than a call to get_class() function.

It is also possible to replace get_class() by static::class to get the name of the calling class.

<?php

$a = new stdClass();

echo $a::class;

// identical to
echo get_class($a);

class x {
function foo() { echo static::class; }

}

class y extends x {}

// static will resolve to y here
(new y)->foo();

?>

See also get_class..

Suggestions

• Use the ::class operator instead of the call to get_class()

1338 Chapter 14. Rules

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/get_class
https://www.php.net/manual/fr/function.get-class.php

Exakat Documentation, Release 1

Specs

Short name Performances/ClassOperator
Rulesets All, Changed Behavior, Performances
Exakat since 2.3.3
PHP Version With PHP 7.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features scope-resolution-operator, static
Available in Entreprise Edition, Exakat Cloud

14.2.1062 Searching For Multiple Keys

array_search() and array_keys() find keys in an array. array_search() returns the first key that match a
value, while array_keys() returns all the keys that match a value.

array_search() and array_keys() both accepts a final parameter to set a strict search or not.

<?php

$array = array(0,1,2,3,4,3);

// $id = 3
$id = array_search($array, 3);

// $ids = [3, 5];
$ids = array_keys($array, 3);

?>

Suggestions

• Use array_keys() to find multiple keys in an array

• Use array_keys() to find a unique key in an array

Specs

Short name Structures/ArraySearchMultipleKeys
Rulesets All, Suggestions
Exakat since 2.2.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1339

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_search
https://www.php.net/array_keys
https://www.php.net/array_search
https://www.php.net/array_keys
https://www.php.net/array_search
https://www.php.net/array_keys
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1063 Self Using Trait

Trait uses itself : this is unnecessary. Traits may use themselves, or be used by other traits, that are using
the initial trait itself.

PHP handles the situation quietly, by ignoring all extra use of the same trait, keeping only one valid version.

<?php

// empty, but valid
trait a {}

// obvious self usage
trait b { use b; }

// less obvious self usage
trait c { use d, e, f, g, h, c; }

// level 2 self usage
trait i { use j; }
trait j { use i; }

?>

See also Traits.

Suggestions

• Remove the extra usage of the trait.

Specs

Short name Traits/SelfUsingTrait
Rulesets All, Changed Behavior, Class Review, Dead code
Exakat since 1.5.7
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features trait
Available in Entreprise Edition, Exakat Cloud

1340 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.traits.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1064 Self-Transforming Variables

Variables that are assigned to themselves, after transformation. Auto-transformations include appending
element to an array, using post and pre increment operators, and assigning to the variable the result of a
call where the variable is also an argument.

<?php

$s = strtolower($s);

// filtering one element AND dropping all that not 1
$a = array_filter('foo', $a[1]);

$o->m = foo($o->m);

?>

Suggestions

• Use new variables to hold transformed values.

Specs

Short name Variables/SelfTransform
Rulesets All, CE, Changed Behavior
Exakat since 1.7.0
PHP Version All
Severity
Time To Fix
Precision High
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1065 Semantic Typing

Arguments names are only useful inside the method’s body. They are not actual type.

<?php

// arguments should be a string and an array
function foo($array, $str) {

// more code
return $boolean;

}

// typehint is actually checking the values
function bar(iterable $closure) : bool {

// more code
return true;

}
(continues on next page)

14.2. List of Rules 1341

https://www.php.net/result
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

?>

Suggestions

• Use a typehint to make sure the argument is of the expected type.

Specs

Short name Functions/SemanticTyping
Rulesets All, Semantics
Exakat since 2.0.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features typehint
Available in Entreprise Edition, Exakat Cloud

14.2.1066 Sensitive Argument

Spot the argument that are sensitive for security. The functioncalls that are hosting a sensitive argument
are called a sink.

<?php

// first argument $query is a sensitive argument
mysqli_query($query);

?>

Specs

Short name Security/SensitiveArgument
Rulesets All, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Available in Entreprise Edition, Exakat Cloud

1342 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1067 Sequences In For

For() instructions allow several instructions in each of its parameters. Then, the instruction separator is
comma ‘,’, not semi-colon, which is used for separating the 3 arguments.

This loop will simultaneously increment $a and $b. It will stop only when the last of the central sequence reach a value
of false : here, when $b reach 20 and $a will be 6.

This structure is rarely used, and makes the for() instruction quite difficult to read. It is also easy to oversee the multiples
instructions, and omit one of them.

It is recommended not to use it.

<?php
for ($a = 0, $b = 0; $a < 10, $b < 20; $a++, $b += 3) {
// For loop
}

?>

Specs

Short name Structures/SequenceInFor
Rulesets All, Surprising
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features for
Available in Entreprise Edition, Exakat Cloud

14.2.1068 Serialize Magic Method

Classes that defines __serialize() and __unserialize() are using Serialize Magic.

Serialize magic methods were introduced in PHP 7.4, and are not effective before.

<?php

class x {
function __serialize() {}
function __unserialize() {}

}

?>

See also New custom object serialization mechanism.

14.2. List of Rules 1343

https://www.php.net/manual/en/control-structures.for.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://wiki.php.net/rfc/custom_object_serialization

Exakat Documentation, Release 1

Specs

Short name Php/SerializeMagic
Rulesets All, Changed Behavior
Exakat since 1.9.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features serialize
Available in Entreprise Edition, Exakat Cloud

14.2.1069 Session Lazy Write

Classes that implements SessionHandlerInterface must also implements SessionUpdateTimestampHand-
lerInterface.

The two extra methods are used to help lazy loading : the first actually checks if a sessionId is available, and the seconds
updates the time of last usage of the session data in the session storage.

This was spotted by Nicolas Grekas, and fixed in Symfony [HttpFoundation] Make sessions `secure and lazy #24523
<https://github.com/symfony/symfony/pull/24523>`_.

<?php

interface SessionUpdateTimestampHandlerInterface {
// returns a boolean to indicate that valid data is available for this sessionId, or␣

→˓not.
function validateId($sessionId);

//called to change the last time of usage for the session data.
//It may be a file's touch or full write, or a simple update on the database
function updateTimestamp($sessionId, $sessionData);

}

?>

See also Sessions: Improve original RFC about lazy_write and Sessions.

1344 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/sessionhandlerinterface
https://www.php.net/sessionupdatetimestamphandlerinterface
https://www.php.net/sessionupdatetimestamphandlerinterface
https://www.php.net/secure
https://github.com/symfony/symfony/pull/24523
https://wiki.php.net/rfc/session-read_only-lazy_write
https://www.php.net/manual/en/book.session.php

Exakat Documentation, Release 1

Suggestions

• Implements the SessionUpdateTimestampHandlerInterface interface

Specs

Short name Security/SessionLazyWrite
Rulesets All, Changed Behavior, Security
Exakat since 0.12.15
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision High
Features session
Available in Entreprise Edition, Exakat Cloud

14.2.1070 Session Variables

Sessions names, used across the application.

<?php

if (isset($_SESSION['mySessionVariable'])) {
$_SESSION['mySessionVariable']['counter']++;

} else {
$_SESSION['mySessionVariable'] = array('counter' => 1,

'creation' => time());
}

?>

See also Sessions.

Specs

Short name Php/SessionVariables
Rulesets All, Changed Behavior, Inventory
Exakat since 0.12.16
PHP Version All
Severity
Time To Fix
Precision Very high
Features session
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1345

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.session.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1071 Set Array Class Definition

Link arrays with their related method definition.

PHP accepts an array structure such as [class, method], or [$object, method] as a valid method callback. This
analysis builds such relations, whenever they are static.

<?php

class x {
public function foo() {}

}

// designate the foo method in the x class
$f = [\x, 'foo'];

array_

?>

See also class.

Specs

Short name Complete/SetArrayClassDefinition
Rulesets All, CE, Changed Behavior, NoDoc
Exakat since 1.9.3
PHP Version All
Severity
Time To Fix
Precision Very high
Features class
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1072 Set Aside Code

Setting aside code should be made into a method.

Setting aside code happens when one variable or member is stored locally, to be temporarily replaced by another value.
Once the new value has been processed, the original value is reverted.

The temporary change of the value makes the code hard to read.

It is a good example of a piece of code that could be moved to a separate method or function. Using the temporary
value as a parameter makes the change visible, and avoid local pollution.

<?php

// Setting aside database
class cache extends Storage {

private $database = null;

(continues on next page)

1346 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.basic.php#language.oop5.basic.class
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

function __construct($database) {
$this->database = $database;

}

function foo($values) {
// handling storage with sqlite3
$secondary = new cache(new Sqlite3(':memory:'));
$secondary->store($values);

$this->store($values); // handling storage with injection
}

}

// Setting aside database to cache data in two distinct backend
class cache extends Storage {

private $database = null;

function __construct(\Pdo $database) {
$this->database = $database;

}

function foo($values) {
// $this->database is set aside for secondary configuration
$side = $this->database;
$this->database = new Sqlite3(':memory:');
$this->store($values); // handling storage with sqlite3
$this->database = $side;
// $this->database is restored
$this->store($values); // handling storage with injection

}
}

?>

Suggestions

• Extract the code that run with the temporary value to a separate method.

Specs

Short name Structures/SetAside
Rulesets All, Suggestions
Exakat since 1.8.8
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1347

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1073 Set Chaining Exception

Chaining exception allows rethrowing a caught exception with a new one. The previous exception is added
to the new exception, for later reference.

For that, the constructor of the chaining exception must relay the previous one to the parent constructor.

<?php

//
class myChainingException{

function __construct($message, $code = 0, \Throwable $exception = null) {
// This exception can be chained
parent::__construct($message, $code, $exception);

}
}

// No chaining possible
class myException{

function __construct($message) {
// This exception can't chain anything
parent::__construct($message);

}
}

?>

Suggestions

• Add the default values to allow chaining

Specs

Short name Exceptions/SetChainingException
Rulesets All, Changed Behavior, Class Review
Exakat since 2.5.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features chaining-exception
Available in Entreprise Edition, Exakat Cloud

1348 Chapter 14. Rules

https://www.php.net/exception
https://www.php.net/exception
https://www.php.net/exception
https://www.php.net/exception
https://www.php.net/exception
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1074 Set Class Method Remote Definition

Links method to the method definition. The link is DEFINITION.

Static method calls and normal method calls are both solved with this rule. Parent classes and trait are also searched
for the right method.

<?php

class x {
public function __construct() {}
public function foo() {}

}

// This links to __construct method
$a = new x;

// This links to foo() method
$a->foo();

?>

Specs

Short name Complete/SetClassMethodRemoteDefinition
Rulesets All, Changed Behavior, NoDoc
Exakat since 1.9.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features method
Available in Entreprise Edition, Exakat Cloud

14.2.1075 Set Class Property Definition With Typehint

Links method call to its definition, thanks to property typehinting. The link is DEFINITION.

<?php

class x {
public x $p = null;

public function bar() {
return $this;

}
}

$x = new x;

(continues on next page)

14.2. List of Rules 1349

https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// $x->p is of 'x' class
$x->p->bar();

?>

Specs

Short name Complete/SetClassPropertyDefinitionWithTypehint
Rulesets All, Changed Behavior, NoDoc
Exakat since 1.9.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.1076 Set Class Remote Definition With Global

Links method call to its definition, thanks to the global definition. The link is DEFINITION.

<?php

class x {
public function bar() { }

}

global $a;
$a = new X;

function foo() {
global $a;

// This links to class x, method bar(), thanks to global.
return $a->bar();

}

?>

1350 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Complete/SetClassRemoteDefinitionWithGlobal
Rulesets All, Changed Behavior, NoDoc
Exakat since 1.9.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1077 Set Class Remote Definition With Injection

Links a method call and its definition, thanks to a typehint.

<?php

class A {
function goo() {}

}

function foo(A $arg) {
// This goes to method A::goo(), thanks to the typehint
$arg->goo();

}

?>

Specs

Short name Complete/SetClassRemoteDefinitionWithInjection
Rulesets All, Changed Behavior, NoDoc
Exakat since 1.9.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1351

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1078 Set Class Remote Definition With Local New

Links method calls and properties to its definition, thanks to the local new. The link is DEFINITION.

<?php

class x {
public function bar() { }

}

function foo() {
$a = new x;

// This links to class x, method bar(), thanks to the local new.
return $a->bar();

}

?>

Specs

Short name Complete/SetClassRemoteDefinitionWithLocalNew
Rulesets All, Changed Behavior, NoDoc
Exakat since 1.9.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1079 Set Class Remote Definition With Parenthesis

Links methodcall, properties and constants to its definition, based to the new in the parenthesis. The link
is DEFINITION.

<?php

class x {
public function bar() { }

}

function foo() {
// This links to class x, method bar(), thanks to the new.
return (new x)->bar();

}

?>

1352 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Complete/SetClassRemoteDefinitionWithParenthesis
Rulesets All, NoDoc
Exakat since 1.9.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.1080 Set Class Remote Definition With Return Typehint

Links method call to its definition, thanks to the typed return. The link is DEFINITION.

<?php

class x {
public function bar() { }

}

function foo() {
$a = bar();
// This links to class x, method bar(), thanks to the new.
return $a->bar();

}

function bar() : x {
return new x;

}

?>

Specs

Short name Complete/SetClassRemoteDefinitionWithReturnTypehint
Rulesets All, Changed Behavior, NoDoc
Exakat since 1.9.3
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1353

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1081 Set Class Remote Definition With Typehint

Links method calls, properties static or not, and constants to their definition, thanks to typed arguments.
The link is DEFINITION.

<?php

class x {
public function bar() { }

}

function foo(x $a) {
// This links to class x, method bar(), thanks to the typehint.
return $a->bar();

}

?>

Specs

Short name Complete/SetClassRemoteDefinitionWithTypehint
Rulesets All, Changed Behavior, NoDoc
Exakat since 1.9.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.1082 Set Clone Link

This command creates a link DEFINITION between a clone call, and its equivalent magic method.

This command may not detect all possible link for the clone. It may be missing information about the nature of the
clone object.

<?php

class x {
// Store an object
private $a;

function foo() {
// This clone is linked to the magic method below
return clone $this;

}

function __clone() {
$this->a = clone $this->a;

}
(continues on next page)

1354 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.static.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

}

// This is not linked to any __clone method, by lack of information
clone $x;

?>

See also Object Cloning.

Specs

Short name Complete/SetCloneLink
Rulesets All, Changed Behavior, NoDoc
Exakat since 1.9.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features clone
Available in Entreprise Edition, Exakat Cloud

14.2.1083 Set Cookie Safe Arguments

The last five arguments of setcookie() and setrawcookie() are for security. Use them anytime you can.

setcookie (string $name [, string $value = " [, int $expire = 0 [, string $path = "
[, string $domain = " [, bool $`secure <https://www.php.net/secure>`_ = false [, bool
$httponly = false]]]]]])

The $expire argument sets the date of expiration of the cookie. It is recommended to make it as low as possible, to
reduce its chances to be captured. Sometimes, low expiration date may be several days (for preferences), and other
times, low expiration date means a few minutes.

The $path argument limits the transmission of the cookie to URL whose path matches the one mentioned here. By
default, it is '/', which means the whole server. If a cookie usage is limited to a part of the application, use it here.

The $domain argument limits the transmission of the cookie to URL whose domain matches the one mentioned here.
By default, it is '', which means any server on the internet. At worse, you may use mydomain.com to cover your whole
domain, or better, refine it with the actual subdomain of usage.

The $`secure <https://www.php.net/secure>`_ argument limits the transmission of the cookie over HTTP (by
default) or HTTPS. The second is better, as the transmission of the cookie is crypted. In case HTTPS is still at the
planned stage, use ‘$_SERVER[“HTTPS”]’. This environment variable is false on HTTP, and true on HTTPS.

The $httponly argument limits the access of the cookie to JavaScript. It is only transmitted to the browser, and
retransmitted. This helps reducing XSS and CSRF attacks, though it is disputed.

The $samesite argument limits the sending of the cookie to the domain that initiated the request. It is by default Lax
but should be upgraded to Strict whenever possible. This feature is available as PHP 7.3.

<?php

//admin cookie, available only on https://admin.my-domain.com/system/, for the next␣
(continues on next page)

14.2. List of Rules 1355

https://www.php.net/manual/en/language.oop5.cloning.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/setcookie
https://www.php.net/setrawcookie

Exakat Documentation, Release 1

(continued from previous page)

→˓minute, and not readable by javascript
setcookie("admin", $login, time()+60, "/system/", "admin.my-domain.com", $_SERVER['HTTPS
→˓'], 1);

//login cookie, available until the browser is closed, over http or https
setcookie("login", $login);

//removing the login cookie : Those situations are omitted by the analysis
setcookie("login", '');

?>

See also setcookie and ‘SameSite’ cookie attribute.

Suggestions

• Use all the argument when setting cookies with PHP functions

Specs

Short name Security/SetCookieArgs
Rulesets All, Changed Behavior, Security
Exakat since 0.10.6
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Features cookie
Available in Entreprise Edition, Exakat Cloud

14.2.1084 Set Method Fnp

Complete code by adding the fullnspath property to methods calls.

It makes it faster to find definitions later.

<?php

function foo(X $a) {
// \x::moo
$a->moo();

}

?>

1356 Chapter 14. Rules

http://www.php.net/setcookie
https://www.chromestatus.com/feature/4672634709082112
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Complete/SetMethodFnp
Rulesets All, Changed Behavior
Exakat since 2.5.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.1085 Set Parent Definition

This command creates a DEFINITION link between parent keyword and the actual parent class.

<?php

class x {
const A = 1;

}

class y extends x {
function foo() {

// 'parent' needs a DEFFINITION link to the class x
return parent::A;

}
}

?>

See also Scope Resolution Operator (::).

Specs

Short name Complete/SetParentDefinition
Rulesets All, CE, Changed Behavior, NoDoc
Exakat since 1.9.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features parent
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1357

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1086 Set class_alias() Definition

Links identifiers and nsname to the concrete class, interface, trait and enumeration when class_alias() was
used to create the name. The link is DEFINITION.

class_alias() are detected at loading time, and are used unconditionally.

This means that the fully qualified name of the new call and the instantiated class may be different : without the alias,
the fully qualified name is the current value, or its use’s origin, while with class_alias(), it is an arbitrary name.

<?php

class x {
public function foo() {}

}

class_alias('x', 'y');

//y exists, as an alias of x.
$y = new y;

?>

Specs

Short name Complete/SetClassAliasDefinition
Rulesets All, NoDoc
Exakat since 1.9.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features class-alias
Available in Entreprise Edition, Exakat Cloud

14.2.1087 Setlocale() Uses Constants

setlocale() don’t use strings but constants.

The first argument of setlocale() must be one of the valid constants, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MONETARY,
LC_NUMERIC, LC_TIME, `LC_MESSAGES <https://www.php.net/LC_MESSAGES>`_. The PHP 5 usage of strings
(same name as above, enclosed in ‘ or “) is not legit anymore in PHP 7 and later.

<?php

// Use constantes for setlocale first argument
setlocale(LC_ALL, 'nl_NL');
setlocale(\LC_ALL, 'nl_NL');

// Don't use string for setlocale first argument
setlocale('LC_ALL', 'nl_NL');

(continues on next page)

1358 Chapter 14. Rules

https://www.php.net/class_alias
https://www.php.net/class_alias
https://www.php.net/class_alias
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/setlocale
https://www.php.net/setlocale

Exakat Documentation, Release 1

(continued from previous page)

setlocale('LC_'.'ALL', 'nl_NL');

?>

See also setlocale.

Suggestions

• Use setlocale() constants

Specs

Short name Structures/SetlocaleNeedsConstants
Rulesets All, CompatibilityPHP70
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1088 Several Instructions On The Same Line

Usually, instructions do not share their line : one instruction, one line.

This is good for readability, and help at understanding the code. This is especially important when fast-reading the
code to find some special situation, where such double-meaning line way have an impact.

<?php

switch ($x) {
// Is it a fallthrough or not ?
case 1:

doSomething(); break;

// Easily spotted break.
case 1:

doSomethingElse();
break;

default :
doDefault();
break;

}

?>

See also Object Calisthenics, rule # 5.

14.2. List of Rules 1359

https://www.php.net/setlocale
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
http://williamdurand.fr/2013/06/03/object-calisthenics/#one-dot-per-line

Exakat Documentation, Release 1

Suggestions

• Add new lines, so that one expression is on one line

Specs

Short name Structures/OneLineTwoInstructions
Rulesets All, Analyze, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Examples Piwigo, Tine20
Available in Entreprise Edition, Exakat Cloud

14.2.1089 Shell Favorite

PHP has several syntax to make system calls : shell_exec(), exec() and back-ticks, ` are the common ones.

It was found that one of those three is actually being used over 90% of the time. The remaining cases should be
uniformed, so has to make this code consistent.

<?php

// back-ticks ` are only used once.
`back-tick`;

shell_exec('exec1');
shell_exec('exec2');
shell_exec('exec3');
shell_exec('exec4');
shell_exec('exec5');
shell_exec('exec6');
shell_exec('exec7');
shell_exec('exec8');
shell_exec('exec9');
shell_exec('exec10');
shell_exec('exec11');
shell_exec('exec12');

?>

See also Execution Operators, shell_exec() and ptlis/shell-command.

1360 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/shell_exec
https://www.php.net/exec
https://www.php.net/manual/en/language.operators.execution.php
https://www.php.net/shell_exec
https://packagist.org/packages/ptlis/shell-command

Exakat Documentation, Release 1

Specs

Short name Php/ShellFavorite
Rulesets All, Changed Behavior, Preferences
Exakat since 0.12.9
PHP Version All
Severity
Time To Fix
Precision Very high
Features shell
Available in Entreprise Edition, Exakat Cloud

14.2.1090 Shell Usage

List of shell calls to system.

<?php
// Using backtick operator
$a = `ls -hla`;

// Using one of PHP native or extension functions
$a = shell_exec('ls -hla');
$b = \pcntl_exec('/path/to/command');

?>

See also shell_exec and Execution Operators.

Specs

Short name Structures/ShellUsage
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features shell
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1361

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
http://www.php.net/shell_exec
http://www.php.net/manual/en/language.operators.execution.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1091 Shell commands

Shell commands, called from PHP.

Shell commands are detected with the italic quotes, and using shell_exec(), system(), exec() and proc_open().

<?php

// Shell command in a shell_exec() call
shell_exec('ls -1');

// Shell command with backtick operator
`ls -1 $path`;

?>

See also Execution operator, shell_exec and exec.

Specs

Short name Type/Shellcommands
Rulesets All, Appinfo, CE
Exakat since 1.9.9
PHP Version All
Severity
Time To Fix
Precision Very high
Features system-call
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1092 Short Open Tags

Usage of short open tags is discouraged. The following files were found to be impacted by the short open
tag directive at compilation time. They must be reviewed to ensure no <? tags are found in the code.

Specs

Short name Php/ShortOpenTagRequired
Rulesets All, Analyze, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features short-tag
Available in Entreprise Edition, Exakat Cloud

1362 Chapter 14. Rules

https://www.php.net/shell_exec
https://www.php.net/system
https://www.php.net/exec
https://www.php.net/proc_open
https://www.php.net/manual/en/language.operators.execution.php
https://www.php.net/manual/en/function.shell-exec.php
https://www.php.net/manual/en/function.exec.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1093 Short Or Complete Comparison

Which type of condition is used for boolean comparisons : either short or formal.

Formal is an explicit comparison to another boolean, while short is when the variable is used without comparison.

The analyzed code has less than 10% of one of them : for consistency reasons, it is recommended to make them all the
same.

<?php

// returns a boolean
$checked = checkSomething();

// short comparison
if ($checked) {

// doSomething()
}

// also short comparison
if (!$checked) {

// doSomething()
}

// formal comparison
if ($checked === true) {

// doSomething()
}

?>

Specs

Short name Structures/ShortOrCompleteComparison
Rulesets All, Changed Behavior, Preferences
Exakat since 2.5.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.1094 Short Syntax For Arrays

Arrays written with the new short syntax.

PHP 5.4 introduced the new short syntax, with square brackets. The previous syntax, based on the array() keyword is
still available.

<?php

(continues on next page)

14.2. List of Rules 1363

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array

Exakat Documentation, Release 1

(continued from previous page)

// All PHP versions array
$a = array(1, 2, 3);

// PHP 5.4+ arrays
$a = [1, 2, 3];

?>

See also Array.

Specs

Short name Arrays/ArrayNSUsage
Rulesets All, Appinfo, CE, Changed Behavior, CompatibilityPHP53
Exakat since 0.8.4
PHP Version With PHP 5.3 and more recent
Severity Critical
Time To Fix Quick (30 mins)
Precision Very high
Features array
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1095 Short Ternary

Short ternaries are the ternary operator, where the middle operand was left out.

Written that way, the operator checks if the first operand is empty() : in that case, the second operand is used; Otherwise,
the first operand is used.

<?php
// $b is now 2
$b = $a ?: 2;
// $c is now 2 also
$c = $b ?: 4;

?>

See also Ternary Operator.

Specs

Short name Php/ShortTernary
Rulesets All, Appinfo, Changed Behavior, One Liners
Exakat since 2.5.2
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features short-ternary
Available in Entreprise Edition, Exakat Cloud

1364 Chapter 14. Rules

https://www.php.net/manual/en/language.types.array.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.operators.comparison.php#language.operators.comparison.ternary
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1096 Should Be Single Quote

Use single quote for simple strings.

Static content inside a string, that has no single quotes nor escape sequence (such as n or t), should be using single
quote delimiter, instead of double quote. If you have too many of them, don’t loose your time switching them all. If
you have a few of them, it may be good for consistence.

<?php

$a = "abc";

// This one is using a special sequence
$b = "cde\n";

// This one is using two special sequences
$b = "\x03\u{1F418}";

?>

Specs

Short name Type/ShouldBeSingleQuote
Rulesets All, Coding conventions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features double-quote, single-quote
ClearPHP no-double-quote
Available in Entreprise Edition, Exakat Cloud

14.2.1097 Should Cache Local

Repeated calls to a method with the same arguments should be put in a local cache.

It speeds up processing, even in case of a simple property fetch. A local cache makes the code more readable and more
compact.

<?php

function foo() {
$goo = goo(), 0, 3;
$a = strtolower($goo);
$b = strtoupper($goo);

return $a . '-' . $b;
}

function foo2() {
(continues on next page)

14.2. List of Rules 1365

https://www.php.net/manual/en/language.oop5.static.php
https://github.com/dseguy/clearPHP/tree/master/rules/no-double-quote.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$a = strtolower(goo(), 0, 3);
$b = strtoupper(goo(), 0, 3);

return $a . '-' . $b;
}

?>

Suggestions

• Use a local cache to reduce processing time

Specs

Short name Performances/ShouldCacheLocal
Rulesets All, Performances
Exakat since 2.5.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features micro-optimisation
Available in Entreprise Edition, Exakat Cloud

14.2.1098 Should Chain Exception

Chain exception to provide more context.

When catching an exception and rethrowing another one, it is recommended to chain the exception : this means pro-
viding the original exception, so that the final recipient has a chance to track the origin of the problem. This doesn’t
change the thrown message, but provides more information.

Note : Chaining requires PHP > 5.3.0.

<?php
try {

throw new Exception('Exception 1', 1);
} catch (\Exception $e) {

throw new Exception('Exception 2', 2, $e);
// Chaining here.

}
?>

See also Exception::__construct and What are the best practices for catching and re-throwing exceptions?.

1366 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception
https://www.php.net/exception
https://www.php.net/exception
https://www.php.net/exception
https://www.php.net/manual/en/exception.construct.php
https://stackoverflow.com/questions/5551668/what-are-the-best-practices-for-catching-and-re-throwing-exceptions/5551828

Exakat Documentation, Release 1

Suggestions

• Add the incoming exception to the newly thrown exception

Specs

Short name Structures/ShouldChainException
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features exception-chain
Examples Magento, Tine20
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1099 Should Deep Clone

By default, PHP makes a shallow clone. It only clone the scalars, and keep the reference to any object
already referenced. This means that the cloned object and its original share any object they hold as property.

This is where the magic method __clone() comes into play. It is called, when defined, at clone time, so that the cloned
object may clone all the needed sub-objects.

It is recommended to use the __clone() method whenever the objects hold objects.

<?php

class a {
public $b = null;

function __construct() {
$this->b = new Stdclass();
$this->b->c = 1;

}
}

class ab extends a {
function __clone() {

$this->b = clone $this->b;
}

}

// class A is shallow clone, so $a->b is not cloned
$a = new a();
$b = clone $a;
$a->b->c = 3;
echo $b->b->c;
// displays 3

(continues on next page)

14.2. List of Rules 1367

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php

Exakat Documentation, Release 1

(continued from previous page)

// class Ab is deep clone, so $a->b is cloned
$a = new ab();
$b = clone $a;
$a->b->c = 3;
echo $b->b->c;
// displays 1

?>

See also PHP Clone and Shallow vs Deep Copying and Cloning objects.

Specs

Short name Classes/ShouldDeepClone
Rulesets All, Suggestions
Exakat since 1.7.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features clone
Available in Entreprise Edition, Exakat Cloud

14.2.1100 Should Have Destructor

PHP destructors are called when the object is being destroyed. By default, PHP calls recursively the
destructor on internal objects, until everything is unset.

Unsetting objects and resources explicitly in the destructor is a good practice to reduce the amount of memory in use.
It helps PHP resource counter to keep the numbers low, and easier to clean. This is a major advantage for long running
scripts.

Unsetting scalar properties, such as string or int is not necessary, as they are stored independently and cleaned auto-
matically by PHP. Closing resources of type resource is important : there might be some final calls to close it cleanly.
Unsetting an object only decreases the reference count for that object : it is still available to other objects that kept it as
property.

Destructor is useful for long-running resources : file resource, sockets, a file lock or persistent database connexion.
This is a good time to finish cleanly, and close.

Internally to the application, destructors are also useful with static properties and registries : for example, the current
class may deregister from a list of listener, so that this list is still up to date. Otherwise, the registry keeps the object
alive.

<?php

class x {
function __construct() {

$this->p = new y();
}

(continues on next page)

1368 Chapter 14. Rules

http://jacob-walker.com/blog/php-clone-and-shallow-vs-deep-copying.html
https://www.php.net/manual/en/language.oop5.cloning.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

(continued from previous page)

function __destruct() {
print __METHOD__.PHP_EOL;
unset($this->p);

}
}

class y {
function __construct() {

print __METHOD__.PHP_EOL;
$this->p = new y();

}

function __destruct() {
print __METHOD__.PHP_EOL;
unset($this->p);

}
}

$a = (new x);
sleep(1);

// This increment the resource counter by one for the property.
$p = $a->p;
unset($a);
sleep(3);

print 'end'.PHP_EOL;
// Y destructor is only called here, as the object still exists in $p.

?>

See also Destructor and Php Destructors.

Suggestions

• Add a destruct method to the class to help clean at destruction time.

Specs

Short name Classes/ShouldHaveDestructor
Rulesets All, Suggestions
Exakat since 1.5.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features destructor
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1369

https://www.php.net/manual/en/language.oop5.decon.php#language.oop5.decon.destructor
https://stackoverflow.com/questions/3566155/php-destructors
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1101 Should Make Alias

Long names should be aliased.

Aliased names are easy to read at the beginning of the script; they may be changed at one point, and update the whole
code at the same time. Finally, short names makes the rest of the code readable.

<?php

namespace x\y\z;

use a\b\c\d\e\f\g as Object;

// long name, difficult to read, prone to change.
new a\b\c\d\e\f\g();

// long name, difficult to read, prone to silent dead code if namespace change.
if ($o instanceof a\b\c\d\e\f\g) {

}

// short names Easy to update all at once.
new Object();
if ($o instanceof Object) {

}

?>

Specs

Short name Namespaces/ShouldMakeAlias
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1102 Should Preprocess Chr()

Replace literal chr() calls with their escape sequence.

chr() is a functioncall, that cannot be cached. It is only resolved at execution time. On the other hand, literal values are
preprocessed by PHP and may be cached. This is a micro-optimisation.

<?php

// This is easier on PHP
$a = "\120\110\120\040 is great!";

(continues on next page)

1370 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/chr
https://www.php.net/chr

Exakat Documentation, Release 1

(continued from previous page)

// This is slow
$a = chr(80), chr(72), chr(80), chr(32), ' is great!';

// This would be the best with this example, but it is not always possible
$a = 'PHP is great!';

?>

See also Escape sequences.

Suggestions

• Use PHP string sequences, and skip chr() at execution time

Specs

Short name Php/ShouldPreprocess
Rulesets All, Suggestions
Exakat since 1.1.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features preprocess
Examples phpadsnew
Available in Entreprise Edition, Exakat Cloud

14.2.1103 Should Typecast

When typecasting, it is better to use the casting operator, such as (int) or (bool).

Functions such as intval() or settype() are always slower. This is a micro-optimisation, although such conversion may
be use multiple times, leading to a larger performance increase.

Note that intval() may also be used to convert an integer to another base. Intval() called with 2 arguments are skipped
by this rule.

<?php

// Fast version
$int = (int) $X;

// Slow version
$int = intval($X);

// Convert to base 8 : can't use (int) for that
$int = intval($X, 8);

(continues on next page)

14.2. List of Rules 1371

https://www.php.net/manual/en/regexp.reference.escape.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/intval
https://www.php.net/settype
https://www.php.net/intval
https://www.php.net/intval

Exakat Documentation, Release 1

(continued from previous page)

?>

Suggestions

• Use a typecast, instead of a functioncall.

Specs

Short name Type/ShouldTypecast
Rulesets All, Analyze, CE, CI-checks, Rector
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features cast
Examples xataface, OpenConf
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1104 Should Use Coalesce

PHP 7 introduced the ?? operator, that replaces longer structures to set default values when a variable is
not set.

Sample extracted from PHP docs Isset Ternary.

<?php

// Fetches the request parameter user and results in 'nobody' if it doesn't exist
$username = $_GET['user'] ?? 'nobody';
// equivalent to: $username = isset($_GET['user']) ? $_GET['user'] : 'nobody';

// Calls a hypothetical model-getting function, and uses the provided default if it fails
$model = Model::get($id) ?? $default_model;
// equivalent to: if (($model = Model::get($id)) === NULL) { $model = $default_model; }

?>

See also New in PHP 7: null coalesce operator.

1372 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://wiki.php.net/rfc/isset_ternary
https://lornajane.net/posts/2015/new-in-php-7-null-coalesce-operator

Exakat Documentation, Release 1

Suggestions

• Replace the long syntax with the short one

Specs

Short name Php/ShouldUseCoalesce
Rulesets All, Analyze, CE, CI-checks, Suggestions
Exakat since 0.8.4
PHP Version With PHP 7.0 and more recent
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features coalesce
Examples ChurchCRM, Cleverstyle
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1105 Should Use Existing Constants

The following functions have related constants that should be used as arguments, instead of scalar literals,
such as integers or strings.

<?php

// The file is read and new lines are ignored.
$lines = file('file.txt', FILE_IGNORE_NEW_LINES)

// What is this doing, with 2 ?
$lines = file('file.txt', 2);

?>

See also Bitmask Constant Arguments in PHP.

Suggestions

• Use PHP native constants whenever possible, for better readability.

14.2. List of Rules 1373

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://medium.com/@liamhammett/bitmask-constant-arguments-in-php-cf32bf35c73

Exakat Documentation, Release 1

Specs

Short name Functions/ShouldUseConstants
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features predefined-constant, constant
Examples Tine20
Available in Entreprise Edition, Exakat Cloud

14.2.1106 Should Use Explode Args

explode() has a third argument, which limits the amount of exploded elements. With it, it is possible to
collect only the first elements, or drop the last ones.

<?php

$exploded = explode(DELIMITER, $string);

// use explode(DELIMITER, $string, -1);
array_pop($exploded);

// use explode(DELIMITER, $string, -2);
$c = array_slice($exploded, 0, -2);

// with explode()'s third argument :
list($a, $b) = explode(DELIMITER, $string, 2);

// with list() omitted arguments
list($a, $b,) = explode(DELIMITER, $string);

?>

See also explode.

1374 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/explode
https://www.php.net/manual/en/function.explode.php

Exakat Documentation, Release 1

Suggestions

• Add the third argument to the explode() call

Specs

Short name Structures/ShouldUseExplodeArgs
Rulesets All, Analyze, CE, CI-checks
Exakat since 1.9.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1107 Should Use Foreach

Use the foreach loop instead of for when traversing an array.

Foreach() is the modern loop : it maps automatically every element of the array to a blind variable, and iterate. This is
faster and safer.

<?php

// Foreach version
foreach($array as $element) {

doSomething($element);
}

// The above case may even be upgraded with array_map and a callback,
// for the simplest one of them
$array = array_map('doSomething', $array);

// For version (one of various alternatives)
for($i = 0; $i < count($array); $i++) {

$element = $array[$i];
doSomething($element);

}

// Based on array_pop or array_shift()
while($value = array_pop($array)) {

doSomething($array);
}

?>

See also foreach and 5 Ways To Loop Through An Array In PHP.

14.2. List of Rules 1375

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.foreach.php
https://www.php.net/manual/en/control-structures.foreach.php
https://www.codewall.co.uk/5-ways-to-loop-through-array-php/

Exakat Documentation, Release 1

Suggestions

• Move for() loops to foreach(), whenever they apply to a finite list of elements

Specs

Short name Structures/ShouldUseForeach
Rulesets All, Suggestions
Exakat since 0.12.7
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features foreach, for
Examples ExpressionEngine, Woocommerce
Available in Entreprise Edition, Exakat Cloud

14.2.1108 Should Use Function

Functioncalls that fall back to global scope should be using ‘use function’ or be fully namespaced.

PHP searches for functions in the local namespaces, and in case it fails, makes the same search in the global scope.
Anytime a native function is referenced this way, the search (and fail) happens. This slows down the scripts.

The speed bump range from 2 to 8 %, depending on the availability of functions in the local scope. The overall bump
is about 1 µs per functioncall, which makes it a micro optimisation until a lot of function calls are made.

Based on one of Marco Pivetta tweet. This analysis is a related to Performances/Php74ArrayKeyExists, and is a more
general version.

<?php

namespace X {
use function strtolower as strtolower_aliased;

// PHP searches for strtolower in X, fails, then falls back to global scope,␣
→˓succeeds.

$a = strtolower($b);

// PHP searches for strtolower in global scope, succeeds.
$a = \strtolower($b);

// PHP searches for strtolower_aliased in global scope, succeeds.
$a = \strtolower_aliased($b);

}

?>

See also blog post.

1376 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://twitter.com/Ocramius/status/811504929357660160
http://veewee.github.io/blog/optimizing-php-performance-by-fq-function-calls/

Exakat Documentation, Release 1

Suggestions

• Use the use command for arrray_key_exists(), at the beginning of the script

• Use an initial before array_key_exists()

• Remove the namespace

Specs

Short name Php/ShouldUseFunction
Rulesets All, Performances
Exakat since 0.9.5
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1109 Should Use Local Class

Methods should use the defining class, or be functions.

Methods should use $this with another method or a property, or call parent\:\:. Static methods should call another
static method, or a static property. Methods which are overwritten by a child class are omitted : the parent class act as
a default value for the children class, and this is correct. Note that a method using a class constant is not considered as
using the local class, for this analyzer.

<?php

class foo {
public function __construct() {

// This method should do something locally, or be removed.
}

}

class bar extends foo {
private $a = 1;

public function __construct() {
// Calling parent:: is sufficient
parent::__construct();

}

public function barbar() {
// This is acting on the local object
$this->a++;

}

public function barfoo($b) {
// This has no action on the local object. It could be a function or a closure␣

→˓where needed
(continues on next page)

14.2. List of Rules 1377

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

(continued from previous page)

return 3 + $b;
}

}

?>

Suggestions

• Make this method a function

• Actually use $this, or any related attributes of the class

Specs

Short name Classes/ShouldUseThis
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features $this, self
ClearPHP not-a-method
Available in Entreprise Edition, Exakat Cloud

14.2.1110 Should Use Math

Use math operators to make the operation readable.

<?php

// Adding one to self
$a *= 2;
// same as above
$a += $a;

// Squaring oneself
$a **\= 2;
// same as above
$a *= $a;

// Removing oneself
$a = 0;
// same as above
$a -= $a;

// Dividing oneself
$a = 1;

(continues on next page)

1378 Chapter 14. Rules

https://github.com/dseguy/clearPHP/tree/master/rules/not-a-method.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// same as above
$a /= $a;

// Divisition remainer
$a = 0;
// same as above
$a %= $a;

?>

See also Mathematical Functions.

Suggestions

• Use explicit math assignation

Specs

Short name Structures/ShouldUseMath
Rulesets All, Suggestions
Exakat since 1.1.5
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Examples OpenEMR
Available in Entreprise Edition, Exakat Cloud

14.2.1111 Should Use Operator

Some functions duplicate the feature of an operator. When in doubt, it is better to use the operator.

Beware, some edge cases may apply. In particular, backward compatibility may prevent usage of newer features.

• array_push() is equivalent to []

• is_object() is equivalent to instanceof

• function_get_arg() and function_get_args() is equivalent to ellipsis : . . .

• chr() is equivalent to string escape sequences, such as \n, \x69, u{04699}

• call_user_func() is equivalent to $functionName(arguments), $object->$method(`... <https://www.
php.net/manual/en/functions.arguments.php#functions.variable-arg-list>`_$arguments)

• is_null() is equivalent to === null

• php_version() is equivalent to PHP_VERSION (the constant)

• is_array(), is_int(), is_object(), etc. is equivalent to a scalar type

14.2. List of Rules 1379

https://www.php.net/manual/en/book.math.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_push
https://www.php.net/is_object
https://www.php.net/manual/en/language.operators.type.php
https://www.php.net/manual/en/functions.arguments.php#functions.variable-arg-list
https://www.php.net/chr
https://www.php.net/call_user_func
https://www.php.net/is_null
https://www.php.net/is_array
https://www.php.net/is_int
https://www.php.net/is_object

Exakat Documentation, Release 1

Suggestions

• Use [] instead of array_push()

• Use instanceof instead of is_object()

• Use . . . instead of function_get_arg() and function_get_args()

• Use escape sequences instead of chr()

• Use dynamic function call instead of call_user_func()

• Use === null instead of is_null()

• Use PHP_VERSION instead of php_version()

• Use type instead of is_int(), is_string(), is_bool(), etc.

Specs

Short name Structures/ShouldUseOperator
Rulesets All, Suggestions
Exakat since 1.3.0
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Examples Zencart, SugarCrm
Available in Entreprise Edition, Exakat Cloud

14.2.1112 Should Use Prepared Statement

Modern databases provides support for prepared statement : it separates the query from the processed data
and raise significantly the security.

Building queries with concatenations is not recommended, though not always avoidable. When possible, use prepared
statements. Same code, without preparation :

<?php
/* Execute a prepared statement by passing an array of values */

$sql = 'SELECT name, colour, calories
FROM fruit
WHERE calories < :calories AND colour = :colour';

$sth = $conn->prepare($sql, array(PDO::ATTR_CURSOR => PDO::CURSOR_FWDONLY));
$sth->execute(array(':calories' => 150, ':colour' => 'red'));
$red = $sth->fetchAll();
?>

Name Default Type Description
queryMethod query_methods.json data Methods that call a query.

See also Prepared Statements, PHP MySQLi Prepared Statements Tutorial to Prevent SQL Injection and The Best Way
to Perform MYSQLI Prepared Statements in PHP.

1380 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/mysqli.quickstart.prepared-statements.php
https://websitebeaver.com/prepared-statements-in-php-mysqli-to-prevent-sql-injection
https://developer.hyvor.com/php/prepared-statements
https://developer.hyvor.com/php/prepared-statements

Exakat Documentation, Release 1

Suggestions

• Use an ORM

• Use an Active Record library

• Change the query to hard code it and make it not injectable

Specs

Short name Security/ShouldUsePreparedStatement
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, Security
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision High
Examples Dolibarr
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1113 Should Use SetCookie()

Use setcookie() or setrawcookie(). Avoid using header() to do so, as the PHP native functions are more
convenient and easier to spot during a refactoring.

setcookie() applies some encoding internally, for the value of the cookie and the date of expiration. Rarely, this encoding
has to be skipped : then, use setrawencoding().

Both functions help by giving a checklist of important attributes to be used with the cookie.

<?php

// same as below
setcookie("myCookie", 'chocolate', time()+3600, "/", "", true, true);

// same as above. Slots for path and domain are omitted, but should be used whenever␣
→˓possible
header('Set-Cookie: myCookie=chocolate; Expires='.date('r', (time()+3600)).'; Secure;␣
→˓HttpOnly');

?>

See also Set-Cookie and setcookie.

14.2. List of Rules 1381

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/setcookie
https://www.php.net/setrawcookie
https://www.php.net/header
https://www.php.net/setcookie
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie
http://www.php.net/setcookie

Exakat Documentation, Release 1

Suggestions

• Use setcookie() function, instead of header()

Specs

Short name Php/UseSetCookie
Rulesets All, Analyze
Exakat since 0.10.6
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Features cookie, http-header
Available in Entreprise Edition, Exakat Cloud

14.2.1114 Should Use Ternary Operator

Ternary operators are the best when assigning values to a variable.

They are less verbose, compatible with assignation and easier to read.

<?php
// verbose if then structure
if ($a == 3) {

$b = 2;
} else {

$b = 3;
}

// compact ternary call
$b = ($a == 3) ? 2 : 3;

// verbose if then structure
// Works with short assignations and simple expressions
if ($a != 3) {

$b += 2 - $a * 4;
} else {

$b += 3;
}

// compact ternary call
$b += ($a != 3) ? 2 - $a * 4 : 3;

?>

See also Ternary Operator and Shorthand comparisons in PHP.

1382 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.operators.comparison.php#language.operators.comparison.ternary
https://stitcher.io/blog/shorthand-comparisons-in-php

Exakat Documentation, Release 1

Suggestions

• Use the ternary operator

Specs

Short name Structures/ShouldMakeTernary
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.5
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features ternary
Examples ChurchCRM
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1115 Should Use Url Query Functions

PHP features several functions dedicated to processing URL’s query string.

• parse_str()

• parse_url()

• http_build_query()

Those functions include extra checks : for example, http_build_query() adds urlencode() call on the values, and allow
for choosing the separator and the Query string format.

<?php
$data = array(

'foo' => 'bar',
'baz' => 'boom',
'cow' => 'milk',
'php' => 'hypertext processor'

);

// safe and efficient way to build a query string
echo http_build_query($data, '', '&') . PHP_EOL;

// slow way to produce a query string
foreach($data as $name => &$value) {

$value = $name.'='.$value;
}
echo implode('&', $data) . PHP_EOL;

?>

14.2. List of Rules 1383

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/parse_str
https://www.php.net/parse_url
https://www.php.net/http_build_query
https://www.php.net/http_build_query
https://www.php.net/urlencode

Exakat Documentation, Release 1

Suggestions

• Use the URL query functions from PHP

Specs

Short name Structures/UseUrlQueryFunctions
Rulesets All, Suggestions
Exakat since 1.9.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features url
Available in Entreprise Edition, Exakat Cloud

14.2.1116 Should Use array_column()

Avoid writing a whole slow loop, and use the native array_column().

array_column() is a native PHP function, that extract a property or a index from a array of object, or a multidimensional
array. This prevents the usage of foreach to collect those values. array_column() is faster than foreach() (with or without
the isset() test) with 3 elements or more, and it is significantly faster beyond 5 elements. Memory consumption is the
same.

<?php

$a = array(array('b' => 1),
array('b' => 2, 'c' => 3),
array('c' => 4)); // b doesn't always exists

$bColumn = array_column($a, 'b');

// Slow and cumbersome code
$bColumn = array();
foreach($a as $k => $v) {

if (isset($v['b'])) {
$bColumn[] = $v['b'];

}
}

?>

See also [blog] array_column() and preprocess.

1384 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_column
https://www.php.net/array_column
https://www.php.net/array_column
https://www.php.net/manual/en/control-structures.foreach.php
https://www.www.php.net/isset
https://benramsey.com/projects/array-column/

Exakat Documentation, Release 1

Suggestions

• Use array_column(), instead of a foreach()

Specs

Short name Php/ShouldUseArrayColumn
Rulesets All, Performances, Suggestions
Exakat since 0.10.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1117 Should Use array_filter()

Should use array_filter().

array_filter() is a native PHP function, that extract elements from an array, based on a custom call. Using array_filter()
shortens your code, and allows for reusing the filtering logic across the application, instead of hard coding it every time.
array_filter() is faster than foreach() (with or without the isset() test) with 3 elements or more, and it is significantly
faster beyond 5 elements. Memory consumption is the same.

<?php

$a = range(0, 10); // integers from 0 to 10

// Extracts odd numbers
$odds = array_filter($a, function($x) { return $x % 2; });
$odds = array_filter($a, 'odd');

// Slow and cumbersome code for extracting odd numbers
$odds = array();
foreach($a as $v) {

if ($a % 2) { // same filter than the closure above, or the odd function below
$bColumn[] = $v;

}
}

function foo($x) {
return $x % 2;

}

?>

See also array_filter.

14.2. List of Rules 1385

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_filter
https://www.php.net/array_filter
https://www.php.net/array_filter
https://www.php.net/array_filter
https://www.php.net/manual/en/control-structures.foreach.php
https://www.www.php.net/isset
https://php.net/array_filter

Exakat Documentation, Release 1

Suggestions

• Use array_filter()

Specs

Short name Php/ShouldUseArrayFilter
Rulesets All, Suggestions
Exakat since 1.0.7
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Examples xataface, shopware
Available in Entreprise Edition, Exakat Cloud

14.2.1118 Should Use session_regenerateid()

session_regenerateid() should be used when sessions are used.

When using sessions, a session ID is assigned to the user. It is a random number, used to connect the user and its data
on the server. Actually, anyone with the session ID may have access to the data. This is why those session ID are so
long and complex.

A good approach to protect the session ID is to reduce its lifespan : the shorter the time of use, the better. While
changing the session ID at every hit on the page may no be possible, a more reasonable approach is to change the
session id when an important action is about to take place. What important means is left to the application to decide.

Based on this philosophy, a code source that uses ZendSession but never uses ZendSession::regenerateId() has to be
updated.

<?php

session_start();

$id = (int) $_SESSION['id'];
// no usage of session_regenerateid() anywhere triggers the analysis

// basic regeneration every 20 hits on the page.
if (++$_SESSION['count'] > 20) {

session_regenerateid();
}

?>

See also session_regenerateid() and PHP Security Guide: Sessions.

1386 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/session_regenerate_id
http://phpsec.org/projects/guide/4.html

Exakat Documentation, Release 1

Suggestions

• Add session_regenerateid() call before any important operation on the application

Specs

Short name Security/ShouldUseSessionRegenerateId
Rulesets All, Changed Behavior, Security
Exakat since 0.10.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision High
Features session
Available in Entreprise Edition, Exakat Cloud

14.2.1119 Should Yield With Key

iterator_to_array() overwrite generated values with the same key.

PHP generators are based on the yield keyword. They also delegate some generating to other methods, with yield
from.

When delegating, yield from uses the keys that are generated with yield, and otherwise, it uses auto-generated
index, starting with 0.

The trap is that each yield from reset the index generation and start again with 0. Coupled with iterator_to_array(),
this means that the final generated array may lack some values, while a foreach() loop would yield all of them.

Thanks to Holger Woltersdorf for pointing this.

<?php

function g1() : Generator {
for ($i = 0; $i < 4; $i++) { yield $i; }

}

function g2() : Generator {
for ($i = 5; $i < 10; $i++) { yield $i; }

}

function aggregator() : Generator {
yield from g1();
yield from g2();

}

print_r(iterator_to_array());

/*
Array
(

[0] => 6
(continues on next page)

14.2. List of Rules 1387

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/iterator_to_array
https://www.php.net/iterator_to_array
https://www.php.net/manual/en/control-structures.foreach.php
https://twitter.com/hollodotme
https://twitter.com/hollodotme/status/1057909890566537217

Exakat Documentation, Release 1

(continued from previous page)

[1] => 7
[2] => 8
[3] => 9
[4] => 4 // Note that 4 and 5 still appears
[5] => 5 // They are not overwritten by the second yield

)
*/

foreach (aggregator() as $i) {
print $i.PHP_EOL;

}

/*
0 // Foreach has no overlap and yield it all.
1
2
3
4
5
6
7
8
9
*/

?>

See also Generator syntax and Yielding values with keys.

Suggestions

• Use iterator_to_array() on each generator separately, and use array_merge() to merge all the arrays.

• Always yield with distinct keys

• Avoid iterator_to_array() and use foreach()

Specs

Short name Functions/ShouldYieldWithKey
Rulesets All, Analyze, CE, CI-checks, Top10
Exakat since 1.5.2
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features yield, key
Available in Entreprise Edition, Community Edition, Exakat Cloud

1388 Chapter 14. Rules

https://www.php.net/manual/en/language.generators.syntax.php
https://www.php.net/manual/en/language.generators.syntax.php#control-structures.yield.associative
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1120 Sidelined Method

A method, defined in a trait, which is overwritten by a class’s method. This makes the trait’s method
useless and unreachable.

It is recommended to check if this is not a typo, as the trait may not be able to work correctly.

<?php

trait t {
function name() : string { return 'abc'; }
function foo() : string { return 'ddd'; }

}

class x {
use t;

// This method
function name() : string { return 'bca'; }

//function foo is imported from the trait
}

?>

Suggestions

• Check the naming of the function in the class

• Use a ‘as’ expression to rename the trait’s method with another name

Specs

Short name Traits/SidelinedMethod
Rulesets All, Class Review
Exakat since 2.5.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1389

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1121 Signature Trailing Comma

Trailing comma in method signature. This feature was added in PHP 8.0.

Allowing the trailing comma makes it possible to reduce the size of VCS’s diff, when adding , removing a parameter.

<?php

// Example from the RFC
class Uri {

private function __construct(
?string $scheme,
?string $user,
?string $pass,
?string $host,
?int $port,
string $path,
?string $query,
?string $fragment // <-- ARGH!

) {
...

}
}
?>

See also PHP RFC: Allow trailing comma in parameter list.

Specs

Short name Php/SignatureTrailingComma
Rulesets All, CE, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73, CompatibilityPHP74
Exakat since 2.1.0
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features trailing-comma
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1122 Silently Cast Integer

Those are integer literals that are cast to a float when running PHP. They are too big for the current PHP
version, and PHP resorts to cast them into a float, which has a much larger capacity but a lower precision.

Compare your literals to PHP_MAX_INT (typically 9223372036854775807) and PHP_MIN_INT (typically
-9223372036854775808). This applies to binary (0b10101. . .), octal (0123123. . .) and hexadecimal (0xfffff. . .)
too.

<?php

echo 0b1010101101010110101011010101011010101011010101011010101011010111;
(continues on next page)

1390 Chapter 14. Rules

https://wiki.php.net/rfc/trailing_comma_in_parameter_list
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

//6173123008118052203
echo 0b10101011010101101010110101010110101010110101010110101010110101111;
//1.2346246016236E+19

echo 0123123123123123123123;
//1498121094048818771
echo 01231231231231231231231;
//1.1984968752391E+19

echo 0x12309812311230;
//5119979279159856
echo 0x12309812311230fed;
//2.0971435127439E+19

echo 9223372036854775807; //PHP_MAX_INT
//9223372036854775807
echo 9223372036854775808;
9.2233720368548E+18

?>

See also Integer overflow.

Suggestions

• Make sure hexadecimal numbers have the right number of digits : generally, it is 15, but it may depends on your
PHP version.

Specs

Short name Type/SilentlyCastInteger
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features cast, silent-cast
Examples MediaWiki
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1391

https://www.php.net/manual/en/language.types.integer.php#language.types.integer.overflow
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1123 Similar Integers

This analysis reports all integer values that are expressed in different format.

<?php

// Three ways to write 10 (more available)
$a = 10;
$b = 012;
$x = 0xA;

// 7 is expressed in one way only
$d = 7;
$d = 7;

// Four ways to write 11 (more available)
$a = 11;
$b = 013;
$x = 0xB;
$x = -+-11;

// Expressions are not counted

?>

Specs

Short name Type/SimilarIntegers
Rulesets All, Coding conventions, Semantics
Exakat since 1.9.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features integer
Available in Entreprise Edition, Exakat Cloud

14.2.1124 Simple Global Variable

The global keyword should only be used with simple variables. Since PHP 7, it cannot be used with
complex or dynamic structures.

<?php

// Forbidden in PHP 7
global $normalGlobal;

// Forbidden in PHP 7
global $$variable->global ;

(continues on next page)

1392 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// Tolerated in PHP 7
global $\{$variable->global\};

?>

See also Changes to the handling of indirect variables, properties, and methods.

Suggestions

• Add curly braces so the syntax is compatibles PHP 5 and PHP 7

• Remove this syntax, and access the variable through another way : argument, array, property.

Specs

Short name Php/GlobalWithoutSimpleVariable
Rulesets All, Changed Behavior, CompatibilityPHP70
Exakat since 0.8.4
PHP Version With PHP 7.0 and older
Severity Critical
Time To Fix Slow (1 hour)
Changed Behavior PHP 7.0 - More
Precision Very high
Features global
Available in Entreprise Edition, Exakat Cloud

14.2.1125 Simple Switch And Match

Switch() and match() are faster when relying only on literal integers or strings.

Since PHP 7.2, simple switches, that use only literal strings or integers, are optimized. The bigger the switch, the
greater the gain. Match() was introduced in PHP 8.0

In particular, this optimisation doesn’t work with any expressions (constant or not), function call, methodcall, constant
usage, etc. Only literal values, string or integer.

When the switch is partially build of literals, it is worth splitting the switch in two : first level, only with the literal
cases, and, in the default, the dynamic values. This brings some performances, though it is a micro-optimisation.

<?php

// Optimized switch.
switch($b) {

case "a":
break;

case "b":
break;

case "c":
break;

case "d":
(continues on next page)

14.2. List of Rules 1393

https://www.php.net/manual/en/migration70.incompatible.php#migration70.incompatible.variable-handling.indirect
https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.switch.php
https://www.php.net/manual/en/control-structures.match.php
https://www.php.net/manual/en/control-structures.match.php

Exakat Documentation, Release 1

(continued from previous page)

break;
default :

break;
}

// Unoptimized switch.
// Try moving the foo() call in the default, to keep the rest of the switch optimized.
switch($c) {

case "a":
break;

case foo($b):
break;

case C:
break;

case "c":
break;

case "d":
break;

default :
break;

}

// Partially optimised switch
// Try moving the foo() call in the default, to keep the rest of the switch optimized.
switch($c) {

case "a":
break;

case "c":
break;

case "d":
break;

default :
switch($c) {

case foo($b):
break;

case C:
break;

default :
break;

}
break;

}

?>

See also PHP 7.2’s “switch” optimisations.

1394 Chapter 14. Rules

https://derickrethans.nl/php7.2-switch.html

Exakat Documentation, Release 1

Suggestions

• Split the switch between literal and dynamic cases

• Remove the dynamic cases from the switch

• Move the most common case to the beginning of the switch

Specs

Short name Performances/SimpleSwitch
Rulesets All, Changed Behavior, Performances
Exakat since 1.0.1
PHP Version With PHP 7.2 and more recent
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features switch, match
Available in Entreprise Edition, Exakat Cloud

14.2.1126 Simplify Foreach

Remove all unused keys or values from a foreach() call. This prevents PHP from assigning them for nothing,
and save some processing time.

This is a micro-optimisation.

<?php

// No key usage
foreach($array as $key => $value) {

echo $value;
}

// No value usage
foreach($array as $key => $value) {

echo $key;
}

?>

Suggestions

• Use array_keys() or array_values() to simplify the source array

• Remove the call to $key => when the key is not used in the loop

14.2. List of Rules 1395

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.foreach.php

Exakat Documentation, Release 1

Specs

Short name Performances/SimplifyForeach
Rulesets All, Performances
Exakat since 2.3.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features foreach
Available in Entreprise Edition, Exakat Cloud

14.2.1127 Simplify Regex

Avoid using regex when the searched string or the replacement are simple enough.

PRCE regex are a powerful way to search inside strings, but they also come at the price of performance. When the
query is simple enough, try using strpos() or stripos() instead.

<?php

// simple preg calls
if (preg_match('/a/', $string)) {}
if (preg_match('/b/i', $string)) {} // case insensitive

// light replacements
if(strpos('a', $string)) {}
if(stripos('b', $string)) {} // case insensitive

?>

Suggestions

• Use str_replace(), strtr() or even strpos()

Specs

Short name Structures/SimplePreg
Rulesets All, Performances
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features regex
Examples Zurmo, OpenConf
Available in Entreprise Edition, Exakat Cloud

1396 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/strpos
https://www.php.net/stripos
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1128 Single Use Variables

This is the list of variables that are written, then read, and only used once.

Single-use variables may be trimmed down, and the initial expression may be used instead.

Single-use variables may improve readability, when the final expression grows too much with the extra expression.

<?php

function foo($d) {
$a = 1; // $a is used twice
$b = $a + 2; // $b is used once
$c = $a + $b + $d; // $c is also used once
// $d is an argument, so it's OK.

retrun $c;
}

?>

Suggestions

• Merge the two expressions into one larger

• Make a second use of the variable

• Inline the code of the expression instead of the variable

Specs

Short name Variables/UniqueUsage
Rulesets All
Exakat since 1.3.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features variable
Available in Entreprise Edition, Exakat Cloud

14.2.1129 Skip Empty Array

When collecting arrays to be merged, it is faster to skip the empty arrays, rather than let array_merge()
process them. This also works with array_merge_recursive().

This is a micro-optimisation. It is more efficient with larger arrays.

<?php

$all = [];
foreach($source as $array) {

(continues on next page)

14.2. List of Rules 1397

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_merge
https://www.php.net/array_merge_recursive

Exakat Documentation, Release 1

(continued from previous page)

// $array is an array in this example
if (empty($array)) {

continue;
}

$all[] = $array;
}

$all = array_merge(...$all);

?>

Specs

Short name Performances/SkipEmptyArray
Rulesets All, Changed Behavior, Performances
Exakat since 2.5.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Available in Entreprise Edition, Exakat Cloud

14.2.1130 Slice Arrays First

Always start by reducing an array before applying some transformation on it. The shorter array will be
processed faster.

The gain produced here is greater with longer arrays, or greater reductions. They may also be used in loops. This is a
micro-optimisation when used on short arrays.

<?php

// fast version
$a = array_map('foo', array_slice($array, 2, 5));

// slower version
$a = array_slice(array_map('foo', $array), 2, 5);
?>

1398 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Use the array transforming function on the result of the array shortening function.

Specs

Short name Arrays/SliceFirst
Rulesets All, Performances, Suggestions
Exakat since 1.0.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features array
Examples WordPress
Available in Entreprise Edition, Exakat Cloud

14.2.1131 Slow Functions

Avoid using those slow native PHP functions, and replace them with alternatives.

Slow Function Faster
array_diff() array_intersect() array_key_exists()
array_map() array_search() array_udiff() ar-
ray_uintersect() array_unshift() array_walk()
in_array() preg_replace() strstr() uasort() uksort()
usort() array_unique()

foreach() foreach() isset() and array_key_exists() foreach() ar-
ray_flip() and isset() Use another way Use another way Use
another way foreach() isset() strpos() strpos() Use another
way Use another way Use another way array_keys() and ar-
ray_count_values()

array_unique() has been accelerated in PHP 7.2 and may be used directly from this version on : Optimize `ar-
ray_unique() <https://github.com/php/php-src/commit/6c2c7a023da4223e41fea0225c51a417fc8eb10d>`_.

array_key_exists() has been accelerated in PHP 7.4 and may be used directly from this version on : Imple-
ment ZEND_ARRAY_KEY_EXISTS opcode to speed up `array_key_exists() <https://github.com/php/php-src/pull/
3360>`_.

<?php

$array = source();

// Slow extraction of distinct values
$array = array_unique($array);

// Much faster extraction of distinct values
$array = array_keys(array_count_values($array));

?>

14.2. List of Rules 1399

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_diff
https://www.php.net/array_intersect
https://www.php.net/array_key_exists
https://www.php.net/array_map
https://www.php.net/array_search
https://www.php.net/array_udiff
https://www.php.net/array_uintersect
https://www.php.net/array_uintersect
https://www.php.net/array_unshift
https://www.php.net/array_walk
https://www.php.net/in_array
https://www.php.net/preg_replace
https://www.php.net/strstr
https://www.php.net/uasort
https://www.php.net/uksort
https://www.php.net/usort
https://www.php.net/array_unique
https://www.php.net/manual/en/control-structures.foreach.php
https://www.php.net/manual/en/control-structures.foreach.php
https://www.www.php.net/isset
https://www.php.net/array_key_exists
https://www.php.net/manual/en/control-structures.foreach.php
https://www.php.net/array_flip
https://www.php.net/array_flip
https://www.www.php.net/isset
https://www.php.net/manual/en/control-structures.foreach.php
https://www.www.php.net/isset
https://www.php.net/strpos
https://www.php.net/strpos
https://www.php.net/array_keys
https://www.php.net/array_count_values
https://www.php.net/array_count_values
https://www.php.net/array_unique
https://www.php.net/array_unique
https://www.php.net/array_unique
https://github.com/php/php-src/commit/6c2c7a023da4223e41fea0225c51a417fc8eb10d
https://www.php.net/array_key_exists
https://www.php.net/array_key_exists
https://www.php.net/array_key_exists
https://github.com/php/php-src/pull/3360
https://github.com/php/php-src/pull/3360

Exakat Documentation, Release 1

Suggestions

• Replace the slow function with a faster version

• Remove the usage of the slow function

Specs

Short name Performances/SlowFunctions
Rulesets All, Changed Behavior, Performances
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
ClearPHP avoid-those-slow-functions
Examples ChurchCRM, SuiteCrm
Available in Entreprise Edition, Exakat Cloud

14.2.1132 Solve Trait Constants

Adds a link between static constant usage and a class constant set in a trait.

Constants in traits are added in PHP 8.2.

<?php

trait t { const A = 1; }

class x {
use t;

function foo() {
echo self::A;

}
}

?>

Specs

Short name Complete/SolveTraitConstants
Rulesets All, Changed Behavior
Exakat since 2.4.9
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

1400 Chapter 14. Rules

https://github.com/dseguy/clearPHP/tree/master/rules/avoid-those-slow-functions.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1133 Solve Trait Methods

This command adds DEFINITION link between trait’s method definitions and their usage in classes.

<?php

trait t {
function foo() {

}
}

class x {
use t { t::foo as foo2; };

function bar() {
// Link to foo() in trait t
$this->foo();
// Link to foo() in trait t, thanks to 'as'
$this->foo2();

}
}

?>

Specs

Short name Complete/SolveTraitMethods
Rulesets All, Changed Behavior, NoDoc
Exakat since 1.9.2
PHP Version All
Severity
Time To Fix
Precision High
Features trait, method
Available in Entreprise Edition, Exakat Cloud

14.2.1134 Special Integers

Short and incomplete list of integers that may hold special values.

The list includes powers of 2, duration in various units, factorial, ASCII codes and years.

<?php

// 86400 is the number of seconds in a day
$day = 86400;

// 1400 is the number of minutes in a day
$day = 1440;

(continues on next page)

14.2. List of Rules 1401

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

?>

Specs

Short name Type/SpecialIntegers
Rulesets All, Inventory
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features integer
Available in Entreprise Edition, Exakat Cloud

14.2.1135 Spread Operator For Array

The variadic operator may be used with arrays. This has been introduced in PHP 7.4.

list() is not allowed to use this operator, as list() expected variables, not values.

<?php

$array = [1, 2, 3];
$extended_array = [...$array, 4, 5, 6];

// invalid syntax
[...$a] = [1,2,3];

?>

See also Spread Operator in Array Expression.

Specs

Short name Php/SpreadOperatorForArray
Rulesets All, Appinfo, CE
Exakat since 1.9.4
PHP Version With PHP 7.4 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features variadic
Available in Entreprise Edition, Community Edition, Exakat Cloud

1402 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/list
https://www.php.net/list
https://wiki.php.net/rfc/spread_operator_for_array
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1136 Sprintf Format Compilation

The sprintf() format used yields an error.

This applies to printf(), sprintf(), vprintf(), vfprintf(), vsprintf(), sscanf(), fscanf()

<?php

printf('"%we3e"', 123);
//Unknown format specifier

?>

See also sprintf.

Suggestions

• Fix the format

Specs

Short name Structures/SprintfFormatCompilation
Rulesets All, Analyze
Exakat since 2.4.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features sprintf
Available in Entreprise Edition, Exakat Cloud

14.2.1137 Sqlite3 Requires Single Quotes

The escapeString() method from SQLite3 doesn’t escape ", but only '.

To properly handle quotes and NUL characters, use bindParam() instead.

Quote from the PHP manual comments : The reason this function doesn't escape double quotes is
because double quotes are used with names (the equivalent of backticks in MySQL), as in
table or column names, while single quotes are used for values.

<?php

// OK. escapeString is OK with '
$query = "SELECT * FROM table WHERE col = '".$sqlite->escapeString($x)."'";

// This is vulnerable to " in $x
$query = 'SELECT * FROM table WHERE col = "'.$sqlite->escapeString($x).'"';

?>

See also SQLite3::escapeString.

14.2. List of Rules 1403

https://www.php.net/sprintf
https://www.php.net/error
https://www.php.net/printf
https://www.php.net/sprintf
https://www.php.net/vprintf
https://www.php.net/vfprintf
https://www.php.net/vsprintf
https://www.php.net/sscanf
https://www.php.net/fscanf
https://www.php.net/manual/en/function.sprintf.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/sqlite3.escapestring.php

Exakat Documentation, Release 1

Suggestions

• Use prepared statements whenever possible

• Switch the query to use single quote

Specs

Short name Security/Sqlite3RequiresSingleQuotes
Rulesets All, Changed Behavior, Security
Exakat since 1.0.10
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision High
Features sqlite3
Available in Entreprise Edition, Exakat Cloud

14.2.1138 StandaloneType True False Null

Report usage of standalone types of true, false and null.

false and null were added to PHP in PHP 8.2, as standalone types : they can be used alone in a type declaration (property,
argument or returntype). true was added in PHP 8.3.

<?php

// simplistic example
function foo(true $t) : false {

return false;
}

?>

See also What’s the ‘true’ Standalone Type in PHP?.

Specs

Short name Typehints/StandaloneTypeTFN
Rulesets All, Analyze, Changed Behavior
Exakat since 2.5.3
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features type
Available in Entreprise Edition, Exakat Cloud

1404 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.designcise.com/web/tutorial/what-is-the-true-standalone-type-in-php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1139 Static Call May Be Truly Static

Static calls are allowed on objects. Although, when using typehinting, it is better to use the actual type,
and allow PHP to prepare this at compilation time, not at execution time.

When the typehint is an interface or an abstract class, then the object may hold a different type : those cases are omitted.
This is a micro-optimisation. The call is very fast, but will gain another 1/3 with a static syntax.

<?php

function foo(A $a, $b) {
// This could use \A instead of $a
echo $a::class;

// This will be arbitrary and needs $b
echo $a::class;

}

?>

Suggestions

• Use the actual typehint of the parameter or property

• Use a parent of the typehint of the parameter or property

Specs

Short name Performances/StaticCallDontNeedObjects
Rulesets All, Performances
Exakat since 2.3.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features static
Available in Entreprise Edition, Exakat Cloud

14.2.1140 Static Call With Self

Avoid using a static call on a non-static method.

PHP allows it inside the class itself. Yet, it makes the code confusing.

<?php

class x {
function foo() {

self::bar();
$this->bar();

}
(continues on next page)

14.2. List of Rules 1405

https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

(continued from previous page)

// non static method
function bar() {

}
}

?>

See also Don’t call instance methods statically.

Suggestions

• Use the normal method call syntax.

Specs

Short name Performances/StaticCallWithSelf
Rulesets All, Class Review
Exakat since 2.5.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.1141 Static Global Variables Confusion

PHP can’t have variable that are both static and global variable. While the syntax is legit, the variables
will be alternatively global or static.

It is recommended to avoid using the same name for a global variable and a static variable.

<?php

function foo() {
$a = 1; // $a is a local variable

global $a; // $a is now a global variable

static $a; // $a is not w static variable
}

?>

1406 Chapter 14. Rules

https://thephp.cc/articles/dont-call-instance-methods-statically
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

Suggestions

• Avoid using static variables

• Avoid using global variables

• Avoid using the same name for static and global variables

Specs

Short name Structures/SGVariablesConfusion
Rulesets All, Semantics, Suggestions
Exakat since 2.1.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features global, static
Available in Entreprise Edition, Exakat Cloud

14.2.1142 Static Inclusions

This rule reports all static inclusion. A inclusion is static when it relies only on constants, such as literals,
global and class constants, and the magic constants.

This rule is a collaboration with Bohuslav Šimek.

<?php

// a static inclusion
include __DIR__.'/lib/source.php';

$include = '/lib/helpers.inc';
include $include;

?>

Specs

Short name Structures/StaticInclude
Rulesets All, Analyze
Exakat since 2.6.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1407

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://twitter.com/BohuslavSimek
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1143 Static Loop

Static loop may be preprocessed.

It looks like the following loops are static : the same code is executed each time, without taking into account loop
variables. It is possible to create loops that don’t use any blind variables, though this is fairly rare. In particular, calling
a method may update an internal pointer, like next() or SimpleXMLIterator\:\:`next() <https://www.php.
net/next>`_.

It is recommended to turn a static loop into an expression that avoid the loop. For example, replacing the sum of all
integers by the function $n * ($n + 1) / 2, or using array_sum().

This analysis doesn’t detect usage of variables with compact.

<?php

// Static loop
$total = 0;
for($i = 0; $i < 10; $i++) {

$total += $i;
}

// The above loop may be replaced by (with some math help)
$total = 10 * (10 + 1) / 2;

// Non-Static loop (the loop depends on the size of the array)
$n = count($array);
for($i = 0; $i < $n; $i++) {

$total += $i;
}

?>

Suggestions

• Precalculate the result of that loop and removes it altogether

• Check that the loop is not missing a blind variable usage

• Replace the usage of a loop with a native PHP call : for example, with str_repeat(). Although the loop is still
here, it usually reflects better the intend.

Specs

Short name Structures/StaticLoop
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features loop
Available in Entreprise Edition, Exakat Cloud

1408 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/next
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/array_sum
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1144 Static Methods

List of all static methods.

<?php

class foo {
static public function staticMethod() {

}

public function notStaticMethod() {

}

private function method() {
// This is not a property
new static();

}
}

?>

Specs

Short name Classes/StaticMethods
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features static
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1145 Static Methods Called From Object

Static methods may be called without instantiating an object. As such, they never interact with the special
variable ‘$this’, as they do not depend on object existence.

Besides this, static methods are normal methods that may be called directly from object context, to perform some utility
task.

To maintain code readability, it is recommended to call static method in a static way, rather than within object context.

<?php
class x {

static function y() {}
}

$z = new x();
(continues on next page)

14.2. List of Rules 1409

https://www.php.net/manual/en/language.oop5.static.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

(continued from previous page)

$z->y(); // Readability : no one knows it is a static call
x::y(); // Readability : here we know

?>

Suggestions

• Switch to static method syntax

• Remove the static option from the method

Specs

Short name Classes/StaticMethodsCalledFromObject
Rulesets All, Analyze, CE, CI-checks, IsExt, IsPHP, IsStub
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features object, static
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1146 Static Methods Can’t Contain $this

Static methods are also called class methods : they may be called even if the class has no instantiated
object. Thus, the local variable $this won’t exist, PHP will set it to NULL as usual.

Either this is not a static method, which is fixed by removing the static keyword, or replace all $this mention by static
properties Class\:\:$property.

<?php

class foo {
// Static method may access other static methods, or property, or none.
static function staticBar() {

// This is not possible in a static method
return self::otherStaticBar() . static::$staticProperty;

}

static function bar() {
// This is not possible in a static method
return $this->property;

}
}

?>

See also Static Keyword <https://www.php.net/manual/en/language.oop5.static.php>``Static Keyword.

1410 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.types.null.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

Suggestions

• Remove any $this usage

• Turn any $this usage into a static call : $this->foo() => self::foo()

Specs

Short name Classes/StaticContainsThis
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features $this, static
ClearPHP no-static-this
Examples xataface, SugarCrm
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1147 Static Methods Cannot Call Non-Static Methods

A static method cannot call a non-static method. The object context would be missing.

On the other hand, a method may call a static method, as the context is lost, but not useful.

Magic methods cannot be static, so they are out of this rule. This applies to the constructor, when called with parent\
:\:`__construct() <https://www.php.net/manual/en/language.oop5.decon.php>`_.

<?php

class x {
function foo() {}

static function ioo() {
// This syntax is valid within a class
// yet, the call is not possible
self::foo();

}

}
?>

14.2. List of Rules 1411

https://github.com/dseguy/clearPHP/tree/master/rules/no-static-this.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

Suggestions

• Make the calling method non static too

• Remove the call to the non-static method

• Make the target method static

Specs

Short name Classes/StaticCannotCallNonStatic
Rulesets All, Analyze, Class Review
Exakat since 2.6.3
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1148 Static Properties

List of all static properties.

<?php

class foo {
static public $staticProperty = 1;

public $notStaticProperty = 2;

private function method() {
// This is not a property
new static();

}
}

function bar() {
// This is not a static property
static $staticVariable;

//....
}

?>

1412 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

Specs

Short name Classes/StaticProperties
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features property
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1149 Static Variable Can Default To Arbitrary Expression

Static variables can hold any type of PHP expression. Indeed, those are variables, so their value can be
build from other variables, and even functioncalls.

This feature was introduced in PHP 8.3.

<?php

function foo($init) {
static $variable = foo($a);

return $variable++;
}
?>

14.2. List of Rules 1413

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

Specs

Short
name

Php/StaticVariableDefaultCanBeAnyExpression

Rule-
sets

All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compatibility-
PHP56, CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73, Compat-
ibilityPHP74, CompatibilityPHP80, CompatibilityPHP81, CompatibilityPHP82

Ex-
akat
since

2.5.3

PHP
Ver-
sion

With PHP 8.3 and more recent

Sever-
ity

Minor

Time
To
Fix

Quick (30 mins)

Pre-
ci-
sion

Very high

Fea-
tures

static-variable

Avail-
able
in

Entreprise Edition, Exakat Cloud

14.2.1150 Static Variable In Namespace

Static variables may be declared outside a function scope, but it has no usage. Static variables are persistent
between function calls, and there is not such thing as namespace call (including an ‘include’ call).

<?php

namespace A {
// Static has no value here.
static $a = 1;

function foo() {
// One useful static variable
static $static = 2;

}
}

?>

1414 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

Suggestions

• Remove the ‘static’ keyword in the code

Specs

Short name Variables/StaticVariableInNamespace
Rulesets All, Dead code
Exakat since 2.6.1
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features static-variable, namespace
Available in Entreprise Edition, Exakat Cloud

14.2.1151 Static Variable Initialisation

Static variables can be initialized like any other variable, straight from the static keyword. This was
added in PHP 8.3.

Indeed, static variables are variables, so they shall be initialized with any value, another variable or a functioncall. This
behavior is different from the static constant expression, where only a small set of operators and constants can be used.

<?php

function foo(int $a = 0) {
static $s = 1;

static $s2 = $a + 1;
}
?>

Specs

Short name Variables/StaticVariableInitialisation
Rulesets All, Changed Behavior, CompatibilityPHP81, CompatibilityPHP82
Exakat since 2.6.1
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features static-constant-expression
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1415

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1152 Static Variables

In PHP, variables may be static. They will survive after the function execution end, and will be available
at the next function run. They are distinct from globals, which are available application wide, and from
static properties, which are tied to a class of objects.

<?php

function foo() {
// static variable
static $count = 0;

echo ++$count;
}

class bar {
// This is not a static variable :
// it is a static property
static $property = 1;

}

?>

See also Using static variables.

Specs

Short name Variables/StaticVariables
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features static-variable
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1153 Stomp

This extension allows php applications to communicate with any Stomp compliant Message Brokers
through easy object-oriented and procedural interfaces.

<?php

$queue = '/queue/foo';
$msg = 'bar';

/* connection */
try {

$stomp = new Stomp('tcp://localhost:61613');
(continues on next page)

1416 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.variables.scope.php#language.variables.scope.static
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

} catch(StompException $e) {
die('Connection failed: ' . $e->getMessage());

}

/* send a message to the queue 'foo' */
$stomp->send($queue, $msg);

/* subscribe to messages from the queue 'foo' */
$stomp->subscribe($queue);

/* read a frame */
$frame = $stomp->readFrame();

if ($frame->body === $msg) {
var_dump($frame);

/* acknowledge that the frame was received */
$stomp->ack($frame);

}

/* close connection */
unset($stomp);

?>

See also Stomp.

Specs

Short name Extensions/Extstomp
Rulesets All, Appinfo
Exakat since 2.4.2
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1154 Strange Name For Constants

Those constants looks like a typo from other names.

<?php

// This code looks OK : DIRECTORY_SEPARATOR is a native PHP constant
$path = $path . DIRECTORY_SEPARATOR . $file;

// Strange name DIRECOTRY_SEPARATOR
$path = $path . DIRECOTRY_SEPARATOR . $file;

(continues on next page)

14.2. List of Rules 1417

https://stomp.github.io/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

?>

Suggestions

• Fix any typo in the spelling of the constants

• Tell us about common misspelling so we can upgrade this analysis

Specs

Short name Constants/StrangeName
Rulesets All, Analyze, Changed Behavior, Semantics
Exakat since 0.10.5
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features constant
Available in Entreprise Edition, Exakat Cloud

14.2.1155 Strange Name For Variables

Variables with strange names. They might be a typo, or bear strange patterns.

Any variable with three identical letter in a row are considered as strange. 2 letters in a row is classic, and while three
letters may happen, it is rare enough.

A list of classic typo is also used to find such variables.

This analysis is case-sensitive.

<?php

class foo {
function bar() {

// Strange name $tihs
return $tihs;

}

function barbar() {
// variables with blocks of 3 times the same character are reported
// Based on Alexandre Joly's tweet
$aaa = $bab + $www;

}
}

?>

See also #QuandLeDevALaFleme.

1418 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://twitter.com/bsmt_nevers/status/949238391769653249

Exakat Documentation, Release 1

Suggestions

• Fix the name of the variable

• Rename the variable to something better

• Drop the variable

Specs

Short name Variables/StrangeName
Rulesets All, Semantics
Exakat since 0.10.5
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features variable
Examples FuelCMS, PhpIPAM
Available in Entreprise Edition, Exakat Cloud

14.2.1156 Strange Names In Classes

Those methods, properties, constants or types should have another name.

Ever wondered why the __constructor is never called? Or the __consturct ?

Those errors most often originate from typos, or quick fixes that where not fully tested. Other times, they were badly
chosen, or ran into PHP’s own reserved keywords.

<?php

class foo {
// The real constructor
function __construct() {}

// The fake constructor
function __constructor() {}

// The 'typo'ed' constructor
function __consturct() {}

// This doesn't clone
function clone() {}

}

?>

14.2. List of Rules 1419

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Use the proper name

• Remove the method, when it is not used and tests still pass.

Specs

Short name Classes/StrangeName
Rulesets All, Semantics
Exakat since 0.10.1
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Medium
Available in Entreprise Edition, Exakat Cloud

14.2.1157 Strict Comparison With Booleans

Strict comparisons prevent mistaking an error with a false.

Boolean values may be easily mistaken with other values, especially when the function may return integer or boolean
as a normal course of action.

It is encouraged to use strict comparison === or !== when booleans are involved in a comparison. switch() structures
always uses == comparisons. Since PHP 8.0, it is possible to use match() to have strict comparisons. This is not
reported by this analysis, as every switch should be refactored.

Native functions in_array(), array_keys() and array_search() have a third parameter to make it use strict comparisons.

<?php

// distinguish between : $b isn't in $a, and, $b is at the beginning of $a
if (strpos($a, $b) === 0) {

doSomething();
}

// DOES NOT distinguish between : $b isn't in $a, and, $b is at the beginning of $a
if (strpos($a, $b)) {

doSomething();
}

// will NOT mistake 1 and true
$a = array(0, 1, 2, true);
if (in_array($a, true, true)) {

doSomething();
}

// will mistake 1 and true
$a = array(0, 1, 2, true);
if (in_array($a, true)) {

doSomething();
(continues on next page)

1420 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/manual/en/control-structures.switch.php
https://www.php.net/manual/en/control-structures.match.php
https://www.php.net/in_array
https://www.php.net/array_keys
https://www.php.net/array_search

Exakat Documentation, Release 1

(continued from previous page)

}

?>

Suggestions

• Use strict comparison whenever possible

Specs

Short name Structures/BooleanStrictComparison
Rulesets All, Analyze, CE, CI-checks, Suggestions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features strict-comparison, switch, match
Examples Phinx, Typo3
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1158 Strict In_Array() Preference

It is possible to set in_array() to strict search mode, by using the third argument.

The analyzed code has less than 10% of one of the two sets : for consistency reasons, it is recommended to make them
all the same.

Warning : the two sets of operators have different precedence levels. Using and or && is not exactly the same, especially
and not only, when assigning the results to a variable. In doubt, it is recommended to use the strict mode.

<?php

// relax mode : value may use typejuggling with the array values
in_array($value, $array);

// strict mode : value is compared to array's value with both data and type
in_array($value, $array, true);

?>

14.2. List of Rules 1421

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/in_array

Exakat Documentation, Release 1

Specs

Short name Structures/StrictInArrayFavorite
Rulesets All, Preferences
Exakat since 2.4.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features strict-comparison
Available in Entreprise Edition, Exakat Cloud

14.2.1159 Strict Or Relaxed Comparison

PHP has two comparison styles : strict and relaxed.

The analyzed code has less than 10% of one of them : for consistency reasons, it is recommended to make them all the
same.

It is recommended to always use the strict comparison by default, and use the relaxed in case of specific situations.

<?php

// This compares $strict both in terms of value and type
if ($strict === 3) {

} elseif ($strict == 3) {
// This compares $strict after an possible type casting.
// '3', 3.0 or 3 would all be possible solutions.

}

?>

See also Comparison Operators.

Specs

Short name Structures/ComparisonFavorite
Rulesets All, Preferences
Exakat since 1.3.2
PHP Version All
Severity
Time To Fix
Precision High
Features comparison
Available in Entreprise Edition, Exakat Cloud

1422 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.operators.comparison.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1160 String

Strings in PHP. Strings are part of the core of PHP, and are not a separate extension.

<?php
$str = "Mary Had A Little Lamb and She LOVED It So";
$str = strtolower($str);

echo $str; // Prints mary had a little lamb and she loved it so
?>

See also String functions.

Specs

Short name Extensions/Extstring
Rulesets All, Appinfo, CE
Exakat since 0.9.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1161 String Int Comparison

While PHP allows direct comparison of integer and strings, with some type conversion, the rules of con-
version changed in PHP 8.0. This lead to a change in behavior for comparison.

In particular, strings that are equal to 0, or empty strings, have changed.

This doesn’t affect identity comparison, since the type is initially checked.

<?php
PHP 7 PHP 8

var_dump(0 == "0"); true true
var_dump(0 == "0.0"); true true
var_dump(0 == "foo"); false false

var_dump(0 > ''); false true
var_dump(0 < ''); false false
var_dump(0 >= ''); true true
var_dump(0 <= ''); true false

?>

See also String to Number Comparison.

14.2. List of Rules 1423

https://www.php.net/manual/en/ref.strings.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/migration80.incompatible.php#migration80.incompatible.core.string-number-comparision

Exakat Documentation, Release 1

Suggestions

• Force a conversion to integer before the comparison to make sure of the behavior.

Specs

Short name Php/StringIntComparison
Rulesets All, Changed Behavior, CompatibilityPHP80
Exakat since 2.3.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Changed Behavior PHP 8.0 - More
Precision Medium
Features comparison
Available in Entreprise Edition, Exakat Cloud

14.2.1162 String Interpolation Favorite

This analysis collects the various ways that string interpolation is done inside strings. Until PHP 8.1, there
were 4 ways :

<?php

$a = "$variable";
$a = "$object->property";
$a = "$array[index]";

$a = "";
$a = "{$variable}";

$a = "";
?>

Specs

Short name Structures/StringInterpolationFavorite
Rulesets All, Preferences
Exakat since 2.3.8
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features interpolation
Available in Entreprise Edition, Exakat Cloud

1424 Chapter 14. Rules

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1163 String May Hold A Variable

Strings that contains a variable, yet are not interpolated.

Single quotes and Nowdoc syntax may include $ signs. They are treated as literals, and not replaced with a variable
value.

However, there are some potential variables in those strings, making it possible for an error : the variable was forgotten
and will be published as such. It is worth checking the content and make sure those strings are not variables.

<?php

$a = 2;

// Explicit variable, but literal effect is needed
echo '$a is '.$a;

// One of the variable has been forgotten
echo '$a is $a';

// $CAD is not a variable, rather a currency unit
$total = 12;
echo $total.' $CAD';

// $CAD is not a variable, rather a currency unit
$total = 12;

// Here, $total has been forgotten
echo <<<'TEXT'
$total $CAD
TEXT;

?>

Suggestions

• Check if the variable is really a variable

• Turn the string into an interpolated string (double quote, heredoc, concatenation)

Specs

Short name Type/StringHoldAVariable
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features variable, interpolation
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1425

https://www.php.net/error
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1164 Strings With Strange Space

An invisible space may be mistaken for a normal space.

However, PHP does straight comparisons, and may fail at recognizing. This analysis reports when it finds such strange
spaces inside strings.

PHP doesn’t mistake space and tables for whitespace when tokenizing the code.

This analysis doesn’t report Unicode Codepoint Notation : those are visible in the code.

<?php

// PHP 7 notation,
$a = "\u{3000}";
$b = " ";

// Displays false
var_dump($a === $b);

?>

See also Unicode spaces and disallow irregular whitespace (no-irregular-whitespace).

Suggestions

• Replace the odd spaces with a normal space

• If unsecable spaces are important for presentation, add them at the templating level.

Specs

Short name Type/StringWithStrangeSpace
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.11.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features non-breakable-space
Examples OpenEMR, Thelia
Available in Entreprise Edition, Community Edition, Exakat Cloud

1426 Chapter 14. Rules

https://www.cs.tut.fi/~jkorpela/chars/spaces.html
http://eslint.org/docs/rules/no-irregular-whitespace
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1165 Strpos() Less Than One

This rule reports a comparison of strpos() or stripos() with 1. This is a variable of strpos() == 0, since both
false and 0 are processed the same way. Yet, 0 might be a valid value.

This rule was suggested by Yann Ouche.

<?php

// this works both when $a starts with .
// and when the . is not in the string.
if (strpos($a, '.') < 1) {

}

?>

Suggestions

• Make sure that the 2 cases are valid business cases.

Specs

Short name Structures/StrposLessThanOne
Rulesets All, Analyze, Changed Behavior, Surprising
Exakat since 2.6.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.1166 Strpos()-like Comparison

The result of that function may be mistaken with an error.

strpos(), along with several PHP native functions, returns a string position, starting at 0, or false, in case of failure. It
is recommended to check the result of strpos() with === or !==, so as to avoid confusing 0 and false.

This analyzer list all the strpos()-like functions that are directly compared with == or !=. preg_match(), when its first
argument is a literal, is omitted : this function only returns NULL in case of regex error.

The full list is the following : * array_search() * collator_compare() * collator_get_sort_key() * current() * fgetc()
* file_get_contents() * file_put_contents() * fread() * iconv_strpos() * iconv_strrpos() * imagecolorallocate() * im-
agecolorallocatealpha() * mb_strlen() * next() * pcntl_getpriority() * preg_match() * prev() * readdir() * stripos() *
strpos() * strripos() * strrpos() * strtok() * curl_exec()

In PHP 8.0, str_contains() will do the expected job of strpos(), with less confusion.

<?php

// This is the best comparison
(continues on next page)

14.2. List of Rules 1427

https://www.php.net/strpos
https://www.php.net/stripos
https://www.php.net/strpos
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/result
https://www.php.net/error
https://www.php.net/strpos
https://www.php.net/result
https://www.php.net/strpos
https://www.php.net/strpos
https://www.php.net/preg_match
https://www.php.net/manual/en/language.types.null.php
https://www.php.net/error
https://www.php.net/array_search
https://www.php.net/collator_compare
https://www.php.net/collator_get_sort_key
https://www.php.net/current
https://www.php.net/fgetc
https://www.php.net/file_get_contents
https://www.php.net/file_put_contents
https://www.php.net/fread
https://www.php.net/iconv_strpos
https://www.php.net/iconv_strrpos
https://www.php.net/imagecolorallocate
https://www.php.net/imagecolorallocatealpha
https://www.php.net/imagecolorallocatealpha
https://www.php.net/mb_strlen
https://www.php.net/next
https://www.php.net/pcntl_getpriority
https://www.php.net/preg_match
https://www.php.net/prev
https://www.php.net/readdir
https://www.php.net/stripos
https://www.php.net/strpos
https://www.php.net/strripos
https://www.php.net/strrpos
https://www.php.net/strtok
https://www.php.net/curl_exec
https://www.php.net/str_contains
https://www.php.net/strpos

Exakat Documentation, Release 1

(continued from previous page)

if (strpos($string, 'a') === false) { }

// This is OK, as 2 won't be mistaken with false
if (strpos($string, 'a') == 2) { }

// strpos is one of the 26 functions that may behave this way
if (preg_match($regex, $string)) { }

// This works like above, catching the value for later reuse
if ($a = strpos($string, 'a')) { }

// This misses the case where 'a' is the first char of the string
if (strpos($string, 'a')) { }

// This misses the case where 'a' is the first char of the string, just like above
if (strpos($string, 'a') == 0) { }

?>

See also strpos not working correctly.

Suggestions

• Use identity comparisons, for 0 values : === instead of ==, etc.

• Compare with other exact values than 0 : strpos() == 2

• Use str_contains()

Specs

Short name Structures/StrposCompare
Rulesets All, Analyze, CE, CI-checks, PHP recommendations, Top10
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features strict-comparison
ClearPHP strict-comparisons
Examples Piwigo, Thelia
Available in Entreprise Edition, Community Edition, Exakat Cloud

1428 Chapter 14. Rules

https://bugs.php.net/bug.php?id=52198
https://github.com/dseguy/clearPHP/tree/master/rules/strict-comparisons.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1167 Strtr Arguments

Strtr() replaces characters by others in a string. When using strings, strtr() replaces characters as long as
they have a replacement. All others are ignored.

In particular, strtr() works on strings of the same size, and cannot be used to remove chars.

<?php

$string = 'abcde';
echo strtr($string, 'abc', 'AB');
echo strtr($string, 'ab', 'ABC');
// displays ABcde
// c is ignored each time

// strtr can't remove a char
echo strtr($string, 'a', '');
// displays a

?>

See also strtr.

Suggestions

• Check the call to strtr() and make sure the arguments are of the same size

• Replace strtr() with str_replace(), which works with strings and array, not chars

• Replace strtr() with preg_match(), which works with patterns and not chars

Specs

Short name Php/StrtrArguments
Rulesets All, Analyze, CE, CI-checks
Exakat since 1.2.3
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Examples SuiteCrm
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1429

https://www.php.net/strtr
https://www.php.net/strtr
https://www.php.net/strtr
http://www.php.net/strtr
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1168 Substr To Trim

When removing the first or the last character of a string, trim() does a more readable job.

trim(), ltrim() and rtrim() accept a string as second argument. Those will all be removed from the endings of the string.
trim() will remove all occurrences of the requested char(). This may remove a loop with substr(), or remove more than
is needed.

trim() doesn’t work with multi-bytes strings, but so does substr(). For that, use mb_substr(), as there isn’t any mb_trim()
function (so far in PHP 8.2).

<?php

$a = '$drop the dollar';
$b = substr($a, 1); // drop the first char
$b = ltrim($a, '$'); // remove the initial '$'s

$b = substr($a, 1); // replace with ltrim()

$b = substr($a, 0, -1); // replace with rtrim()

$b = substr($a, 1, -1); // replace with trim()

?>

See also trim, ltrim and rtrim.

Suggestions

• Replace substr() with trim(), ltrim() or rtrim().

Specs

Short name Structures/SubstrToTrim
Rulesets All, Suggestions
Exakat since 1.8.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

1430 Chapter 14. Rules

https://www.php.net/trim
https://www.php.net/trim
https://www.php.net/ltrim
https://www.php.net/rtrim
https://www.php.net/trim
https://www.php.net/substr
https://www.php.net/trim
https://www.php.net/substr
https://www.php.net/mb_substr
https://www.php.net/manual/en/function.trim.php
https://www.php.net/manual/en/function.ltrim.php
https://www.php.net/manual/en/function.rtrim.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1169 Substr() In Loops

Successive substr() calls may be replaced by a call to str_split().

It speeds up the processing, and allows the replacement of indefinite loops by a foreach() call.

This is a micro optimisation. It works better on longer strings.

<?php

$bits = str_split($string, 5);
foreach($bits as $bit) {

foo($bit);
}

$i = 0;
$s = strlen($string);
while($i < $s) {

// repeating calls to substr during the loop
foo(substr($string, $i * 5, 5));
$i += 5;

}

?>

Suggestions

• Use str_split()

Specs

Short name Performances/SubstrInLoops
Rulesets All, Changed Behavior, Performances
Exakat since 2.5.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Available in Entreprise Edition, Exakat Cloud

14.2.1170 Substring First

Always start by reducing a string before applying some transformation on it. The shorter string will be
processed faster.

The gain produced here is greater with longer strings, or greater reductions. They may also be used in loops. This is a
micro-optimisation when used on short strings and single string reductions.

This works with any reduction function instead of substr(), like trim(), iconv(), etc.

14.2. List of Rules 1431

https://www.php.net/substr
https://www.php.net/str_split
https://www.php.net/manual/en/control-structures.foreach.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/substr
https://www.php.net/trim
https://www.php.net/iconv

Exakat Documentation, Release 1

<?php

// fast version
$result = strtolower(substr($string, $offset, $length));

// slower version
$result = substr(strtolower($string), $offset, $length);
?>

Suggestions

• Always reduce the string first, then apply some transformation

Specs

Short name Performances/SubstrFirst
Rulesets All, Changed Behavior, Performances, Suggestions, Top10
Exakat since 1.0.1
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features declare
Examples SPIP, PrestaShop
Available in Entreprise Edition, Exakat Cloud

14.2.1171 Super Global Usage

Spot usage of Super global variables, such as $_GET, $_POST or $_REQUEST.

<?php

echo htmlspecialchars($_GET['name'], UTF-8);

?>

See also Superglobals.

1432 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/reserved.variables.get.php
https://www.php.net/manual/en/reserved.variables.post.php
https://www.php.net/manual/en/reserved.variables.request.php
https://www.php.net/manual/en/language.variables.superglobals.php

Exakat Documentation, Release 1

Specs

Short name Php/SuperGlobalUsage
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features superglobal
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1172 Super Globals Contagion

Basic tainting system. This tracks superglobal values across the variables.

Specs

Short name Security/SuperGlobalContagion
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features superglobal
Available in Entreprise Edition, Exakat Cloud

14.2.1173 Superglobals

Links superglobals across the code. This speeds up pivoting with super global values.

<?php

echo $_GET['x'];

?>

14.2. List of Rules 1433

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Complete/Superglobals
Rulesets All
Exakat since 2.5.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1174 Suspicious Comparison

The comparison seems to be misplaced.

A comparison happens in the last argument, while the actual function expect another type : this may be the case of a
badly placed parenthesis. Original idea by Vladimir Reznichenko.

<?php

// trim expect a string, a boolean is given.
if (trim($str === '')){

}

// Just move the first closing parenthesis to give back its actual meaning
if (trim($str) === ''){

}

?>

Suggestions

• Remove the comparison altogether

• Move the comparison to its right place : that, or more the parenthesis.

• This may be what is intended : just leave it.

1434 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://twitter.com/kalessil

Exakat Documentation, Release 1

Specs

Short name Structures/SuspiciousComparison
Rulesets All, Analyze
Exakat since 0.11.0
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Features comparison
Examples PhpIPAM, ExpressionEngine
Available in Entreprise Edition, Exakat Cloud

14.2.1175 Swapped Arguments

Overwritten methods must be compatible, but argument names is not part of that compatibility.

Methods with the same name, in two classes of the same hierarchy, must be compatible for typehint, default value,
reference. The name of the argument is not taken into account when checking such compatibility, at least until PHP
7.4. This analysis reports argument lists that differs in ordering. This analysis doesn’t report argument lists that also
differs in argument names.

<?php

class x {
function foo($a, $b) {}

function bar($a, $b) {}
}

class y extends x {
// foo is compatible (identical) with the above class
function foo($a, $b) {}

// bar is compatible with the above class, yet, the argument might not receive what␣
→˓they expect.
function bar($b, $a) {}

}

?>

Suggestions

• Make sure the names of the argument are in the same order in all classes and interfaces

14.2. List of Rules 1435

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Classes/SwappedArguments
Rulesets All, Analyze
Exakat since 2.1.5
PHP Version All
Severity Critical
Time To Fix Quick (30 mins)
Precision Very high
Features class
Available in Entreprise Edition, Exakat Cloud

14.2.1176 Switch Fallthrough

A switch with fallthrough is prone to errors.

A fallthrough happens when a case or default clause in a switch statement is not finished by a break (or equivalent);
CWE report this as a security concern, unless well documented.

A fallthrough may be used as a feature. Then, it is indistinguishable from an error.

When the case block is empty, this analysis doesn’t report it : the case is then used as an alias. This analysis doesn’t
take into account comments about the fallthrough.

<?php
switch($variable) {

case 1 : // case 1 is not reported, as it actually shares the same body as case 33
case 33 :

break ;
case 2 :

break ;
default:

++$a;
case 4 :

break ;
}
?>

See also CWE-484: Omitted Break Statement in Switch and Rule: no-switch-case-fall-through.

Suggestions

• Make separate code for each case. Always use break at the end of a case or default.

1436 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.break.php
https://www.php.net/error
https://cwe.mitre.org/data/definitions/484.html
https://palantir.github.io/tslint/rules/no-switch-case-fall-through/

Exakat Documentation, Release 1

Specs

Short name Structures/Fallthrough
Rulesets All, Inventory, Security
Exakat since 0.12.14
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features switch, fallthrough
Available in Entreprise Edition, Exakat Cloud

14.2.1177 Switch To Switch

The following structures are based on if / elseif / else. Since they have more than three conditions (not
withstanding the final else), it is recommended to use the switch structure, so as to make this more readable.

On the other hand, switch() structures with less than 3 elements should be expressed as a if / else structure.

Note that if condition that uses strict typing (=== or !==) can’t be converted to switch() as the latter only performs ==
or != comparisons. Note that simple switch statement, which compare a variable to a literal are optimised in PHP 7.2
and more recent. This gives a nice performance boost, and keep code readable.

<?php

if ($a == 1) {

} elseif ($a == 2) {

} elseif ($a == 3) {

} elseif ($a == 4) {

} else {

}

// Better way to write long if/else lists
switch ($a) {

case 1 :
doSomething(1);
break 1;

case 2 :
doSomething(2);
break 1;

case 3 :
doSomething(3);
break 1;

case 4 :
(continues on next page)

14.2. List of Rules 1437

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.switch.php
https://www.php.net/manual/en/control-structures.switch.php

Exakat Documentation, Release 1

(continued from previous page)

doSomething(4);
break 1;

default :
doSomething();
break 1;

}

?>

See also PHP 7.2’s switch optimisations and Is Your Code Readable By Humans? Cognitive Complexity Tells You.

Suggestions

• Use a switch statement, rather than a long string of if/else

• Use a match() statement, rather than a long string of if/else (PHP 8.0 +)

Specs

Short name Structures/SwitchToSwitch
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features switch, match
Examples Thelia, XOOPS
Available in Entreprise Edition, Exakat Cloud

14.2.1178 Switch With Too Many Default

Switch statements should only hold one default, not more. Check the code and remove the extra default.

PHP 7.0 won’t compile a script that allows for several default cases.

Multiple default happens often with large switch().

<?php

switch($a) {
case 1 :

break;
default :

break;
case 2 :

break;
default : // This default is never reached

break;
(continues on next page)

1438 Chapter 14. Rules

https://derickrethans.nl/php7.2-switch.html
https://www.tomasvotruba.cz/blog/2018/05/21/is-your-code-readable-by-humans-cognitive-complexity-tells-you/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.switch.php

Exakat Documentation, Release 1

(continued from previous page)

}

?>

Suggestions

• Remove the useless default : it may be the first, or the last. In case of ambiguity, keep the first, as it is the one
being used at the moment.

Specs

Short name Structures/SwitchWithMultipleDefault
Rulesets All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56
Exakat since 0.8.4
PHP Version With PHP 7.0 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features switch
Available in Entreprise Edition, Exakat Cloud

14.2.1179 Switch Without Default

Always use a default statement in switch() and match().

Switch statements hold a number of ‘case’ that cover all known situations, and a ‘default’ one which is executed when
all other options are exhausted.

For Match statements, a missing default will lead to the UnhandledMatchError` exception being raised. On the other
hand, the switch statement will simply exit without action nor alert. Most of the time, switch() do need a default case,
so as to catch the odd situation where the ‘value is not what it was expected’. This is a good place to catch unexpected
values, to set a default behavior.

<?php

// Missing default
switch($format) {

case 'gif' :
processGif();
break 1;

case 'jpeg' :
processJpeg();
break 1;

case 'bmp' :
throw new UnsupportedFormat($format);

}
// In case $format is not known, then switch is ignored and no processing happens,␣

(continues on next page)

14.2. List of Rules 1439

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.switch.php
https://www.php.net/manual/en/control-structures.match.php
https://www.php.net/exception
https://www.www.php.net/exit
https://www.php.net/manual/en/control-structures.switch.php

Exakat Documentation, Release 1

(continued from previous page)

→˓leading to preparation errors

// switch with default
switch($format) {

case 'text' :
processText();
break 1;

case 'jpeg' :
processJpeg();
break 1;

case 'rtf' :
throw new UnsupportedFormat($format);

default :
throw new UnknownFileFormat($format);

}
// In case $format is not known, an exception is thrown for processing

?>

See also UnhandledMatchError.

Suggestions

• Add a default case

• Catch the UnhandledMatchError exception

Specs

Short name Structures/SwitchWithoutDefault
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features match, switch, case, default
ClearPHP no-switch-without-default
Examples Zencart, Traq
Available in Entreprise Edition, Community Edition, Exakat Cloud

1440 Chapter 14. Rules

https://www.php.net/manual/en/class.unhandledmatcherror.php
https://github.com/dseguy/clearPHP/tree/master/rules/no-switch-without-default.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1180 Swoole

Swoole : Production-Grade Async programming Framework for PHP.

Swoole is an event-driven asynchronous & concurrent networking communication framework with high performance
written only in C for PHP.

<?php
for($i = 0; $i < 100; $i++) {

Swoole\Coroutine::create(function() use ($i) {
$redis = new Swoole\Coroutine\Redis();
$res = $redis->connect('127.0.0.1', 6379);
$ret = $redis->incr('coroutine');
$redis->close();
if ($i == 50) {

Swoole\Coroutine::create(function() use ($i) {
$redis = new Swoole\Coroutine\Redis();
$res = $redis->connect('127.0.0.1', 6379);
$ret = $redis->set('coroutine_i', 50);
$redis->close();

});
}

});
}

?>

See also Swoole and Swoole src.

Specs

Short name Extensions/Extswoole
Rulesets All, Appinfo, CE
Exakat since 0.12.0
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1181 Sylius usage

This analysis reports usage of the Sylius framework.

Sylius is an Open Source Headless eCommerce Platform for mid-market and enterprise brands that need custom solu-
tions.

<?php

declare(strict_types=1);

(continues on next page)

14.2. List of Rules 1441

https://www.swoole.com/
https://github.com/swoole/swoole-src
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

namespace App\Controller;

use Sylius\Bundle\ResourceBundle\Controller\ResourceController;
use Sylius\Component\Resource\ResourceActions;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;

class ProductController extends ResourceController
{

public function showAction(Request $request): Response
{

$configuration = $this->requestConfigurationFactory->create($this->metadata,
→˓$request);

$this->isGrantedOr403($configuration, ResourceActions::SHOW);
$product = $this->findOr404($configuration);

// some custom provider service to retrieve recommended products
$recommendationService = $this->get('app.provider.product');

$recommendedProducts = $recommendationService->getRecommendedProducts($product);

$this->eventDispatcher->dispatch(ResourceActions::SHOW, $configuration,
→˓$product);

if ($configuration->isHtmlRequest()) {
return $this->render($configuration->getTemplate(ResourceActions::SHOW . '.

→˓html'), [
'configuration' => $configuration,
'metadata' => $this->metadata,
'resource' => $product,
'recommendedProducts' => $recommendedProducts,
$this->metadata->getName() => $product,

]);
}

return $this->createRestView($configuration, $product);
}

}

?>

See also sylius.

1442 Chapter 14. Rules

https://sylius.com/

Exakat Documentation, Release 1

Specs

Short name Vendors/Sylius
Rulesets All, Appinfo
Exakat since 2.4.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features framework
Available in Entreprise Edition, Exakat Cloud

14.2.1182 Symfony usage

This analysis reports usage of the Symfony framework.

<?php

// src/AppBundle/Controller/LuckyController.php
namespace AppBundle\Controller;

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Symfony\Component\HttpFoundation\Response;

class LuckyController
{

/**
* @Route("/lucky/number")
*/
public function numberAction()
{

$number = mt_rand(0, 100);

return new Response(
'<html><body>Lucky number: '.$number.'</body></html>'

);
}

}

?>

See also Symfony.

14.2. List of Rules 1443

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
http://www.symfony.com/

Exakat Documentation, Release 1

Specs

Short name Vendors/Symfony
Rulesets All, Appinfo, CE
Exakat since 0.11.8
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features framework
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1183 Ternary In Concat

Ternary and coalesce operator have higher priority than dot ‘.’ for concatenation. This means that :

prints actually 'E', instead of the awaited 'B0CE'.

To be safe, always add parenthesis when using ternary operator with concatenation.

<?php
// print B0CE as expected
print 'B'.$b.'C'. ($b > 1 ? 'D') : 'E';

// print E, instead of B0CE
print 'B'.$b.'C'. $b > 1 ? 'D' : 'E';

print 'B'.$b.'C'. $b > 1 ? 'D' : 'E';
?>

See also Operator Precedence.

Suggestions

• Use parenthesis

• Avoid ternaries and coalesce operators inside a string

Specs

Short name Structures/TernaryInConcat
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Critical
Time To Fix Quick (30 mins)
Precision Very high
Features ternary, concatenation
Examples TeamPass
Available in Entreprise Edition, Community Edition, Exakat Cloud

1444 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.operators.precedence.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1184 Test Class

Those are test classes, based on popular UT frameworks.

Currently, the following frameworks are detected, based on the classes that are mentionned :

• PHPUnit

• Atoum

• simpletest

• drupal tests

• symfony tests

• luya

Specs

Short name Classes/TestClass
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Features test
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1185 Test Then Cast

A test is run on a value without a cast, and later the cast value is later used.

The cast may introduce a distortion to the value, and still lead to the unwanted situation. For example, comparing to 0,
then later casting to an int. The comparison to 0 is done without casting, and as such, 0.1 is different from 0. Yet, (int)
0.1 is actually 0, leading to a Division by 0 error.

<?php

// Here. $x may be different from 0, but (int) $x may be 0
$x = 0.1;

if ($x != 0) {
$y = 4 / (int) $x;

}

// Safe solution : check the cast value.
if ((int) $x != 0) {

$y = 4 / (int) $x;
}

?>

14.2. List of Rules 1445

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error

Exakat Documentation, Release 1

Suggestions

• Test with the cast value

Specs

Short name Structures/TestThenCast
Rulesets All, Analyze
Exakat since 1.1.6
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Features cast
Examples Dolphin, SuiteCrm
Available in Entreprise Edition, Exakat Cloud

14.2.1186 This Could Be Iterable

An argument that is both array and traversable <https://www.php.net/`traversable>`_ may be typed iterable.
Iterable is a more generic type than array, and allows the usage of iterators too.

<?php

// parameter and return type might be iterable
function foo($a) {

foreach($a as $b) {
// do something

}

return $a;
}

class x {
private $b;

function foo() {
foreach($this->b as $c) {

// do something
}

}
}

?>

See also iterable.

1446 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/traversable
https://www.php.net/manual/en/language.types.iterable.php

Exakat Documentation, Release 1

Suggestions

• Add the iterable typehint

Specs

Short name Classes/CouldBeIterable
Rulesets All, Changed Behavior, Suggestions, Typechecks
Exakat since 2.3.3
PHP Version With PHP 7.1 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features iterable
Available in Entreprise Edition, Exakat Cloud

14.2.1187 Throw

List of thrown exceptions.

<?php
if ($divisor === 0) {

// Throw native exception
throw new DivisionByZeroError("Shouldn't divide by one");

}

if ($divisor === 1) {
// Throw custom exception
throw new DontDivideByOneException("Shouldn't divide by one");

}
?>

See also Exceptions.

Specs

Short name Php/ThrowUsage
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features exception, try-catch
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1447

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.exceptions.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1188 Throw Functioncall

The throw keyword expects to use an exception. Calling a function to prepare that exception before
throwing it is possible, but forgetting the new keyword is also possible.

When the new keyword is forgotten, then the class constructor is used as a function name, and now exception is emitted,
but an Undefined function fatal error is emitted.

<?php

// Forgotten new
throw \RuntimeException('error!');

// Code is OK, function returns an exception
throw getException(ERROR_TYPE, 'error!');

function getException(ERROR_TYPE, $message) {
return new \RuntimeException($messsage);

}

?>

Suggestions

• Add the new operator to the call

• Make sure the function is really a functioncall, not a class name

• Use return type for functions, so that Exception may be detected

Specs

Short name Exceptions/ThrowFunctioncall
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Medium
Features exception
Examples SugarCrm, Zurmo
Available in Entreprise Edition, Community Edition, Exakat Cloud

1448 Chapter 14. Rules

https://www.php.net/exception
https://www.php.net/exception
https://www.php.net/exception
https://www.php.net/error
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1189 Throw In Destruct

According to the manual, Attempting to throw an `exception <https://www.php.net/
exception>`_ from a destructor (called in the time of script termination)
causes a fatal `error <https://www.php.net/error>`_.

The destructor may be called during the lifespan of the script, but it is not certain. If the exception is thrown later, the
script may end up with a fatal error.

Thus, it is recommended to avoid throwing exceptions within the __destruct method of a class.

<?php

// No exception thrown
class Bar {

function __construct() {
throw new Exception('__construct');

}

function __destruct() {
$this->cleanObject();

}
}

// Potential crash
class Foo {

function __destruct() {
throw new Exception('__destruct');

}
}

?>

See also Constructors and Destructors.

Suggestions

• Remove any exception thrown from a destructor

Specs

Short name Classes/ThrowInDestruct
Rulesets All, Analyze, CE, CI-checks, PHP recommendations
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features throw
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1449

https://www.php.net/exception
https://www.php.net/error
https://www.php.net/manual/en/language.oop5.decon.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1190 Throw Raw Exceptions

Avoid throwing native PHP exceptions. Consider defining specific and meaningful exception, by extending
the native one.

Thanks to Atif Shahab Qureshi for the inspiration.

<?php

// Throwing a raw exception
throw new exception('This is an error!');

class myException extends Exception {}

throw new myException('This is a distinguished error!');

?>

See also Stop using regular exceptions in PHP!.

Suggestions

• Define an adapted exception and throw it instead

Specs

Short name Exceptions/ThrowRawExceptions
Rulesets All, Analyze, Suggestions
Exakat since 2.4.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features exception
Available in Entreprise Edition, Exakat Cloud

14.2.1191 Throw Was An Expression

Throw used to be an expression. In PHP 7.0, there were some location where one couldn’t use a throw :
this was the case for arrow functions, which expect one expression as function’s body.

Using throw as an instruction makes the code incompatible with PHP 7 version and older.

<?php

// Valid in PHP 8.0 and more recent
$fn = fn($a) => throw new Exception($a);

?>

See also Throw Expression and Exceptions.

1450 Chapter 14. Rules

https://www.php.net/exception
https://twitter.com/Atif__Shahab
https://abdlrahmansaber.medium.com/stop-using-regular-exceptions-in-php-e6aed2629dce
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://wiki.php.net/rfc/throw_expression
https://www.php.net/manual/en/language.exceptions.php

Exakat Documentation, Release 1

Specs

Short name Php/ThrowWasAnExpression
Rulesets All, CE, Changed Behavior, CompatibilityPHP72, CompatibilityPHP73, CompatibilityPHP74,

One Liners
Exakat since 2.1.1
PHP Version With PHP 8.0 and more recent
Severity Major
Time To Fix Quick (30 mins)
Changed Behav-
ior

PHP 8.0 - More

Precision Very high
Features throw
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1192 Thrown Exceptions

This rules reports the usage of the throw keyword. This means all these exceptions are raised at some
point in the code.

<?php

throw new MyException("An error happened");

?>

See also Exceptions.

Specs

Short name Exceptions/ThrownExceptions
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features exception, throw
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1451

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/throwIsAnExpression.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.exceptions.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1193 Throws An Assignement

It is possible to throw an exception, and, in the same time, assign this exception to a variable.

However, the variable will never be used, as the exception is thrown, and any following code is not executed, unless the
exception is caught in the same scope.

<?php

// $e is useful, though not by much
$e = new() Exception();
throw $e;

// $e is useless
throw $e = new Exception();

?>

Suggestions

• Drop the assignation

Specs

Short name Structures/ThrowsAndAssign
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features throw, assignation
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1194 Ticks Usage

Usage of declare() with ticks. When ticks are declared, a related handler must be registered with
register_tick_function().

<?php

// Setting ticks value
declare(ticks = 2);

?>

See also declare.

1452 Chapter 14. Rules

https://www.php.net/exception
https://www.php.net/exception
https://www.php.net/exception
https://www.php.net/exception
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/register_tick_function
https://www.php.net/manual/en/control-structures.declare.php

Exakat Documentation, Release 1

Specs

Short name Php/DeclareTicks
Rulesets All, Appinfo, CE, Preferences
Exakat since 0.12.1
PHP Version All
Severity
Time To Fix
Precision Very high
Features tick, declare
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1195 Timestamp Difference

Avoid adding or subtracting quantities of seconds to measure time.

time(), microtime() or DateTime\:\:format('U') provide timestamps, which are the number of seconds since
January, 1rst, 1970. They shouldn’t be used to calculate duration or another date by adding an amount of seconds.

Those functions are subject to variations, depending on system clock variations, such as daylight saving time differ-
ence (every spring and fall, one hour variation), or leap seconds, happening on June, 30th or December 31th, as
announced by IERS. When the difference may be rounded to a larger time unit (rounding the difference to days, or
several hours), the variation may be ignored safely.

When the difference is very small, it requires a better way to measure time difference, such as Ticks
<https://www.php.net/manual/en/control-structures.declare.php#control-structures.declare.ticks>’_, `ext/hrtime
<https://www.php.net/manual/en/book.hrtime.php>’_, or including a check on the actual time zone (``ini_get()` with
‘date.timezone’).

<?php

// Calculating tomorow, same hour, the wrong way
// tomorrow is not always in 86400s, especially in countries with daylight saving
$tomorrow = time() + 86400;

// Good way to calculate tomorrow
$datetime = new DateTime('tomorrow');

?>

See also PHP DateTime difference – it’s a trap! and PHP Daylight savings bug?.

Suggestions

• For small time intervals, use hrtime() functions

• For larger time intervals, use add() method with DateTime

14.2. List of Rules 1453

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.iers.org/IERS/EN/Home/home_node.html
http://blog.codebusters.pl/en/php-datetime-difference-trap/
https://stackoverflow.com/questions/22519091/php-daylight-savings-bug

Exakat Documentation, Release 1

Specs

Short name Structures/TimestampDifference
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision High
Features date
Examples Zurmo, shopware
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1196 Too Complex Expression

Long expressions should be broken in small chunks, to limit complexity.

Really long expressions tends to be error prone : either by typo, or by missing details. They are even harder to review,
once the initially build of the expression is gone.

As a general rule, it is recommended to keep expressions short. The analysis include any expression that is more than
15 tokens large : variable and operators counts as one, properties, arrays count as two. Parenthesis are also counted.

PHP has no specific limit to expression size, so long expression are legal and valid. It is possible that the business logic
requires a complex equation.

<?php

// Why not calculate wordwrap size separatedly ?
$a = explode("\n", wordwrap($this->message, floor($this->width / imagefontwidth($this->
→˓fontsize)), "\n"));

// Longer but easier to read
$width = floor($this->width / imagefontwidth($this->fontsize)), "\n");
$a = explode("\n", wordwrap($this->message, $width);

// Here, some string building, including error management with @, is making the data␣
→˓quite complex.
fwrite($fp, 'HEAD ' . @$url['path'] . @$url['query'] . ' HTTP/1.0' . "\r\n" . 'Host: ' .␣
→˓@$url['host'] . "\r\n\r\n")

// Better validation of data.
$http_header = 'HEAD ';
if (isset($url['path'])) {

$http_header .= $url['path'];
}
if (isset($url['query'])) {

$http_header .= $url['query'];
}

$http_header .= "\r\n";
if (isset($url['host'])) {

(continues on next page)

1454 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error

Exakat Documentation, Release 1

(continued from previous page)

$http_header .= 'Host: ' . $url['host'] . "\r\n\r\n";
}

fwrite($fp, $http_header);

?>

Name Default Type Description
complexExpressionThreshold 30 integer Minimal number of operators in one expression to report.

Suggestions

• Reduce complexity by breaking the expressions into smaller ones

Specs

Short name Structures/ComplexExpression
Rulesets All, Appinfo, CE
Exakat since 0.12.16
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Related rule Multiline Expressions
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1197 Too Long A Block

The loop is operating on a block that is too long.

This analysis is applied to loops (for, foreach, while, do..while) and if/then/else/elseif structures.

Then length of a block is managed with the longBlock parameter. By default, it is 200 lines, from beginning to the
end. Comments are taken into account.

<?php

$i = 0;
do {

// 200 lines of PHP code

++$i;
} while($i < 100);

?>

14.2. List of Rules 1455

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Name De-
fault

Type Description

long-
Block

200 inte-
ger

Size of a block for it to be too long. A block is commanded by a for, foreach, while,
do. . .while, if/then else structure.

Suggestions

• Move the code of the block to an method or a function

• Move part of the code of the block to methods or functions

• Extract repeated patterns and use them

Specs

Short name Structures/LongBlock
Rulesets All, Suggestions
Exakat since 2.1.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features block
Available in Entreprise Edition, Exakat Cloud

14.2.1198 Too Many Array Dimensions

This analysis reports when arrays have too many dimensions. This happens when arrays are too deeply
nested inside other arrays.

PHP has no nesting limit, and accepts any number of of dimensions. This is usually very memory hungry, and could
be better replaced with classes.

The default threshold for this rule is 3 (see examples above).

<?php

$a = array(); // level 1;
$a[1] = array(); // level 2
$a[1][2] = array(); // level 3 : still valid by default
$a[1][2][3] = array(); // level 4

?>

Name Default Type Description
maxDimensions 3 integer Number of valid dimensions in an array.

1456 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Replace the arrays by classes

• Flatten the structure of the arrays

Specs

Short name Arrays/TooManyDimensions
Rulesets All, Analyze
Exakat since 1.9.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features multidimensional-array
Available in Entreprise Edition, Exakat Cloud

14.2.1199 Too Many Chained Calls

Report chained calls of functions, methods and static methods are crammed in one expression.

This makes the whole expression difficult to read, and it is possible to miss some important parameter or intermidate
calls when reviewing it.

This may lead to bugs when some of the intermediate calls may return an invalid result, such as null or false in case of
error. Those must be tested before being propagated.

<?php

//
$s = strtoupper(hash('whirlpool',hash('sha1', microtime(true).crypt(uniqid(rand(),␣
→˓true)))));

?>

Suggestions

• Reduce the number of needed calls in the expression

• Add intermediate checks on the values

• Split the expression on multiple lines, and add a comment with a summary first

14.2. List of Rules 1457

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/result
https://www.php.net/error

Exakat Documentation, Release 1

Specs

Short name Structures/TooManyChainedCalls
Rulesets All, Semantics
Exakat since 2.5.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.1200 Too Many Children

Classes that have more than 15 children. It is worth checking if they cannot be refactored in anyway.

The threshold of 15 children can be configured. There is no technical limitation of the number of children and grand-
children for a class.

The analysis doesn’t work recursively : only direct generations are counted. Only children that can be found in the code
are counted.

<?php

// parent class
// calling it grandparent to avoid confusion with 'parent'
class grandparent {}

class children1 extends grandparent {}
class children2 extends grandparent {}
class children3 extends grandparent {}
class children4 extends grandparent {}
class children5 extends grandparent {}
class children6 extends grandparent {}
class children7 extends grandparent {}
class children8 extends grandparent {}
class children9 extends grandparent {}
class children11 extends grandparent {}
class children12 extends grandparent {}
class children13 extends grandparent {}
class children14 extends grandparent {}
class children15 extends grandparent {}
class children16 extends grandparent {}
class children17 extends grandparent {}
class children18 extends grandparent {}
class children19 extends grandparent {}

?>

Name Default Type Description
childrenClassCount 15 integer Threshold for too many children classes for one class.

1458 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

See also Why is subclassing too much bad (and hence why should we use prototypes to do away with it)?.

Suggestions

• Split the original class into more specialised classes

Specs

Short name Classes/TooManyChildren
Rulesets All, Suggestions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features class, inheritance
Examples Typo3, Woocommerce
Available in Entreprise Edition, Exakat Cloud

14.2.1201 Too Many Dereferencing

Linking too many properties and methods, one to the other.

This analysis counts both static calls and normal call; methods, properties and constants. It also takes into account
arrays along the way.

The default limit of chaining methods and properties is set to 7 by default. Too many chained methods is harder to read.

<?php

// 9 chained calls.
$main->getA()->getB()->getC()->getD()->getE()->getF()->getG()->getH()->getI()->property;

?>

Name Default Type Description
tooManyDereferencing 7 integer Maximum number of dereferencing.

14.2. List of Rules 1459

https://softwareengineering.stackexchange.com/questions/137687/why-is-subclassing-too-much-bad-and-hence-why-should-we-use-prototypes-to-do-aw
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

Specs

Short name Classes/TooManyDereferencing
Rulesets All, Analyze, Changed Behavior
Exakat since 1.9.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features dereferencing
Available in Entreprise Edition, Exakat Cloud

14.2.1202 Too Many Extractions

Using a loop to extract all the values from an array or an object, but failing to use them all later.

This means too much work was applied to the extraction, and it could be shorten by choosing the actual values.

<?php

function bar($array) {
foreach(source() as $k => $v) {

$data[$k] = $v;
}

// returning the whole array, so all can be useful
return $data;

}

function foo($array) {
foreach(source() as $k => $v) {

$data[$k] = $v;
}

// only using one value, the rest is wasted
echo $data['foo'];

}

?>

Suggestions

• Filter data before extracting them

• Do not use a loop to extract all, but cherry pick the one that are needed

1460 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Performances/TooManyExtractions
Rulesets All, Changed Behavior, Performances
Exakat since 2.5.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.1203 Too Many Finds

Too many methods called ‘find*’ in this class. It is may be time to consider the Specification pattern.

<?php

// quite a fishy interface
interface UserInterface {

public function findByEmail($email);
public function findByUsername($username);
public function findByFirstName($firstname);
public function findByLastName($lastname);
public function findByName($name);
public function findById($id);

public function insert($user);
public function update($user);

}

?>

Name De-
fault

Type Description

mini-
mumFinds

5 inte-
ger

Minimal number of prefixed methods to report.

findPrefix find string list of prefix to use when detecting the ‘find’. Comma-separated list, case in-
sensitive.

findSuffix string list of fix to use when detecting the ‘find’. Comma-separated list, case insensi-
tive.

See also On Taming Repository Classes in Doctrine and specifications.

14.2. List of Rules 1461

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://en.wikipedia.org/wiki/Specification_pattern
https://beberlei.de/2013/03/04/doctrine_repositories.html
https://slides.pixelart.at/2017-02-04/fosdem/specifications/#/

Exakat Documentation, Release 1

Suggestions

• Split the class into smaller classes

• Remove some of the find* methods

Specs

Short name Classes/TooManyFinds
Rulesets All, Analyze, Changed Behavior
Exakat since 0.10.5
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features class
Available in Entreprise Edition, Exakat Cloud

14.2.1204 Too Many Injections

When a class is constructed with more than four dependencies, it should be split into smaller classes.

<?php

// This class relies on 5 other instances.
// It is probably doing too much.
class Foo {

public function __construct(
A $a,
B $b,
C $c,
D $d
E $e) {

$this->a = $a;
$this->b = $b;
$this->d = $d;
$this->d = $d;
$this->e = $e;

}
}

?>

Name Default Type Description
injectionsCount 5 integer Threshold for too many injected parameters for one class.

See also Dependency Injection Smells.

1462 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
http://seregazhuk.github.io/2017/05/04/di-smells/

Exakat Documentation, Release 1

Suggestions

• Split the class into smaller classes. Try to do less in that class.

Specs

Short name Classes/TooManyInjections
Rulesets All, Analyze, Changed Behavior
Exakat since 0.11.6
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features injection
Examples NextCloud, Thelia
Available in Entreprise Edition, Exakat Cloud

14.2.1205 Too Many Local Variables

Too many local variables were found in the methods. When over 15 variables are found in such a method,
a violation is reported.

Local variables exclude globals (imported with global) and arguments. Local variable include static variables.

When too many variables are used in a function, it is a code smells. The function is trying to do too much and needs
extra space for juggling. Beyond 15 variables, it becomes difficult to keep track of their name and usage, leading to
confusion, overwriting or hijacking.

<?php

// This function is OK : 3 vars are arguments, 3 others are globals.
function a20a3g3($a1, $a2, $a3) {

global $a4, $a5, $a6;

$a1 = 1;
$a2 = 2;
$a3 = 3 ;
$a4 = 4 ;
$a5 = 5 ;
$a6 = 6 ;
$a7 = 7 ;
$a8 = 8 ;
$a9 = 9 ;
$a10 = 10;
$a11 = 11;
$a12 = 12;
$a13 = 13 ;
$a14 = 14 ;
$a15 = 15 ;
$a16 = 16 ;
$a17 = 17 ;

(continues on next page)

14.2. List of Rules 1463

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

(continued from previous page)

$a18 = 18 ;
$a19 = 19 ;
$a20 = 20;

}

// This function has too many variables
function a20() {

$a1 = 1;
$a2 = 2;
$a3 = 3 ;
$a4 = 4 ;
$a5 = 5 ;
$a6 = 6 ;
$a7 = 7 ;
$a8 = 8 ;
$a9 = 9 ;
$a10 = 10;
$a11 = 11;
$a12 = 12;
$a13 = 13 ;
$a14 = 14 ;
$a15 = 15 ;
$a16 = 16 ;
$a17 = 17 ;
$a18 = 18 ;
$a19 = 19 ;
$a20 = 20;

}

?>

Name De-
fault

Type Description

tooManyLocalVariableThresh-
old

15 inte-
ger

Minimal number of variables in one function or method to
report.

1464 Chapter 14. Rules

Exakat Documentation, Release 1

Suggestions

• Remove some of the variables, and inline them

• Break the big function into smaller ones

• Find repeated code and make it a separate function

Specs

Short name Functions/TooManyLocalVariables
Rulesets All, Analyze
Exakat since 0.9.2
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Examples HuMo-Gen
Available in Entreprise Edition, Exakat Cloud

14.2.1206 Too Many Native Calls

Avoid stuffing too many PHP native call inside another functioncall.

For readability reasons, or, more often, for edge case handling, it is recommended to avoid nesting too many PHP native
calls.

This analysis reports any situation where more than 3 PHP native calls are nested.

<?php

// Too many nested functions
$cleanArray = array_unique(array_keys(array_count_values(array_column($source, 'x'))));

// Avoid warning when source is empty
$extract = array_column($source, 'x');
if (empty($extract)) {

$cleanArray = array();
} else {

$cleanArray = array_unique(array_keys(array_count_values($extract)));
}

// This is not readable, although it is short.
// It may easily get out of hand.
echo chr(80), chr(72), chr(80), chr(32), ' is great!';

?>

Name Default Type Description
nativeCallCounts 3 integer Number of native calls found inside another call.

14.2. List of Rules 1465

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Reduce the number of native calls

• Split the method into smaller methods

Specs

Short name Php/TooManyNativeCalls
Rulesets All, Analyze, IsExt, IsPHP
Exakat since 1.1.10
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features native
Examples SPIP
Available in Entreprise Edition, Exakat Cloud

14.2.1207 Too Many Parameters

Method has too many parameters. Exakat has a default parameter count which may be configured.

A method that needs more than 8 parameters is trying to do too much : it should be reviewed and split into smaller
methods.

<?php

// This methods has too many parameters.
function alertSomeone($name, $email, $title, $message, $attachements, $signature, $bcc,
→˓$cc, $extra_headers) {
/* too much code here */

}

?>

Name Default Type Description
parametersCount 8 integer Minimal number of parameters to report.

See also How many parameters is too many ? and Too Many Parameters.

1466 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/how-many-parameters-is-too-many/
http://wiki.c2.com/?TooManyParameters

Exakat Documentation, Release 1

Suggestions

• Reduce the number of parameters to a lower level

• Break the function into smaller functions

• Turn the function into a class

Specs

Short name Functions/TooManyParameters
Rulesets All, Suggestions
Exakat since 1.1.9
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features parameter
Examples WordPress, ChurchCRM
Available in Entreprise Edition, Exakat Cloud

14.2.1208 Too Many Stringed Elseif

Too many if/then structures are linked. If a pattern emerges, such as with the illustration below, they might
be replaced with a loop, a switch() or a match() statement.

This rule also takes into account else if structures.

<?php

if ($a === 1) { }
elseif ($a === 2) { }
elseif ($a === 3) { }
else if ($a === 4) { } // else if
elseif ($a === 5) { }

?>

Name Default Type Description
maxIf 5 integer Maximum number of allowed stringed if-then-elseif structure.

See also Bail Out Early.

14.2. List of Rules 1467

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.switch.php
https://www.php.net/manual/en/control-structures.match.php

Exakat Documentation, Release 1

Suggestions

• Replace the if-then with a loop

• Use the bail early strategy to isolate the if-then

Specs

Short name Structures/TooManyElseif
Rulesets All, Suggestions
Exakat since 2.3.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1209 Too Much Indented

Reports methods that are using more than one level of indentation on average.

Indentations levels are counted for each for, foreach, if. . . then, while, do..while, try..catch..finally structure met. Com-
pulsory expressions, such as conditions, are not counted in the total. Levels of indentation start at 0 (no indentation
needed)

This analysis targets methods which are build around large conditions : the actual useful code is nested inside the
branches of the if/then/else (for example).

The default threshold indentationAverage of 1 is a good start for spotting large methods with big conditional code,
and will leave smaller methods, even when they only contain one if/then. Larger methods shall be refactored in smaller
size.

The parameter minimumSize set aside methods which are too small for refactoring. This analysis is distinct from
Structures/MaxLevelOfIdentation, which only reports the highest level of indentation. This one reports how one method
is build around one big

<?php

// average 0
function foo0() {

$a = rand(1,2);
$a *= 3;

return $a;
}

// average 0.66 = (0 + 1 + 1) / 3
function foo0_66() {

// if () is at level 0
if ($a == 2) { // condition is not counted

$a = 1; // level 1
} else {

$a = 2; // level 1
(continues on next page)

1468 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

}
}

// average 1 = (0 + 2 + 1 + 1) / 4
function foo1() {

// if () is at level 0
if ($a == 2) {

// if () is at level 1
if ($a == 2) {

$a = 1; // level 2
}
$a = 1; // level 1

} else {
$a = 2; // level 1

}
}

?>

Name De-
fault

Type Description

indenta-
tionAver-
age

1 real Minimal average of indentation in a method to report. Default is 1.0, which means that
the method is on average at one level of indentation or more.

minimum-
Size

3 real Minimal number of expressions in a method to apply this analysis.

See also Max Level Of Nesting.

Suggestions

• Refactor the method to reduce the highest level of indentation

• Refactor the method move some of the code to external methods.

Specs

Short name Functions/TooMuchIndented
Rulesets All, Suggestions
Exakat since 2.1.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features indentation
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1469

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1210 Trailing Comma In Calls

The last argument may be left empty.

This feature was introduced in PHP 7.3.

<?php

// VCS friendly call
// PHP 7.3 and more recent
foo(1,

2,
3,
);

// backward compatible call
// All PHP versions
foo(1,

2,
3
);

?>

See also PHP RFC: Allow a trailing comma in function calls.

Specs

Short
name

Php/TrailingComma

Rule-
sets

All, Appinfo, CE, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compatibility-
PHP56, CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72

Exakat
since

1.4.0

PHP
Version

All

Sever-
ity

Minor

Time
To Fix

Quick (30 mins)

Preci-
sion

Very high

Fea-
tures

trailing-comma

Avail-
able in

Entreprise Edition, Community Edition, Exakat Cloud

1470 Chapter 14. Rules

https://wiki.php.net/rfc/trailing-comma-function-calls
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1211 Trait Is Not A Type

A trait cannot be used for typing. It is used by a classes, and those classes should be used for typing.

<?php

trait t {}

// No way to provide an object of type t
function foo(t $t) {

}

?>

Suggestions

• Use the classes that use the trait as type

• Provide an interface that matches the trait, and make the using classes implements it too

Specs

Short name Traits/TraitIsNotAType
Rulesets All, Analyze, Class Review
Exakat since 2.6.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1212 Trait Methods

List the names of the methods in a trait.

<?php

trait t {
private $property = 1;

// This is a trait method name
function foo() {

// This is not a trait method
return function($a) { return $a + 1; }

}
}

?>

14.2. List of Rules 1471

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Traits/TraitMethod
Rulesets All, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features method, trait
Available in Entreprise Edition, Exakat Cloud

14.2.1213 Trait Names

List all the trait’s names.

<?php

// This trait is called 't'
trait t {}

?>

See also Traits.

Specs

Short name Traits/Traitnames
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features trait
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1214 Trait Not Found

A unknown trait is mentioned in the use expression.

The used traits all exist, but in the configuration block, some unmentioned trait is called.

Be aware that the traits used in any configuration block may originate in any use expression. PHP will check the
configuration block at instantiation only, and after compiling : at that moment, it will know all the used traits across
the class.

<?php
class x {

(continues on next page)

1472 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.traits.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// c is not a used trait
use a, b { c::d insteadof e;}

// e is a used trait, even if is not in the use above.
use e;

}
?>

See also Traits.

Suggestions

• Switch the name of the trait to an existing and used trait

• Drop the expression that rely on the non-existent trait

Specs

Short name Traits/TraitNotFound
Rulesets All, Analyze, Changed Behavior, LintButWontExec
Exakat since 1.7.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features trait
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.1215 Traits Usage

This is the list of traits that are actually ‘used’ in the code. There are classes or traits that ‘use’ them. Traits
can only be accessed by calling them with the ‘use’ command. It is not possible to reach a trait element
(method, constant, property) by refering to them with the trait name, even for static elements: the code
must go through the host class.

<?php

trait t {
function t() {

echo 'I\'m in t';
}

}

class foo {
use t;

}

$x = new foo();
(continues on next page)

14.2. List of Rules 1473

https://www.php.net/manual/en/language.oop5.traits.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

(continued from previous page)

$x->t();

?>

See also Traits.

Specs

Short name Traits/TraitUsage
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features trait
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1216 Trigger Errors

List of situations where user errors are triggered.

PHP errors are triggered with trigger_error().

<?php
if ($divisor == 0) {

trigger_error('Cannot divide by zero', E_USER_ERROR);
}
?>

See also trigger_error.

Specs

Short name Php/TriggerErrorUsage
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features error
Available in Entreprise Edition, Community Edition, Exakat Cloud

1474 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.traits.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/trigger_error
https://www.php.net/trigger_error
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1217 True False Inconsistant Case

TRUE or true or True is the favorite.

Usually, PHP projects choose between ALL CAPS True/False, or all lowercase True/False. Sometimes, the project will
have no recommendations.

When your project use a vast majority of one of the convention, then the analyzer will report all remaining inconsistently
cased constant.

<?php

$a1 = true;
$a2 = true;
$a3 = true;
$a4 = true;
$a5 = true;
$a6 = true;
$a7 = true;
$a8 = true;
$a9 = true;
$a10 = true;

// This convention is inconsistence with the rest
$b1 = TRUE;
?>

See also PHP Constants.

Specs

Short name Constants/InconsistantCase
Rulesets All, Changed Behavior, Preferences
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features constant
Available in Entreprise Edition, Exakat Cloud

14.2.1218 Try With Finally

Indicates if a try use a finally statement.

<?php

try {
$a = doSomething();

} catch (Throwable $e) {
// Fix the problem

(continues on next page)

14.2. List of Rules 1475

https://www.php.net/TRUE
https://www.php.net/manual/en/language.constants.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

} finally {
// remove $a anyway
unset($a);

}

?>

See also Exceptions.

Specs

Short name Structures/TryFinally
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version With PHP 5.5 and more recent
Severity
Time To Fix
Precision Very high
Features try-catch, finally
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1219 Try With Multiple Catch

Try may be used with multiple catch clauses.

<?php

try {
OneCatch();

} catch (FirstException $e) {

}

try {
TwoCatches();

} catch (FirstException $e) {
} catch (SecondException $e) {
}

?>

See also Exceptions.

1476 Chapter 14. Rules

https://www.php.net/manual/en/language.exceptions.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.exceptions.php

Exakat Documentation, Release 1

Specs

Short name Php/TryMultipleCatch
Rulesets All, Appinfo, CE
Exakat since 0.11.3
PHP Version All
Severity
Time To Fix
Precision Very high
Features exception
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1220 Try Without Catch

Try may only hold a finally clause, to ensure that some code is always executed, in case of error or not.

This is very rare.

<?php

try {
$x = doSomething();

} finally {
if (!isset($x)) {

$x = 'Error';
}

}

?>

Specs

Short name Exceptions/TryNoCatch
Rulesets All, Changed Behavior, Dump
Exakat since 2.6.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features try, catch, finally
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1477

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1221 Type Array Index

All literal index used in the code.

<?php

// index is an index. it is read
$array['index'] = 1;

// another_index and second_level are read
$array[] = $array['another_index']['second_level'];

// variables index are not reported
$array[$variable] = 1;

?>

Specs

Short name Type/ArrayIndex
Rulesets All, Appinfo, CE, Changed Behavior, Inventory
Exakat since 1.0.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features array, index
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1222 Type Could Be Integer

This rule marks arguments, class constants, properties and return types that can be set to int.

<?php

// Accept an int as input
function foo($b) {

// Returns an int
return $b + 8;

}

?>

1478 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Add int typehint to the code.

Specs

Short name Typehints/CouldBeInt
Rulesets All, CE, Typechecks
Exakat since 2.1.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features integer, type
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1223 Type Could Be Never

Mark return types that can be set to never.

<?php

function foo($b) {
// this function never returns
die();

}

?>

Suggestions

• Add the ‘never’ returntype

Specs

Short name Typehints/CouldBeNever
Rulesets All, Typechecks
Exakat since 2.3.8
PHP Version With PHP 8.1 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features never
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1479

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1224 Type Dodging

It is always possible to rewrite a parameter type by using union types. When the parent class or interface
requires a type, the child class may create a union type with the required type, add a secondary type and
ignore the first one.

This is part of the Liskov Substitution Principle, so the syntax is legit. When the union type is only used to circumvent
the previous typing, it is now a violation, as such a typed data would be valid, but ignored.

<?php

interface i {
function foo(A $a) {}

}

class x implement i {
function foo(A | string $a) {

if ($a instanceof A) {
throw new Exception('Unused type.');

}
// ...

}
}
?>

Suggestions

• Avoid using union type to enlarge types in parameters

Specs

Short name Functions/TypeDodging
Rulesets All, Changed Behavior, Class Review
Exakat since 2.5.0
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features liskov
Available in Entreprise Edition, Exakat Cloud

14.2.1225 Type Must Be Returned

When using a type for a method, it is compulsory to use a at least one return in the method’s body. This is
true for nullable type too : return alone won’t be sufficient.

When the method contains a return expression, PHP doesn’t lint unless the return expression has a value. Any value
will do, and it will actually checked at execution time.

When the method contains no return expression, PHP only checks it at execution time.

There is no need for a return expression when the method throws an expression, yield values, triggers an error or triggers
an assertion. Even in case of inheritance or implementation, the return type may be replaced by never.

1480 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error

Exakat Documentation, Release 1

<?php

// The function returns a value (here, correct object)
function foo() : Bar { return new Bar(); }

// The function should at least, return a value
function foo() : Bar { }

// The function should at least, return a value : Null or an object. Void, here, is not␣
→˓acceptable.
function foo() : ?Bar { return; }

?>

See also Return Type Declaration and Type hint in PHP function parameters and return values.

Suggestions

• Add a return with a valid value

• Add a throw expression

• Add a trigger_error() call

• Add a assert(false, . . .) expression

• If the method doesn’t return, change the returntype to never

Specs

Short name Functions/TypehintMustBeReturned
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, LintButWontExec
Exakat since 1.6.9
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features return-type, never-type
Note This issue may lint but will not run
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1226 Typed Class Constants Usage

Class constants may be typed with the usual types, like a property or an argument.

While it appears to be a paradox to give a type to a structure which as a static value, there are several situations where
the type can be enforced:

• When the class constant is modified in a children class: the children class must use the same type as the parent.

• When the class constant is build with an expression

• When the class constant is build with another constant

14.2. List of Rules 1481

https://www.php.net/manual/en/functions.returning-values.php#functions.returning-values.type-declaration
https://mlocati.github.io/articles/php-type-hinting.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

<?php

class x {
const int A = 1;

}

?>

See also PHP RFC: Typed class constants and `Why Class Constants Should be Typed <https://tomasvotruba.com/
blog/2020/06/22/why-class-constants-should-be-typed>_.

Specs

Short
name

Classes/TypedClassConstants

Rule-
sets

All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56, Compatibil-
ityPHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73, CompatibilityPHP74, Com-
patibilityPHP80, CompatibilityPHP81, CompatibilityPHP82

Ex-
akat
since

2.6.0

PHP
Ver-
sion

With PHP 8.3 and more recent

Sever-
ity

Minor

Time
To
Fix

Quick (30 mins)

Pre-
ci-
sion

Very high

Fea-
tures

type

Avail-
able
in

Entreprise Edition, Exakat Cloud

14.2.1227 Typed Property Usage

PHP properties may be typed. Since PHP 7.4, it is possible to type properties, just like arguments and
return values.

<?php

class User {
public int $id;
public string $name;

public function __construct(int $id, string $name) {
(continues on next page)

1482 Chapter 14. Rules

https://wiki.php.net/rfc/typed_class_constants
https://tomasvotruba.com/blog/2020/06/22/why-class-constants-should-be-typed
https://tomasvotruba.com/blog/2020/06/22/why-class-constants-should-be-typed
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$this->id = $id;
$this->name = $name;

}
}
?>

See also Typed Properties 2.0 and Typed Properties in PHP 7.4.

Specs

Short
name

Php/TypedPropertyUsage

Rule-
sets

All, Appinfo, CE, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compatibility-
PHP56, CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73

Ex-
akat
since

1.6.2

PHP
Ver-
sion

With PHP 7.4 and more recent

Sever-
ity

Minor

Time
To Fix

Quick (30 mins)

Preci-
sion

Very high

Fea-
tures

typehint, type-declaration-property

Avail-
able in

Entreprise Edition, Community Edition, Exakat Cloud

14.2.1228 Typehint Could Be Iterable

Mark arguments, class constants, properties and return types that can be set to iterable.

<?php

// Accept an array or a traversable Object as input
function foo($b) {

foreach($b as $c) {

}

// Returns an array
return [$b];

}

?>

14.2. List of Rules 1483

https://wiki.php.net/rfc/typed_properties_v2
https://stitcher.io/blog/typed-properties-in-php-74
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Add iterable typehint to the code (PHP 8.0+).

Specs

Short name Typehints/CouldBeIterable
Rulesets All, Typechecks
Exakat since 2.1.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features iterable
Available in Entreprise Edition, Exakat Cloud

14.2.1229 Typehint Order

Topological order, based on typehints.

Each function, method that use typehint is a link between a type of data and another one. The argument typehint acts
as a filter, and the returned type hint is the next step.

<?php

// This library imposes the following order : A -> B -> C
function foo(A $a) : B { }
function bar(B $b) : C { }

?>

Specs

Short name Dump/Typehintorder
Rulesets All, CE, Changed Behavior, Dump
Exakat since 2.0.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features typehint
Available in Entreprise Edition, Community Edition, Exakat Cloud

1484 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1230 Typehinting Stats

Collects various statistics about typehinting usage.

• totalArguments : Total number of explicit arguments. This count variadics as one, and skip usage of
func_get_args()

• totalFunctions : Total number of functions, closures, arrow-functions and methods

• withTypehint : Total number of typed arguments

• withReturnTypehint : Total number of return types

• scalartype : Total number of scalar type used

• returnNullable : Total number of null types returned

• argNullable : Total number of null types arguments

• classTypehint : Total number of non-scalar types

• interfaceTypehint : Total number of interface or abstract class types

• typedProperties : Total number of typed properties

• totalProperties : Total number of properties

• unionTypehints : Total number of union types, including null types

• intersectionTypehints : Total number of intersection types

Specs

Short name Dump/TypehintingStats
Rulesets All, CE, Changed Behavior, Dump
Exakat since 1.9.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features typehint
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1231 Typehints

List of all the types (classes or scalar) used in Typehinting.

<?php

// here, array, myObject and string are all typehints.
function foo(array $array, myObject $x, string $string) {

}

?>

See also Type declarations.

14.2. List of Rules 1485

https://www.php.net/func_get_args
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration

Exakat Documentation, Release 1

Specs

Short name Functions/Typehints
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features typehint
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1232 Typehints/CouldBeResource

Mark arguments, properties and return types that can be set to resource.

resource is an internal PHP type, and it should be a scalar type, yet it is not implement yet (as of PHP 8.2). It is still
used as such by Exakat.

<?php

class x {
// $p holds a resource
private $p;

function __construct() {
$this->p = fopen('/tmp/file.txt', 'w+');

}
}
?>

Specs

Short name Typehints/CouldBeResource
Rulesets All, Changed Behavior, Typechecks
Exakat since 2.4.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features resource, typehint
Available in Entreprise Edition, Exakat Cloud

1486 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1233 Typo 3 usage

This analysis reports usage of the Typo 3 CMS.

The current supported version is 11.4

<?php
declare(strict_types=1);

namespace MyVendor\SjrOffers\Controller;

use TYPO3\CMS\Extbase\Mvc\Controller\ActionController;

class OfferController extends ActionController
{
// action methods will be following here

}
?>

See also Typo3.

Specs

Short name Vendors/Typo3
Rulesets All, Appinfo, CE
Exakat since 1.9.9
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features framework
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1234 URL List

List of all the URL addresses that were found in the code.

<?php

// the first argument is recognized as an URL
ftp_connect('http://www.example.com/', $port, $timeout);

// the string argument is recognized as an URL
$source = 'https://www.other-example.com/';

?>

See also Uniform Resource Identifier.

14.2. List of Rules 1487

https://typo3.org/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

Exakat Documentation, Release 1

Specs

Short name Type/Url
Rulesets All, Appinfo, CE, Inventory
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Features url
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1235 Unbinding Closures

Never drop $this, once a closure <https://www.php.net/`closure>`_ was created in a non-static method.

From the PHP wiki : “Currently it is possible to unbind the $this variable from a closure
<https://www.php.net/`closure>`_ that originally had one by using $`closure <https://www.php.net/`closure
<https://www.php.net/closure>`_>`_->bindTo(null). Due to the removal of static calls to non-static
methods in PHP 8, we now have a guarantee that $this always exists inside non-static methods. We would like to have
a similar guarantee that $this always exists for non-static closures declared inside non-static methods. Otherwise, we
will end up imposing an unnecessary performance penalty either on $this accesses in general, or $this accesses inside
such closures.”

Calling bindTo() with a valid object is still valid.

<?php

class x {
private $a = 3;

function foo() {
return function () { echo $this->a; };

}
}

$closure = (new x)->foo();

// $this was expected, and it is not anymore
$closure->bindTo(null);

$closure->bindTo(new x);

?>

See also Unbinding $this from non-static closures.

1488 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/closure
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/closure
https://www.php.net/closure
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/manual/en/language.oop5.basic.php
https://wiki.php.net/rfc/deprecations_php_7_4#unbinding_this_from_non-static_closures

Exakat Documentation, Release 1

Suggestions

• Create a static closure, which doesn’t rely on $this at all

• Remove the call to bindTo(null).

Specs

Short name Functions/UnbindingClosures
Rulesets All, CE, CompatibilityPHP74
Exakat since 1.9.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features closure, closure-binding
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1236 Uncaught Exceptions

The following exceptions are thrown in the code, but are never caught.

Either they will lead to a Fatal Error, or they have to be caught by an including application. This is a valid behavior for
libraries, but is not for a final application.

<?php

// This exception is throw, but not caught. It will lead to a fatal error.
if ($message = check_for_error()) {

throw new My\Exception($message);
}

// This exception is throw, and caught.
try {

if ($message = check_for_error()) {
throw new My\Exception($message);

}
} catch (\Exception $e) {

doSomething();
}

?>

See also Structuring PHP Exceptions.

14.2. List of Rules 1489

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.alainschlesser.com/structuring-php-exceptions/

Exakat Documentation, Release 1

Suggestions

• Catch all the exceptions you throw

Specs

Short name Exceptions/UncaughtExceptions
Rulesets All, Analyze, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features exception, try-catch
Available in Entreprise Edition, Exakat Cloud

14.2.1237 Unchecked Resources

Resources are created, but never checked before being used. This is not safe.

Always check that resources are correctly created before using them.

<?php

// always check that the resource is created correctly
$fp = fopen($d,'r');
if ($fp === false) {

throw new Exception('File not found');
}
$firstLine = fread($fp);

// This directory is not checked : the path may not exist and return false
$uncheckedDir = opendir($pathToDir);
while(readdir($uncheckedDir)) {

// do something()
}

// This file is not checked : the path may not exist or be unreadable and return false
$fp = fopen($pathToFile);
while($line = freads($fp)) {

$text .= $line;
}

// unsafe one-liner : using bzclose on an unchecked resource
bzclose(bzopen('file'));

?>

See also resources.

1490 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.types.resource.php

Exakat Documentation, Release 1

Suggestions

• Add a check between the resource acquisition and its usage

Specs

Short name Structures/UncheckedResources
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision High
Features resource
ClearPHP no-unchecked-resources
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1238 Unconditional Break In Loop

An unconditional break in a loop creates dead code. Since the break is directly in the body of the loop, it
is always executed, creating a strange loop that can only run once.

Here, break may also be a return, a goto or a continue. They all branch out of the loop. Such statement are valid, but
should be moderated with a condition.

<?php

// return in loop should be in
function summAll($array) {

$sum = 0;

foreach($array as $a) {
// Stop at the first error
if (is_string($a)) {

return $sum;
}
$sum += $a;

}

return $sum;
}

// foreach loop used to collect first element in array
function getFirst($array) {

foreach($array as $a) {
return $a;

}
}

?>

14.2. List of Rules 1491

https://github.com/dseguy/clearPHP/tree/master/rules/no-unchecked-resources.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.break.php
https://www.php.net/manual/en/control-structures.break.php
https://www.php.net/manual/en/control-structures.break.php
https://www.php.net/manual/en/control-structures.continue.php

Exakat Documentation, Release 1

Suggestions

• Remove the loop and call the content of the loop once.

Specs

Short name Structures/UnconditionLoopBreak
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.12.16
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features loop, break
Examples LiveZilla, MediaWiki
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1239 Undefined ::class

\:\:class doesn’t check if a corresponding class exists.

\:\:class must be checked with a call to class_exists(). Otherwise, it may lead to a Class 'foo' not found or
even silent dead code : this happens also with Catch and instanceof commands with undefined classes. PHP doesn’t
raise an error in that case.

<?php

class foo() {}

// prints foo
echo foo::class;

// prints bar though bar doesn't exist.
echo bar::class;

?>

See also Class Constants.

Suggestions

• Create the missing class

• Fix the name part of the syntax

• Check the name part of syntax with class_exists()

1492 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/class_exists
https://www.php.net/manual/en/language.operators.type.php
https://www.php.net/error
https://www.php.net/manual/en/language.oop5.constants.php

Exakat Documentation, Release 1

Specs

Short name Classes/UndefinedStaticclass
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 1.3.5
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features class
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1240 Undefined Caught Exceptions

Those are exceptions that are caught in the code, but are not defined in the application.

They may be externally defined, such as in core PHP, extensions or libraries. Make sure those exceptions are useful to
your application : otherwise, they are dead code.

<?php

try {
library_function($some, $args);

} catch (LibraryException $e) {
// This exception is not defined, and probably belongs to Library
print "Library failed\n";

} catch (OtherLibraryException $e) {
// This exception is not defined, and probably do not belongs to this code
print "Library failed\n";

} catch (\Exception $e) {
// This exception is a PHP standard exception
print "Something went wrong, but not at Libary level\n";

}

?>

Suggestions

• Remove the catch clause, as it is dead code

• Make sure the exception is thrown by the underlying code

14.2. List of Rules 1493

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Exceptions/CaughtButNotThrown
Rulesets All, Changed Behavior, Dead code
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Features exception, predefined-exception
Available in Entreprise Edition, Exakat Cloud

14.2.1241 Undefined Class Constants

Class constants that are used, but never defined. This yield a fatal error upon execution, but no feedback
at compile level.

This analysis takes into account native PHP class constants, extensions and stubs. It also disambiguate enumeration
cases.

Constants are searched in the typed class or interface, and their parent. They are not searched in the children, since the
children are not necessarily available, unless the class is abstract. In particular, one of the children may not define the
constant, and when such child is used, it will satisfy the type, but not the constant definition.

<?php

class foo {
const A = 1;

}

function foo(Foo $f) {
// here, C is not defined in the code and is reported
echo foo::A.foo::B.foo::C;

// This is also an undefined constant
echo $f::B;

}

?>

See also Class constants.

Suggestions

• Fix the name of the constant

• Add the constant to the current class or one of its parent

• Update the constant’s visibility

1494 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.constants.php

Exakat Documentation, Release 1

Specs

Short name Classes/UndefinedConstants
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, LintButWontExec
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features class-constant, undefined
Note This issue may lint but will not run
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1242 Undefined Classes

Those classes are used in the code, but there are no definition for them.

This may happens under normal conditions, if the application makes use of an unsupported extension, that defines extra
classes; or if some external libraries, such as PEAR, are not provided during the analysis.

This analysis also checks in attributes.

<?php

// FPDF is a classic PDF class, that is usually omitted by Exakat.
$o = new FPDF();

// Exakat reports undefined classes in instanceof
// PHP ignores them
if ($o instanceof SomeClass) {

// doSomething();
}

// Classes may be used in typehint too
function foo(TypeHintClass $x) {

// doSomething();
}

?>

Suggestions

• Fix the typo in the class name

• Add a missing ‘use’ expression

• Create the missing class

• Added a missing component

14.2. List of Rules 1495

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Classes/UndefinedClasses
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Medium
Features class
Available in Entreprise Edition, Exakat Cloud

14.2.1243 Undefined Constant Name

When using the `` syntax for variable, the name used must be a defined constant. It is not a simple string,
like ‘x’, it is an actual constant name.

Interestingly, it is possible to use a qualified name within ``, full or partial. PHP will lint such code, and will collect
the value of the constant immediately. Since there is no fallback mechanism for fully qualified names, this ends with a
Fatal error.

<?php

const x = "a";
$a = "Hello";

// Display 'Hello' -> $a -> Hello
echo ;

// Yield a PHP Warning
// Use of undefined constant y - assumed 'y' (this will throw an Error in a future␣
→˓version of PHP)
echo ;

// Yield a PHP Fatal error as PHP first checks that the constant exists
//Undefined constant 'y'
echo ;
?>

Suggestions

• Define the constant

• Turn the dynamic syntax into a normal variable syntax

• Use a fully qualified name (at least one) to turn this syntax into a Fatal error when the constant is not found.
This doesn’t fix the problem, but may make it more obvious during the diagnostic.

1496 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error

Exakat Documentation, Release 1

Specs

Short name Variables/UndefinedConstantName
Rulesets All, Analyze
Exakat since 2.1.1
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1244 Undefined Constants

Constants definition can’t be located.

Those constants are not defined in the code, and will raise errors, or use the fallback mechanism of being treated like
a string. It is recommended to define them all, or to avoid using them.

<?php

const A = 1;
define('B', 2);

// here, C is not defined in the code and is reported
echo A.B.C;

?>

See also Constants.

Suggestions

• Define the constant

• Fix the name of the constant

• Fix the namespace of the constant (Fully Qualified Name or use)

• Remove the usage of the constant

14.2. List of Rules 1497

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.constants.php

Exakat Documentation, Release 1

Specs

Short name Constants/UndefinedConstants
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, CompatibilityPHP72
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features typo
Related rule Constant Typo Looks Like A Variable
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1245 Undefined Enumcase

The enumeration case does not exists. It may also be a constant.

<?php

enum theEnum {
case A; // an enum case

// a constant
const C = 1;

}

function foo(theEnum $a) {}

foo(theEnum::A);
foo(theEnum::C);

?>

Specs

Short name Enums/UndefinedEnumcase
Rulesets All, Analyze, Class Review, IsExt, IsPHP, IsStub
Exakat since 2.3.6
PHP Version With PHP 8.1 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features enum, enum-case
Related rule Unused Enumeration Case
Available in Entreprise Edition, Exakat Cloud

1498 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1246 Undefined Functions

Those functions are called, though they are not defined in the code.

The functions are probably defined in a missing library, component, or in an extension. When this is not the case, PHP
yield a Fatal error at execution.

<?php

// Undefined function
foo($a);

// valid function, as it belongs to the ext/yaml extension
$parsed = yaml_parse($yaml);

// This function is not defined in the a\b\c namespace, nor in the global namespace
a\b\c\foo();

?>

See also Functions.

Suggestions

• Fix the name of the function in the code

• Remove the functioncall in the code

• Define the function for the code to call it

• Include the correct library in the code source

Specs

Short name Functions/UndefinedFunctions
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features function
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1499

https://www.php.net/error
https://www.php.net/manual/en/language.functions.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1247 Undefined Insteadof

Insteadof tries to replace a method with another, but it doesn’t exists. This happens when the replacing
class is refactored, and some of its definition are dropped.

Insteadof may replace a non-existing method with an existing one, but not the contrary.

This error is not linted : it only appears at execution time.

<?php

trait A {
function C (){}

}

trait B {
function C (){}

}

class Talker {
use A, B {

B::C insteadof A;
B::D insteadof A;

}
}

new Talker();
?>

See also Traits.

Suggestions

• Remove the insteadof expression

• Fix the original method and replace it with an existing method

Specs

Short name Traits/UndefinedInsteadof
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, LintButWontExec
Exakat since 1.4.2
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision High
Features insteadof, trait, method
Note This issue may lint but will not run
Available in Entreprise Edition, Community Edition, Exakat Cloud

1500 Chapter 14. Rules

https://www.php.net/error
https://www.php.net/manual/en/language.oop5.traits.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1248 Undefined Interfaces

Some typehints or instanceof that are relying on undefined interfaces or classes. They will always return
false. Any condition based upon them are dead code.

<?php

class var implements undefinedInterface {
// If undefinedInterface is undefined, this code lints but doesn't run

}

if ($o instanceof undefinedInterface) {
// This is silent dead code

}

function foo(undefinedInterface $a) {
// This is dead code
// it will probably be discovered at execution

}

?>

See also Object interfaces, Type declarations and Instanceof.

Suggestions

• Implement the missing interfaces

• Remove the code governed by the missing interface : the whole method if it is an typehint, the whole if/then if
it is a condition.

Specs

Short name Interfaces/UndefinedInterfaces
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, LintButWontExec
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features interface
Examples xataface
Note This issue may lint but will not run
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1501

https://www.php.net/manual/en/language.oop5.interfaces.php
https://www.php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration
https://www.php.net/manual/en/language.operators.type.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1249 Undefined Methods

The methods used in the code are undefined.

Defined methods are found in : + Local definitions + __call() definition + PHP native definitions + Extension’s defini-
tions + Included components.

When the origin of the class is not clear, the report is omitted.

<?php

class x {
function foo() {

$this->defined();
$this->undefined();

}

function defined() {}
}

?>

Suggestions

• Fix the name of the method in the methodcall

• Define the method in the target class

Specs

Short name Classes/UndefinedMethod
Rulesets All, Class Review
Exakat since 2.3.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features method
Available in Entreprise Edition, Exakat Cloud

14.2.1250 Undefined Parent

List of properties and methods that are accessed using parent keyword but are not defined in the parent
classes.

This may compile but, eventually yields a fatal error during execution.

Note that if the parent is defined using extends someClass but someClass is not available in the tested code, it will
not be reported : it may be in composer, another dependency, or just missing.

1502 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.magic.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/error
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

<?php

class theParent {
// No bar() method
// private bar() method is not accessible to theChild

}

class theChild extends theParent {
function foo() {

// bar is defined in theChild, but not theParent
parent::bar();

}

function bar() {

}
}

?>

See also parent.

Suggestions

• Remove the usage of the found method

• Add a definition for the method in the appropriate parent

• Fix the name of the method, and replace it with a valid definition

• Change ‘parent’ with ‘self’ if the method is eventually defined in the current class

• Change ‘parent’ with another object, if the method has been defined in another class

• Add the ‘extends’ keyword to the class, to actually have a parent class

Specs

Short name Classes/UndefinedParentMP
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features parent
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1503

https://www.php.net/manual/en/keyword.parent.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1251 Undefined Properties

List of properties that are not explicitly defined in the class, its parents or traits.

It is possible to spot unidentified properties by using the PHP’s magic methods __get and __set. Even if the class
doesn’t use magic methods, any call to an undefined property will be directed to those methods, and they can be used
as a canary, warning that the code is missing a definition.

In PHP 8.2, undefined properties are reported as deprecated. They will become a Fatal Error in PHP 9.0.

<?php

class foo {
// property definition
private bar = 2;

function foofoo() {
// $this->bar is defined in the class
// $this->barbar is NOT defined in the class
return $this->bar + $this->barbar;

}
}

?>

See also Properties.

Suggestions

• Add an explicit property definition, and give it null as a default value : this way, it behaves the same as undefined.

• Rename the property to one that exists already.

Specs

Short name Classes/UndefinedProperty
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, CompatibilityPHP82
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Changed Behavior PHP 8.2 - More
Precision Very high
Features property
ClearPHP no-undefined-properties
Examples WordPress, MediaWiki
Related rule Checks Property Existence
Available in Entreprise Edition, Community Edition, Exakat Cloud

1504 Chapter 14. Rules

https://www.php.net/error
https://www.php.net/manual/en/language.oop5.properties.php
https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://github.com/dseguy/clearPHP/tree/master/rules/no-undefined-properties.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1252 Undefined Trait

Those are undefined, traits .

When the using class or trait is instantiated, PHP emits a a fatal error.

Trait which are referenced in a use expression are omitted: they are considered part of code that is probably outside the
current code, either omitted or in external component.

<?php

use Composer/Component/someTrait as externalTrait;

trait t {
function foo() {}

}

// This class uses trait that are all known
class hasOnlyDefinedTrait {

use t, externalTrait;
}

// This class uses trait that are unknown
class hasUndefinedTrait {

use unknownTrait, t, externalTrait;
}
?>

Suggestions

• Define the missing trait

• Remove usage of the missing trait

Specs

Short name Traits/UndefinedTrait
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, LintButWontExec
Exakat since 0.8.4
PHP Version All
Severity Critical
Time To Fix Quick (30 mins)
Precision High
Note This issue may lint but will not run
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1505

https://www.php.net/error
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1253 Undefined Variable

Variable that is used before any initialisation.

It is recommended to use a default value for every variable used. When not specified, the default value is set to NULL
by PHP.

Variable may be created in various ways : assignation, arguments, foreach blind variables, static and global variables.

This analysis doesn’t handle dynamic variables, such as $$x. It also doesn’t handle variables outside a method or
function.

<?php

// Adapted from the PHP manual
$var = 'Bob';
$Var = 'Joe';
// The following line may emit a warning : Undefined variable: $undefined
echo "$var, $Var, $undefined"; // outputs "Bob, Joe, "

?>

See also Variable basics.

Suggestions

• Remove the expression that is using the undefined variable

• Fix the variable name

• Define the variable by assigning a value to it, before using it

Specs

Short name Variables/UndefinedVariable
Rulesets All, Analyze, CE, CI-checks
Exakat since 1.4.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features variable
Available in Entreprise Edition, Community Edition, Exakat Cloud

1506 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.variables.basics.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1254 Undefined static:: Or self::

The identified property or method are undefined. self and static refer to the current class, or one of its
parent or trait.

<?php

class x {
static public function definedStatic() {}
private definedStatic = 1;

public function method() {
self::definedStatic();
self::undefinedStatic();

static::definedStatic;
static::undefinedStatic;

}
}

?>

See also Late Static Bindings.

Suggestions

• Define the missing method or property

• Remove usage of that undefined method or property

• Fix name to call an actual local structure

• Fix object to one of the local property

Specs

Short name Classes/UndefinedStaticMP
Rulesets All, Analyze, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features static
Examples xataface, SugarCrm
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1507

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.late-static-bindings.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1255 Unfinished Object

Some of the properties are not assigned a value before or at constructor time. Then, they might be called
when one of the other public method is called, and yield a fatal error.

<?php

class x {
private $p;
private $p2;

function __construct($p) {
$this->p = $p;
// $p2 is not assigned

}

function foo() {
$this->p->goo();
// This is not valid
$this->p2->goo();

}
}

?>

See also Compulsory parameters should be required in your constructor.

Suggestions

• Make sure the object is finished at construction time

Specs

Short name Classes/UnfinishedObject
Rulesets All, Analyze, Class Review
Exakat since 2.3.6
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision High
Features object, constructor
Available in Entreprise Edition, Exakat Cloud

1508 Chapter 14. Rules

https://www.php.net/error
http://bestpractices.thecodingmachine.com/php/design_beautiful_classes_and_methods.html#compulsory-parameters-should-be-required-in-your-constructor
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1256 Unicode Blocks

List of the Unicode blocks used in string literals.

This is the kind of characters that can be found in the applications strings. Note that Exakat only analyze PHP scripts :
any translation available in a .po or external resource is not parsed and will not show.

<?php

$a = "zoo";

$b = ""; // Telugu character
$b = "\u{0C12}"; Same as above

$b = ""; // Chinese Mandarin character
$b = "\u{4EBA}"; Same as above

?>

See also Unicode block.

Specs

Short name Type/UnicodeBlock
Rulesets All, Inventory
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1257 Unicode Escape Partial

PHP 7 introduces a new escape sequence for strings : u{hex}. It is backward incompatible with previous
PHP versions for two reasons :

PHP 7 will recognize en replace those sequences, while PHP 5 keep them intact. PHP 7 will halt on partial Unicode
Sequences, as it tries to understand them, but may fail. Is is recommended to check all those strings, and make sure
they will behave correctly in PHP 7.

<?php

echo \u{1F418}\n;
// PHP 5 displays the same string
// PHP 7 displays : an elephant

echo \u{NOT A UNICODE CODEPOINT}\n;
// PHP 5 displays the same string
// PHP 7 emits a fatal error

?>

14.2. List of Rules 1509

https://en.wikipedia.org/wiki/Unicode_block
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Php/UnicodeEscapePartial
Rulesets All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55,

CompatibilityPHP56
Exakat since 0.8.4
PHP Version With PHP 7.0 and older
Severity Major
Time To Fix Quick (30 mins)
Changed Be-
havior

PHP 7.0 - More

Precision Very high
Features unicode, escape-sequence
Available in Entreprise Edition, Exakat Cloud

14.2.1258 Unicode Escape Syntax

Usage of the Unicode Escape syntax, with the \u{xxxxx} format, available since PHP 7.0.

<?php

// Produce an elephant icon in PHP 7.0+
echo "\u{1F418}";

// Produce the raw sequence in PHP 5.0
echo "\u{1F418}";

?>

See also PHP RFC: Unicode Codepoint Escape Syntax, Code point and Unicode.

Specs

Short name Php/UnicodeEscapeSyntax
Rulesets All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56
Exakat since 0.8.4
PHP Version With PHP 7.0 and more recent
Severity Major
Time To Fix Slow (1 hour)
Precision High
Features unicode, escape-sequence
Available in Entreprise Edition, Exakat Cloud

1510 Chapter 14. Rules

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://wiki.php.net/rfc/unicode_escape
https://en.wikipedia.org/wiki/Code_point
https://en.wikipedia.org/wiki/Unicode
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1259 Uninitialized Property

Uninitialized properties are not fully bootstrapped at the end of the constructor.

Properties may be initialized at definition time, along with their visibility and type. Some types are not initialized at
definition time, as any object (before PHP 8.2) or resources, so they should be initialized during constructor. At the
end of the former, all properties shall have a legit value, and be ready for usage.

PHP 8.1 introduced the possibility to instantiate objects as default value, as long as they only require constant values.
This means that those properties may have an object type and a default value.

<?php

class x {
private $foo = null;
private $uninited;

function __construct($arg) {
$this->foo = $args;

// $this->uninited is not inited, nor at definition, nor in constructor
// it will hold null at the beginning of the next method call

}
}

?>

Suggestions

• Remove the property, and move it to another class

• Add an initialisation for this property

• Give the property a neutral value (object or scalar)

Specs

Short name Classes/UninitedProperty
Rulesets All, Changed Behavior, Class Review
Exakat since 2.0.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features property, default-value
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1511

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1260 Union Typehint

Union typehints allows the specification of several typehint for the same argument or return value.

Several typehints are specified at the same place as a single one. The different values are separated by a pipe character
|, like for exceptions Nullable is reported as union type. Mixed and iterable are not reported as a union type.

Union types are a PHP 8.0 new feature. They are not compatible with PHP 7.4 and older.

<?php

// Example from the RFC https://wiki.php.net/rfc/union_types_v2
class Number {

private int|float $number;

public function setNumber(int|float $number): void {
$this->number = $number;

}

public function getNumber(): int|float {
return $this->number;

}
}
?>

See also PHP RFC: Union Types 2.0, PHP 8 Union types and Type declarations.

Specs

Short
name

Php/Php80UnionTypehint

Rulesets All, Appinfo, CE, CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72, Compatibility-
PHP73, CompatibilityPHP74

Exakat
since

2.0.9

PHP Ver-
sion

With PHP 8.0 and more recent

Severity Minor
Time To
Fix

Quick (30 mins)

Precision Very high
Features typehint, intersection-type
Available
in

Entreprise Edition, Community Edition, Exakat Cloud

1512 Chapter 14. Rules

https://wiki.php.net/rfc/union_types_v2
https://www.geeksforgeeks.org/php-8-union-types/
https://www.php.net/manual/en/language.types.declarations.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1261 Unitialized Properties

Properties that are not initialized in the constructor, nor at definition.

With the above class, when m() is accessed right after instantiation, there will be a missing property. Using default
values at property definition, or setting default values in the constructor ensures that the created object is consistent.

<?php

class X {
private $i1 = 1, $i2;
protected $u1, $u2;

function __construct() {
$this->i2 = 1 + $this->u2;

}

function m() {
echo $this->i1, $this->i2, $this->u1, $this->u2;

}
}
?>

Suggestions

• Add an explicit initialization for each property.

Specs

Short name Classes/UnitializedProperties
Rulesets All, Changed Behavior, Suggestions, Top10
Exakat since 0.8.9
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features property
Examples SPIP
Available in Entreprise Edition, Exakat Cloud

14.2.1262 Unknown Directive Name

Unknown directives names used in the code.

The following list has directive mentioned in the code, that are not known from PHP or any extension. If this is due to
a mistake, the directive must be fixed to be actually useful.

<?php

// non-existing directive
(continues on next page)

14.2. List of Rules 1513

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$reporting_error = ini_get('reporting_error');
$error_reporting = ini_get('error_reproting'); // Note the inversion
if (ini_set('dump_globals')) {

// doSomething()
}

// Correct directives
$error_reporting = ini_get('reporting_error');
if (ini_set('xdebug.dump_globals')) {

// doSomething()
}

?>

Specs

Short name Php/DirectiveName
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features directive
Available in Entreprise Edition, Exakat Cloud

14.2.1263 Unknown Parameter Name

The name of the parameter doesn’t belong to the method signature. Named arguments were introduced in
PHP 8.0.

Named arguments errors will also arise when spreading a hash array with arbitrary number of arguments. For example,
with array_merge(), the array should not use named keys.

<?php

// All good
foo(a:1, b:2, c:3);
foo(...['a':1, 'b':2, 'c':3]);

// A is not a parameter name, it should be a : names are case sensitive
foo(A:1, b:2, c:3);
foo(...['A':1, 'b':2, 'c':3]);

function foo($a, $b, $c) {}

array_merge(['a' => [1], 'b' => [2]]);
?>

See also Named Arguments and Wrong Argument Name With PHP Function.

1514 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_merge
https://wiki.php.net/rfc/named_params

Exakat Documentation, Release 1

Suggestions

• Fix the name of the parameter and use a valid one

• Remove the parameter name, and revert to positional notation

Specs

Short name Functions/UnknownParameterName
Rulesets All, Analyze, CE, CI-checks
Exakat since 2.1.6
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features named-parameter
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1264 Unknown Pcre2 Option

PCRE2 supports different options, compared to PCRE1. PCRE2 was adopted with PHP 7.3.

The S modifier : it used to tell PCRE to spend more time studying the regex, so as to be faster at execution. This is now
the default behavior, and may be dropped from the regex.

The X modifier : X is still existing with PCRE2, though it is now the default for PCRE2, and not for PHP as time of writ-
ing. In particular, Any backslash in a pattern that is followed by a letter that has no special
meaning causes an `error <https://www.php.net/error>`_, thus reserving these combinations
for future expansion. ``. It is recommended to avoid using useless sequence \s in regex
to get ready for that change. All the following letters ``gijkmoqyFIJMOTY . Note that clLpPuU
are valid PRCE sequences, and are probably failing for other reasons.

<?php

// \y has no meaning. With X option, this leads to a regex compilation error, and a␣
→˓failed test.
preg_match('/ye\y/', $string);
preg_match('/ye\y/X', $string);

?>

See also Pattern Modifiers and PHP RFC: PCRE2 migration.

14.2. List of Rules 1515

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/reference.pcre.pattern.modifiers.php
https://wiki.php.net/rfc/pcre2-migration

Exakat Documentation, Release 1

Specs

Short name Php/UnknownPcre2Option
Rulesets All, Analyze, CompatibilityPHP73
Exakat since 1.0.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features regex
Available in Entreprise Edition, Exakat Cloud

14.2.1265 Unkown Regex Options

Regex support in PHP accepts the following list of options : eimsuxADJSUX.

All other letter used as option are not supported : depending on the situation, they may be ignored or raise an error.

<?php

// all options are available
if (preg_match('/\d+/isA', $string, $results)) { }

// p and h are not regex options, p is double
if (preg_match('/\d+/php', $string, $results)) { }

?>

See also Pattern Modifiers.

Suggestions

• Remove the unknown options

• Replace the option with a valid one

• Fix any syntax typo in the regex

Specs

Short name Structures/UnknownPregOption
Rulesets All, Analyze, CE
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision High
Features regex
Available in Entreprise Edition, Community Edition, Exakat Cloud

1516 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/manual/en/reference.pcre.pattern.modifiers.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1266 Unpacking Inside Arrays

The variadic operator is now available inside arrays. Until PHP 7.4, it is not possible to use the variadic
operator, or ... inside arrays.

The workaround is to use array_merge(), after checking that arrays are not empty.

<?php

$a = ['a', 'b', 'c'];
$b = ['d', 'e', 'f'];

// PHP 7.4
$c = [...$a, ...$b];

// PHP 7.3 and older
$c = array_merge($a, $b);

?>

See also Spread Operator in Array Expression and PHP 5.6 and the Splat Operator.

Suggestions

• Replace array_merge() with

Specs

Short
name

Php/UnpackingInsideArrays

Rule-
sets

All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56, Compati-
bilityPHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73

Exakat
since

1.8.0

PHP
Ver-
sion

With PHP 7.4 and more recent

Sever-
ity

Minor

Time
To Fix

Quick (30 mins)

Preci-
sion

High

Fea-
tures

array-spread

Avail-
able in

Entreprise Edition, Exakat Cloud

14.2. List of Rules 1517

https://www.php.net/array_merge
https://wiki.php.net/rfc/spread_operator_for_array
https://lornajane.net/posts/2014/php-5-6-and-the-splat-operator
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1267 Unpreprocessed Values

Preprocessing values is the preparation of values before PHP executes the code.

There is no macro language in PHP, that prepares the code before compilation, bringing some comfort and short syntax.
Most of the time, one uses PHP itself to preprocess data.

For example : could be written and avoid preprocessing the string into an array first.

Preprocessing could be done anytime the script includes all the needed values to process the expression.

This is a micro-optimisation, in particular when the expression is used once.

<?php
$days_en = 'monday,tuesday,wednesday,thursday,friday,saturday,sunday';
$days_zh = ',,,,,,';

$days = explode(',', $lang === 'en' ? $days_en : $days_zh);
?>

Suggestions

• Preprocess the values and hardcode them in PHP. Do not use PHP to calculate something at the last moment.

• Use already processed values, or cache to avoid calculating the value each hit.

• Create a class that export the data in the right format for every situation, including the developer’s comfort.

Specs

Short name Structures/Unpreprocessed
Rulesets All, Analyze, Performances
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features preprocess, micro-optimisation
ClearPHP always-preprocess
Examples Zurmo, Piwigo
Available in Entreprise Edition, Exakat Cloud

14.2.1268 Unreachable Class Constant

Class constants may be unreachable due to visibility configuration.

Since PHP 7.1, class constants support visibility. Their usage may be restricted to the current class, or private, to
classes that extends or are extended by the current class, or protected. They may also be public, just like it was
before.

<?php

class Foo{
(continues on next page)

1518 Chapter 14. Rules

https://github.com/dseguy/clearPHP/tree/master/rules/always-preprocess.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

private const PRIVATE = 1;
const PUBLIC = 3;

}

// PHP 7.1- and older
echo Foo::PUBLIC;

// This is not accessible
echo Foo::PRIVATE;

?>

See also Class Constant and PHP RFC: Support Class Constant Visibility.

Suggestions

• Make the class constant protected, when the call to the constant is inside a related class.

• Create another constant, that may be accessible

• Make the class constant public

Specs

Short name Classes/UnreachableConstant
Rulesets All, Changed Behavior, Class Review
Exakat since 1.5.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features class
Available in Entreprise Edition, Exakat Cloud

14.2.1269 Unreachable Code

Code may be unreachable, because other instructions prevent its reaching.

For example, it be located after throw, return, exit(), die(), goto, break or continue : this way, it cannot be reached, as
the previous instruction will divert the engine to another part of the code.

This is dead code, that may be removed.

<?php

function foo() {
$a++;
return $a;
$b++; // $b++ can't be reached;

}
(continues on next page)

14.2. List of Rules 1519

https://www.php.net/manual/en/language.oop5.constants.php
https://wiki.php.net/rfc/class_const_visibility
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.www.php.net/exit
https://www.php.net/die
https://www.php.net/manual/en/control-structures.break.php
https://www.php.net/manual/en/control-structures.continue.php
https://www.php.net/engine

Exakat Documentation, Release 1

(continued from previous page)

function bar() {
if ($a) {

return $a;
} else {

return $b;
}
$b++; // $b++ can't be reached;

}

foreach($a as $b) {
$c += $b;
if ($c > 10) {

continue 1;
} else {

$c--;
continue;

}
$d += $e; // this can't be reached

}

$a = 1;
goto B;
class foo {} // Definitions are accessible, but not functioncalls
B:
echo $a;

?>

See also Unreachable code.

Suggestions

• Remove the unreachable code

• Remove the blocking expression, and let the rest of the code execute

Specs

Short name Structures/UnreachableCode
Rulesets All, Changed Behavior, Dead code, Suggestions
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Features unreachable-code
ClearPHP no-dead-code
Available in Entreprise Edition, Exakat Cloud

1520 Chapter 14. Rules

https://en.wikipedia.org/wiki/Unreachable_code
https://github.com/dseguy/clearPHP/tree/master/rules/no-dead-code.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1270 Unreachable Method

A method that is never called from the code.

The method has the following characteristics : + not private, aka public or protected + The direct class is never instan-
tiated + All children classes overwrite this method + parent:: is never used to reach it

Then, this class is actually dead code.

<?php

class x {
protected function foox() {}

}

class xx extends x {
protected function foox() {}

}
?>

Suggestions

• Make the method abstract and remove the block

• Move the code to one of the child

Specs

Short name Classes/UnreachableMethod
Rulesets All, Analyze, Changed Behavior, Class Review, Dead code
Exakat since 2.3.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features method
Available in Entreprise Edition, Exakat Cloud

14.2.1271 Unresolved Catch

Catch clauses do not check for Exception existence.

Catch clauses check that the emitted expression is of the requested Class, but if that class doesn’t exist in the code, the
catch clause is always false. This is dead code.

<?php

try {
// doSomething()

} catch {TypoedExxeption $e) { // Do not exist Exception
// Fix this exception

(continues on next page)

14.2. List of Rules 1521

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception

Exakat Documentation, Release 1

(continued from previous page)

} catch {Stdclass $e) { // Exists, but is not an exception
// Fix this exception

} catch {Exception $e) { // Actual and effective catch
// Fix this exception

}
?>

See also PHP Try Catch: Basics & Advanced PHP Exception Handling Tutorial and Silent failure to catch exceptions
in PHP.

Suggestions

• Fix the name of the exception

• Remove the catch clause

• Add a use expression with a valid name

• Create/import the missing exception

Specs

Short name Classes/UnresolvedCatch
Rulesets All, Changed Behavior, Dead code
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features try-catch
ClearPHP no-unresolved-catch
Available in Entreprise Edition, Exakat Cloud

14.2.1272 Unresolved Classes

The following classes are instantiated in the code, but their definition couldn’t be found in that same code.
They might be defined in an extension or an external component.

<?php

class Foo extends Bar {
private function foobar() {

// here, parent is not resolved, as Bar is not defined in the code.
return parent::$prop;

}
}

?>

1522 Chapter 14. Rules

https://stackify.com/php-try-catch-php-exception-tutorial/
http://yakhairsurplus.com/silent-filure-to-catch-exceptions-in-php/
http://yakhairsurplus.com/silent-filure-to-catch-exceptions-in-php/
https://github.com/dseguy/clearPHP/tree/master/rules/no-unresolved-catch.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Check for namespaces and aliases and make sure they are correctly configured.

Specs

Short name Classes/UnresolvedClasses
Rulesets All, Analyze, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features class
Available in Entreprise Edition, Exakat Cloud

14.2.1273 Unresolved Instanceof

The instanceof operator doesn’t confirm if the compared class exists.

It checks if an variable is of a specific class. However, if the referenced class doesn’t exist, because of a bug, a missed
inclusion or a typo, the operator always fails, without a warning. Make sure the following classes are well defined.

<?php

namespace X {
class C {}

// This is OK, as C is defined in X
if ($o instanceof C) { }

// This is not OK, as C is not defined in global
// instanceof respects namespaces and use expressions
if ($o instanceof \C) { }

// This is not OK, as undefinedClass
if ($o instanceof undefinedClass) { }

// This is not OK, as $class is now a full namespace. It actually refers to \c,␣
→˓which doesn't exist

$class = 'C';
if ($o instanceof $class) { }

}
?>

See also Instanceof.

14.2. List of Rules 1523

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.operators.type.php
https://www.php.net/manual/en/language.operators.type.php

Exakat Documentation, Release 1

Suggestions

• Remove the call to instanceof and all its dependencies.

• Fix the class name and use a class existing in the project.

Specs

Short name Classes/UnresolvedInstanceof
Rulesets All, Analyze, Changed Behavior, Dead code, Top10
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Features instanceof
ClearPHP no-unresolved-instanceof
Examples WordPress
Available in Entreprise Edition, Exakat Cloud

14.2.1274 Unresolved Use

The following use instructions cannot be resolved to a known class, interface, trait, constant or function.
They should be dropped or fixed.

A known class, interface, trait, constant or function is defined in PHP (standard), an extension, a stub or the current
code. Use expression are options for the current namespace.

<?php

namespace A {
// class B is defined
class B {}
// class C is not defined

}

namespace X/Y {

use A/B; // This use is valid
use A/C; // This use point to nothing.

new B();
new C();

}

?>

See also Using namespaces: Aliasing/Importing.

1524 Chapter 14. Rules

https://github.com/dseguy/clearPHP/tree/master/rules/no-unresolved-instanceof.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.namespaces.importing.php

Exakat Documentation, Release 1

Suggestions

• Remove the use expression

• Fix the use expression

Specs

Short name Namespaces/UnresolvedUse
Rulesets All, Analyze, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision High
Features namespace, use
ClearPHP no-unresolved-use
Available in Entreprise Edition, Exakat Cloud

14.2.1275 Unserialize Second Arg

Since PHP 7, unserialize() function has a second argument that limits the classes that may be unserialized.
In case of a breach, this is limiting the classes accessible from unserialize().

One way to exploit unserialize, is to make PHP unserialized the data to an available class, may be one that may be
auto-loaded.

<?php

// safe unserialization : only the expected class will be extracted
$serialized = 'O:7:"dbClass":0:{}';
$var = unserialize($serialized, ['dbClass']);
$var->connect();

// unsafe unserialization : $var may be of any type that was in the serialized string
// although, here, this is working well.
$serialized = 'O:7:"dbClass":0:{}';
$var = unserialize($serialized);
$var->connect();

// unsafe unserialization : $var is not of the expected type.
// and, here, this will lead to disaster.
$serialized = 'O:10:"debugClass":0:{}';
$var = unserialize($serialized);
$var->connect();

?>

See also unserialize(), Securely Implementing (De)Serialization in PHP and Remote code execution via PHP [Unseri-
alize].

14.2. List of Rules 1525

https://github.com/dseguy/clearPHP/tree/master/rules/no-unresolved-use.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/unserialize
https://www.php.net/unserialize
https://www.php.net/unserialize
https://paragonie.com/blog/2016/04/securely-implementing-de-serialization-in-php
https://www.notsosecure.com/remote-code-execution-via-php-unserialize/
https://www.notsosecure.com/remote-code-execution-via-php-unserialize/

Exakat Documentation, Release 1

Suggestions

• Add a list of class as second argument of any call to unserialize(). This is valid for PHP 7.0 and later.

Specs

Short name Security/UnserializeSecondArg
Rulesets All, Security
Exakat since 0.8.4
PHP Version With PHP 7.0 and more recent
Severity Critical
Time To Fix Quick (30 mins)
Precision High
Features serialization
Examples Piwigo, LiveZilla
Available in Entreprise Edition, Exakat Cloud

14.2.1276 Unset Arguments

There is no need to unset arguments. Those values will be freed at the end of the function anyhow.

<?php

function foo($a, $b) {
$b = $a * 2;
// This is useless. $a will be freed at the end of the function.
unset($a);

}

?>

Specs

Short name Functions/UnsetOnArguments
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features argument
Available in Entreprise Edition, Exakat Cloud

1526 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1277 Unset In Foreach

Unset applied to the variables of a foreach loop are useless. Those variables are copies and not the actual
value. Even if the value is a reference, unsetting it has no effect on the original array : the only effect may
be indirect, on elements inside an array, or on properties inside an object.

<?php

// When unset is useless
$array = [1, 2, 3];
foreach($array as $a) {

unset($a);
}

print_r($array); // still [1, 2, 3]

foreach($array as $b => &$a) {
unset($a);

}

print_r($array); // still [1, 2, 3]

// When unset is useful
$array = [['c' => 1]]; // Array in array
foreach($array as &$a) {

unset(&$a['c']);
}

print_r($array); // now [['c' => null]]

?>

Suggestions

• Drop the unset

Specs

Short name Structures/UnsetInForeach
Rulesets All, Analyze, Dead code
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features foreach
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1527

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1278 Unset() Or (unset)

Unset() and (unset) have the same functional use.

The analyzed code has less than 10% of one of them : for consistency reasons, it is recommended to make them all the
same.

It happens that unset() or (unset) are used depending on coding style and files. One file may be consistently using
unset(), while the others are all using (unset).

In PHP 8.0, the cast (unset) is not available anymore. It is recomended to avoid using it.

<?php

// be consistent
(unset) $a1;
(unset) $a2;
(unset) $a3;
(unset) $a4;
(unset) $a5;
(unset) $a6;
(unset) $a7;
(unset) $a8;
(unset) $a9;
(unset) $a10;
(unset) $a11;
(unset) $a12;

unset($b);
?>

Suggestions

• Use the correct parameter name

• Remove all the parameter names from the call

• Create a relay function with the correct parameter names

Specs

Short name Php/UnsetOrCast
Rulesets All, Preferences
Exakat since 0.9.3
PHP Version With PHP 8.0 and older
Severity
Time To Fix
Precision High
Features unset
Available in Entreprise Edition, Exakat Cloud

1528 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1279 Unsupported Operand Types

This error is raised when trying to combine an array and a scalar value.

Always checks that the types are compatible with the planned operations. PHP detects this error at linting time, when
using literal values. When static expression are involved, this error will appear at execution time.

<?php

const MY_ARRAY = 'error';

// This leads to the infamous "Unsupported operand types" error
$b = MY_ARRAY + array(3,4);

?>

See also PHP - Fatal error: Unsupported operand types [duplicate].

Suggestions

• Make sure all the planned operations are compatible with the type used.

Specs

Short name Structures/UnsupportedOperandTypes
Rulesets All, Analyze, PHP recommendations
Exakat since 1.7.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features plus
Available in Entreprise Edition, Exakat Cloud

14.2.1280 Unsupported Types With Operators

Arrays, resources and objects are generally not accepted with unary and binary operators.

The operators are +, -, *, /, **, %, <<, >>, &, |, ^, ~, ++ and –. In PHP 8.0, the rules have been made stricter and
more consistent.

The only valid operator is +, combined with arrays in both operands. Other situations throw TypeError.

<?php

var_dump([] % [42]);
// int(0) in PHP 7.x
// TypeError in PHP 8.0 +

// Also impossible usage : index are string or int
$a = [];

(continues on next page)

14.2. List of Rules 1529

https://www.php.net/error
https://www.php.net/error
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/error
https://stackoverflow.com/questions/2108875/php-fatal-error-unsupported-operand-types
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$b = $c[$a];

?>

See also Stricter type checks for arithmetic/bitwise operators and TypeError.

Suggestions

• Do not use those values with those operators

• Use a condition to skip this awkward situation

• Add an extra step to turn this value into a valid type

Specs

Short name Structures/UnsupportedTypesWithOperators
Rulesets All, Analyze, CE, CompatibilityPHP80
Exakat since 2.1.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features operator
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1281 Unthrown Exception

These exceptions are defined in the code but never thrown. They are probably dead code.

Unused exceptions are code bloat, as they increase the size of the code without any purpose. They are also misleading,
as other developers might come to the impression that there is a mechanism to handle the situation that the exception
describe, yet they are generating a fatal error.

<?php

//This exception is defined but never used in the code.
class myUnusedException extends \Exception {}

//This exception is defined and used in the code.
class myUsedException extends \Exception {}

throw new myUsedException('I was called');

?>

1530 Chapter 14. Rules

https://wiki.php.net/rfc/arithmetic_operator_type_checks
https://www.php.net/manual/en/class.typeerror.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception
https://www.php.net/error

Exakat Documentation, Release 1

Suggestions

• Remove the exception

• Find a place in the code to throw the exception

• Replace an existing Exception with this more specific one

Specs

Short name Exceptions/Unthrown
Rulesets All, Analyze, Changed Behavior, Dead code
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features exception
ClearPHP no-unthrown-exceptions
Available in Entreprise Edition, Exakat Cloud

14.2.1282 Untyped No Default Properties

This rule reports untyped properties without default value, that are not assigned at constructor time.

This means that these properties will be assigned later, and are now running the risk to be accessed before being written.
This yields a warning, and, when the property get typed, event with mixed, a fatal error.

<?php

class x {
public $noTypeNoDefaultNoConstructor;
public $noTypeNoDefaultButConstructor;

function __construct() {
// property is defined in the constructor, so always defined
$this->noTypeNoDefaultButConstructor = 1;

}

function foo() {
// possible error here
return $this->noTypeNoDefaultNoConstructor;

}
}
?>

14.2. List of Rules 1531

https://github.com/dseguy/clearPHP/tree/master/rules/no-unthrown-exceptions.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error

Exakat Documentation, Release 1

Specs

Short name Classes/UntypedNoDefaultProperties
Rulesets All, Appinfo, Class Review
Exakat since 2.6.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features property
Available in Entreprise Edition, Exakat Cloud

14.2.1283 Unused Class Constant

The class constant is unused. Consider removing it or using it.

Class constants may be used in expressions, in static expressions, when building other constants, or in default values.

<?php

class foo {
public const UNUSED = 1; // No mention in the code

private const USED = 2; // used constant

function bar() {
echo self::USED;

}
}

?>

Suggestions

• Remove the class constant

• Use the class constant

Specs

Short name Classes/UnusedConstant
Rulesets All, Analyze, Changed Behavior, Class Review
Exakat since 1.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features class-constant
Available in Entreprise Edition, Exakat Cloud

1532 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1284 Unused Classes

The following classes are never explicitly used in the code.

Note that this may be valid in case the current code is a library or framework, since it defines classes that are used by
other (unprovided) codes. Also, this analyzer may find classes that are, in fact, dynamically loaded.

<?php

class unusedClasss {}
class usedClass {}

$y = new usedClass();

?>

See also class.

Suggestions

• Remove unused classes

• Make use of unused classes

• Fix class name

Specs

Short name Classes/UnusedClass
Rulesets All, Analyze, Changed Behavior, Dead code
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features class
Available in Entreprise Edition, Exakat Cloud

14.2.1285 Unused Constants

Those constants are defined in the code but never used. Defining unused constants slow down the appli-
cation, as they are executed and stored in PHP hashtables.

It is recommended to comment them out, and only define them when it is necessary.

<?php

// const-defined constant
const USED_CONSTANT = 0;
const UNUSED_CONSTANT = 1 + USED_CONSTANT;

// define-defined constant
(continues on next page)

14.2. List of Rules 1533

https://www.php.net/manual/en/language.oop5.basic.php#language.oop5.basic.class
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

define('ANOTHER_UNUSED_CONSTANT', 3);

?>

Suggestions

• Make use of the constant

• Remove the constant

Specs

Short name Constants/UnusedConstants
Rulesets All, Changed Behavior, Dead code
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features constant
Available in Entreprise Edition, Exakat Cloud

14.2.1286 Unused Enumeration Case

Those are enumeration cases which are defined, yet not used.

The error message when the case is missing mentions the class constant : this is because enumeration cases and class
constants use the same configuration. They are only distinguished by their definition, which, here, does not exists.

<?php

enum x {
case A;
case C;

const F = 1;
}

function foo(x $a) {}

foo(x::A);

?>

1534 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error

Exakat Documentation, Release 1

Suggestions

• Use the case in the code

• Remove the case in the code

• Fix the name of the case

• Turn the case in a constant

Specs

Short name Enums/UnusedEnumCase
Rulesets All, Analyze, Dead code
Exakat since 2.4.0
PHP Version With PHP 8.1 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features enum
Related rule Undefined Enumcase
Available in Entreprise Edition, Exakat Cloud

14.2.1287 Unused Exception Variable

The variable from a catch clause is not used. It is expected to be used, either by chaining the exception, or
logging the message.

In PHP 8.0, this variable may be omitted.

<?php

try{
doSomething();

} catch (A $a) {
// $a is caught, but not used here

} catch (B $b) {
// $b is caught, and used
log($b->getMessage());

} catch (C) {
// Caught and ignored (PHP 8.0 +)

}

?>

14.2. List of Rules 1535

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception

Exakat Documentation, Release 1

Suggestions

• Drop the variable in the clause expression (PHP 8.0 and more recent)

• Chain the exception

• Log the exception message

Specs

Short name Exceptions/UnusedExceptionVariable
Rulesets All, Changed Behavior, Suggestions
Exakat since 2.2.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features exception
Available in Entreprise Edition, Exakat Cloud

14.2.1288 Unused Functions

The functions below are unused. They look like dead code.

Recursive functions, level 1, are detected : they are only reported when a call from outside the function is made.
Recursive functions calls of higher level (A calls B calls A) are not handled.

<?php

function used() {}
// The 'unused' function is defined but never called
function unused() {}

// The 'used' function is called at least once
used();

?>

Suggestions

• Use the function in the code

• Remove the functions from the code

1536 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Functions/UnusedFunctions
Rulesets All, Dead code
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features function, unused
Examples Woocommerce, Piwigo
Available in Entreprise Edition, Exakat Cloud

14.2.1289 Unused Global

A global keyword is used in a method, yet the variable is not actually used. This makes PHP import values
for nothing, or may create interference

<?php
function foo() {

global bar;

return 1;
}

?>

Suggestions

• Remove the global declaration

• Remove the global variable altogether

Specs

Short name Structures/UnusedGlobal
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features global, unused
Examples Dolphin
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1537

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1290 Unused Inherited Variable In Closure

Some closures forgot to make usage of inherited variables.

Closure <https://www.php.net/manual/en/class.`closure.php>`_ have two separate set of incoming variables : the ar-
guments (between parenthesis) and the inherited variables, in the ‘use’ clause. Inherited variables are extracted from
the local environment at creation time, and keep their value until execution.

The reported closures are requesting some local variables, but do not make any usage of them. They may be considered
as dead code.

<?php

// In this closure, $y is forgotten, but $u is used.
$a = function ($y) use ($u) { return $u; };

// In this closure, $u is forgotten
$a = function ($y, $z) use ($u) { return $u; };

?>

See also Anonymous functions.

Suggestions

• Remove the unused inherited variable

• Make us of the unused inherited variable

Specs

Short name Functions/UnusedInheritedVariable
Rulesets All, Analyze, CE, CI-checks, Dead code
Exakat since 1.0.11
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features variable, inherited-variable
Examples shopware, Mautic
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1291 Unused Interfaces

Those interfaces are defined and never used. They should be removed, as they are dead code.

Interfaces may be use as parent for other interfaces, as types (argument, return and property), in instance of.

<?php

interface used {}
interface unused {}

(continues on next page)

1538 Chapter 14. Rules

https://www.php.net/closure
https://www.php.net/manual/en/functions.anonymous.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

(continued from previous page)

// Used by implementation
class c implements used {}

// Used by extension
interface j implements used {}

$x = new c;

// Used in a instanceof
var_dump($x instanceof used);

// Used in a type
function foo(Used $x) {}

?>

Suggestions

• Remove the interface

• Actually use the interface

Specs

Short name Interfaces/UnusedInterfaces
Rulesets All, Changed Behavior, Dead code, Suggestions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features interface
Examples Tine20
Available in Entreprise Edition, Exakat Cloud

14.2.1292 Unused Label

Some labels have been defined in the code, but they are not used. They may be removed as they are dead
code.

There is no analysis for undefined goto call, as PHP checks that goto has a destination label at compile time :

<?php

$a = 0;
A:

++$a;
(continues on next page)

14.2. List of Rules 1539

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// A loop. A: is used
if ($a < 10) { goto A; }

// B is never called explicitly. This is useless.
B:

?>

See also Goto.

Suggestions

• Remove the unused label

• Add a goto call to this label

• Check for spelling mistakes

• Check that it is not a coding typo, like a raw http://www.php.net, left in the code (It is actually valid PHP
code)

Specs

Short name Structures/UnusedLabel
Rulesets All, Changed Behavior, Dead code
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features label, goto
Available in Entreprise Edition, Exakat Cloud

14.2.1293 Unused Methods

Those methods are never called.

They are probably dead code, unless they are called dynamically.

This analysis omits methods which are in a class that makes dynamical self calls : $this->$m(). That way, any method
may be called.

This analysis omits methods which are overwritten by a child class. That way, they are considered to provide a default
behavior.

<?php

class foo {
public function used() {

$this->used();
(continues on next page)

1540 Chapter 14. Rules

https://www.php.net/manual/en/control-structures.goto.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

(continued from previous page)

}

public function unused() {
$this->used();

}
}

class bar extends foo {
public function some() {

$this->used();
}

}

$a = new foo();
$a->used();

?>

See also Dead Code: Unused Method.

Suggestions

• Make use of the method

• Remove the method

• Move the method to another class

Specs

Short name Classes/UnusedMethods
Rulesets All, Changed Behavior, Dead code
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features method
Related rule Unused Public Methods
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1541

https://vulncat.fortify.com/en/detail?id=desc.structural.java.dead_code_unused_method
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1294 Unused Parameter

Those parameters are not used inside the method or function.

Unused parameters should be removed in functions : they are dead code, and seem to offer features that they do not
deliver.

Some parameters are unused, due to the signature compatibility: for example, if an interface or a parent class defines
that parameter, but it is not useful in the current method. Then, it must stay.

This is a silent error: no error message is emitted when doing so.

<?php

// $unused is in the signature, but not used.
function foo($unused, $b, $c) {

return $b + $c;
}

interface i {
function goo($a);

}

class a implements i {
// goo signature comes from the interface
function goo($a) {

return 3;
}

}
?>

Suggestions

• Drop the argument from the signature

• Actually use that argument in the body of the method

Specs

Short name Functions/UnusedArguments
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features parameter
Examples ThinkPHP, phpMyAdmin
Related rule Never Called Parameter, Could Be Class Constant
Available in Entreprise Edition, Exakat Cloud

1542 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/error
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1295 Unused Private Methods

Private methods that are not used in the local class are dead code. Protected methods that are not used in
the local class or its children, are dead code.

Private methods are reserved for the defining class. Thus, they must be used with the current class, with $this or
self\:\:.

Protected methods, in a standalone class, are also included. This analysis skips classes that makes self dynamic calls,
such as $this->$method().

<?php

class Foo {
// Those methods are used
private function method() {}
private static function staticMethod() {}

// Those methods are not used
private function unusedMethod() {}
private static function staticUnusedMethod() {}

public function bar() {
self::staticMethod();
$this->method();

}
}

?>

Suggestions

• Remove the private method, as it is unused

• Add a call to this private method

• Change method visibility to make it available to other classes

Specs

Short name Classes/UnusedPrivateMethod
Rulesets All, Changed Behavior, Dead code
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features visibility
Related rule Unused Public Methods
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1543

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1296 Unused Private Properties

Unused static properties should be removed.

Unused private properties are dead code. They are usually leftovers of development or refactorisation : they used to
have a mission, but are now left.

Being private, those properties are only accessible to the current class or trait. As such, validating the

<?php

class foo {
// This is a used property (see bar method)
private $used = 1;

// This is an unused property
private $unused = 2;

function bar($a) {
$this->used += $a;

return $this->used;
}

}

?>

Suggestions

• Remove the property altogether

• Check if the property wasn’t forgotten in the rest of the class

• Check if the property is correctly named

• Change the visibility to protected or public : may be a visibility refactoring was too harsh

Specs

Short name Classes/UnusedPrivateProperty
Rulesets All, Dead code
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features unused
Examples OpenEMR, phpadsnew
Available in Entreprise Edition, Exakat Cloud

1544 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.static.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1297 Unused Protected Methods

The following protected methods are unused in children class. As such, they may be considered for being
private.

Methods reported by this analysis are not used by children, yet they are protected. No usage of those methods were
found.

This analysis is impacted by dynamic method calls.

<?php

class Foo {
// This method is not used
protected function unusedBar() {}
protected function usedInFoo() {}
protected function usedInFooFoo() {}

public function bar2() {
// some code
$this->usedInFoo();

}
}

class FooFoo extends Foo {
protected function bar() {}

public function bar2() {
// some code
$this->usedInFooFoo();

}
}

class someOtherClass {
protected function bar() {

// This is not related to foo.
$this->unusedbar();

}
}

?>

14.2. List of Rules 1545

Exakat Documentation, Release 1

Suggestions

• Make use of the protected method in the code

• Remove the method

Specs

Short name Classes/UnusedProtectedMethods
Rulesets All, Changed Behavior, Dead code
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features unused
Related rule Unused Public Methods
Available in Entreprise Edition, Exakat Cloud

14.2.1298 Unused Public Methods

This rule lists unused public methods.

Unused public methods are declared as public in the class, but never called, including outside the class.

<?php

class x {
public function usedMethod() {}

// There is no call to this method
public function unusedMethod() {}

}

$x = new x();
$x->usedMethod();

?>

1546 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Classes/UnusedPublicMethod
Rulesets All, Analyze, Changed Behavior
Exakat since 2.4.9
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Medium
Features public, method
Related rule Unused Private Methods, Unused Protected Methods, Unused Methods
Available in Entreprise Edition, Exakat Cloud

14.2.1299 Unused Returned Value

The function called returns a value, which is ignored.

Usually, this is a sign of dead code, or a missed check on the results of the functioncall. At times, it may be a valid call
if the function has voluntarily no return value.

It is recommended to add a check on the return value, or remove the call.

Note that this analysis ignores functions that return void (same meaning that PHP 7.1 : return ; or no return in the
function body).

<?php

// simplest form
function foo() {

return 1;
}

foo();

// In case of multiple return, any one that returns something means that return value is␣
→˓meaningful
function bar() {

if (rand(0, 1)) {
return 1;

} else {
return ;

}
}

bar();

?>

14.2. List of Rules 1547

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Functions/UnusedReturnedValue
Rulesets All, Analyze, Dead code
Exakat since 0.8.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features return
Available in Entreprise Edition, Exakat Cloud

14.2.1300 Unused Trait In Class

A trait has been summoned in a class, but is not used. Traits may be used as a copy/paste of code, bringing
a batch of methods and properties to a class. In the current case, the imported trait is never called. As
such, it may be removed.

Currently, the analysis covers only traits that are used in the class where they are imported. Also, the properties are not
covered yet.

There are some sneaky situations, where a trait falls into decay : for example, creating a method in the importing class,
with the name of a trait class, will exclude the trait method, as the class method has priority. Other precedence rules
may lead to the same effect.

<?php

trait t {
function foo() { return 1;}

}

// this class imports and uses the trait
class UsingTrait {

use t;

function bar() {
return $this->foo() + 1;

}
}

// this class imports but doesn't uses the trait
class UsingTrait {

use t;

function bar() {
return 1;

}
}

?>

See also Traits.

1548 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.traits.php

Exakat Documentation, Release 1

Suggestions

• Remove the trait from the class

• Actually use the trait, at least in the importing class

• Use conflict resolution to make the trait accessible

Specs

Short name Traits/UnusedClassTrait
Rulesets All, Changed Behavior, Class Review
Exakat since 2.1.1
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features trait
Available in Entreprise Edition, Exakat Cloud

14.2.1301 Unused Traits

Those traits are not used in any class or trait. They are probably dead code, as there is no way to use a trait
without a host class.

<?php

// unused trait
trait unusedTrait { /**/ }

// used trait
trait tUsedInTrait { /**/ }

trait tUsedInClass {
use tUsedInTrait;
/**/
}

class foo {
use tUsedInClass;

}
?>

14.2. List of Rules 1549

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Remove the unused trait

• Actually use the trait in one class or another trait

Specs

Short name Traits/UnusedTrait
Rulesets All, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features trait
Available in Entreprise Edition, Exakat Cloud

14.2.1302 Unused Use

Unused use statements. They may be removed, as they clutter the code and slows PHP by forcing it to
search in this list for nothing.

<?php

use A as B; // Used in a new call.
use Unused; // Never used. May be removed

$a = new B();

?>

Suggestions

• Remove the unused use

Specs

Short name Namespaces/UnusedUse
Rulesets All, Changed Behavior, Dead code, php-cs-fixable
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Features use
ClearPHP no-useless-use
Available in Entreprise Edition, Exakat Cloud

1550 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://github.com/dseguy/clearPHP/tree/master/rules/no-useless-use.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1303 Unusual Case For PHP Functions

Usually, PHP functions are written all in lower case.

<?php

// All uppercases PHP functions
ECHO STRTOLOWER('This String');

?>

Suggestions

• Use the PHP casing for functions

Specs

Short name Php/UpperCaseFunction
Rulesets All, Coding conventions, IsExt, IsPHP
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features function, coding-convention
Available in Entreprise Edition, Exakat Cloud

14.2.1304 Unvalidated Data Cached In Session

Data is cached in the $_SESSION variable and later reused. When data is not validated before this storage,
it might be used to make an injection.

<?php

$_SESSION['a'] = $_GET['a'];

// across the code, this call
function foo() {

echo $_SESSION["a"];
}

?>

14.2. List of Rules 1551

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Validate data before storing in the SESSION

Specs

Short name Security/SessionCachedData
Rulesets All, Changed Behavior, Security
Exakat since 2.5.2
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Available in Entreprise Edition, Exakat Cloud

14.2.1305 Upload Filename Injection

When receiving a file via Upload, it is recommended to store it under a self-generated name. Any storage
that uses the original filename, or even a part of it may be vulnerable to injections.

It is highly recommended to validate any incoming file, generate a name for it, and store the result in a folder outside
the web folder. Also, avoid accepting PHP scripts, if possible.

<?php

// Security error ! the $_FILES['upload']['filename'] is provided by the sender.
// 'a.<script>alert(\'a\')</script>'; may lead to a HTML injection.
$extension = substr(strrchr($_FILES['upload']['name'], '.') ,1);
if (!in_array($extension, array('gif', 'jpeg', 'jpg')) {

// process error
continue;

}
// Md5 provides a name without special characters
$name = md5($_FILES['upload']['filename']);
if(@move_uploaded_file($_FILES['upload']['tmp_name'], '/var/no-www/upload/'.$name.'.'.
→˓$extension)) {

safeStoring($name.'.'.$extension, $_FILES['upload']['filename']);
}

// Security error ! the $_FILES['upload']['filename'] is provided by the sender.
if(@move_uploaded_file($_FILES['upload']['tmp_name'], $_FILES['upload']['filename'])) {

safeStoring($_FILES['upload']['filename']);
}

// Security error ! the $_FILES['upload']['filename'] is provided by the sender.
// 'a.<script>alert('a')</script>'; may lead to a HTML injection.
$extension = substr(strrchr($_FILES['upload']['name'], '.') ,1);
$name = md5($_FILES['upload']['filename']);
if(@move_uploaded_file($_FILES['upload']['tmp_name'], $name.'.'.$extension)) {

safeStoring($name.'.'.$extension, $_FILES['upload']['filename']);
}

(continues on next page)

1552 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/result

Exakat Documentation, Release 1

(continued from previous page)

?>

See also [CVE-2017-6090], CWE-616: Incomplete Identification of Uploaded File Variables and Why File Upload
Forms are a Major Security Threat.

Suggestions

• Validate uploaded filenames

• Rename files upon storage, and keep the original name in a database

Specs

Short name Security/UploadFilenameInjection
Rulesets All, Security
Exakat since 0.12.14
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision High
Features upload
Available in Entreprise Edition, Exakat Cloud

14.2.1306 Usage Of class_alias()

class_alias creates dynamically an alias for classes.

<?php

class foo { }

class_alias('foo', 'bar');

$a = new foo;
$b = new bar;

// the objects are the same
var_dump($a == $b, $a === $b);
var_dump($a instanceof $b);

// the classes are the same
var_dump($a instanceof foo);
var_dump($a instanceof bar);

var_dump($b instanceof foo);
var_dump($b instanceof bar);

?>

14.2. List of Rules 1553

https://cxsecurity.com/issue/WLB-2017100031
https://cwe.mitre.org/data/definitions/616.html
https://www.acunetix.com/websitesecurity/upload-forms-threat/
https://www.acunetix.com/websitesecurity/upload-forms-threat/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

See also class_alias.

Specs

Short name Classes/ClassAliasUsage
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features class, class-alias
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1307 Use ::Class Operator

Use \:\:class to hardcode class names, instead of strings.

This is actually faster than strings, which are parsed at execution time, while \:\:class is compiled, making it faster
to execute.

\:\:class operator is also able to handle use expressions, including aliases and local namespace. The code is easier
to maintain. For example, the target class’s namespace may be renamed, without changing the \:\:class, while the
string must be updated.

\:\:class operator works with self and ``static``keywords. This is not possible when building the name of the class
with concatenation.

This is a micro-optimization. This also helps static analysis, as it gives more information at compile time to analyse.

<?php

namespace foo\bar;

use foo\bar\X as B;

class X {}

$className = '\foo\bar\X';

$className = foo\bar\X::class;

$className = B\X;

$object = new $className;

?>

See also ::class.

1554 Chapter 14. Rules

https://www.php.net/class_alias
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.basic.php#language.oop5.basic.class.class

Exakat Documentation, Release 1

Suggestions

• Replace strings by the ::class operator whenever possible

Specs

Short name Classes/UseClassOperator
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, Performances
Exakat since 0.8.7
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Medium
Features class-operator
Examples Typo3
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1308 Use === null

It is faster to use === null than the function is_null().

This is a micro-optimisation. And being used frequently, and in loops, it may yield visible speed up.

<?php

// Operator === is faster
if ($a === null) {

}

// Function call is slow
if (is_null($a)) {

}
?>

See also is_null.

Suggestions

• Use === comparison instead of is_null

14.2. List of Rules 1555

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/is_null
https://www.php.net/is_null

Exakat Documentation, Release 1

Specs

Short name Php/IsnullVsEqualNull
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, php-cs-fixable
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features strict-comparison, null
ClearPHP avoid-those-slow-functions
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1309 Use Array Functions

There are a lot of native PHP functions for arrays. It is often faster to take advantage of them than write a
loop.

• array_push() : use array_merge()

• array_slice() : use array_chunk()

• index access : use array_column()

• append []: use array_merge()

• addition : use array_sum()

• multiplication : use array_product()

• concatenation : use implode()

• ifthen : use array_filter()

<?php

$all = implode('-', $s).'-';

// same as above
$all = '';
foreach($array as $s) {

$all .= $s . '-';
}

?>

See also Array Functions and No array_merge() In Loops.

1556 Chapter 14. Rules

https://github.com/dseguy/clearPHP/tree/master/rules/avoid-those-slow-functions.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_push
https://www.php.net/array_merge
https://www.php.net/array_slice
https://www.php.net/array_chunk
https://www.php.net/array_column
https://www.php.net/array_merge
https://www.php.net/array_sum
https://www.php.net/array_product
https://www.php.net/implode
https://www.php.net/array_filter
https://www.php.net/manual/en/ref.array.php

Exakat Documentation, Release 1

Suggestions

• Remove the loop and use a native PHP function

• Add more expressions to the loop : batching multiple operations in one loop makes it more interesting than
running separates loops.

Specs

Short name Structures/UseArrayFunctions
Rulesets All, Changed Behavior, Suggestions
Exakat since 1.8.8
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features class
Available in Entreprise Edition, Exakat Cloud

14.2.1310 Use Arrow Functions

Arrow functions are closures that require one expression of code. They also include all the variables of
the current context, unless they are made static.

Arrow functions were introduced in PHP 7.4. They added the reserved keyword fn.

<?php

array_map(fn(A $b): int => $b->c, $array);

function array_values_from_keys($arr, $keys) {
return array_map(fn($x) => $arr[$x], $keys);

}
?>

See also RFC : Arrow functions and Arrow functions in PHP.

Specs

Short name Functions/UseArrowFunctions
Rulesets All, Appinfo, CE, Changed Behavior, One Liners
Exakat since 1.9.4
PHP Version With PHP 7.4 and more recent
Severity
Time To Fix
Precision Very high
Features arrow-function
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1557

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://wiki.php.net/rfc/arrow_functions
https://stitcher.io/blog/short-closures-in-php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1311 Use Basename Suffix

basename() is able to remove a file extension when it is provided as argument. The second argument is
removed from the name of the file.

Using basename() instead of substr() or else, makes the intention clear.

<?php

$path = 'phar:///path/to/file.php';

// Don't forget the .
$filename = basename($path, '.php');

// Too much work for this
$filename = substr(basename($path), 0, -4);

?>

See also basename.

Suggestions

• Use basename(), remove more complex code based on substr() or str_replace()

Specs

Short name Structures/BasenameSuffix
Rulesets All, Suggestions
Exakat since 1.5.1
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features basename, file-extension, dirname
Examples NextCloud, Dolibarr
Available in Entreprise Edition, Exakat Cloud

14.2.1312 Use Browscap

Browscap is a browser database, accessible via get_browser().

Browscap is the ‘Browser Capabilities Project’.

<?php
echo $_SERVER['HTTP_USER_AGENT'] . "\n\n";

$browser = get_browser(null, true);
print_r($browser);
?>

See also browscap.

1558 Chapter 14. Rules

https://www.php.net/basename
https://www.php.net/basename
https://www.php.net/substr
http://www.php.net/basename
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/get_browser
http://browscap.org/

Exakat Documentation, Release 1

Specs

Short name Php/UseBrowscap
Rulesets All, Appinfo, CE
Exakat since 0.11.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features browscap
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1313 Use Cli

Signal the usage of code in CLI mode, through the usage of $argv and $argc variables, or the getopt()
function.

<?php

// Characteristics of CLI usage
getopt("abcd");

?>

Specs

Short name Php/UseCli
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Features cli, $argv, $argc
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1314 Use Closure Trailing Comma

Use a trailing comma in the closure <https://www.php.net/`closure>`_’s use list.

A trailing comma doesn’t add any argument, not even a void or null one. It is a convenient for VCS to make diff with
the previous code, and have them more readable.

This feature was added in PHP 8.0.

<?php

// PHP 8.0 valid syntax
$f = function foo() use ($a,) { };

(continues on next page)

14.2. List of Rules 1559

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/getopt
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/closure

Exakat Documentation, Release 1

(continued from previous page)

// always valid syntax for closure
$f = function foo() use ($a) { };

?>

See also Trailing Comma In Closure Use List.

Suggestions

• Add a trailing comma when there are more than one argument in the use expression

Specs

Short name Php/UseTrailingUseComma
Rulesets All, Appinfo, CE
Exakat since 2.1.6
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features trailing-comma
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1315 Use Composer Lock

This rule reports when the composer.lock is committed to the archive. composer.lock stores the actual
versions of the components that were fetched by composer, based on the composer.json. This is useful
to store and share among developers.

See also Composer.

Specs

Short name Composer/UseComposerLock
Rulesets All, Appinfo, CE
Exakat since 0.9.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features composer
Available in Entreprise Edition, Community Edition, Exakat Cloud

1560 Chapter 14. Rules

https://wiki.php.net/rfc/trailing_comma_in_closure_use_list
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://getcomposer.org/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1316 Use Const And Functions

Since PHP 5.6 it is possible to import specific functions or constants from other namespaces.

<?php

namespace A {
const X = 1;
function foo() { echo __FUNCTION__; }

}

namespace My{
use function A\foo;
use constant A\X;

echo foo(X);
}

?>

See also Using namespaces: Aliasing/Importing.

Specs

Short name Namespaces/UseFunctionsConstants
Rulesets All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55
Exakat since 0.8.4
PHP Version With PHP 5.6 and more recent
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1317 Use Constant As Arguments

Some methods and functions are defined to be used with constants as arguments. Those constants are made
to be meaningful and readable, keeping the code maintenable. It is recommended to use such constants as
soon as they are documented.

Here is the list of functions that use a unique PHP constant as argument :

• array_change_key_case()

• array_multisort()

• array_unique()

• count()

• dns_get_record()

• easter_days()

• extract()

• filter_input()

14.2. List of Rules 1561

https://www.php.net/manual/en/language.namespaces.importing.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_change_key_case
https://www.php.net/array_multisort
https://www.php.net/array_unique
https://www.php.net/count
https://www.php.net/dns_get_record
https://www.php.net/easter_days
https://www.php.net/extract
https://www.php.net/filter_input

Exakat Documentation, Release 1

• filter_var()

• fseek()

• get_html_translation_table()

• gmp_div_q()

• gmp_div_qr()

• gmp_div_r()

• html_entity_decode()

• htmlspecialchars_decode()

• http_build_query()

• http_parse_cookie()

• http_parse_params()

• http_redirect()

• http_support()

• parse_ini_file()

• parse_ini_string()

• parse_url()

• pathinfo()

• pg_select()

• posix_access()

• round()

• scandir()

• socket_read()

• str_pad()

• trigger_error()

Here is the list of functions that use a combination of PHP native constants as argument.

• arsort()

• asort()

• error_reporting()

• filter_input()

• filter_var()

• get_html_translation_table()

• htmlentities()

• htmlspecialchars()

• http_build_url()

• jdtojewish()

• krsort()

1562 Chapter 14. Rules

https://www.php.net/filter_var
https://www.php.net/fseek
https://www.php.net/get_html_translation_table
https://www.php.net/gmp_div_q
https://www.php.net/gmp_div_qr
https://www.php.net/gmp_div_r
https://www.php.net/html_entity_decode
https://www.php.net/htmlspecialchars_decode
https://www.php.net/http_build_query
https://www.php.net/http_parse_cookie
https://www.php.net/http_parse_params
https://www.php.net/http_redirect
https://www.php.net/http_support
https://www.php.net/parse_ini_file
https://www.php.net/parse_ini_string
https://www.php.net/parse_url
https://www.php.net/pathinfo
https://www.php.net/pg_select
https://www.php.net/posix_access
https://www.php.net/round
https://www.php.net/scandir
https://www.php.net/socket_read
https://www.php.net/str_pad
https://www.php.net/trigger_error
https://www.php.net/arsort
https://www.php.net/asort
https://www.php.net/error_reporting
https://www.php.net/filter_input
https://www.php.net/filter_var
https://www.php.net/get_html_translation_table
https://www.php.net/htmlentities
https://www.php.net/htmlspecialchars
https://www.php.net/http_build_url
https://www.php.net/jdtojewish
https://www.php.net/krsort

Exakat Documentation, Release 1

• ksort()

• pg_result_status()

• phpcredits()

• phpinfo()

• preg_grep()

• preg_match()

• preg_split()

• rsort()

• runkit_import()

• sort()

• stream_socket_client()

• stream_socket_server()

<?php

// Turn off all error reporting
// 0 and -1 are accepted
error_reporting(0);

// Report simple running errors
error_reporting(E_ERROR | E_WARNING | E_PARSE);

// The first argument can be one of INPUT_GET, INPUT_POST, INPUT_COOKIE, INPUT_SERVER,␣
→˓or INPUT_ENV.
$search_html = filter_input(INPUT_GET, 'search', FILTER_SANITIZE_SPECIAL_CHARS);

// sort accepts one of SORT_REGULAR, SORT_NUMERIC, SORT_STRING, SORT_LOCALE_STRING, SORT_
→˓NATURAL
// SORT_FLAG_CASE may be added, and combined with SORT_STRING or SORT_NATURAL
sort($fruits);

?>

14.2. List of Rules 1563

https://www.php.net/ksort
https://www.php.net/pg_result_status
https://www.php.net/phpcredits
https://www.php.net/phpinfo
https://www.php.net/preg_grep
https://www.php.net/preg_match
https://www.php.net/preg_split
https://www.php.net/rsort
https://www.php.net/sort
https://www.php.net/stream_socket_client
https://www.php.net/stream_socket_server

Exakat Documentation, Release 1

Suggestions

• Use PHP native constants, whenever possible, instead of nondescript literals.

Specs

Short name Functions/UseConstantAsArguments
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Examples Tikiwiki, shopware
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1318 Use Constant Instead Of Function

Some functioncalls have a constant equivalent, that is faster to execute than calling the function.

This applies to the following functions :

• pi() : replace with M_PI

• phpversion() : replace with PHP_VERSION

• php_sapi_name() : replace with PHP_SAPI_NAME

<?php

// recommended way
echo PHP_VERSION;

// slow version
echo php_version();

?>

See also PHP why pi() and M_PI.

Suggestions

• Use the constant version, not the function.

1564 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/pi
https://www.php.net/phpversion
https://www.php.net/php_sapi_name
https://stackoverflow.com/questions/42021176/php-why-pi-and-m-pi

Exakat Documentation, Release 1

Specs

Short name Structures/UseConstant
Rulesets All, Analyze, CE, CI-checks, PHP recommendations, php-cs-fixable
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1319 Use Constants As Returns

When a native PHP function returns only constants, it is recommended to use those constants to identify
the returned values.

<?php

if (preg_last_error() != PREG_NO_ERROR) {
// An error occured with the last Regex call

}

// Who will guess PREG_JIT_STACKLIMIT_ERROR ?
if (preg_last_error() == 6) {

// An error occured with the last Regex call
}

?>

Suggestions

• Use the valid constants to identify the results

Specs

Short name Functions/UseConstantsAsReturns
Rulesets All, Analyze
Exakat since 2.3.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1565

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1320 Use Contravariance

Contravariance is compatible argument typehint. A child class may accept an object of a parent class of
the argument type of its parent’s method.

Since a children class may accept a parent class of the argument type, the evolution is in opposite order.

Contravariance is a PHP 7.4 feature. Contravariance is distinct from return type covariance.

<?php
class X {
function m(Y $z): X {}

}

// m is overwriting the parent's method.
// The return type is different.
// The return type is compatible, as Y is also a sub-class of X.
class Y extends X {
function m(X $z): Y {}

}

?>

See also Covariant Returns and Contravariant Parameters and No title for `Php/UseCovariance <No anchor for
Php/UseCovariance>`.

Specs

Short name Php/UseContravariance
Rulesets All, Appinfo, CE
Exakat since 1.9.3
PHP Version With PHP 7.4 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features type-covariance, type-contravariance
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1321 Use Cookies

This code source uses cookies.

Cookie usage is spotted with the usage of setcookie(), setrawcookie() and header() with the ‘Set-Cookie’ header.

<?php

header('Set-Cookie: '.$name.'='.$value.'; EXPIRES'.$date.';');

// From the PHP Manual :
setcookie('TestCookie3', $value, time()+3600, '/~rasmus/', 'example.com', 1);

?>

1566 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://wiki.php.net/rfc/covariant-returns-and-contravariant-parameters
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/setcookie
https://www.php.net/setrawcookie
https://www.php.net/header

Exakat Documentation, Release 1

See also Cookies.

Specs

Short name Php/UseCookies
Rulesets All, Appinfo, CE
Exakat since 0.10.6
PHP Version All
Severity
Time To Fix
Precision High
Features cookie
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1322 Use Covariance

Covariance is compatible return typehint. A child class may return an object of a child class of the return
type of its parent’s method.

Since a children class may return a children class of the return type, the evolution is in the same order.

Covariance is a PHP 7.4 feature. Covariance is distinct from argument contravariance.

<?php
class X {
function m(Y $z): X {}

}

// m is overwriting the parent's method.
// The return type is different.
// The return type is compatible, as Y is also a sub-class of X.
class Y extends X {
function m(X $z): Y {}

}

?>

See also Covariant Returns and Contravariant Parameters and :ref:`No title for `Php/UseContravariance`_ <No an-
chor for `Php/UseContravariance`_>`.

14.2. List of Rules 1567

https://www.php.net/manual/en/features.cookies.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://wiki.php.net/rfc/covariant-returns-and-contravariant-parameters

Exakat Documentation, Release 1

Specs

Short name Php/UseCovariance
Rulesets All, Appinfo, CE
Exakat since 1.9.3
PHP Version With PHP 7.4 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features covariance
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1323 Use DNF

This rule detects the usage of the DNF. DNF is the disjunctive Normal Form. It is a syntax to handle union
and intersectional types at the same time. It was introducted in PHP 8.2.

DNF is available for every typed element of PHP : properties, arguments and returntype. It was extended to class
constants on PHP 8.3.

<?php

class x {
const (A&B)|string C = 'string';

function foo((A&B)|(C&D) $e) {}

}

?>

See also PHP 8.2: DNF Types.

Specs

Short name Php/UseDNF
Rulesets All, Appinfo
Exakat since 2.5.3
PHP Version With PHP 8.2 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features type, dnf-type
Available in Entreprise Edition, Exakat Cloud

1568 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://php.watch/versions/8.2/dnf-types
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1324 Use DateTimeImmutable Class

The DateTimeImmutable class is the immutable version of the Datetime class.

While DateTime may be modified, DateTimeImmutable cannot be modified : it needs to be cloned instead. Any
modification to such an object will return a new and distinct object. This prevents alterations that are hard to track.

<?php
// Example extracted from Derick Rethans' article (link below)

function formatNextMondayFromNow(DateTime $dt)
{

return $dt->modify('next monday')->format('Y-m-d');
}

$d = new DateTime(); //2014-02-17
echo formatNextMondayFromNow($d), "\n";
echo $d->format('Y-m-d'), "\n"; //2014-02-17
?>

See also What’s all this ‘immutable date’ stuff, anyway?, DateTimeImmutable, The DateTime class and The Date-
TimeImmutable class.

Suggestions

• Always use DateTimeImmutable when manipulating dates.

Specs

Short name Php/UseDateTimeImmutable
Rulesets All, Suggestions
Exakat since 1.8.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features immutable, date
Available in Entreprise Edition, Exakat Cloud

14.2.1325 Use Debug

The code source includes calls to debug functions.

The following debug functions and libraries are reported :

• Aronduby Dump

• Cakephp Debug Toolbar

• Kint

• Krumo

• Nette tracy

14.2. List of Rules 1569

https://medium.com/@codebyjeff/whats-all-this-immutable-date-stuff-anyway-72d4130af8ce
https://derickrethans.nl/immutable-datetime.html
https://www.php.net/manual/en/class.datetime.php
https://www.php.net/manual/en/class.datetimeimmutable.php
https://www.php.net/manual/en/class.datetimeimmutable.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://github.com/aronduby/dump
https://github.com/cakephp/debug_kit
https://github.com/kint-php/kint
https://github.com/mmucklo/krumo
https://tracy.nette.org/

Exakat Documentation, Release 1

• php-debugbar

• PHP native functions : print_r(), var_dump(), debug_backtrace(), debug_print_backtrace(), debug_zval_dump()

• Symfony debug

• Wordpress debug

• Xdebug

• Zend debug

<?php

// Example with Zend Debug
Zend\Debug\Debug::dump($var, $label = null, $echo = true);

?>

Specs

Short name Structures/UseDebug
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.11.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features debug
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1326 Use Enum Case In Constant Expression

Enum cases are constants, and may be used in constant definitions, as value. This is valid both with the
case itself, or with their value, for the backed enum version.

<?php

enum A {
case A;

}

enum B : string {
case B = 'b';

}

class C {
const C1 = A::A;
const C2 = B::B->value;

}
?>

1570 Chapter 14. Rules

https://github.com/maximebf/php-debugbar
https://www.php.net/print_r
https://www.php.net/var_dump
https://www.php.net/debug_backtrace
https://www.php.net/debug_print_backtrace
https://www.php.net/debug_zval_dump
https://symfony.com/doc/current/components/debug.html
https://codex.wordpress.org/Debugging_in_WordPress
https://xdebug.org/
https://github.com/zendframework/zend-debug
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short
name

Php/UseEnumCaseInConstantExpression

Rule-
sets

All, Appinfo, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56,
CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73, Compatibility-
PHP74, CompatibilityPHP80, CompatibilityPHP81

Ex-
akat
since

2.5.3

PHP
Ver-
sion

With PHP 8.2 and more recent

Sever-
ity

Minor

Time
To
Fix

Quick (30 mins)

Pre-
ci-
sion

Medium

Avail-
able
in

Entreprise Edition, Exakat Cloud

14.2.1327 Use File Append

When appending data to a file, one may also use the file_put_contents() function with the FILE_APPEND
option.

Using file_put_contents() also keeps the file open as little as possible, unlike keeping the resource open in PHP, between
usages.

<?php

// appends the text to the end of the end of the file
file_put_contents($file, $text, FILE_APPEND);

// appends the text to the end of the end of the file
$fp = fopen($file, 'a');
fwrite($fp, $text);

?>

14.2. List of Rules 1571

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/file_put_contents
https://www.php.net/file_put_contents

Exakat Documentation, Release 1

Suggestions

• Use file_put_contents()

Specs

Short name Structures/UseFileAppend
Rulesets All, Changed Behavior, Suggestions
Exakat since 2.3.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.1328 Use Instanceof

The instanceof operator is a more precise alternative to is_object(). It is also faster.

instanceof checks for an variable to be of a class or its parents or the interfaces it implements. Once instanceof has
been used, the actual attributes available (properties, constants, methods) are known, unlike with is_object().

Last, instanceofmay be upgraded to Typehint, by moving it to the method signature. instanceof and is_object()
may not be always interchangeable. Consider using isset() on a known property for a simple check on objects. You
may also consider is_string(), is_integer() or is_scalar(), in particular instead of !`is_object() <https://www.
php.net/is_object>`_.

The instanceof operator is also faster than the is_object() functioncall.

<?php

class Foo {

// Don't use is_object
public function bar($o) {

if (!is_object($o)) { return false; } // Classic argument check
return $o->method();

}

// use instanceof
public function bar($o) {

if ($o instanceof myClass) { // Now, we know which methods are available
return $o->method();

}

return false; } // Default behavior
}

// use of typehinting
// in case $o is not of the right type, exception is raised automatically
public function bar(myClass $o) {

return $o->method();
(continues on next page)

1572 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.operators.type.php
https://www.www.php.net/isset
https://www.php.net/is_string
https://www.php.net/is_integer
https://www.php.net/is_scalar

Exakat Documentation, Release 1

(continued from previous page)

}
}

?>

See also Type Operators and is_object.

Suggestions

• Use instanceof and remove is_object()

• Create a high level interface to check a whole family of classes, instead of testing them individually

• Use typehint when possible

• Avoid mixing scalar types and objects in the same variable

Specs

Short name Classes/UseInstanceof
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features instanceof
Examples TeamPass, Zencart
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1329 Use List With Foreach

Foreach() structures accepts list() as blind key. If the loop-value is an array with a fixed structure, it is
possible to extract the values directly into variables with explicit names.

<?php

// Short way to assign variables
// Works on PHP 7.1, where list() accepts keys.
foreach($names as list('first' => $first, 'last' => $last)) {

doSomething($first, $last);
}

// Short way to assign variables
// Works on all PHP versions with numerically indexed arrays.
foreach($names as list($first, $last)) {

doSomething($first, $last);
}

// Long way to assign variables
(continues on next page)

14.2. List of Rules 1573

https://www.php.net/manual/en/language.operators.type.php#language.operators.type
https://www.php.net/manual/en/function.is-object.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.foreach.php
https://www.php.net/list

Exakat Documentation, Release 1

(continued from previous page)

foreach($names as $name) {
$first = $name['first'];
$last = $name['last'];

doSomething($first, $last);
}

?>

See also list and foreach.

Suggestions

• Use the list keyword (or the short syntax), and simplify the array calls in the loop.

Specs

Short name Structures/UseListWithForeach
Rulesets All, Changed Behavior, Suggestions, Top10
Exakat since 1.0.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features class
Examples MediaWiki
Available in Entreprise Edition, Exakat Cloud

14.2.1330 Use Lower Case For Parent, Static And Self

The special parent, static and self keywords needed to be lowercase to be usable. This was fixed in PHP
5.5; otherwise, they would yield a ‘PHP Fatal error: Class ‘PARENT’ not found’.

parent, static and self are traditionally written in lowercase only. Mixed case and Upper case are both valid, though.
Until PHP 5.5, non-lowercase version of those keywords are generating a bug.

<?php

class foo {
const aConstante = 233;

function method() {
// Wrong case, error with PHP 5.4.* and older
echo SELF::aConstante;

// Always right.
echo self::aConstante;

}
}

(continues on next page)

1574 Chapter 14. Rules

https://www.php.net/manual/en/function.list.php
https://www.php.net/manual/en/control-structures.foreach.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

(continued from previous page)

?>

Suggestions

• Upgrade to PHP 5.6 or more recent

Specs

Short name Php/CaseForPSS
Rulesets All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54
Exakat since 0.8.4
PHP Version With PHP 5.5 and older
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features parent, static, self
Available in Entreprise Edition, Exakat Cloud

14.2.1331 Use Named Boolean In Argument Definition

Boolean values in argument definition are confusing.

It is recommended to use explicit constant names or enumerations, instead. They are more readable. They also allow
for easy replacement when the code evolve and has to replace those booleans by strings. This works even also with
classes, and class constants.

<?php

function flipImage($im, $horizontal = NO_HORIZONTAL_FLIP, $vertical = NO_VERTICAL_FLIP)
→˓{ }

// with constants
const HORIZONTAL_FLIP = true;
const NO_HORIZONTAL_FLIP = true;
const VERTICAL_FLIP = true;
const NO_VERTICAL_FLIP = true;

rotateImage($im, HORIZONTAL_FLIP, NO_VERTICAL_FLIP);

// without constants
function flipImage($im, $horizontal = false, $vertical = false) { }

rotateImage($im, true, false);

?>

See also Improve Passing Booleans in PHP, Flag Argument and Improve Passing Booleans in PHP.

14.2. List of Rules 1575

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://freek.dev/2227-improve-passing-booleans-in-php
https://martinfowler.com/bliki/FlagArgument.html
https://freek.dev/2227-improve-passing-booleans-in-php

Exakat Documentation, Release 1

Suggestions

• Use available constants whenever possible

• Create a constant (global or class), and use it

• Use named parameters to clarify the target of the boolean

• Use a single-parameter method, so that the value of the boolean is obvious

• Use an enumeration

Specs

Short name Functions/AvoidBooleanArgument
Rulesets All, Analyze, Changed Behavior
Exakat since 1.0.6
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Examples phpMyAdmin, Cleverstyle
Available in Entreprise Edition, Exakat Cloud

14.2.1332 Use NullSafe Operator

The nullsafe operator ?-> is an alternative to the object operator ->. It silently fails the whole expression
if a null is used for object.

<?php

$o = null;

// PHP 8.0 Failsafe : $r = null;
$r = $o->method();

// PHP 7.4- : Call to a member function method() on null
$r = $o->method();

?>

See also PHP RFC: Nullsafe operator.

1576 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://wiki.php.net/rfc/nullsafe_operator

Exakat Documentation, Release 1

Specs

Short name Php/UseNullSafeOperator
Rulesets All, Appinfo, CE, Changed Behavior, One Liners
Exakat since 2.1.6
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features object-operator
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1333 Use Nullable Type

The code uses nullable type, available since PHP 7.1.

Nullable Types are an option to type hint : they allow the passing value to be null, or another type.

According to the authors of the feature : ‘It is common in many programming languages including PHP to allow a
variable to be of some type or null. This null often indicates an error or lack of something to return.’

<?php

function foo(?string $a = 'abc') : ?string {
return $a.b;

}

?>

See also Type declarations and PHP RFC: Nullable Types.

Specs

Short
name

Php/UseNullableType

Rulesets All, Appinfo, CE, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, Compatibility-
PHP56, CompatibilityPHP70

Exakat
since

0.8.4

PHP Ver-
sion

With PHP 7.1 and more recent

Severity Major
Time To
Fix

Quick (30 mins)

Precision Very high
Features nullable
Available
in

Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1577

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration
https://wiki.php.net/rfc/nullable_types
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1334 Use PHP Attributes

This rule reports if PHP 8.0 attributes are in use.

Attributes look like special comments #[`... <https://www.php.net/manual/en/functions.arguments.
php#functions.variable-arg-list>`_]. They are linked to classes, traits, interfaces, enums, class constants,
functions, methods, and parameters.

<?php

#[foo(4)]
class x {

}

?>

See also PHP RFC: Shorter Attribute Syntax, Attributes Amendements and Shorter Attribute Syntax Change.

Specs

Short name Php/UseAttributes
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 2.1.6
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features attribute
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1335 Use PHP Object API

OOP API is the modern version of the PHP API.

When PHP offers the alternative between procedural and OOP api for the same features, it is recommended to use the
OOP API.

Often, this least to more compact code, as methods are shorter, and there is no need to bring the resource around. Lots
of new extensions are directly written in OOP form too.

OOP / procedural alternatives are available for mysqli <https://www.php.net/manual/en/book.`mysqli.php>`_, tidy
<https://www.php.net/manual/en/book.`tidy.php>`_, cairo, finfo, and some others.

<?php
/// OOP version
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if ($mysqli->connect_errno) {

printf("Connect failed: %s\n", $mysqli->connect_error);
exit();

(continues on next page)

1578 Chapter 14. Rules

https://wiki.php.net/rfc/shorter_attribute_syntax
https://wiki.php.net/rfc/attribute_amendments
https://wiki.php.net/rfc/shorter_attribute_syntax_change
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/mysqli
https://www.php.net/tidy
https://www.php.net/tidy
https://www.php.net/manual/en/book.cairo.php
https://www.php.net/manual/en/book.fileinfo.php

Exakat Documentation, Release 1

(continued from previous page)

}

/* Create table doesn't return a resultset */
if ($mysqli->query("CREATE TEMPORARY TABLE myCity LIKE City") === TRUE) {

printf("Table myCity successfully created.\n");
}

/* Select queries return a resultset */
if ($result = $mysqli->query("SELECT Name FROM City LIMIT 10")) {

printf("Select returned %d rows.\n", $result->num_rows);

/* free result set */
$result->close();

}
?>

Suggestions

• Use the object API

Specs

Short name Php/UseObjectApi
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features object-api
ClearPHP use-object-api
Examples WordPress, PrestaShop
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1336 Use PHP7 Encapsed Strings

PHP 7 has optimized the handling of double-quoted strings. In particular, double-quoted strings are much
less memory hungry than classic concatenations.

PHP allocates memory at the end of the double-quoted string, making only one call to the allocator. On the other
hand, concatenations are allocated each time they include dynamic content, leading to higher memory consumption.
Concatenations are still needed with constants, static constants, magic constants, functions, static properties or static
methods.

<?php

$bar = 'bar';

(continues on next page)

14.2. List of Rules 1579

https://github.com/dseguy/clearPHP/tree/master/rules/use-object-api.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

(continued from previous page)

/* PHP 7 optimized this */
$a = "foo and $bar";

/* This is PHP 5 code (aka, don't use it) */
$a = 'foo and ' . $bar;

// Constants can't be used with double quotes
$a = 'foo and ' . __DIR__;
$a = "foo and __DIR__"; // __DIR__ is not interpolated

?>

See also PHP 7 performance improvements (3/5): Encapsed strings optimization.

Specs

Short name Performances/PHP7EncapsedStrings
Rulesets All, Changed Behavior, Performances
Exakat since 1.0.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features string
Available in Entreprise Edition, Exakat Cloud

14.2.1337 Use Pathinfo

Use pathinfo() function instead of string manipulations.

pathinfo() is more efficient and readable and string functions. When the path contains UTF-8 characters, pathinfo()
may strip them. There, string functions are necessary.

<?php

$filename = '/path/to/file.php';

// With pathinfo();
$details = pathinfo($filename);
print $details['extension']; // also capture php

// With string functions (other solutions possible)
$ext = substr($filename, - strpos(strreverse($filename), '.')); // Capture php

?>

1580 Chapter 14. Rules

https://blog.blackfire.io/php-7-performance-improvements-encapsed-strings-optimization.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/pathinfo
https://www.php.net/pathinfo
https://www.php.net/pathinfo

Exakat Documentation, Release 1

Suggestions

• Use pathinfo() and its second argument

Specs

Short name Php/UsePathinfo
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features pathinfo
Examples SuiteCrm
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1338 Use Positive Condition

Whenever possible, use a positive condition.

Positive conditions are easier to understand, and lead to less understanding problems. Negative conditions are not
reported when else is not present.

<?php

// This is a positive condition
if ($a == 'b') {

doSomething();
} else {

doSomethingElse();
}

if (!empty($a)) {
doSomething();

} else {
doSomethingElse();

}

// This is a negative condition
if ($a == 'b') {

doSomethingElse();
} else {

doSomething();
}

// No need to force $a == 'b' with empty else
if ($a != 'b') {

doSomethingElse();
}

(continues on next page)

14.2. List of Rules 1581

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

?>

See also Double negatives should not not be avoided and How To Write Conditional Statements in PHP.

Suggestions

• Invert the code in the if branches, and the condition

Specs

Short name Structures/UsePositiveCondition
Rulesets All, Analyze
Exakat since 0.8.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Examples SPIP, ExpressionEngine
Available in Entreprise Edition, Exakat Cloud

14.2.1339 Use Recursive count()

The native count() function is recursive: it can count all the elements inside multi-dimensional arrays.

The second argument of count, when set to COUNT_RECURSIVE, count recursively the elements.

Recursive count() counts all the elements, includeing the recusrive elements themselves. For a 2 dimensional array, this
means removing the normal count of elements from the list. For higher dimensions, removing the recursive elememnts
requires better filtering.

<?php

$array = array(array(1,2,3), array(4,5,6));

print (count($array, COUNT_RECURSIVE) - count($array, COUNT_NORMAL));

$count = 0;
foreach($array as $a) {

$count += count($a);
}
print $count;

?>

See also count.

1582 Chapter 14. Rules

https://cleankotlin.nl/blog/double-negations
https://www.digitalocean.com/community/tutorials/how-to-write-conditional-statements-in-php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/count
https://www.php.net/count
https://www.php.net/count

Exakat Documentation, Release 1

Suggestions

• Drop the loop and use the 2nd argument of count()

Specs

Short name Structures/UseCountRecursive
Rulesets All, Changed Behavior, Suggestions
Exakat since 1.1.7
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Examples WordPress, PrestaShop
Available in Entreprise Edition, Exakat Cloud

14.2.1340 Use Same Types For Comparisons

Beware when using inequality operators that the type of the values are the same on both sites of the oper-
ators.

Different types may lead to PHP type juggling, where the values are first cast to one of the used types. Other comparisons
are always failing, leading to unexpected behavior.

This applies to all inequality operators, as well as the spaceship operator.

This analysis skips comparisons between integers, floats and strings, as those are usually expected.

Thanks to Jordi Boggiano and Filippo Tessarotto.

<?php

// Both are wrong, while one should be true (depending on when you read this)
var_dump('1995-06-08' < new DateTimeImmutable());
var_dump('1995-06-08' > new DateTimeImmutable());

enum x : int {
case A = 1;
case B = 2;

}

// Both are false as objects are compared, not their integer value
var_dump(x::A < x::B);
var_dump(x::A > x::B);

var_dump(x::A->value < x::b->value);
var_dump(x::A->value > x::b->value);

?>

14.2. List of Rules 1583

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://twitter.com/seldaek
https://twitter.com/slamzoe

Exakat Documentation, Release 1

Suggestions

• Make sure that the same time

Specs

Short name Structures/UseSameTypesForComparisons
Rulesets All, Analyze
Exakat since 2.4.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features inequality, enum-case, type-juggling
Available in Entreprise Edition, Exakat Cloud

14.2.1341 Use System Tmp

It is recommended to avoid hardcoding the temporary file. It is better to rely on the system’s temporary
folder, which is accessible with sys_get_temp_dir().

<?php

// Where the tmp is :
file_put_contents(sys_get_temp_dir().'/tempFile.txt', $content);

// Avoid hard-coding tmp folder :
// On Linux-like systems
file_put_contents('/tmp/tempFile.txt', $content);

// On Windows systems
file_put_contents('C:\WINDOWS\TEMP\tempFile.txt', $content);

?>

See also PHP: When is /tmp not /tmp?.

Suggestions

• Do not hardcode the temporary file, use the system’s

1584 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/sys_get_temp_dir
https://www.the-art-of-web.com/php/where-is-tmp/

Exakat Documentation, Release 1

Specs

Short name Structures/UseSystemTmp
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1342 Use The Blind Var

When in a loop, it is faster to rely on the blind var, rather than the original source.

When the key is referenced in the foreach loop, it is faster to use the available container to access a value for reading.

Note that it is also faster to use the value with a reference to handle the writings.

<?php

// Reaching $source[$key] via $value is faster
foreach($source as $key => $value) {

$coordinates = array('x' => $value[0],
'y' => $value[1]);

}

// Reaching $source[$key] via $source is slow
foreach($source as $key => $value) {

$coordinates = array('x' => $source[$key][0],
'y' => $source[$key][1]);

}

?>

Suggestions

• Use the blind var

Specs

Short name Performances/UseBlindVar
Rulesets All, Changed Behavior, Performances
Exakat since 1.2.9
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features blind-variable
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1585

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1343 Use The Case Value

When switch() has branched to the right case, the value of the switched variable is known : it is the case.

This doesn’t work with complex expression cases, nor with default.

<?php

switch($a) {
case 'a' :

// $a == 'a';
echo $a;
break;

case 'b' :
// $a == 'b';
echo 'b';
break;

}

?>

Suggestions

• Use the literal value in the case, to avoid unnecessary computation.

Specs

Short name Structures/UseCaseValue
Rulesets All, Changed Behavior, Suggestions
Exakat since 1.9.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1344 Use This

Those methods should be using $this, or a static method or property.

A method that doesn’t use any local data may be considered for a move : may be it doesn’t belong here.

The following functioncalls have been added, as access to the current class, without using $this or self :

• get_class()

• get_called_class()

• get_object_vars()

• get_parent_class()

• get_class_vars()

1586 Chapter 14. Rules

https://www.php.net/manual/en/control-structures.switch.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/get_class
https://www.php.net/get_called_class
https://www.php.net/get_object_vars
https://www.php.net/get_parent_class
https://www.php.net/get_class_vars

Exakat Documentation, Release 1

• get_class_methods()

<?php

class dog {
private $name = 'Rex';

// This method is related to the current object and class
public function attaboy() {

return Fetch, $this->name, Fetch\n;
}

// Not using any class related data : Does this belong here?
public function addition($a, $b) {

return $a + $b;
}

}
?>

See also The Basics.

Suggestions

• Add any use of $this pseudo-variable

• Move the method to another class

• Refactor the method as a function

Specs

Short name Classes/UseThis
Rulesets All, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features this, self, static
Available in Entreprise Edition, Exakat Cloud

14.2.1345 Use Variable Created Inside Loop

When a variable is created inside a loop, it should also be used in the loop. Otherwise, the variable will
be overwritten by each loop, and become dead code.

<?php

foreach($a as $b => $c) {
$c = 1;

}
(continues on next page)

14.2. List of Rules 1587

https://www.php.net/get_class_methods
https://www.php.net/manual/en/language.oop5.basic.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

?>

Suggestions

• Remove the variable from the loop

• Add usage to that variable inside the loop

• Turn the variable into a property

Specs

Short name Structures/UseVariableInsideLoop
Rulesets All, Dead code
Exakat since 2.3.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features loop
Available in Entreprise Edition, Exakat Cloud

14.2.1346 Use Web

The code is used in web environment.

The web usage is identified through the usage of the superglobals: $_GET, $_POST, etc.

<?php

// Accessing $_GET is possible when PHP is used in a web server.
$x = filter_validate($_GET['x'], FILTER_EMAIL);

?>

Specs

Short name Php/UseWeb
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

1588 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1347 Use With Fully Qualified Name

Use statement doesn’t require a fully qualified name.

PHP manual recommends not to use fully qualified name (starting with) when using the ‘use’ statement : they are “the
leading backslash is unnecessary and not recommended, as import names must be fully qualified, and are not processed
relative to the current namespace”.

<?php

// Recommended way to write a use statement.
use A\B\C\D as E;

// No need to use the initial \
use \A\B\C\D as F;

?>

Suggestions

• Remove the initial in use expressions.

Specs

Short name Namespaces/UseWithFullyQualifiedNS
Rulesets All, Analyze, Changed Behavior, Coding conventions, PHP recommendations
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1348 Use array_slice()

Array_slice() is de equivalent of substr() for arrays.

array_splice() is also available, to remove a portion of array inside the array, not at the ends. This has no simple
equivalent for strings.

<?php

$array = range(0, 9);

// Extract the 5 first elements
print_r(array_slice($array, 0, 5));

// Extract the 4 last elements
print_r(array_slice($array, -4));

(continues on next page)

14.2. List of Rules 1589

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_slice
https://www.php.net/substr
https://www.php.net/array_splice

Exakat Documentation, Release 1

(continued from previous page)

// Extract the 2 central elements : 4 and 5
print_r(array_splice($array, 4, 2));

// slow way to remove the last elementst of an array
for($i = 0; $i < 4) {

array_pop($array);
}

?>

See also array_slice and array_splice.

Suggestions

• Use array_slice()

Specs

Short name Performances/UseArraySlice
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 1.9.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features array
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1349 Use class_alias()

class_alias() is a PHP features, that allows the creation of class alias, at execution time.

Those class aliases are application wide, as they are valid everywhere, yet they have a lower precedence over the use
expression. This means that even when a class_alias() was called, the local use expression will have right of execution.

<?php

// static type of aliasing
use a as c;

class a {}
class_alias('a', 'b');

new b;

?>

See also class_alias.

1590 Chapter 14. Rules

http://www.php.net/array_slice
http://www.php.net/array_splice
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/class_alias
https://www.php.net/class_alias
https://www.php.net/class_alias

Exakat Documentation, Release 1

Specs

Short name Php/UseClassAlias
Rulesets All, Appinfo
Exakat since 2.3.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features class-alias
Available in Entreprise Edition, Exakat Cloud

14.2.1350 Use const

The const keyword may be used to define constant, just like the define() function.

When defining a constant, it is recommended to use ‘const’ when the features of the constant are not dynamical (name
or value are known at compile time). This way, constant will be defined at compile time, and not at execution time.

define() function is useful when the constant is not known at compile time, or when case sensitivity is necessary.

<?php
//Do
const A = 1;
// Don't
define('A', 1);

?>

See also Syntax.

Suggestions

• Use const instead of define()

Specs

Short name Constants/ConstRecommended
Rulesets All, Analyze, CE, CI-checks, Coding conventions, Top10
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features const, define
Examples phpMyAdmin, Piwigo
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1591

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/define
https://www.php.net/define
https://www.php.net/manual/en/language.constants.syntax.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1351 Use get_debug_type()

get_debug_type() returns the given type of a variable. It was introduced in PHP 8.0: this makes it incom-
patible with previous versions.

<?php
// From the RFC
throw new TypeError('Expected ' . Foo::class . ' got ' . (is_object($bar) ? get_class(

→˓$bar) : gettype($bar)));

// Becomes
throw new TypeError('Expected ' . Foo::class . ' got ' . get_debug_type($bar));

?>

See also PHP RFC: get_debug_type.

Suggestions

• Replace the ternary with a call to get_debug_type()

Specs

Short name Php/UseGetDebugType
Rulesets All, Suggestions
Exakat since 2.1.9
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Available in Entreprise Edition, Exakat Cloud

14.2.1352 Use is_countable

is_countable() checks if a variables holds a value that can be counted. It is recommended to use it before
calling count().

is_countable() accepts arrays and object whose class implements `countable <https://www.php.net/countable>`_.

<?php

function foo($arg) {
if (!is_countable($arg)) {

// $arg cannot be passed to count()
return 0

}
return count($arg);

}

function bar($arg) {
(continues on next page)

1592 Chapter 14. Rules

https://www.php.net/get_debug_type
https://wiki.php.net/rfc/get_debug_type
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/is_countable
https://www.php.net/count
https://www.php.net/is_countable
https://www.php.net/countable

Exakat Documentation, Release 1

(continued from previous page)

if (!is_array($arg) and !$x instanceof \Countable) {
// $arg cannot be passed to count()
return 0

}

return count($arg);
}

?>

See also PHP RFC: is_countable.

Suggestions

• Use is_countable()

• Create a compatibility function that replaces is_countable() until the code is ready for PHP 7.3

Specs

Short name Php/CouldUseIsCountable
Rulesets All, Changed Behavior, Suggestions
Exakat since 1.3.8
PHP Version With PHP 7.3 and more recent
Severity
Time To Fix
Precision High
Features array, countable
Available in Entreprise Edition, Exakat Cloud

14.2.1353 Use json_decode() Options

json_decode() returns objects by default, unless the second argument is set to TRUE or
JSON_OBJECT_AS_ARRAY. Then, it returns arrays.

Avoid casting the returned value from json_decode(), and use the second argument to directly set the correct type.
Note that all objects will be turned into arrays, recursively. If you’re expecting an array of objects, don’t use the
JSON_OBJECT_AS_ARRAY constant, and change your JSON code.

Note that JSON_OBJECT_AS_ARRAY is the only constant : there is no defined constant to explicitly ask for an object as
returned value.

<?php

$json = '{"a":"b"}';

// Good syntax
$array = json_decode($json, JSON_OBJECT_AS_ARRAY);

// GoToo much work
(continues on next page)

14.2. List of Rules 1593

https://wiki.php.net/rfc/is-countable
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/json_decode
https://www.php.net/json_decode

Exakat Documentation, Release 1

(continued from previous page)

$array = (array) json_decode($json);

?>

See also json_decode.

Suggestions

• Use the correct second argument of json_decode() : JSON_OBJECT_AS_ARRAY

Specs

Short name Structures/JsonWithOption
Rulesets All, Suggestions
Exakat since 1.4.3
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features json
Available in Entreprise Edition, Exakat Cloud

14.2.1354 Use password_hash()

password_hash() and password_check() are a better choice to replace the use of crypt() to check password.

PHP 5.5 introduced these functions.

<?php

$password = 'rasmuslerdorf';
$hash = '$2y10YCFsG6elYca568hBi2pZ0.3LDL5wjgxct1N8w/oLR/jfHsiQwCqTS';

// The cost parameter can change over time as hardware improves
$options = array('cost' => 11);

// Verify stored hash against plain-text password
if (password_verify($password, $hash)) {

// Check if a newer hashing algorithm is available
// or the cost has changed
if (password_needs_rehash($hash, PASSWORD_DEFAULT, $options)) {

// If so, create a new hash, and replace the old one
$newHash = password_hash($password, PASSWORD_DEFAULT, $options);

}

// Log user in
}
?>

See also Password hashing.

1594 Chapter 14. Rules

https://www.php.net/json_decode
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/password_hash
https://www.php.net/crypt
https://www.php.net/manual/en/book.password.php

Exakat Documentation, Release 1

Specs

Short name Php/Password55
Rulesets All, Changed Behavior, CompatibilityPHP55
Exakat since 0.8.4
PHP Version With PHP 5.5 and more recent
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1355 Use pathinfo() Arguments

pathinfo() has a second argument to select only useful data.

It is twice faster to get only one element from pathinfo() than get the four of them, and use only one.

This analysis reports pathinfo() usage, without second argument, where only one or two indices are used, after the call.
Depending on the situation, the functions dirname() and basename() may also be used. They are even faster, when only
fetching those data.

<?php

// This could use only PATHINFO_BASENAME
function foo_db() {

$a = pathinfo($file2);
return $a['basename'];

}

// This could be 2 calls, with PATHINFO_BASENAME and PATHINFO_DIRNAME.
function foo_de() {

$a = pathinfo($file3);
return $a['dirname'].'/'.$a['basename'];

}

// This is OK : 3 calls to pathinfo() is slower than array access.
function foo_deb() {

$a = pathinfo($file4);
return $a['dirname'].'/'.$a['filename'].'.'.$a['extension'];

}

?>

See also list.

14.2. List of Rules 1595

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/pathinfo
https://www.php.net/pathinfo
https://www.php.net/pathinfo
https://www.php.net/dirname
https://www.php.net/basename
https://www.php.net/manual/en/function.list.php

Exakat Documentation, Release 1

Suggestions

• Use PHP native function pathinfo() and its arguments

Specs

Short name Php/UsePathinfoArgs
Rulesets All, Performances
Exakat since 0.12.12
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features path
Examples Zend-Config, ThinkPHP
Available in Entreprise Edition, Exakat Cloud

14.2.1356 Use random_int()

rand() and mt_rand() should be replaced with random_int().

At worse, rand() should be replaced with mt_rand(), which is a drop-in replacement and srand() by mt_srand().

random_int() replaces rand(), and has no seeding function like srand().

Other sources of entropy that should be replaced by random_int() : microtime(), uniqid(), time(). Those a often com-
bined with hashing functions and mixed with other sources of entropy, such as a salt. Since PHP 7, random_int()
along with random_bytes(), provides cryptographically secure pseudo-random bytes, which are good to be used when
security is involved. openssl_random_pseudo_bytes() may be used when the OpenSSL extension is available.

<?php

// Avoid using this
$random = rand(0, 10);

// Drop-in replacement
$random = mt_rand(0, 10);

// Even better but different :
// valid with PHP 7.0+
try {

$random = random_int(0, 10);
} catch (\Exception $e) {

// process case of not enoug random values
}

// This is also a source of entropy, based on srand()
// random_int() is a drop-in replacement here
$a = sha256(uniqid());

?>

See also CSPRNG and OpenSSL.

1596 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/rand
https://www.php.net/mt_rand
https://www.php.net/random_int
https://www.php.net/rand
https://www.php.net/mt_rand
https://www.php.net/srand
https://www.php.net/mt_srand
https://www.php.net/random_int
https://www.php.net/rand
https://www.php.net/srand
https://www.php.net/random_int
https://www.php.net/microtime
https://www.php.net/uniqid
https://www.php.net/time
https://www.php.net/random_int
https://www.php.net/random_bytes
https://www.php.net/secure
https://www.php.net/openssl_random_pseudo_bytes
https://www.php.net/manual/en/book.csprng.php
https://www.php.net/manual/en/book.openssl.php

Exakat Documentation, Release 1

Suggestions

• Use random_bytes() and randon_int(). At least, use them as a base for random data, and then add extra prefix
and suffix, and a hash call on top.

Specs

Short name Php/BetterRand
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, CompatibilityPHP71, Security
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Features random
Examples Thelia, FuelCMS
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1357 Use session_start() Options

It is possible to set the session’s option at session_start() call, skipping the usage of session_option().

This way, session’s options are set in one call, saving several hits.

This is available since PHP 7.0. It is recommended to set those values in the php.ini file, whenever possible.

<?php

// PHP 7.0
session_start(['session.name' => 'mySession',

'session.cookie_httponly' => 1,
'session.gc_maxlifetime' => 60 * 60);

// PHP 5.6- old way
ini_set ('session.name', 'mySession');
ini_set("session.cookie_httponly", 1);
ini_set('session.gc_maxlifetime', 60 * 60);
session_start();

?>

Suggestions

• Use session_start() with array arguments

14.2. List of Rules 1597

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/session_start

Exakat Documentation, Release 1

Specs

Short name Php/UseSessionStartOptions
Rulesets All, Suggestions
Exakat since 0.11.8
PHP Version With PHP 7.0 and more recent
Severity
Time To Fix
Precision Very high
Features session
Examples WordPress
Available in Entreprise Edition, Exakat Cloud

14.2.1358 Use str_contains()

str_contains() checks if a string is within another one. It replaces a call to strpos() with a comparison.

Note that this function is case sensitive : it cannot replace stripos().

Note that this function is single-byte only : it cannot replace mb_strpos().

This analysis omits calls to strpos() that are saved to a variable. strpos() is actually returning the position of the found
string in the haystack, which may be reused later.

<?php

if (str_contains("abc", "a")) { doSomething(); }

// strpos is used only for detection.
if (strpos("abc", "a") !== false) { doSomething(); }

// strpos returns a position,
$pos = strpos("abca", "a", 3);
if ($pos > 3) { doSomething();

?>

See also PHP RFC: str_contains.

Suggestions

• Switch to str_contains()

1598 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/str_contains
https://www.php.net/strpos
https://www.php.net/stripos
https://www.php.net/mb_strpos
https://www.php.net/strpos
https://www.php.net/strpos
https://wiki.php.net/rfc/str_contains

Exakat Documentation, Release 1

Specs

Short name Php/UseStrContains
Rulesets All, Suggestions
Exakat since 2.2.0
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features string
Available in Entreprise Edition, Exakat Cloud

14.2.1359 Use str_ends_with()

There is a dedicated function to check the suffix of a string : it is called str_ends_with(). It is available
since PHP 8.0

<?php

if (str_ends_with($a, 'abc')) { }

// Before PHP 8.2
if (substr($a, -3) === 'abc') { }

?>

See also str_ends_with().

Suggestions

• Use the native PHP function

Specs

Short name Structures/UseStrEndsWith
Rulesets All, Suggestions
Exakat since 2.5.2
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1599

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/str_ends_with
https://www.php.net/str_ends_with
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1360 Use str_starts_with()

There is a dedicated function to check the prefix of a string : it is called str_starts_with(). It is available
since PHP 8.0

<?php

if (str_starts_with($a, 'abc')) { }

// Before PHP 8.2
if (substr($a, 0, 3) === 'abc') { }

?>

See also str_ends_with().

Suggestions

• Use the native PHP function

Specs

Short name Structures/UseStrStartsWith
Rulesets All, Suggestions
Exakat since 2.5.2
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.1361 Used Classes

The following classes are used in the code.

Classes may be use when they are instantiated, or with static calls

<?php

class unusedClasss { const X = 1;}
class usedClass {}

$y = new usedClass(usedClass::X);

?>

1600 Chapter 14. Rules

https://www.php.net/str_starts_with
https://www.php.net/str_ends_with
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

Specs

Short name Classes/UsedClass
Rulesets All, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Features class
Available in Entreprise Edition, Exakat Cloud

14.2.1362 Used Functions

The functions below are used in the code.

A function is used in the code when it is called literally, or as a string callback.

<?php

function used() {}
// The 'unused' function is defined but never called
function unused() {}

// The 'used' function is called at least once
used();

// The 'used' function is called as a callback
array_filter($array, 'used');

?>

Specs

Short name Functions/UsedFunctions
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features function, unused
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1601

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1363 Used Interfaces

Interfaces used in the code.

<?php

interface used {}

// Used by implementation
class c implements used {}

// Used by extension
interface j implements used {}

$x = new c;

// Used in a instanceof
var_dump($x instanceof used);

// Used in a typehint
function foo(Used $x) {}

?>

Specs

Short name Interfaces/UsedInterfaces
Rulesets All, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features interface
Available in Entreprise Edition, Exakat Cloud

14.2.1364 Used Methods

Those methods are used in the code: this means they have a definition and at least one call. They may have
more than one call too. This analysis is mostly useful for detecting unused methods.

<?php

class foo {
public function used() {

$this->used();
}

// No usage of 'unused', as method call, in or out of the definition class.
public function unused() {

(continues on next page)

1602 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$this->used();
}

}

class bar extends foo {
public function some() {

$this->used();
}

}

$a = new foo();
$a->used();

?>

Specs

Short name Classes/UsedMethods
Rulesets All, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features method
Available in Entreprise Edition, Exakat Cloud

14.2.1365 Used Once Property

Property used once in their defining class.

Properties used in one method only may be used several times, and read only. This may be a class constant. Such
properties are meant to be overwritten by an extending class, and that’s possible with class constants.

Setting properties with default values is a good way to avoid littering the code with literal values, and provide a single
point of update (by extension, or by hardcoding) for all those situations. A constant is definitely better suited for this
task.

<?php

class foo {
private $defaultCols = '*';
cont DEFAULT_COLUMNS = '*';

// $this->defaultCols holds a default value. Should be a constant.
function bar($table, $cols) {

// This is necessary to activate usage of default values
if (empty($cols)) {

$cols = $this->defaultCols;
}

(continues on next page)

14.2. List of Rules 1603

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$res = $this->query('SELECT '.$cols.' FROM '.$table);
//

}

// Upgraded version of bar, with default values
function bar2($table, $cols = self::DEFAULT_COLUMNS) {

$res = $this->query('SELECT '.$cols.' FROM '.$table);
//

}
}

?>

Suggestions

• Remove the property, as it is probably not unused

• Add another usage of the property where it is useful

Specs

Short name Classes/UsedOnceProperty
Rulesets All, Analyze, Changed Behavior
Exakat since 0.10.3
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features method
Available in Entreprise Edition, Exakat Cloud

14.2.1366 Used Once Trait

Trait should promote code reuse and be used multiple time. A trait that is used once might be as well
merged into its host class, and removed. This is currently overengineered code.

<?php

trait t {
function foo() {}

}

class x {
// This expression may be replaced by the foo method definition
use t;

}
?>

1604 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Name Default Type Description
timeUsed 2 integer Maximal number of trait usage, before the trait is considered enough used.

Suggestions

• Inline the trait with its calling class or trait

• Use the trait in another class or trait

Specs

Short name Traits/UsedOnceTrait
Rulesets All, Class Review
Exakat since 2.4.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features code-reuse, overenginereed
Available in Entreprise Edition, Exakat Cloud

14.2.1367 Used Once Variables

This is the list of used once variables.

Such variables are useless. Variables must be used at least twice : once for writing, once for reading, at least. It is
recommended to remove them.

In special situations, variables may be used once :

• PHP predefined variables, as they are already initialized. They are omitted in this analyze.

• Interface function’s arguments, since the function has no body; They are omitted in this analyze.

• Dynamically created variables ($$x, ${$this->y} or also using extract), as they are runtime values and can’t be
determined at static code time. They are reported for manual review.

• Dynamically included files will provide in-scope extra variables.

This rule counts variables at the application level, and not at a method scope level.

<?php

// The variables below never appear again in the code
$writtenOnce = 1;

foo($readOnce);

?>

See also class.

14.2. List of Rules 1605

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.basic.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.basic.php#language.oop5.basic.class

Exakat Documentation, Release 1

Suggestions

• Remove the variable

• Fix the name of variable

• Use the variable a second time, at least

Specs

Short name Variables/VariableUsedOnce
Rulesets All, Analyze, Top10
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features class
Examples shopware, Vanilla
Available in Entreprise Edition, Exakat Cloud

14.2.1368 Used Once Variables (In Scope)

This is the list of used once variables, scope by scope. Those variables are used once in a function, a
method, a class or a namespace. In any case, this means the variable is read or written, while it should be
used at least twice.

Static and global variables are omitted here : they may be used multiple times by having the method being called
multiple times.

Blind variables, which are defined in a foreach() structure, are also omitted : the loop will use them multiple time,
assigning different values each time.

Parameters that are inherited from parent classes’ methods are also omitted : they are imposed by the structure, and
cannot be avoided.

<?php

function foo() {
// The variables below never appear twice, inside foo()
$writtenOnce = 1;

foo($readOnce);
// They do appear again in other functions, or in global space.

}

function bar() {
$writtenOnce = 1;
foo($readOnce);

}

?>

1606 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/control-structures.foreach.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

Suggestions

• Remove the variable

• Fix the name of variable

• Use the variable a second time in the current scope, at least

Specs

Short name Variables/VariableUsedOnceByContext
Rulesets All, Analyze, CE
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features static-variable
Examples shopware
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1369 Used Private Methods

List of all private methods that are used.

Protected methods, in a standalone class, are also included.

<?php

class Foo {
// Those methods are used
private function method() {}
private static function staticMethod() {}

// Those methods are not used
private function unusedMethod() {}
private static function staticUnusedMethod() {}

public function bar() {
self::staticMethod();
$this->method();

}
}

?>

14.2. List of Rules 1607

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Classes/UsedPrivateMethod
Rulesets All, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features method
Available in Entreprise Edition, Exakat Cloud

14.2.1370 Used Protected Method

This rule marks protected methods being used in the current class or its children classes. This show how
the methods are used inside a class hierarchy.

<?php

class foo {
// This is reported
protected usedByChildren() {}

// This is not reported
protected notUsedByChildren() {}

}

class bar extends foo {
// The parent method is not overloaded, though it may be
protected someMethod() {

// The parent method is called
$this->usedByChildren();

}

}

?>

See also Visibility.

1608 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.visibility.php

Exakat Documentation, Release 1

Specs

Short name Classes/UsedProtectedMethod
Rulesets All, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features visibility
Available in Entreprise Edition, Exakat Cloud

14.2.1371 Used Static Properties

List of all static properties that are used.

A private property is used when it is defined and read. A private property that is only written is not used. A property
that is only read is used, as it may have a default value, or act as NULL.

<?php

class foo {
// This is a used property (see bar method)
private $used = 1;

function bar($a) {
$this->used += $a;

return $this->used;
}

}

?>

Specs

Short name Classes/UsedPrivateProperty
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Features class, static
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1609

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.types.null.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1372 Used Trait

Mark a trait as being used by a class or another trait.

<?php

// One used trait
trait usedTrait {}

// One unused trait
trait unusedTrait {}

class foo {
use usedTrait;

}

?>

See also Traits.

Specs

Short name Traits/UsedTrait
Rulesets All, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features trait
Available in Entreprise Edition, Exakat Cloud

14.2.1373 Used Use

List of use statements. Those use are made to import namespaces structures, not to include traits.

<?php

namespace A {
class b {}

}

namespace B {
use A\B as B;

new B();
}

?>

See also Using namespaces: Aliasing/Importing.

1610 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.traits.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.namespaces.importing.php

Exakat Documentation, Release 1

Specs

Short name Namespaces/UsedUse
Rulesets All, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Features use
Available in Entreprise Edition, Exakat Cloud

14.2.1374 Useless Abstract Class

Those classes are marked ‘abstract’ and they are never extended. This way, they won’t be instantiated nor
used.

Abstract classes that have only static methods are omitted here : one usage of such classes are Utilities classes, which
only offer static methods.

<?php

// Never extended class : this is useless
abstract class foo {}

// Extended class
abstract class bar {

public function barbar() {}
}

class bar2 extends bar {}

// Utility class : omitted here
abstract class bar {

public static function barbar() {}
}

?>

Suggestions

• Drop the abstract keyword

• Extends the abstract class, more than once

• If the class is extended, merge the class in the child

14.2. List of Rules 1611

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

Specs

Short name Classes/UselessAbstract
Rulesets All, Analyze, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features abstract
Available in Entreprise Edition, Exakat Cloud

14.2.1375 Useless Argument

The argument is always used with the same value. This value could be hard coded in the method, and save
one argument slot.

There is no indication that this argument will be used with other values. It may be a development artifact, that survived
without cleaning. Methods with less than 3 calls are not considered here, to avoid reporting methods used once. Also,
arguments with a default value are omitted.

The chances of useless arguments decrease with the number of usage. The parameter maxUsageCount prevents highly
called methods (more than the parameter value) to be processed.

<?php

// All foo2 arguments are used with different values
function foo2($a, $b) {}
foo2(1, 2);
foo2(2, 2);
foo2(3, 3);

// The second argument of foo is always used with 2
function foo($a, $b) {}
foo(1, 2);
foo(2, 2);
foo(3, 2);

?>

Name De-
fault

Type Description

maxUsage-
Count

30 inte-
ger

Maximum count of function usage. Use this to limit the amount of processed
arguments.

See also class.

1612 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.basic.php#language.oop5.basic.class

Exakat Documentation, Release 1

Suggestions

• Remove the argument and hard code its value inside the method

• Add the value as default in the method signature, and drop it from the calls

• Add calls to the method, with more varied arguments

Specs

Short name Functions/UselessArgument
Rulesets All, Analyze
Exakat since 1.8.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features class
Available in Entreprise Edition, Exakat Cloud

14.2.1376 Useless Assignation Of Promoted Property

Promoted properties save the assignation of constructor argument to the property. It is useless to do it with
that syntax, and in the constructor too.

<?php

class x {
private $b;

function __construct(private $a,
$b,
) {

// This is already done with the promoted property
$this->a = $a;

// This is the traditional way (up to PHP 8.0)
$this->b = $b;
}

}

?>

14.2. List of Rules 1613

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Remove the assignation in the constructor

Specs

Short name Classes/UselessAssignationOfPromotedProperty
Rulesets All, Analyze, Changed Behavior, Class Review
Exakat since 2.5.0
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features promoted-property
Available in Entreprise Edition, Exakat Cloud

14.2.1377 Useless Brackets

Standalone brackets have no use. Brackets are used to delimit a block of code, and are used by control
statements. They may also be used to protect variables in strings.

Standalone brackets may be a left over of an old instruction, or a misunderstanding of the alternative syntax.

<?php

// The following brackets are useless : they are a leftover from an older instruction
// if (DEBUG)
{

$a = 1;
}

// Here, the extra brackets are useless
for($a = 2; $a < 5; $a++) : {

$b++;
} endfor;

?>

Suggestions

• Remove the brackets

• Restore the flow-control operation that was there and removed

• Move the block into a method or function, and call it

1614 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Structures/UselessBrackets
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features block, curly-bracket
Examples ChurchCRM, Piwigo
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1378 Useless Catch

A catch clause should handle the exception by doing something.

Among the task of a catch clause : log the exception, clean any mess that was introduced, fail graciously.

In particular, a return inside a catch clause might short-circuit the commands laid after the try/catch block.

It is also a sign that there is no error, and the exception shall be handled with a preemptive check, rather than an error
review.

<?php

function foo($a) {
try {

$b = doSomething($a);
} catch (Throwable $e) {

// No log of the exception : no one knows it happened.

// return immediately ?
return false;

}

$b->complete();

return $b;
}

?>

See also Exceptions and Best practices for PHP exception handling.

14.2. List of Rules 1615

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception
https://www.php.net/exception
https://www.php.net/error
https://www.php.net/exception
https://www.php.net/error
https://www.php.net/manual/en/language.exceptions.php
https://www.moxio.com/blog/34/best-practices-for-php-exception-handling

Exakat Documentation, Release 1

Suggestions

• Add a log call to the catch block.

• Handle correctly the exception.

Specs

Short name Exceptions/UselessCatch
Rulesets All
Exakat since 1.1.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features exception, catch
Examples Zurmo, PrestaShop
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1379 Useless Check

There is no need to check the size of an array content before using foreach. Foreach() applies a test on the
source, and skips the loop if no element is found.

This analysis checks for conditions with sizeof() and count(). Conditions with isset() and empty() are omitted : they
also check for the variable existence, and thus, offer extra coverage.

<?php

// Checking for type is good.
if (is_array($array)) {

foreach($array as $a) {
doSomething($a);

}
}

// Foreach on empty arrays doesn't start. Checking is useless
if (!empty($array)) {

foreach($array as $a) {
doSomething($a);

}
}

?>

See also foreach.

1616 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.foreach.php
https://www.php.net/sizeof
https://www.php.net/count
https://www.www.php.net/isset
https://www.php.net/manual/en/control-structures.foreach.php

Exakat Documentation, Release 1

Suggestions

• Drop the condition and the check

• Turn the condition into isset(), empty() and is_array()

Specs

Short name Structures/UselessCheck
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.9
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features validation
Examples Magento, Phinx
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1380 Useless Coalesce

The ?: operator needs the condition to be potentially empty. This means that the type should have the
possibility to be null, false, 0, or any of the empty values.

<?php

function foo(A $a, bool $b) {
$a ?: 'a';
$b ?: 'a';

}

?>

Suggestions

• Remove the operator.

• Extend the type to include values that may be empty.

Specs

Short name Structures/UselessCoalesce
Rulesets All, Analyze, Changed Behavior
Exakat since 2.6.6
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1617

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1381 Useless Constant Overwrite

A class constant is defined in a parent and child class, with the same value. One of them is useless and
may be removed.

<?php

class x {
const A = 1;
const B = 1;

}

class y extends x {
// A is the same as in the parent class.
const A = 1;
// B has a new value, so it is important.
const B = 2;

}

?>

Suggestions

• Remove the parent constant

• Remove the child constant

Specs

Short name Classes/UselessConstantOverwrite
Rulesets All, Class Review
Exakat since 2.5.3
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Available in Entreprise Edition, Exakat Cloud

14.2.1382 Useless Constructor

Class constructor that have empty bodies are useless. They may be removed, as they are not called.

One edge case is when the class has a parent, and the parent constructor must not be called.

Another edge case is promoted properties: the body of the constructor is still empty, but the parameters hold the
definitions of properties. These might be better outside the constructor though.

<?php

class X {
function __construct() {

// Do nothing
(continues on next page)

1618 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

(continued from previous page)

}
}

class Y extends X {
// Useful constructor, as it prevents usage of the parent
function __construct() {

// Do nothing
}

}

?>

Suggestions

• Remove the constructor

Specs

Short name Classes/UselessConstructor
Rulesets All, Analyze, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features constructor
Available in Entreprise Edition, Exakat Cloud

14.2.1383 Useless Default Argument

One of the argument has a default value, and this default value is never used. Every time the method is
called, the argument is provided explicitly, rendering the default value actually useless.

<?php

function goo($a, $b = 3) {
// do something here

}

// foo is called 3 times, and sometimes, $b is not provided.
goo(1,2);
goo(1,2);
goo(1);

function foo($a, $b = 3) {
// do something here

}
(continues on next page)

14.2. List of Rules 1619

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// foo is called 3 times, and $b is always provided.
foo(1,2);
foo(1,2);
foo(1,2);
?>

Suggestions

• Remove the default value

• Remove the explicit argument in the function call, when it is equal to the default value

Specs

Short name Functions/UselessDefault
Rulesets All, Changed Behavior, Suggestions
Exakat since 1.7.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features function, default
Available in Entreprise Edition, Exakat Cloud

14.2.1384 Useless Final

When a class is declared final, all of its methods are also final by default.

There is no need to declare them individually final.

<?php

final class foo {
// Useless final, as the whole class is final
final function method() { }

}

class bar {
// Useful final, as the whole class is not final
final function method() { }

}

?>

See also Final Keyword and When to declare final.

1620 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.final.php
https://ocramius.github.io/blog/when-to-declare-classes-final/

Exakat Documentation, Release 1

Specs

Short name Classes/UselessFinal
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features final
ClearPHP no-useless-final
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1385 Useless Global

Global are useless in two cases. First, on super-globals, which are always globals, like $_GET; secondly,
on variables that are not used.

Also, PHP has superglobals, a special team of variables that are always available, whatever the context. They are :
$GLOBALS, $_SERVER, $_GET, $_POST, $_FILES, $_COOKIE, $_SESSION, $_REQUEST and $_ENV.

<?php

// $_POST is already a global : it is in fact a global everywhere
global $_POST;

// $unused is useless
function foo() {

global $used, $unused;

++$used;
}

?>

Suggestions

• Drop the global expression

14.2. List of Rules 1621

https://github.com/dseguy/clearPHP/tree/master/rules/no-useless-final.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/reserved.variables.get.php
https://www.php.net/manual/en/reserved.variables.get.php
https://www.php.net/manual/en/reserved.variables.post.php
https://www.php.net/manual/en/reserved.variables.request.php
https://www.php.net/manual/en/reserved.variables.env.php

Exakat Documentation, Release 1

Specs

Short name Structures/UselessGlobal
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features super-global, $_get, $_post, $_server, $globals, $_files, $_cookie, $_request, $_env
Examples Zencart, HuMo-Gen
Available in Entreprise Edition, Exakat Cloud

14.2.1386 Useless Instructions

Those instructions are useless, or contains useless parts.

For example, an addition whose result is not stored in a variable, or immediately used, does nothing : it is actually
performed, and the result is lost. Just plain lost. In fact, PHP might detect it, and optimize it away.

Here the useless instructions that are spotted :

<?php

// Concatenating with an empty string is useless.
$string = 'This part '.$is.' useful but '.$not.'';

// This is a typo, that PHP turns into a constant, then a string, then nothing.
continue;

// Empty string in a concatenation
$a = 'abc' . '';

// Returning expression, whose result is not used (additions, comparisons, properties,␣
→˓closures, new without =, ...)
1 + 2;

// Returning post-incrementation
function foo($a) {

return $a++;
}

// array_replace() with only one argument
$replaced = array_replace($array);
// array_replace() is OK with ...
$replaced = array_replace(...$array);

// @ operator on source array, in foreach, or when assigning literals
$array = @array(1,2,3);

// Multiple comparisons in a for loop : only the last is actually used.
for($i = 0; $j = 0; $j < 10, $i < 20; ++$j, ++$i) {

(continues on next page)

1622 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/result
https://www.php.net/result

Exakat Documentation, Release 1

(continued from previous page)

print $i.' '.$j.PHP_EOL;
}

// Counting the keys and counting the array is the same.
$c = count(array_keys($array))

//array_keys already provides an array with only unique values, as they were keys in a␣
→˓previous array
$d = array_unique(array_keys($file['messages']))

// No need for assignation inside the ternary operator
$closeQuote = $openQuote[3] === "'" ? substr($openQuote, 4, -2) : $closeQuote = substr(
→˓$openQuote, 3);

?>

Suggestions

• Remove the extra semi-colon

• Remove the useless instruction

• Assign this expression to a variable and make use of it

Specs

Short name Structures/UselessInstruction
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
ClearPHP no-useless-instruction
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1387 Useless Interfaces

The interfaces below are defined and are implemented by some classes.

However, they are never used to enforce an object’s class in the code, using instanceof or in a type. As they are
currently used, those interfaces may be removed without change in behavior. Interfaces should be used in type or with
the instanceof operator.

<?php
// only defined interface but never enforced
interface i {};
class c implements i {}

?>

14.2. List of Rules 1623

https://github.com/dseguy/clearPHP/tree/master/rules/no-useless-instruction.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Use the interface with instanceof, or a type

• Drop the interface altogether : both definition and implements keyword

Specs

Short name Interfaces/UselessInterfaces
Rulesets All, Analyze, Changed Behavior, Class Review, Typechecks
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features interface
ClearPHP no-useless-interfaces
Examples Woocommerce
Available in Entreprise Edition, Exakat Cloud

14.2.1388 Useless Method

This method is useless, as it actually does what PHP would do by default.

For example, relaying a method call to its parent is useless. Removing the method altogether has the same feature,
although this doesn’t apply to constructors.

<?php

class y {
function foo() {

// doSomething('foo')
}
function goo() {

// doSomething('goo')
}

}

class x extends y {
// No definition for goo(), so it fallback to the parent

// This definition of foo() falls back to the parent's,
// just like if it wasn't there.
function foo() {

return parent::foo();
}

}
?>

1624 Chapter 14. Rules

https://github.com/dseguy/clearPHP/tree/master/rules/no-useless-interfaces.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php

Exakat Documentation, Release 1

Suggestions

• Remove the useless method

• Add more code to the method body

Specs

Short name Classes/UselessMethod
Rulesets All, Analyze
Exakat since 2.5.1
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.1389 Useless Method Alias

It is not possible to declare an alias of a method with the same name.

PHP reports that Trait method f has not been applied, because there are collisions with other
trait methods on x, which is a way to say that the alias will be in conflict with the method name.

When the method is the only one bearing a name, and being imported, there is no need to alias it. When the method is
imported in several traits, the keyword insteadof is available to solve the conflict.

This code lints but doesn’t execute.

<?php

trait t {
function h() {}

}

class x {
use t {

// This is possible
t::f as g;

// This is not possible, as the alias is in conflict with itself
// alias are case insensitive
t::f as f;

}
}

?>

See also Conflict resolution.

14.2. List of Rules 1625

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.traits.php#language.oop5.traits.conflict

Exakat Documentation, Release 1

Suggestions

• Remove the alias

• Fix the alias or the origin method name

• Switch to insteadof, and avoid as keyword

Specs

Short name Traits/UselessAlias
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, LintButWontExec
Exakat since 1.5.6
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Features trait
Note This issue may lint but will not run
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1390 Useless Null Coalesce

When the type system ensure the condition is never null, the operator becomes useless.

This is particularly true for properties (static or not) and returntype of methods and functions. And, to a lesser extend,
to variables and parameters.

<?php

function foo(A $a, ?B $b) {
// $a is never null, so this is OK
$a ?? 'a';

// $b might be null, so this is OK
$b ?? 'b';

}

?>

See also Null coalescing operator.

Suggestions

• Remove the ?? operator

• Switch to a ?: operator

• Updated the properties to accept NULL as a possible type

1626 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/migration70.new-features.php#migration70.new-features.null-coalesce-op

Exakat Documentation, Release 1

Specs

Short name Structures/UselessNullCoalesce
Rulesets All, Analyze
Exakat since 2.4.0
PHP Version With PHP 7.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features coalesce
Available in Entreprise Edition, Exakat Cloud

14.2.1391 Useless NullSafe Operator

Nullsafe operator ?-> has no object when the types are never null, or when coalesce is active.

The nullsafe operator protects the execution from accessing a method or a property on a null value. If the object part
of the syntax cannot be null, then the nullsafe operator ?-> will not protect it.

The nullsafe operator is filling the same duty as ?? operator, although with a more granular precision.

<?php

function foo() : A {
return new A(); // or other code

}

// foo() always returns A, so it is always valid
foo()?->methodOnA();

// goo() may return NULL: ?-> and ?? are filling the same duty
goo()?->methodOnA ?? C;

function goo() : ?A {}

?>

Suggestions

• Replace the null safe operator with the normal one.

• Add the type null to the type declaration.

• Check for null-coalesce operator ?? and choose the most appropriate.

14.2. List of Rules 1627

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Classes/UselessNullSafeOperator
Rulesets All, Changed Behavior, Class Review
Exakat since 2.6.5
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features nullsafe-operator
Available in Entreprise Edition, Exakat Cloud

14.2.1392 Useless Parenthesis

Situations where parenthesis are not necessary, and may be removed.

Parenthesis group several elements together, and allows for a more readable expression. They are used with logical and
mathematical expressions. They are necessary when the precedence of the operators are not the intended execution
order : for example, when an addition must be performed before the multiplication.

Sometimes, the parenthesis provide the same execution order than the default order : they are deemed useless, from the
PHP point of view. Yet, they may add readability to the code. In special circumstances, they may also protect the code
from evolution in the precedence of operators : for example, 1 + 2 . '.' . 3 + 4; has different results between
PHP 8 and PHP 7.

<?php

if (($condition)) {}
while(($condition)) {}
do $a++; while (($condition));

switch (($a)) {}
$y = (1);
($y) == (1);

f(($x));

// = has precedence over ==
($a = $b) == $c;

($a++);

// No need for parenthesis in default values
function foo($c = (1 + 2)) {}

?>

See also Operators Precedence.

1628 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.operators.precedence.php

Exakat Documentation, Release 1

Suggestions

• Remove useless parenthesis, unless they are important for readability.

Specs

Short name Structures/UselessParenthesis
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features operator, operator-precedence
Examples Mautic, Woocommerce
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1393 Useless Referenced Argument

The argument has a reference, and is only used for reading.

This is probably a development artefact that was forgotten. It is better to remove it.

This analysis also applies to foreach() loops, that declare the blind variable as reference, then use the variable as an
object, accessing properties and methods. When a variable contains an object, there is no need to declare a reference :
it is a reference automatically.

<?php

function foo($a, &$b, &$c) {
// $c is passed by reference, but only read. The reference is useless.
$b = $c + $a;
// The reference is useful for $b

}

foreach ($array as &$element) {
$element->method();

}

?>

See also Objects and references.

14.2. List of Rules 1629

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/control-structures.foreach.php
https://www.php.net/manual/en/language.oop5.references.php

Exakat Documentation, Release 1

Suggestions

• Remove the useless & from the argument

• Make an actual use of the argument before the end of the method

Specs

Short name Functions/UselessReferenceArgument
Rulesets All, Analyze, Changed Behavior
Exakat since 1.1.3
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features reference, argument
Examples Woocommerce, Magento
Available in Entreprise Edition, Exakat Cloud

14.2.1394 Useless Return

The spotted functions or methods have a return statement, but this statement is useless. This is the case
for constructor and destructors, whose return value are ignored or inaccessible.

When return is void, and the last element in a function, it is also useless.

<?php

class foo {
function __construct() {

// return is not used by PHP
return 2;

}
}

function bar(&$a) {
$a++;
// The last return, when empty, is useless
return;

}

?>

1630 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Remove the return expression. Keep any other calculation.

Specs

Short name Functions/UselessReturn
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features return
Examples ThinkPHP, Vanilla
Available in Entreprise Edition, Exakat Cloud

14.2.1395 Useless Short Ternary

The short ternary operates on empty or null values. When the type of the condition is not false, boolean
or null, the operator is useless.

<?php

function foo() : A { return new A; }

// This is useless
$b = foo() ? 1;

?>

Suggestions

• Remove the ternary operator

• Refactor the types to allow for empty values

Specs

Short name Structures/UselessShortTernary
Rulesets All, Analyze, Changed Behavior
Exakat since 2.6.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features short-ternary
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1631

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1396 Useless Switch

This switch has only one case. It may very well be replaced by a ifthen structure.

<?php
switch($a) {

case 1:
doSomething();
break;

}

// Same as

if ($a == 1) {
doSomething();

}
?>

Suggestions

• Turn the switch into a if/then for better readability

• Add other cases to the switch, making it adapted to the situation

Specs

Short name Structures/UselessSwitch
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Features switch
Examples Phpdocumentor, Dolphin
Available in Entreprise Edition, Exakat Cloud

14.2.1397 Useless Trailing Comma

Trailing comma is the last comma in a call or function definition. It is left with an empty slot aftewards,
so as to reduce the diff when adding or removing an element.

Trailing commas appear in array definition, method calls, method definitions, including use expression for closures and
use call.

Trailing comma with only one element are reported as useless. Then, for multiple elements, the elements should be on
separate lines.

This is a coding convention.

1632 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

<?php

$good = array(1,
2,
3,
4,
);

// The trailing comma is just useless.
$bad = array(1, 2, 3, 4,);

?>

Suggestions

• Remove the trailing comma

• Put the trailing comma on a new line

Specs

Short name Structures/UselessTrailingComma
Rulesets All, Changed Behavior, Coding conventions
Exakat since 2.6.2
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features trailing-comma
Available in Entreprise Edition, Exakat Cloud

14.2.1398 Useless Try

Report try clause that are useless. A try clause is useless when no exception is emitted by the code in the
block.

This happens when the underlying layers removed the emission of exceptions.

<?php

try {
// Nothing is going to happen here
++$a;

} catch (Exception $e) {

}

?>

14.2. List of Rules 1633

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception

Exakat Documentation, Release 1

Suggestions

• Remove the Try clause

• Add a throw among the different called methods

Specs

Short name Exceptions/UselessTry
Rulesets All, Analyze, Changed Behavior
Exakat since 2.5.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Available in Entreprise Edition, Exakat Cloud

14.2.1399 Useless Type Casting

There is no need to cast already typed values.

Typed values, such as properties, do not have to be cast again, as the engine always ensures their type.

Typed arguments are variables : after the initial check at method call time, they might change value and type. Those
extra cast may then carry some value, although changing the type of an incoming value is not recommended.

<?php

// trim always returns a string : cast is useless
$a = (string) trim($b);

// strpos doesn't always returns an integer : cast is useful
$a = (boolean) strpos($b, $c);

// comparison don't need casting, nor parenthesis
$c = (bool) ($b > 2);

function foo(array $a) {
foreach((array) $a as $b) {

// doSomething
}

}
?>

See also Type juggling and Multiple Type Variable.

1634 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/engine
https://www.php.net/manual/en/language.types.type-juggling.php

Exakat Documentation, Release 1

Suggestions

• Remove the type cast

Specs

Short name Structures/UselessCasting
Rulesets All, Analyze, CE, CI-checks, PHP recommendations
Exakat since 0.8.7
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features type, cast
Examples FuelCMS, ThinkPHP
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1400 Useless Type Check

With the type system, checking the type of arguments is handled by PHP.

In particular, a typed argument can’t be null, unless it is explicitly nullable, or has a null value as default.

<?php

// The test on null is useless, it will never happen
function foo(A $a) {

if (is_null($a)) {
// do something

}
}

// Either nullable ? is too much, either the default null is
function barbar(?A $a = null) {
}

// The test on null is useful, the default value null allows it
function bar(A $a = null) {

if ($a === null) {
// do something

}
}

?>

See also Type Declarations.

14.2. List of Rules 1635

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration

Exakat Documentation, Release 1

Suggestions

• Remove the nullable typehint

• Remove the null default value

• Remove tests on null

Specs

Short name Functions/UselessTypeCheck
Rulesets All, Dead code
Exakat since 1.8.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features typehint
Available in Entreprise Edition, Exakat Cloud

14.2.1401 Useless Typehint

__get() and __set() magic methods won’t enforce any typehint. The name of the magic property is always
cast to string.

__call()

<?php

class x {
// typehint is set and ignored
function __set(float $name, string $value) {

$this->$name = $value;
}

// typehint is set and ignored
function __get(integer $name) {

$this->$name = $value;
}

// typehint is checked by PHP 8.0 linting
// typehint is enforced by PHP 7.x
function __call(integer $name) {

$this->$name = $value;
}

}

$o = new x;
$b = array();
// Property will be called 'Array'
$o->{$b} = 2;

(continues on next page)

1636 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php

Exakat Documentation, Release 1

(continued from previous page)

// type of $m is check at calling time. It must be string.
$o->{$m}();

?>

See also __set.

Suggestions

• Use string for the $name parameter

• Use no typehint for the $name parameter

Specs

Short name Classes/UselessTypehint
Rulesets All, Changed Behavior, Class Review, Suggestions
Exakat since 2.1.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features magic-method
Available in Entreprise Edition, Exakat Cloud

14.2.1402 Useless Unset

There are situations where trying to remove a variable is actually useless.

PHP ignores any command that tries to unset a global variable, a static variable, or a blind variable from a foreach loop.

This is different from the garbage collector, which is run on its own schedule. It is also different from an explicit unset,
aimed at freeing memory early : those are useful.

<?php

function foo($a) {
// unsetting arguments is useless
unset($a);

global $b;
// unsetting global variable has no effect
unset($b);

static $c;
// unsetting static variable has no effect
unset($c);

foreach($d as &$e){
// unsetting a blind variable is useless

(continues on next page)

14.2. List of Rules 1637

https://www.php.net/manual/en/language.oop5.overloading.php#object.set
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

(continued from previous page)

(unset) $e;
}
// Unsetting a blind variable AFTER the loop is good.
unset($e);

}

?>

See also unset.

Suggestions

• Remove the unset

• Set the variable to null : the effect is the same on memory, but the variable keeps its existence.

• Omit unsetting variables, and wait for the end of the scope. That way, PHP free memory en mass.

Specs

Short name Structures/UselessUnset
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features unset
ClearPHP no-useless-unset
Examples Tine20, Typo3
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1403 Uses Default Values

Default values are provided to methods so as to make it convenient to use. However, with new versions,
those values may change. For example, in PHP 5.4, htmlentities() switched from Latin1 to UTF-8 default
encoding.

As much as possible, it is recommended to use explicit values in those methods, so as to prevent from being surprise
at a future PHP evolution.

This analyzer tend to report a lot of false positives, including usage of count(). Count() indeed has a second argument
for recursive counts, and a default value. This may be ignored safely.

<?php

$string = Eu não sou o pão;

echo htmlentities($string);

(continues on next page)

1638 Chapter 14. Rules

https://www.php.net/unset
https://github.com/dseguy/clearPHP/tree/master/rules/no-useless-unset.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/htmlentities
https://www.php.net/count
https://www.php.net/count

Exakat Documentation, Release 1

(continued from previous page)

// PHP 5.3 : Eu nÃ£o sou o pÃ£o
// PHP 5.4 : Eu não sou o pão

// Stable across versions
echo htmlentities($string, 'UTF8');

?>

Suggestions

• Mention all arguments, as much as possible

Specs

Short name Functions/UsesDefaultArguments
Rulesets All, Analyze, CE, CI-checks, IsExt, IsPHP, IsStub
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1404 Uses Environment

This rule spots usage of $_ENV, getenv() and putenv() functions: they fetch data from the environment
variables.

<?php

// Take some configuration from the environment
$secret_key = getenv('secret_key');

?>

Specs

Short name Php/UsesEnv
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features environment
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1639

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1405 Uses PHP 8 Match()

Use the match() syntax.

<?php

$A = match($a) {
'a' => 'A',
'b' => 'B',
default => 'd',

};

?>

See also match and Match expression.

Specs

Short name Php/UseMatch
Rulesets All, CE, CompatibilityPHP74
Exakat since 2.1.4
PHP Version With PHP 8.0 and more recent
Severity
Time To Fix
Precision Very high
Features match
Related rule Reserved Match Keyword
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1406 Using $this Outside A Class

$this is a special variable, that should only be used in a class context.

Until PHP 7.1, $this may be used as an argument in a function or a method, a global, a static : while this is legit, it
sounds confusing enough to avoid it. Starting with PHP 7.1, the PHP engine check thoroughly that $this is used in
an appropriate manner, and raise fatal errors in case it isn’t.

Yet, it is possible to find $this outside a class : if the file is included inside a class, then $this will be recognized and
validated. If the file is included outside a class context, it will yield a fatal error : Using `$this <https://www.
php.net/manual/en/language.oop5.basic.php>`_ when not in object context.

<?php

function foo($this) {
echo $this;

}

// A closure can be bound to an object at later time. It is valid usage.
$closure = function ($x) {

echo $this->foo($x);
(continues on next page)

1640 Chapter 14. Rules

https://www.php.net/manual/en/control-structures.match.php
https://www.php.net/manual/en/control-structures.match.php
https://php.watch/versions/8.0/match-expression
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/engine
https://www.php.net/error

Exakat Documentation, Release 1

(continued from previous page)

}

?>

See also Closure::bind and The Basics.

Specs

Short name Classes/UsingThisOutsideAClass
Rulesets All, Analyze, Changed Behavior, CompatibilityPHP71, LintButWontExec
Exakat since 0.8.4
PHP Version With PHP 7.0 and older
Severity Critical
Time To Fix Instant (5 mins)
Changed Behavior PHP 7.1 - More
Precision High
Features $this
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.1407 Using Deprecated Feature

Deprecated attribute marks a class, interface, trait, enumeration, function, closure
<https://www.php.net/`closure>`_, array function, parameter, as a deprecated feature. This rule
reports usage of these structure, so they can be removed.

Note that the class ` rulesets-deprecated ` does not need to be defined anywhere.

<?php

#[Deprecated]
function foo() { }

// This is reported
foo();

?>

Suggestions

• Remove usage of this deprecated feature, so they can be removed ultimately.

14.2. List of Rules 1641

https://www.php.net/manual/en/closure.bind.php
https://www.php.net/manual/en/language.oop5.basic.php
https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/attribute
https://www.php.net/closure
https://www.php.net/closure

Exakat Documentation, Release 1

Specs

Short name Attributes/UsingDeprecated
Rulesets All, Attributes
Exakat since 2.6.1
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features attribute
Available in Entreprise Edition, Exakat Cloud

14.2.1408 Using Deprecated Method

A call to a deprecated method has been spotted. A method is deprecated when it bears a @deprecated
parameter in its typehint definition.

Deprecated methods which are not called are not reported.

<?php

// not deprecated method
not_deprecated();

// deprecated methods
deprecated();
$object = new X();
$object->deprecatedToo();

/**
* @deprecated since version 2.0.0
*/
function deprecated() {}

// PHP 8.0 attribute for deprecation
class X {

#[Deprecated]
function deprecatedToo() {}

}

function not_deprecated() {}

?>

See also @deprecated.

1642 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://docs.phpdoc.org/latest/references/phpdoc/tags/deprecated.html

Exakat Documentation, Release 1

Suggestions

• Replace the deprecated call with a stable call

• Remove the deprecated attribute from the method definition

• Remove the deprecated call

Specs

Short name Functions/UsingDeprecated
Rulesets All, Analyze, Attributes
Exakat since 2.1.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features deprecated
Available in Entreprise Edition, Exakat Cloud

14.2.1409 Using Short Tags

The code makes use of short tags. Short tags are the following : <? . A full scripts looks like that : <? /*
php code */ ?> .

It is recommended to avoid using short tags, and use standard PHP tags. This makes PHP code compatible with XML
standards. Short tags used to be popular, but have lost it.

See also PHP Tags.

Suggestions

• Use full tags

Specs

Short name Structures/ShortTags
Rulesets All, Appinfo, CE, PHP recommendations
Exakat since 0.8.4
PHP Version With PHP 7.0 and older
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features short-tag, php-tag, echo-tag
ClearPHP no-short-tags
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1643

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.basic-syntax.phptags.php
https://github.com/dseguy/clearPHP/tree/master/rules/no-short-tags.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1410 Usort Sorting In PHP 7.0

Usort(), uksort() and uasort() behavior has changed in PHP 7. Values that are equals (based on the user-
provided method) may be sorted differently than in PHP 5.

If this sorting is important, it is advised to add extra comparison in the user-function and avoid returning 0 (thus,
depending on default implementation). In PHP 5, the results is ::

Array
(

[0] => 3
[1] => 4
[2] => 2
[3] => 6

)

in PHP 7, the result is ::

Array
(

[0] => 2
[1] => 4
[2] => 3
[3] => 6

)

<?php

$a = [2, 4, 3, 6];

function noSort($a) { return $a > 5; }

usort($a, 'noSort');
print_r($a);

?>

See also Sort order of equal elements.

Suggestions

• Make sure the sorting function doesn’t generate any values of the same order.

• Add an extra order branch to avoid values of the same order.

• Spot the values of the same order after the sort, and sort them again, independently.

1644 Chapter 14. Rules

https://www.php.net/usort
https://www.php.net/uksort
https://www.php.net/uasort
https://www.php.net/result
https://www.php.net/manual/en/migration70.incompatible.php#migration70.incompatible.other.sort-order

Exakat Documentation, Release 1

Specs

Short name Php/UsortSorting
Rulesets All, Changed Behavior, CompatibilityPHP70
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Changed Behavior PHP 7.0 - More
Precision Medium
Features sort
Available in Entreprise Edition, Exakat Cloud

14.2.1411 Utf8 Encode And Decode Are Deprecated

utf8_encode() and utf8_decode() are deprecated in PHP 8.0. They are planned removal in PHP 9.0.

See also PHP RFC: Deprecate and Remove utf8_encode and utf8_decode.

Suggestions

• Use mbstring functions : mb_convert_encoding($latin1, ‘UTF-8’, ‘ISO-8859-1’)

• Use iconv functions : mb_convert_encoding($latin1, ‘UTF-8’, ‘ISO-8859-1’)

• Use intl functions : iconv(‘ISO-8859-1’, ‘UTF-8’, $latin1)

Specs

Short name Php/Utf8EncodeDeprecated
Rulesets All, CompatibilityPHP82
Exakat since 2.4.5
PHP Version With PHP 8.2 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1412 Var Keyword

Var was used in PHP 4 to mark properties as public. Nowadays, new keywords are available : public,
protected, private. Var is equivalent to public.

It is recommended to avoid using var, and explicitly use the new keywords.

<?php

class foo {
public $bar = 1;

(continues on next page)

14.2. List of Rules 1645

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/utf8_encode
https://www.php.net/utf8_decode
https://wiki.php.net/rfc/remove_utf8_decode_and_utf8_encode
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// Avoid var
//var $bar = 1;

}

?>

See also Visibility.

Suggestions

• It is recommended to avoid using var, and explicitly use the new keywords : private, protected, public

Specs

Short name Classes/OldStyleVar
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features visibility
ClearPHP no-php4-class-syntax
Examples xataface
Available in Entreprise Edition, Exakat Cloud

14.2.1413 Variable Anf Property Typehint

Adds typehints to (local) variables and properties, by inference from the code.

Currently, the variable must be assigned only one type within its context to be typed. Non-typed variables limit the
scope of other rules.

This is an internal tool, to help find definitions of classes. The same strategies may happen to arguments, though there
is no syntax relay for variables.

<?php

function foo() {
$a = 1;

return $a;
}

?>

1646 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.visibility.php
https://github.com/dseguy/clearPHP/tree/master/rules/no-php4-class-syntax.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Complete/VariableTypehint
Rulesets All, Changed Behavior, First, NoDoc
Exakat since 2.3.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Medium
Features variable, typehint
Available in Entreprise Edition, Exakat Cloud

14.2.1414 Variable Constants

Variable constants are constants whose value is accessed via the function constant(). Otherwise, there is no
way to dynamically access a constant (aka, when the developer has the name of the constant as a incoming
parameter, and it requires the value of it).

<?php

const A = 'constant_value';

$constant_name = 'A';

$variableConstant = constant($constant_name);

?>

See also constant().

Specs

Short name Constants/VariableConstant
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features dynamic-constant, constant
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1647

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/constant
https://www.php.net/constant
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1415 Variable Global

Variable global such are valid in PHP 5.6, but no in PHP 7.0. They should be replaced with ${$foo->bar}.

<?php

// Forbidden in PHP 7
global $normalGlobal;

// Forbidden in PHP 7
global $$variable->global ;

// Tolerated in PHP 7
global ${$variable->global};

?>

Specs

Short name Structures/VariableGlobal
Rulesets All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56
Exakat since 0.8.3
PHP Version With PHP 7.0 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features global
Available in Entreprise Edition, Exakat Cloud

14.2.1416 Variable Is A Local Constant

A variable that is written once, then never modified : it behaves like a constant. Some other rule may take
advantage of this.

<?php

function foo() {
$localConstant = 'Hello';
echo $localConstant;

$variable = 'Hello, ';
$variable .= date('r');
echo $variable;

}

?>

1648 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Variables/IsLocalConstant
Rulesets All, Changed Behavior, First, NoDoc
Exakat since 2.3.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.2.1417 Variable Is Not A Condition

Avoid using a lone variable as a condition. It is recommended to use a comparative value, or one of the
filtering function, such as isset(), empty().

Using the raw variable as a condition blurs the difference between an undefined variable and an empty value. By using
an explicit comparison or validation function, it is easier to understand what the variable stands for. Thanks to the PMB
team for the inspiration.

<?php

if (isset($error)) {
echo 'Found one error : '.$error!;

}

//
if ($errors) {

print count($errors).' errors found : '.join('', $errors).PHP_EOL;
echo 'Not found';

}

?>

Suggestions

• Make the validation explicit, by using a comparison operator, or one of the validation function.

Specs

Short name Structures/NoVariableIsACondition
Rulesets All, Analyze
Exakat since 1.6.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features comparison, iffectation
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1649

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.www.php.net/isset
https://www.sigb.net/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1418 Variable Parameter Ambiguity In Arrow Function

Avoid using a parameter that is also the name of a local variable.

Arrow functions import automatically the variables from the local context in their body. Yet, a variable name may also
be used as the name of a parameter. In that case, PHP use the parameter, and omits the value of the local variable.

<?php

// $b is a parameter, $a is a local variable
$a = 1;
fn($b) => $a + $b;

// $a is a local variable, but also a parameter.
// PHP uses the parameter, and omits the local variable
fn($a) => $a + 1;

?>

Suggestions

• Use parameter names that are distinct from the local variables names.

Specs

Short name Functions/VariableParameterAmbiguityInArrowFunction
Rulesets All, Changed Behavior
Exakat since 2.6.6
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features arrow-function
Available in Entreprise Edition, Exakat Cloud

14.2.1419 Variable References

Variables that are holding references.

References are created with =& operators, and later propagated with the same operators, or via reference-arguments.

<?php

$a = '1'; // not a reference
$b = &$a; // a reference

?>

See also References.

1650 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/references

Exakat Documentation, Release 1

Specs

Short name Variables/References
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features reference
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1420 Variable Variables

A variable variable takes the value of a variable and treats that as the name of a variable.

PHP has the ability to dynamically use a variable.

They are also called ‘dynamic variable’.

<?php

// Normal variable
$a = 'b';
$b = 'c';

// Variable variable
$d = $$b;

// Variable variable in string
$d = "$\{$b\}";

?>

See also Variable variables.

Specs

Short name Variables/VariableVariables
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features variable-variable, variable
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1651

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.variables.variable.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1421 Variables With Long Names

This analysis collects all variables with more than 20 characters longs. This may be configured with the
variableLength parameter.

PHP has not limitation on variable name size. While short name are often obscure, long names are usually better. Yet,
there exists a limit to convenient variable name length.

<?php

// Quite a long variable name
$There_is nothing_wrong_with_long_variable_names_They_tend_to_be_rare_and_that_make_them_
→˓noteworthy = 1;

?>

Name Default Type Description
variableLength 20 integer Minimum size of a long variable name, including the initial $.

See also Basics.

Suggestions

• Try to use short variable names.

Specs

Short name Variables/VariableLong
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1422 Variables With One Letter Names

Variables with one letter name are the shortest name for variables. They also bear very little meaning :
what does contain the variable $w ?

Some one-letter variables have meaning : $x and $y for coordinates, $i, $j, $k for blind variables. Others tend to be
an easy way to give a name to a variable, without thinking too hard a good name.

<?php

// $a is reported as a one-letter variable
$a = 0;

(continues on next page)

1652 Chapter 14. Rules

https://www.php.net/manual/en/language.variables.basics.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// $i is considered a false positive.
for($i = 0; $i < 10; ++$i) {

$a += doSomething($i);
}

?>

See also Using single characters for variable names in loops/exceptions and Single Letter Variable Names Still Con-
sidered Harmful.

Suggestions

• Make the variable more meaningful, with full words

Specs

Short name Variables/VariableOneLetter
Rulesets All, Semantics
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1423 Void Is Not A Reference

It is not possible to return by reference, in a method that is typed void. The returned value is a literal null.

<?php

function &foo() : void {}

?>

Suggestions

• Remove the void type

• Remove the reference on the method

14.2. List of Rules 1653

https://softwareengineering.stackexchange.com/questions/71710/using-single-characters-for-variable-names-in-loops-exceptions?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa/
https://odetocode.com/blogs/scott/archive/2008/11/17/single-letter-variable-names-still-considered-harmful.aspx
https://odetocode.com/blogs/scott/archive/2008/11/17/single-letter-variable-names-still-considered-harmful.aspx
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short
name

Functions/VoidIsNotAReference

Rule-
sets

All, Analyze, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55,
CompatibilityPHP56, CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72, Compatibility-
PHP73, CompatibilityPHP74, CompatibilityPHP80, CompatibilityPHP81

Exakat
since

2.6.2

PHP
Ver-
sion

With PHP 8.1 and older

Sever-
ity

Minor

Time
To Fix

Quick (30 mins)

Changed
Be-
havior

PHP 8.1 - More

Preci-
sion

Very high

Avail-
able in

Entreprise Edition, Exakat Cloud

14.2.1424 Weak Type With Array

Using array as a type, to use specific index later.

The type of array is too weak : it allows to know that the array syntax has to be used in the function. Yet, it doesn’t
enforce the presence or absence of a specific index.

<?php

function foo(array $variable) {
echo $array['display'];

}

?>

See also Stop using Arrays and Never* Use Arrays.

Suggestions

• Use a class as type, instead of

1654 Chapter 14. Rules

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/return_reference_on_void.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://jeanhertel.com.br/en/stop-using-arrays
https://presentations.garfieldtech.com/slides-never-use-arrays/phpugffm2020/#/

Exakat Documentation, Release 1

Specs

Short name Arrays/WeakType
Rulesets All, Analyze, Changed Behavior
Exakat since 2.5.1
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features array
Available in Entreprise Edition, Exakat Cloud

14.2.1425 Weak Typing

The variable’s validation is not enough to allow for a sophisticated usage. For example, the variable is
checked for null, then used as an object or an array.

<?php

if ($a !== null) {
echo $a->b;

}

?>

See also From assumptions to assertions.

Suggestions

• Use instanceof when checking for objects

• Use is_array() when checking for arrays. Also consider is_string(), is_int(), etc.

• Use typehint when the variable is an argument

Specs

Short name Classes/WeakType
Rulesets All, Analyze, Changed Behavior
Exakat since 1.2.8
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features typehint
Examples TeamPass
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1655

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://rskuipers.com/entry/from-assumptions-to-assertions
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1426 Weird Array Index

Array index that looks weird. Arrays index may be string or integer, but some strings looks weird.

In particular, strings that include terminal white spaces, often leads to missed values. Although this is rare error, and
often easy to spot, it is also very hard to find when it strikes.

<?php

$array = ['a ' => 1, 'b' => 2, 'c' => 3];

// Later in the code

//Notice: Undefined index: a in /Users/famille/Desktop/analyzeG3/test.php on line 8
echo $array['a'];

//Notice: Undefined index: b in /Users/famille/Desktop/analyzeG3/test.php on line 10
// Note that the space is visible, but easy to miss
echo $array['b '];

// all fine here
echo $array['c'];

?>

Suggestions

• Remove white spaces when using strings as array index.

Specs

Short name Arrays/WeirdIndex
Rulesets All, Semantics
Exakat since 1.9.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features index
Available in Entreprise Edition, Exakat Cloud

1656 Chapter 14. Rules

https://www.php.net/error
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1427 While(List() = Each())

This code structure is quite old : it should be replace by the more modern and efficient foreach.

This structure is deprecated since PHP 7.2. It may disappear in the future.

<?php

while(list($key, $value) = each($array)) {
doSomethingWith($key) and $value();

}

foreach($array as $key => $value) {
doSomethingWith($key) and $value();

}
?>

See also PHP RFC: Deprecations for PHP 7.2 : Each().

Suggestions

• Change this loop with foreach

• Change this loop with an array_* functions with a callback

Specs

Short name Structures/WhileListEach
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, Performances, Suggestions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features while
Examples OpenEMR, Dolphin
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1428 Windows Only Constants

When built on Windows, PHP offers some extra constants. They are not available on other operating
systems.

<?php

//The Windows build number (for example, Windows Vista with SP1 applied is build 6001)
echo PHP_WINDOWS_VERSION_BUILD;

?>

See also Info Predefined Constants.

14.2. List of Rules 1657

https://wiki.php.net/rfc/deprecations_php_7_2#each
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/info.constants.php

Exakat Documentation, Release 1

Specs

Short name Portability/WindowsOnlyConstants
Rulesets All
Exakat since 1.7.0
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1429 Wordpress usage

This analysis reports usage of the Wordpress platform.

The current supported version is Wordpress 5.8.

<?php

//Usage of the WP_http class from Wordpress
$rags = array(
'x' => '1',
'y' => '2'

);
$url = 'http://www.example.com/';
$request = new WP_Http();
$result = $request->request($url, array('method' => 'POST', 'body' => $body));

?>

See also Wordpress.

Specs

Short name Vendors/Wordpress
Rulesets All, Appinfo, CE
Exakat since 0.11.8
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features framework
Available in Entreprise Edition, Community Edition, Exakat Cloud

1658 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.wordpress.org/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1430 Written Only Variables

Those variables are being written, but never read. In this way, they are useless and should be removed, or
be read at some point in the code.

When the variables are only written, it takes time to process them, while discarding their result without usage. Also,
when those variables are built with a complex process, it makes it difficult to understand their point, and still create
maintenance work.

<?php

// $a is used multiple times, but never read
$a = 'a';
$a .= 'b';

$b = 3;
//$b is actually read once
$a .= $b + 3;

?>

Suggestions

• Check that variables are written AND read in each context

• Remove variables that are only read

• Use the variable that are only read

Specs

Short name Variables/WrittenOnlyVariable
Rulesets All, Analyze
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features variable
ClearPHP no-unused-variable
Examples Dolibarr, SuiteCrm
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1659

https://www.php.net/result
https://github.com/dseguy/clearPHP/tree/master/rules/no-unused-variable.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1431 Wrong Access Style to Property

Use the right syntax when reaching for a property. Static properties use the \:\: operator, and non-static
properties use ->.

Mistaking one of the other raise two different reactions from PHP : Access to undeclared `static <https:/
/www.php.net/manual/en/language.oop5.static.php>`_ property is a fatal error, while PHP Notice:
Accessing `static <https://www.php.net/manual/en/language.oop5.static.php>`_ property
aa\:\:$a as non `static <https://www.php.net/manual/en/language.oop5.static.php>`_ is a
notice.

This analysis reports both static properties with a -> access, and non-static properties with a :: access.

<?php

class a {
static public $a = 1;

function foo() {
echo self::$a; // right
echo $this->a; // WRONG

}
}

class b {
public $b = 1;

function foo() {
echo $this->$b; // right
echo b::$b; // WRONG

}
}

?>

See also Static Keyword.

Suggestions

• Match the property call with the definition

• Make the property static

1660 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/error
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

Specs

Short name Classes/UndeclaredStaticProperty
Rulesets All, Analyze, CE, CI-checks, Class Review
Exakat since 1.4.9
PHP Version All
Severity Critical
Time To Fix Quick (30 mins)
Precision Very high
Features declaration
Examples HuMo-Gen
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1432 Wrong Argument Name With PHP Function

The name of the argument provided is not a valid parameter name for that PHP native function or method.

This analysis may be configured with extra PHP extensions or external packages.

<?php

// those are the valid names
strcmp(string1: 'a', string2: 'b');

// those are not the valid names
strcmp(string: 'a', stringToo: 'b');

?>

See also Unknown Parameter Name.

Suggestions

• Use the correct parameter name

• Remove all the parameter names from the call

• Create a relay function with the correct parameter names

Specs

Short name Functions/WrongArgumentNameWithPhpFunction
Rulesets All, Analyze, CI-checks, IsExt, IsPHP, IsStub
Exakat since 2.2.3
PHP Version With PHP 8.0 and more recent
Severity Major
Time To Fix Instant (5 mins)
Precision High
Features named-parameter
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1661

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1433 Wrong Argument Type

Checks that the type of the argument is consistent with the type of the called method.

This analysis is valid with PHP 8.0.

<?php

function foo(int $a) { }

//valid call, with an integer
foo(1);

//invalid call, with a string
foo('asd');

?>

Suggestions

• Always use a valid type when calling methods.

Specs

Short name Functions/WrongArgumentType
Rulesets All, Analyze, Typechecks
Exakat since 2.1.3
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1434 Wrong Attribute Configuration

A class is attributed to the wrong PHP structure.

<?php
#[Attribute(Attribute::TARGET_CLASS)]
class ClassAttribute { }

// Wrong
#[ClassAttribute]
function foo () {}

// OK
#[ClassAttribute]
class y {}

?>

1662 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

See also Declaring Attribute Classes.

Suggestions

• Remove the attribute from the wrongly attributed structure

• Extend the configuration of the attribute with Attribute::TARGET_*

Specs

Short name Php/WrongAttributeConfiguration
Rulesets All, Analyze
Exakat since 2.2.0
PHP Version With PHP 8.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features attribute
Available in Entreprise Edition, Exakat Cloud

14.2.1435 Wrong Case Namespaces

Namespaces are case-insensitive.

<?php

// Namespaces should share the same case
namespace X {}

namespace x {}

?>

Suggestions

• Synchronize all names

Specs

Short name Namespaces/WrongCase
Rulesets All, Changed Behavior, Coding conventions
Exakat since 1.9.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features namespace
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1663

https://www.php.net/manual/en/language.attributes.classes.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1436 Wrong Class Name Case

The spotted classes are used with a different case than their definition. While PHP accepts this, it makes
the code harder to read.

It may also be a violation of coding conventions.

<?php

// This use statement has wrong case for origin.
use Foo as X;

// Definition of the class
class foo {}

// Those instantiations have wrong case
new FOO();
new X();

?>

See also PHP class name constant case sensitivity and PSR-11.

Suggestions

• Match the defined class name with the called name

Specs

Short name Classes/WrongCase
Rulesets All, Coding conventions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Examples WordPress
Available in Entreprise Edition, Exakat Cloud

14.2.1437 Wrong Function Name Case

The spotted functions are used with a different case than their definition. While PHP accepts this, it makes
the code harder to read.

It may also be a violation of coding conventions.

<?php

// Definition of the class
function foo () {}

(continues on next page)

1664 Chapter 14. Rules

https://gist.github.com/bcremer/9e8d6903ae38a25784fb1985967c6056
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// Those calls have wrong case
FOO();
\Foo();

// This is valid
foo();

?>

See also PHP class name constant case sensitivity and PSR-11.

Suggestions

• Match the defined functioncall with the called name

Specs

Short name Functions/WrongCase
Rulesets All, Coding conventions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features case-sensitivity
Available in Entreprise Edition, Exakat Cloud

14.2.1438 Wrong Locale

This rule checks the locale used in the code, against a library of known valid locales. Unknown locales are
reported: they might be typos or unknown to certain systems.

<?php

// what language ?
setLocale(LC_ALL, 'hx');

// utf8 actually needs a - : utf-8
setLocale(LC_ALL, 'utf8');

?>

Name Default Type Description
otherLocales array Other accepted locales, comma separated
maxPositions 3 integer Number of argument in setLocale() to be tried.

14.2. List of Rules 1665

https://gist.github.com/bcremer/9e8d6903ae38a25784fb1985967c6056
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/locale

Exakat Documentation, Release 1

Suggestions

• Use a valid locale

Specs

Short name Structures/WrongLocale
Rulesets All, Analyze, Semantics
Exakat since 2.4.2
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features locale
Available in Entreprise Edition, Exakat Cloud

14.2.1439 Wrong Number Of Arguments

Those functioncalls are made with too many or too few arguments.

When the number arguments is wrong for native functions, PHP emits a warning. When the number arguments is too
small for custom functions, PHP raises an exception. When the number arguments is too high for custom functions,
PHP ignores the arguments. Such arguments should be handled with the variadic operator, or with func_get_args()
family of functions. It is recommended to check the signature of the methods, and fix the arguments.

<?php

echo strtoupper('This function is', 'ignoring arguments');
//Warning: strtoupper() expects exactly 1 parameter, 2 given in Command line code on␣
→˓line 1

echo strtoupper();
//Warning: strtoupper() expects exactly 1 parameter, 0 given in Command line code on␣
→˓line 1

function foo($argument) {}
echo foo();
//Fatal error: Uncaught ArgumentCountError: Too few arguments to function foo(), 0␣
→˓passed in /Users/famille/Desktop/analyzeG3/test.php on line 10 and exactly 1 expected␣
→˓in /Users/famille/Desktop/analyzeG3/test.php:3

echo foo('This function is', 'ignoring arguments');

?>

1666 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/exception
https://www.php.net/func_get_args

Exakat Documentation, Release 1

Suggestions

• Add more arguments to fill the list of compulsory arguments

• Remove arguments to fit the list of compulsory arguments

• Use another method or class

Specs

Short name Functions/WrongNumberOfArguments
Rulesets All, Analyze, CE, CI-checks, IsExt, IsPHP, IsStub
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision High
Features function, method, static-method, constructor
ClearPHP no-missing-argument.md
Examples xataface
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1440 Wrong Number Of Arguments In Methods

Those methods are called with a wrong number of arguments : too many or too few. Check the signature.

Methods with a variable number of argument, either using ellipsis or func_get_args() are ignored.

PHP emits an error at runtime, when arguments are not enough : ‘’. PHP doesn’t emit an error when too many arguments
are provided.

<?php

class Foo {
private function Bar($a, $b) {

return $a + $b;
}

public function foobar() {
$this->Bar(1);

// Good amount
$this->Bar(1, 2);

// Too Many
$this->Bar(1, 2, 3);

}
}

?>

14.2. List of Rules 1667

https://github.com/dseguy/clearPHP/tree/master/rules/no-missing-argument.md.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/func_get_args
https://www.php.net/error
https://www.php.net/error

Exakat Documentation, Release 1

Suggestions

• Adapt the call to use one of the right number of arguments : this means dropping the extra ones, or adding the
missing ones

• Adapt the signature of the method, and use a default value

Specs

Short name Functions/WrongNumberOfArgumentsMethods
Rulesets All
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features composer
Available in Entreprise Edition, Exakat Cloud

14.2.1441 Wrong Optional Parameter

Wrong placement of optional parameters.

PHP parameters are optional when they defined with a default value, like this :

When a function have both compulsory and optional parameters, the compulsory ones should appear first, and the
optional should appear last :

PHP solves this problem at runtime, assign values in the same other, but will miss some of the default values and emits
warnings.

It is better to put all the optional parameters at the end of the method’s signature.

Optional parameter wrongly placed are now a Notice in PHP 8.0. The only previous case that is allowed in PHP 8.0
and also in this analysis, is when the null value is used as default for typed arguments.

<?php
function x($arg = 1) {

// PHP code here
}

?>

See also Function arguments.

1668 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/functions.arguments.php

Exakat Documentation, Release 1

Suggestions

• Give default values to all but first parameters. Null is a good default value, as PHP will use it if not told otherwise.

• Remove default values to all but last parameters. That is probably a weak solution.

• Change the order of the values, so default-valued parameters are at the end. This will probably have impact on
the rest of the code, as the API is changing.

Specs

Short name Functions/WrongOptionalParameter
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, CompatibilityPHP80
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Changed Behavior PHP 8.1 - More
Precision Very high
Features parameter, optional-parameter
Examples FuelCMS, Vanilla
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1442 Wrong Parameter Type

The expected parameter is not of the correct type. Check PHP documentation to know which is the right
format to be used.

<?php

// substr() shouldn't work on integers.
// the first argument is first converted to string, and it is 123456.
echo substr(123456, 0, 4); // display 1234

// substr() shouldn't work on boolean
// the first argument is first converted to string, and it is 1, and not t
echo substr(true, 0, 1); // displays 1

// substr() works correctly on strings.
echo substr(123456, 0, 4);

?>

14.2. List of Rules 1669

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Php/InternalParameterType
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Examples Zencart
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1443 Wrong Precedence In Expression

These operators are not executed in the expected order. Coalesce and ternary operator have lesser prece-
dence compared to comparisons or spaceship operators.

Thus, the comparison is executed first, and the other operator later.

It is recomended to use parenthesis in these cases.

Note that this may behave as expected, with a bit of clever placing boolean: see last example.

<?php

// This
if ($a ?? 1 == 2) {}

// is equivalent to
if ($a ?? (1 == 2)) {}

// It is different from
if (($a ?? 1) == 2) {}

// This one is also wrong, but falls back on correct values
if ($a ?? false === true) {}

?>

1670 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Add parenthesis around the coalesce operator

Specs

Short name Structures/WrongPrecedenceInExpression
Rulesets All, Analyze, Changed Behavior
Exakat since 2.6.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1444 Wrong Range Check

The interval check should use && and not ||.

<?php

//interval correctly checked a is between 2 and 999
if ($a > 1 && $a < 1000) {}

//interval incorrectly checked : a is 2 or more ($a < 1000 is never checked)
if ($a > 1 || $a < 1000) {}

?>

Suggestions

• Make the interval easy to read and understand

• Check the truth table for the logical operation

Specs

Short name Structures/WrongRange
Rulesets All, Analyze
Exakat since 1.2.5
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Examples Dolibarr, WordPress
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1671

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1445 Wrong Type For Native PHP Function

This analysis reports calls to a PHP native function with a wrongly typed value.

<?php

// valid calls
echo exp(1);
echo exp(2.5);

// invalid calls
echo exp("1");
echo exp(array(2.5));

// valid call, but invalid math
// -1 is not a valid value for log(), but -1 is a valid type (int) : it is not reported␣
→˓by this analysis.
echo log(-1);
?>

See also PHP 7.1 no longer converts string to arrays the first time a value is assigned with square bracket notation.

Suggestions

• Set the code to the valid type, when calling a PHP native function

Specs

Short name Php/WrongTypeForNativeFunction
Rulesets All, Analyze, CE, CI-checks
Exakat since 2.1.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1446 Wrong Type Returned

The returned value is not compatible with the specified return type.

<?php

// classic error
function bar() : int {

return 'A';
}

// classic static error
const B = 2;

(continues on next page)

1672 Chapter 14. Rules

https://www.drupal.org/project/adaptivetheme/issues/2832900
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

function bar() : string {
return B;

}

// undecideable error
function bar($c) : string {

return $c;
}

// PHP lint this, but won't execute it
function foo() : void {

// No return at all
}

?>

See also Returning values, Void Return Type, Mismatch Type And Default and Wrong Typed Property Default.

Suggestions

• Match the return type with the return value

• Remove the return expression altogether

• Add a typecast to the returning expression

Specs

Short name Functions/WrongReturnedType
Rulesets All, Analyze, CE, CI-checks, Class Review, LintButWontExec
Exakat since 1.8.7
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Note This issue may lint but will not run
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1447 Wrong Type With Call

This analysis checks that a call to a method uses the types.

This analysis is compatible with Union types and with Intersection types. Currently, this analysis doesn’t take into
account strict_types = 1. As such, int and string won’t be compatible.

<?php

function foo(string $a) {

}
(continues on next page)

14.2. List of Rules 1673

https://www.php.net/manual/en/functions.returning-values.php
https://wiki.php.net/rfc/void_return_type
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// wrong type used
foo(1);

// wrong type used
foo("1");

?>

Suggestions

• Use the right type with all arguments

• Force the type with a cast

• Check the type before calling

Specs

Short name Functions/WrongTypeWithCall
Rulesets All, Analyze, CE, CI-checks, Typechecks
Exakat since 1.9.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features union-type, intersection-type
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1448 Wrong Type With Default

The default value is not of the declared type.

For properties, this will generate an error as soon as the default value is used : this is before constructor call for
properties, and when the argument is omitted for promoted properties.

For parameters, the error happens when the argument is omitted, and the default value is fetched. Otherwise, it won’t
happen. This error is immediately detected when a literal value is used. It only happens when the default is a constant
(class or global) or an expression, as those are only solved at execution time.

<?php

const A = 1;

class B {
private string $c = A;

}

new B;
(continues on next page)

1674 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/error
https://www.php.net/error

Exakat Documentation, Release 1

(continued from previous page)

//Cannot assign string to property B::$c of type string
?>

See also When does PHP check for Fatal error.

Specs

Short name Typehints/WrongTypeWithDefault
Rulesets All, Analyze, Class Review, LintButWontExec
Exakat since 2.4.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.1449 Wrong Typed Property Default

Property is typed, yet receives an incompatible value at constructor time.

Initialized type might be a new instance, the return of a method call or an interface compatible object.

PHP compiles such code, but won’t execute it, as it detects the incompatibility at execution time.

<?php

class x {
private A $property;
private B $incompatible;

function __construct() {
// This is compatible
$this->property = new A();

// This is incompatible : new B() expected
$this->incompatible = new C();

}
}

?>

See also Wrong Type Returned and Mismatch Type And Default.

14.2. List of Rules 1675

https://www.exakat.io/en/when-does-php-check-for-fatal-error/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Remove the type hint of the property

• Fix the initialization call

• Use an interface for typehint

Specs

Short name Classes/WrongTypedPropertyInit
Rulesets All, Analyze, CE, CI-checks, Class Review, LintButWontExec
Exakat since 2.0.9
PHP Version With PHP 7.4 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features default-value
Note This issue may lint but will not run
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1450 Wrong Typehinted Name

The parameter name doesn’t reflect the typehint used.

There are no restriction on parameter names, except its uniqueness in the signature. Yet, using a scalar typehint as the
name for another typehinted value is just misleading. This analysis relies on exact names : calling an array a list of
strings is OK with this analysis.

This analysis relies on a few variations of names : bool and boolean, int and integer.

<?php

function foo(string $array,
int $int) {

// doSomething()
}

function bar(array $strings) {
// doSomething()

}

?>

1676 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggestions

• Rename the parameter

Specs

Short name Functions/WrongTypehintedName
Rulesets All, Coding conventions, Semantics
Exakat since 2.0.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features type
Available in Entreprise Edition, Exakat Cloud

14.2.1451 Wrong fopen() Mode

Wrong file opening for fopen().

fopen() has a few modes, as described in the documentation : ‘r’, ‘r+’, for reading; ‘w’, ‘w+’ for writing; ‘a’, ‘a+’ for
appending; ‘x’, ‘x+’ for modifying; ‘c’, ‘c+’ for writing and locking, ‘t’ for text files and windows only. An optional
‘b’ may be used to make the fopen() call more portable and binary safe. Another optional ‘t’ may be used to make the
fopen() call process automatically text input : this one should be avoided. Any other values are not understood by PHP.

<?php

// open the file for reading, in binary mode
$fp = fopen('/tmp/php.txt', 'rb');

// New option e in PHP 7.0.16 and 7.1.2 (beware of compatibility)
$fp = fopen('/tmp/php.txt', 'rbe');

// Unknown option x
$fp = fopen('/tmp/php.txt', 'rbx');

?>

Suggestions

• Check the docs, choose the right opening mode.

14.2. List of Rules 1677

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/fopen
https://www.php.net/fopen
https://www.php.net/fopen
https://www.php.net/fopen

Exakat Documentation, Release 1

Specs

Short name Php/FopenMode
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features file-mode
Examples Tikiwiki, HuMo-Gen
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1452 Yield From Usage

Usage of generator <https://www.php.net/`generator>`_ delegation, with yield from keyword.

In PHP 7, generator <https://www.php.net/`generator>`_ delegation allows you to yield values from another
Generator, Traversable object, or array by using the yield from.

Yield from was introduced in PHP 7.1, and is backward incompatible.

<?php

// Yield delegation
function foo() {

yield from bar();
}

function bar() {
yield 1;

}

?>

See also Generator Syntax and Understanding PHP Generators.

Specs

Short name Php/YieldFromUsage
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version With PHP 7.0 and more recent
Severity
Time To Fix
Precision Very high
Features yield, yield-from
Available in Entreprise Edition, Community Edition, Exakat Cloud

1678 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/generator
https://www.php.net/generator
https://www.php.net/manual/en/language.generators.syntax.php
https://scotch.io/tutorials/understanding-php-generators
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1453 Yield Usage

Usage of generators, with yield keyword.

Yield was introduced in PHP 5.5, and is backward incompatible.

<?php

function prime() {
$primes = [2, 3, 5, 7, 11, 13, 17, 19];
foreach($primes as $prime) {

yield $prime;
}

}

?>

See also Generator Syntax, Deal with Memory Gently using “Yield” in PHP and Understanding PHP Generators.

Specs

Short name Php/YieldUsage
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version With PHP 5.5 and more recent
Severity
Time To Fix
Precision Very high
Features yield, yield-from
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1454 Yii usage

This analysis reports usage of the Yii 2 framework.

This analysis targets Yii 2, not Yii 1.

<?php

// A Yii controller
class SiteController extends \Yii\Web\Controller
{

public function actionIndex()
{

// ...
}

public function actionContact()
{

// ...
}

(continues on next page)

14.2. List of Rules 1679

https://www.php.net/manual/en/language.generators.syntax.php
https://medium.com/tech-tajawal/use-memory-gently-with-yield-in-php-7e62e2480b8d
https://scotch.io/tutorials/understanding-php-generators
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

}

?>

See also Yii.

Specs

Short name Vendors/Yii
Rulesets All, Appinfo, CE
Exakat since 0.11.8
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features framework
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1455 Yoda Comparison

Yoda comparison is a way to write conditions which places literal values on the left side.

The objective is to avoid mistaking a comparison to an assignation. If the comparison operator is mistaken, but the
literal is on the left, then an error will be triggered, instead of a silent bug.

.

<?php
if (1 == $a) {
// Then condition

}
?>

See also Yoda Conditions and Yoda Conditions: To Yoda or Not to Yoda.

Specs

Short name Structures/YodaComparison
Rulesets All, Coding conventions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

1680 Chapter 14. Rules

http://www.yiiframework.com/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://en.wikipedia.org/wiki/Yoda_conditions
https://knowthecode.io/yoda-conditions-yoda-not-yoda
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1456 __DIR__ Then Slash

__DIR__ must be concatenated with a string starting with /.

The magic constant __DIR__ holds the name of the current directory <https://www.php.net/`directory>`_, without final
/. When it is used to build path, then the following path fragment must start with /. Otherwise, two directories names
will be merged together.

<?php

// __DIR__ = /a/b/c
// $filePath = /a/b/c/g.php

// /a/b/c/d/e/f.txt : correct path
echo __DIR__.'/d/e/f.txt';
echo dirname($filePath).'/d/e/f.txt';

// /a/b/cd/e/f.txt : most probably incorrect path
echo __DIR__.'d/e/f.txt';
echo dirname($filePath).'d/e/f.txt';

?>

Suggestions

• Add a check on __DIR__, as it may be ‘/’ when run at the root of the server

• Add a ‘/’ at the beginning of the path after __DIR__.

• Add a call to realpath() or file_exists(), before accessing the file.

Specs

Short name Structures/DirThenSlash
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 0.10.3
PHP Version All
Severity Major
Time To Fix Instant (5 mins)
Precision Very high
Examples Traq
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1681

https://www.php.net/manual/en/language.constants.predefined.php
https://www.php.net/manual/en/language.constants.predefined.php
https://www.php.net/directory
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1457 __debugInfo() Usage

The magic method __debugInfo() provides a custom way to dump an object.

It has been introduced in PHP 5.6. In the previous versions of PHP, this method is ignored and won’t be called when
debugging.

<?php

// PHP 5.6 or later
class foo {

private $bar = 1;
private $reallyHidden = 2;

function __debugInfo() {
return ['bar' => $this->bar,

'reallyHidden' => 'Secret'];
}

}

$f = new Foo();
var_dump($f);

/* Displays :
object(foo)#1 (2) {
[bar]=>
int(1)
[reallyHidden]=>
string(6) Secret

}
*/

?>

See also Magic methods.

Specs

Short name Php/debugInfoUsage
Rulesets All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55
Exakat since 0.8.4
PHP Version With PHP 5.6 and more recent
Severity Minor
Time To Fix Slow (1 hour)
Precision Very high
Features magic-method
Examples Dolibarr
Available in Entreprise Edition, Exakat Cloud

1682 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1458 __halt_compiler

__halt_compiler() usage.

<?php

// open this file
$fp = fopen(__FILE__, 'r');

// seek file pointer to data
fseek($fp, __COMPILER_HALT_OFFSET__);

// and output it
var_dump(stream_get_contents($fp));

// the end of the script execution
__halt_compiler(); the installation data (eg. tar, gz, PHP, etc.)

?>

See also __halt_compiler.

Specs

Short name Php/Haltcompiler
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features halt-compiler
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1459 __toString() Throws Exception

Magical method __toString() can’t throw exceptions.

In fact, __toString() may not let an exception pass. If it throw an exception, but must catch it. If an underlying method
throws an exception, it must be caught.

A fatal error is displayed, when an exception is not intercepted in the __toString() function.

<?php

class myString {
private $string = null;

public function __construct($string) {
$this->string = $string;

}
(continues on next page)

14.2. List of Rules 1683

https://www.php.net/manual/en/function.halt-compiler.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/exception
https://www.php.net/exception
https://www.php.net/exception
https://www.php.net/error
https://www.php.net/exception
https://www.php.net/manual/en/language.oop5.magic.php

Exakat Documentation, Release 1

(continued from previous page)

public function __toString() {
// Do not throw exceptions in __toString
if (!is_string($this->string)) {

throw new Exception("$this->string is not a string!!");
}

return $this->string;
}

}

?>

See also __toString().

Suggestions

• Remove any usage of exception from __toString() magic method

Specs

Short name Structures/toStringThrowsException
Rulesets All, Analyze, Changed Behavior
Exakat since 0.8.4
PHP Version With PHP 7.4 and older
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features exception, magic-method
Available in Entreprise Edition, Exakat Cloud

14.2.1460 array_key_exists() Speedup

array_key_exists() has its own opcode, leading to better features and speed.

isset() is faster for all non-empty values, but is limited when the value is NULL or empty : then, array_key_exists() has
the good features.

This change makes `array_key_exists() <https://www.php.net/array_key_exists>`_ actually
faster than `isset() <https://www.www.php.net/isset>`_ by ~25% (tested with GCC 8, -O3,
march=native, mtune=native)..

<?php

$foo = [123 => 456];

// This is sufficient and efficient since PHP 7.4
if (array_search_key($foo[123])) {

// do something
(continues on next page)

1684 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_key_exists
https://www.www.php.net/isset
https://www.php.net/manual/en/language.types.null.php
https://www.php.net/array_key_exists

Exakat Documentation, Release 1

(continued from previous page)

}

// taking advantages of performances for PHP 7.4 and older
if (isset($foo[123]) || array_search_key($foo[123])) {

// do something
}

?>

See also Implement ZEND_ARRAY_KEY_EXISTS opcode to speed up array_key_exists().

Suggestions

• Remove the isset() call and the logical operator

Specs

Short name Performances/ArrayKeyExistsSpeedup
Rulesets All, Changed Behavior, Performances, Suggestions
Exakat since 1.6.1
PHP Version With PHP 7.4 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features opcode
Available in Entreprise Edition, Exakat Cloud

14.2.1461 array_key_exists() Works On Arrays

array_key_exists() requires arrays as second argument. Until PHP 7.4, objects were also allowed, yet it is
now deprecated.

<?php

// Valid way to check for key
$array = ['a' => 1];
var_dump(array_key_exists('a', $array))

// Deprecated since PHP 7.4
$object = new Stdclass();
$object->a = 1;
var_dump(array_key_exists('a', $object))

?>

See also array_key_exists() with objects and array_key_exists.

14.2. List of Rules 1685

https://github.com/php/php-src/pull/3360
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_key_exists
https://wiki.php.net/rfc/deprecations_php_7_4#array_key_exists_with_objects
https://php.net/array-key-exists

Exakat Documentation, Release 1

Suggestions

• Use the (array) cast to turn the object into an array

• Use the native PHP function proprety_exists() or isset() on the property to check them.

Specs

Short name Php/ArrayKeyExistsWithObjects
Rulesets All, Analyze, CE, Changed Behavior, CompatibilityPHP74
Exakat since 1.9.0
PHP Version With PHP 7.4 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features index, array
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1462 array_merge With Ellipsis

Ellipsis, or . . . , returns a null when the operand array is empty. This doesn’t suit array_merge().

It is recommended to use a coalesce operator, to handle graciously an empty array : use an empty array as default value.

This applies to the following PHP functions :

• array_merge()

• array_merge_recursive()

• array_diff()

• array_diff_assoc()

• array_diff_key()

• array_diff_uassoc()

<?php

// Correct usage of array_merge and ellipsis
$a = [[1,2], [3,4]];
$b = array_merge(...$a);

// Notee the nested array
$a = [];
$b = array_merge(...$a ?: [[]]);

// Yield an error because $a is empty
$a = [];
$b = array_merge(...$a);

?>

1686 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/functions.arguments.php#functions.variable-arg-list
https://www.php.net/array_merge
https://www.php.net/array_merge
https://www.php.net/array_merge_recursive
https://www.php.net/array_diff
https://www.php.net/array_diff_assoc
https://www.php.net/array_diff_key
https://www.php.net/array_diff_uassoc

Exakat Documentation, Release 1

Suggestions

• Use one of the coalesce operator to default to an empty array, avoiding a runtime warning.

• Check the content of the expanded array before using it

Specs

Short name Structures/ArrayMergeWithEllipsis
Rulesets All, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73
Exakat since 1.7.6
PHP Version With PHP 7.4 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1463 array_merge() And Variadic

Always check value in variadic before using it with array_merge() and array_merge_recursive().

Before PHP 7.4, array_merge() and array_merge_recursive() would complain when no argument was provided. As
such, using the spread operator . . . on an empty array() would yield no argument, and an error.

<?php

$b = array_merge(...$x);

?>

Suggestions

• Add a check to the spread variable to ensure it is not empty

• Append an empty array to to the spread variable to ensure it is not empty

Specs

Short name Structures/ArrayMergeAndVariadic
Rulesets All, Analyze
Exakat since 1.9.2
PHP Version With PHP 7.4 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features variadic
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1687

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/array_merge
https://www.php.net/array_merge_recursive
https://www.php.net/array_merge
https://www.php.net/array_merge_recursive
https://www.php.net/array
https://www.php.net/error
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1464 class_alias() Supports Internal Classes

class_alias() accepts internal classes as first argument. Until PHP 8.3, this feature was restricted to user-
defined classes.

<?php

class_alias(stdClass::class, 'standardClass');

?>

Specs

Short
name

Php/ClassAliasSupportsInternalClasses

Rule-
sets

All, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56, Compatibil-
ityPHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73, CompatibilityPHP74, Com-
patibilityPHP80, CompatibilityPHP81, CompatibilityPHP82

Ex-
akat
since

2.5.3

PHP
Ver-
sion

With PHP 8.3 and more recent

Sever-
ity

Minor

Time
To
Fix

Quick (30 mins)

Pre-
ci-
sion

High

Avail-
able
in

Entreprise Edition, Exakat Cloud

14.2.1465 crypt() Without Salt

PHP requires a salt when calling crypt(). 5.5 and previous versions didn’t require it. Salt is a simple string,
that is usually only known by the application.

According to the manual : The salt parameter is optional. However, crypt() creates a weak hash without the salt. PHP
5.6 or later raise an E_NOTICE error without it. Make sure to specify a strong enough salt for better security.

<?php
// Set the password
$password = 'mypassword';

// salted crypt usage (always valid)
$hash = crypt($password, '123salt');

(continues on next page)

1688 Chapter 14. Rules

https://www.php.net/class_alias
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/crypt
https://www.php.net/crypt
https://www.php.net/E_NOTICE
https://www.php.net/error

Exakat Documentation, Release 1

(continued from previous page)

// Get the hash, letting the salt be automatically generated
// This generates a notice after PHP 5.6
$hash = crypt($password);

?>

See also crypt.

Suggestions

• Always provide the second argument

Specs

Short name Structures/CryptWithoutSalt
Rulesets All, Changed Behavior, CompatibilityPHP54
Exakat since 0.8.4
PHP Version With PHP 5.6 and older
Severity Minor
Time To Fix Instant (5 mins)
Changed Behavior PHP 5.6 - More
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1466 curl_version() Has No Argument

curl_version() used to accept CURLVERSION_NOW as argument. Since PHP 7.4, it is a function without
arguments.

<?php

// Compatible syntax
$details = curl_version(CURLVERSION_NOW);

// New PHP 7.4 syntax
$details = curl_version();

?>

See also curl_version.

14.2. List of Rules 1689

http://www.php.net/crypt
https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/curl_version
https://www.php.net/manual/en/function.curl-version.php

Exakat Documentation, Release 1

Suggestions

• Drop all arguments from curl_version() calls.

Specs

Short name Structures/CurlVersionNow
Rulesets All, CE, Changed Behavior, CompatibilityPHP74
Exakat since 1.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Changed Behavior PHP 7.4 - More
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1467 date() versus DateTime Preference

Processing dates is done with date() functions or DateTime <https://www.php.net/`datetime>`_ classes.

In the date() team, there are the following functions : date(), time(), getdate(), localtime(), strtotime(), strptime(),
gmdate(), strftime(), mktime(), gmktime().

In the DateTime <https://www.php.net/`datetime>`_ team, there are the instantiation of DateTime
<https://www.php.net/`datetime>`_ and DateTimeImmutable <https://www.php.net/`datetimeimmutable>`_; the
DateTime::createFromInterface(), DateTime::createFromFormat(), DateTime::createFromImmutable() and Date-
Time::createFromMutable().

The analyzed code has less than 10% of one of them : for consistency reasons, it is recommended to make them all the
same.

<?php

// be consistent
$date = date();
$time = time();
$date = date();
$time = time();
$date = date();
$time = time();
$date = date();
$time = time();
$date = date();
$time = time();
$date = date();
$time = time();

// Be consistent, always use the same.
$date = new DateTime();

?>

1690 Chapter 14. Rules

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/date
https://www.php.net/datetime
https://www.php.net/date
https://www.php.net/date
https://www.php.net/time
https://www.php.net/getdate
https://www.php.net/localtime
https://www.php.net/strtotime
https://www.php.net/strptime
https://www.php.net/gmdate
https://www.php.net/strftime
https://www.php.net/mktime
https://www.php.net/datetime
https://www.php.net/datetime
https://www.php.net/datetime
https://www.php.net/datetimeimmutable
https://www.php.net/manual/en/datetime.createfromformat.php

Exakat Documentation, Release 1

Specs

Short name Structures/DateTimePreference
Rulesets All, Appinfo, Changed Behavior, Preferences
Exakat since 2.4.9
PHP Version All
Severity
Time To Fix
Precision Very high
Features date
Available in Entreprise Edition, Exakat Cloud

14.2.1468 error_reporting() With Integers

Using named constants with error_reporting is strongly encouraged to ensure compatibility for future ver-
sions. As error levels are added, the range of integers increases, so older integer-based error levels will not
always behave as expected. (Adapted from the documentation).

<?php

// This is ready for PHP next version
error_reporting(E_ALL & ~E_DEPRECATED & ~E_STRICT & ~E_NOTICE & ~E_WARNING);

// This is not ready for PHP next version
error_reporting(2047);

// -1 and 0 are omitted, as they will be valid even is constants changes.
error_reporting(-1);
error_reporting(0);

?>

See also directive error_reporting and error_reporting.

Suggestions

• Always use the constant combination when configuring error_reporting or any PHP native function

Specs

Short name Structures/ErrorReportingWithInteger
Rulesets All, Analyze, CE, CI-checks
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Examples SugarCrm
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1691

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/error
https://www.php.net/manual/en/errorfunc.configuration.php#ini.error-reporting
https://www.php.net/manual/en/function.error-reporting.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1469 eval() Without Try

eval() emits a ParseError exception with PHP 7 and later. Catching this exception is the recommended
way to handle errors when using the eval() function.

Note that it will catch situations where eval() is provided with code that can’t be used, but it will not catch security
problems. Avoid using eval() with incoming data.

<?php

$code = 'This is no PHP code.';

//PHP 5 style
eval($code);
// Ends up with a Fatal error, at execution time

//PHP 7 style
try {

eval($code);
} catch (ParseError $e) {

cleanUpAfterEval();
}

?>

Suggestions

• Always add a try/catch block around eval() call

Specs

Short name Structures/EvalWithoutTry
Rulesets All, Analyze, CE, CI-checks, Changed Behavior, Security
Exakat since 0.8.4
PHP Version With PHP 7.0 and more recent
Severity Critical
Time To Fix Quick (30 mins)
Changed Behavior PHP 7.0 - More
Precision Very high
Features eval
Examples FuelCMS, ExpressionEngine
Related rule Could Use Try
Available in Entreprise Edition, Community Edition, Exakat Cloud

1692 Chapter 14. Rules

https://www.php.net/exception
https://www.php.net/exception
https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1470 ext/0mq

Extension ext/zmq for 0mq.

ØMQ is a software library that lets you quickly design and implement a fast message-based
application.

<?php

// Example from https://github.com/kuying/ZeroMQ/blob/
→˓d80dcc3dc1c14a343ca90bbd656b98fd55366548/zguide/examples/PHP/msgqueue.php
/*
* Simple message queuing broker
* Same as request-reply broker but using QUEUE device
* @author Ian Barber <ian(dot)barber(at)gmail(dot)com>
*/

$context = new ZMQContext();
// Socket facing clients
$frontend = $context->getSocket(ZMQ::SOCKET_ROUTER);
$frontend->bind("tcp://*:5559");
// Socket facing services
$backend = $context->getSocket(ZMQ::SOCKET_DEALER);
$backend->bind("tcp://*:5560");
// Start built-in device
new ZMQDevice($frontend, $backend);

?>

See also ZeroMQ and ZMQ.

Specs

Short name Extensions/Extzmq
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1471 ext/CSV

A small PHP extension to add/improve the handling of CSV strings.

<?php
$fields = [

'Hello',
'World',

];

(continues on next page)

14.2. List of Rules 1693

http://zeromq.org/
https://www.php.net/manual/en/book.zmq.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$output = "Hello,World";

var_dump($output === CSV::arrayToRow($fields));
var_dump(CSV::rowToArray($output));
?>

See also PHP csv extension.

Specs

Short name Extensions/Extcsv
Rulesets All, Appinfo
Exakat since 2.4.2
PHP Version All
Severity
Time To Fix
Precision Very high
Features csv
Available in Entreprise Edition, Exakat Cloud

14.2.1472 ext/amqp

Extension amqp.

PHP AMQP Binding Library. This is an interface with the RabbitMQ AMQP client library. It is a C language AMQP
client library for use with version 2.0 and more recent of the RabbitMQ broker.

<?php
$cnn = new AMQPConnection();
$cnn->connect();
echo 'Used channels: ', $cnn->getUsedChannels(), PHP_EOL;
$ch = new AMQPChannel($cnn);
echo 'Used channels: ', $cnn->getUsedChannels(), PHP_EOL;
$ch = new AMQPChannel($cnn);
echo 'Used channels: ', $cnn->getUsedChannels(), PHP_EOL;
$ch = null;
echo 'Used channels: ', $cnn->getUsedChannels(), PHP_EOL;
?>

See also PHP AMQP Binding Library.

1694 Chapter 14. Rules

https://gitlab.com/Girgias/csv-php-extension
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://github.com/alanxz/rabbitmq-c
https://github.com/pdezwart/php-amqp

Exakat Documentation, Release 1

Specs

Short name Extensions/Extamqp
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1473 ext/apache

Extension Apache.

These functions are only available when running PHP as an Apache module.

<?php
$ret = apache_getenv("SERVER_ADDR");
echo $ret;

?>

See also Extension Apache and Apache server.

Specs

Short name Extensions/Extapache
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1474 ext/apc

Extension Alternative PHP Cache.

The Alternative PHP Cache (APC) is a free and open opcode cache for PHP. Its goal is to provide a free, open, and
robust framework for caching and optimizing PHP intermediate code.

This extension is considered unmaintained and dead.

<?php
$bar = 'BAR';
apc_add('foo', $bar);
var_dump(apc_fetch('foo'));
echo PHP_EOL;

(continues on next page)

14.2. List of Rules 1695

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.apache.php
https://www.apache.org/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$bar = 'NEVER GETS SET';
apc_add('foo', $bar);
var_dump(apc_fetch('foo'));
echo PHP_EOL;

?>

See also Alternative PHP Cache.

Specs

Short name Extensions/Extapc
Rulesets All, Appinfo, CE, Changed Behavior, CompatibilityPHP55
Exakat since 0.8.4
PHP Version With PHP 7.0 and older
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1475 ext/apcu

Extension APCU.

APCu is APC stripped of opcode caching. The Alternative PHP Cache (APC) is a free and open opcode cache for PHP.
Its goal is to provide a free, open, and robust framework for caching and optimizing PHP intermediate code.

<?php
$bar = 'BAR';
apcu_add('foo', $bar);
var_dump(apcu_fetch('foo'));
echo "\n";
$bar = 'NEVER GETS SET';
apcu_add('foo', $bar);
var_dump(apcu_fetch('foo'));
echo "\n";
?>

See also APCU, ext/apcu and krakjoe/apcu.

Specs

Short name Extensions/Extapcu
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

1696 Chapter 14. Rules

https://www.php.net/apc
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
http://www.php.net/manual/en/book.apcu.php
https://pecl.php.net/package/APCu
https://github.com/krakjoe/apcu
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1476 ext/array

Core functions processing arrays.

These functions manipulate arrays in various ways. Arrays are essential for storing, managing, and operating on sets
of variables.

This is not a real extension : it is a documentation section, that helps classifying the functions.

<?php
function odd($var)
{

// returns whether the input integer is odd
return($var & 1);

}

function even($var)
{

// returns whether the input integer is even
return(!($var & 1));

}

$array1 = array('a'=>1, 'b'=>2, 'c'=>3, 'd'=>4, 'e'=>5);
$array2 = array(6, 7, 8, 9, 10, 11, 12);

echo 'Odd :'.PHP_EOL;
print_r(array_filter($array1, 'odd'));
echo 'Even:'.PHP_EOL;
print_r(array_filter($array2, 'even'));
?>

See also Arrays.

Specs

Short name Extensions/Extarray
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1697

https://www.php.net/manual/en/book.array.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1477 ext/bcmath

Extension BC Math.

For arbitrary precision mathematics PHP offers the Binary Calculator which supports numbers of any size and precision
up to 2147483647-1 (or 0x7FFFFFFF-1) decimals, represented as strings.

<?php

echo bcpow('2', '123');
//10633823966279326983230456482242756608

echo 2**123;
//1.0633823966279E+37
?>

See also BC Math Functions.

Specs

Short name Extensions/Extbcmath
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1478 ext/bzip2

Extension ext/bzip2.

Bzip2 Functions for PHP.

<?php

$file = '/tmp/foo.bz2';
$bz = bzopen($file, 'r') or die('Couldn\'t open $file for reading');

bzclose($bz);

?>

See also Bzip2 Functions and bzip2.

1698 Chapter 14. Rules

http://www.php.net/bcmath
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/bzip2
https://en.wikipedia.org/wiki/Bzip2

Exakat Documentation, Release 1

Specs

Short name Extensions/Extbzip2
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features compression
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1479 ext/calendar

Extension ext/calendar.

The calendar extension presents a series of functions to simplify converting between different calendar formats.

<?php
$number = cal_days_in_month(CAL_GREGORIAN, 8, 2003); // 31
echo "There were {$number} days in August 2003";
?>

See also Calendar Functions.

Specs

Short name Extensions/Extcalendar
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1480 ext/cmark

Extension Cmark, for Common Mark.

cmark provides access to the reference implementation of CommonMark, a rationalized version of Markdown syntax
with a specification.

<?php
$text = new CommonMark\Node\Text;
$text->literal = 'Hello World';
$document = new CommonMark\Node\Document;
$document->appendChild(

(new CommonMark\Node\Paragraph)
(continues on next page)

14.2. List of Rules 1699

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
http://www.php.net/manual/en/ref.calendar.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

->appendChild($text));
echo CommonMark\Render\HTML($document);
?>

See also Cmark and ext/cmark.

Specs

Short name Extensions/Extcmark
Rulesets All, Appinfo, CE
Exakat since 1.2.7
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1481 ext/com

Extension COM and .Net (Windows).

COM is an acronym for ‘Component Object Model’; it is an object orientated layer (and associated services) on top of
DCE RPC (an open standard) and defines a common calling convention that enables code written in any language to
call and interoperate with code written in any other language (provided those languages are COM aware).

<?php
$domainObject = new COM("WinNT://Domain");
foreach ($domainObject as $obj) {
echo $obj->Name . "
";

}
?>

See also COM and .Net (Windows).

Specs

Short name Extensions/Extcom
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

1700 Chapter 14. Rules

https://github.com/commonmark/cmark
https://github.com/krakjoe/cmark
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.com.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1482 ext/crypto

Extension ext/crypto (PECL).

Objective PHP binding of OpenSSL Crypto library.

<?php
use Crypto\Cipher;
use Crypto\AlgorihtmException;
$algorithm = 'aes-256-cbc';
if (!Cipher::hasAlgorithm($algorithm)) {

die('Algorithm $algorithm not found' . PHP_EOL);
}
try {

$cipher = new Cipher($algorithm);
// Algorithm method for retrieving algorithm
echo 'Algorithm: ' . $cipher->getAlgorithmName() . PHP_EOL;
// Params
$key_len = $cipher->getKeyLength();
$iv_len = $cipher->getIVLength();

echo 'Key length: ' . $key_len . PHP_EOL;
echo 'IV length: ' . $iv_len . PHP_EOL;
echo 'Block size: ' . $cipher->getBlockSize() . PHP_EOL;
// This is just for this example. You should never use such key and IV!
$key = str_repeat('x', $key_len);
$iv = str_repeat('i', $iv_len);
// Test data
$data1 = 'Test';
$data2 = 'Data';
$data = $data1 . $data2;
// Simple encryption
$sim_ct = $cipher->encrypt($data, $key, $iv);

// init/update/finish encryption
$cipher->encryptInit($key, $iv);
$iuf_ct = $cipher->encryptUpdate($data1);
$iuf_ct .= $cipher->encryptUpdate($data2);
$iuf_ct .= $cipher->encryptFinish();
// Raw data output (used base64 format for printing)
echo 'Ciphertext (sim): ' . base64_encode($sim_ct) . PHP_EOL;
echo 'Ciphertext (iuf): ' . base64_encode($iuf_ct) . PHP_EOL;
// $iuf_out == $sim_out
$ct = $sim_ct;
// Another way how to create a new cipher object (using the same algorithm and mode)
$cipher = Cipher::aes(Cipher::MODE_CBC, 256);
// Simple decryption
$sim_text = $cipher->decrypt($ct, $key, $iv);

// init/update/finish decryption
$cipher->decryptInit($key, $iv);
$iuf_text = $cipher->decryptUpdate($ct);
$iuf_text .= $cipher->decryptFinish();
// Raw data output ($iuf_out == $sim_out)

(continues on next page)

14.2. List of Rules 1701

Exakat Documentation, Release 1

(continued from previous page)

echo 'Text (sim): ' . $sim_text . PHP_EOL;
echo 'Text (iuf): ' . $iuf_text . PHP_EOL;

}
catch (AlgorithmException $e) {

echo $e->getMessage() . PHP_EOL;
}

?>

See also pecl crypto and php-crypto.

Specs

Short name Extensions/Extcrypto
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1483 ext/ctype

Extension ext/ctype.

Ext/ctype checks whether a character or string falls into a certain character class according to the current locale.

<?php
$strings = array('AbCd1zyZ9', 'foo!#$bar');
foreach ($strings as $testcase) {

if (ctype_alnum($testcase)) {
echo "The string $testcase consists of all letters or digits.\n";

} else {
echo "The string $testcase does not consist of all letters or digits.\n";

}
}
?>

See also Ctype functions.

1702 Chapter 14. Rules

https://pecl.php.net/package/crypto
https://github.com/bukka/php-crypto
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/ctype
https://www.php.net/ctype
https://www.php.net/locale
https://www.php.net/manual/en/ref.ctype.php

Exakat Documentation, Release 1

Specs

Short name Extensions/Extctype
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features ctype
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1484 ext/curl

Extension curl.

PHP supports libcurl, a library created by Daniel Stenberg. It allows the connection and communication to many
different types of servers with many different types of protocols.

<?php

$ch = curl_init("http://www.example.com/");
$fp = fopen("example_homepage.txt", "w");

curl_setopt($ch, CURLOPT_FILE, $fp);
curl_setopt($ch, CURLOPT_HEADER, 0);

curl_exec($ch);
curl_close($ch);
fclose($fp);
?>

See also Curl for PHP and curl.

Specs

Short name Extensions/Extcurl
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1703

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/connection
https://www.php.net/manual/en/book.curl.php
https://curl.haxx.se/libcurl/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1485 ext/date

Extension ext/date.

These functions allows the manipulation of date and time from the server where the PHP scripts are running.

<?php
$dt = new DateTime('2015-11-01 00:00:00', new DateTimeZone('America/New_York'));
echo 'Start: ', $dt->format('Y-m-d H:i:s P'), PHP_EOL;
$dt->add(new DateInterval('PT3H'));
echo 'End: ', $dt->format('Y-m-d H:i:s P'), PHP_EOL;
?>

See also Date and Time.

Specs

Short name Extensions/Extdate
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1486 ext/db2

Extension for IBM DB2, Cloudscape and Apache Derby.

This extension gives access to IBM DB2 Universal Database, IBM Cloudscape, and Apache Derby databases using the
DB2 Call Level Interface (DB2 CLI).

<?php
$conn = db2_connect($database, $user, $password);

if ($conn) {
$stmt = db2_exec($conn, 'SELECT count(*) FROM animals');
$res = db2_fetch_array($stmt);
echo $res[0] . PHP_EOL;

// Turn AUTOCOMMIT off
db2_autocommit($conn, DB2_AUTOCOMMIT_OFF);

// Delete all rows from ANIMALS
db2_exec($conn, 'DELETE FROM animals');

$stmt = db2_exec($conn, 'SELECT count(*) FROM animals');
$res = db2_fetch_array($stmt);
echo $res[0] . PHP_EOL;

(continues on next page)

1704 Chapter 14. Rules

https://www.php.net/manual/en/book.datetime.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// Roll back the DELETE statement
db2_rollback($conn);

$stmt = db2_exec($conn, 'SELECT count(*) FROM animals');
$res = db2_fetch_array($stmt);
echo $res[0] . PHP_EOL;
db2_close($conn);

}
?>

See also IBM Db2.

Specs

Short name Extensions/Extdb2
Rulesets All, Appinfo, CE
Exakat since 1.1.8
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1487 ext/dba

Extension ext/dba.

These functions build the foundation for accessing Berkeley DB style databases.

<?php

$id = dba_open('/tmp/test.db', 'n', 'db2');

if (!$id) {
echo 'dba_open failed'.PHP_EOL;
exit;

}

dba_replace('key', 'This is an example!', $id);

if (dba_exists('key', $id)) {
echo dba_fetch('key', $id);
dba_delete('key', $id);

}

dba_close($id);
?>

See also Database (dbm-style) Abstraction Layer.

14.2. List of Rules 1705

https://www.php.net/manual/en/book.ibm-db2.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.dba.php

Exakat Documentation, Release 1

Specs

Short name Extensions/Extdba
Rulesets All, Appinfo, CE, CompatibilityPHP53
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1488 ext/decimal

Extension php-decimal, by Rudi Theunissen.

This library provides a PHP extension that adds support for correctly-rounded, arbitrary-precision decimal floating
point arithmetic. Applications that rely on accurate numbers (ie. money, measurements, or mathematics) can use
Decimal instead of float or string to represent numerical values.

<?php

use Decimal\Decimal;

$op1 = new Decimal("0.1", 4);
$op2 = "0.123456789";

print_r($op1 + $op2);

use Decimal\Decimal;

/**
* @param int $n The factorial to calculate, ie. $n!
* @param int $p The precision to calculate the factorial to.
*
* @return Decimal
*/
function factorial(int $n, int $p = Decimal::DEFAULT_PRECISION): Decimal
{

return $n < 2 ? new Decimal($n, $p) : $n * factorial($n - 1, $p);
}

echo factorial(10000, 32);

?>

See also PHP Decimal and libmpdec.

1706 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
http://php-decimal.io
http://www.bytereef.org/mpdecimal/quickstart.html

Exakat Documentation, Release 1

Specs

Short name Extensions/Extdecimal
Rulesets All, Appinfo, CE
Exakat since 1.5.2
PHP Version With PHP 7.0 and more recent
Severity
Time To Fix
Precision Very high
Features extension, float
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1489 ext/dio

Extension DIO : Direct Input Output.

PHP supports the direct io functions as described in the Posix Standard (Section 6) for performing I/O functions at a
lower level than the C-Language stream I/O functions

<?php

$fd = dio_open('/dev/ttyS0', O_RDWR | O_NOCTTY | O_NONBLOCK);

dio_close($fd);
?>

See also DIO.

Specs

Short name Extensions/Extdio
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1490 ext/dom

Extension Document Object Model.

The DOM extension allows the manipulation of XML documents through the DOM API with PHP.

<?php

$dom = new DOMDocument('1.0', 'utf-8');

(continues on next page)

14.2. List of Rules 1707

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/refs.fileprocess.file.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$element = $dom->createElement('test', 'This is the root element!');

// We insert the new element as root (child of the document)
$dom->appendChild($element);

echo $dom->saveXML();
?>

See also Document Object Model.

Specs

Short name Extensions/Extdom
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1491 ext/ds

Extension Data Structures : Data structures.

<?php

$vector = new \Ds\Vector();

$vector->push('a');
$vector->push('b', 'c');

$vector[] = 'd';

print_r($vector);

?>

See also Efficient data structures for PHP 7.

1708 Chapter 14. Rules

https://www.php.net/manual/en/book.dom.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
http://docs.php.net/manual/en/book.ds.php
https://medium.com/@rtheunissen/efficient-data-structures-for-php-7-9dda7af674cd#.x69w9j6ui

Exakat Documentation, Release 1

Specs

Short name Extensions/Extds
Rulesets All, Appinfo, CE
Exakat since 0.10.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1492 ext/eaccelerator

Extension Eaccelerator.

eAccelerator is a free open-source PHP accelerator & optimizer.

DEPRECATED: This project is deprecated and does not work with anything newer than PHP 5.3.

See also Eaccelerator and eaccelerator/eaccelerato.

Specs

Short name Extensions/Exteaccelerator
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features extension
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1493 ext/eio

Extension EIO.

This is a PHP extension wrapping functions of the libeio library written by Marc Lehmann.

Libeio is a an asynchronous I/O library. Features basically include asynchronous versions of POSIX API(read, write,
open, close, stat, unlink, fdatasync, mknod, readdir etc.); sendfile (native on Solaris, Linux, HP-UX, FreeBSD); reada-
head. libeio itself emulates the system calls, if they are not available on specific(UNIX-like) platform.

<?php
$str = str_repeat('1', 20);
$filename = '/tmp/tmp_file' .uniqid();
@unlink($filename);
touch($filename);
eio_open($filename, EIO_O_RDWR, NULL, EIO_PRI_DEFAULT, function($filename, $fd) use (
→˓$str) {

(continues on next page)

14.2. List of Rules 1709

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
http://eaccelerator.net/
https://github.com/eaccelerator/eaccelerator
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
http://software.schmorp.de/pkg/libeio.html

Exakat Documentation, Release 1

(continued from previous page)

eio_write($fd, $str, strlen($str), 0, null, function($fd, $written) use ($str,
→˓$filename) {

var_dump([
'written' => $written,
'strlen' => strlen($str),
'filesize' => filesize($filename),
'count' => substr_count(file_get_contents($filename), '1')
]);

}, $fd);
}, $filename);
eio_event_loop();
?>

See also libeio and PHP extension for libeio.

Specs

Short name Extensions/Exteio
Rulesets All, Appinfo, CE
Exakat since 1.3.3
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1494 ext/enchant

Extension Enchant.

Enchant is the PHP binding for the Enchant spelling library. Enchant steps in to provide uniformity and conformity on
top of all spelling libraries, and implement certain features that may be lacking in any individual provider library.

<?php
$tag = 'en_US';
$r = enchant_broker_init();
$bprovides = enchant_broker_describe($r);
echo 'Current broker provides the following backend(s):'.PHP_EOL;
print_r($bprovides);

$dicts = enchant_broker_list_dicts($r);
print_r($dicts);
if (enchant_broker_dict_exists($r,$tag)) {

$d = enchant_broker_request_dict($r, $tag);
$dprovides = enchant_dict_describe($d);
echo 'dictionary $tag provides:'.PHP_EOL;
$wordcorrect = enchant_dict_check($d, 'soong');
print_r($dprovides);
if (!$wordcorrect) {

$suggs = enchant_dict_suggest($d, 'soong');
(continues on next page)

1710 Chapter 14. Rules

http://software.schmorp.de/pkg/libeio.html
https://github.com/rosmanov/pecl-eio
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.enchant.php

Exakat Documentation, Release 1

(continued from previous page)

echo 'Suggestions for "soong":';
print_r($suggs);

}
enchant_broker_free_dict($d);

} else {
}
enchant_broker_free($r);
?>

See also Enchant spelling library and Enchant.

Specs

Short name Extensions/Extenchant
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1495 ext/ev

Extension ev.

ext/ev is a high performance full-featured event loop written in C.

<?php
// Create and start timer firing after 2 seconds
$w1 = new EvTimer(2, 0, function () {

echo '2 seconds elapsed'.PHP_EOL;
});

// Create and launch timer firing after 2 seconds repeating each second
// until we manually stop it
$w2 = new EvTimer(2, 1, function ($w) {

echo 'is called every second, is launched after 2 seconds'.PHP_EOL;
echo 'iteration = ', Ev::iteration(), PHP_EOL;

// Stop the watcher after 5 iterations
Ev::iteration() == 5 and $w->stop();
// Stop the watcher if further calls cause more than 10 iterations
Ev::iteration() >= 10 and $w->stop();

});

// Create stopped timer. It will be inactive until we start it ourselves
$w_stopped = EvTimer::createStopped(10, 5, function($w) {

echo 'Callback of a timer created as stopped'.PHP_EOL;

(continues on next page)

14.2. List of Rules 1711

https://www.php.net/manual/en/book.enchant.php
https://www.abisource.com/projects/enchant/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

// Stop the watcher after 2 iterations
Ev::iteration() >= 2 and $w->stop();

});

// Loop until Ev::stop() is called or all of watchers stop
Ev::run();

// Start and look if it works
$w_stopped->start();
echo 'Run single iteration'.PHP_EOL;
Ev::run(Ev::RUN_ONCE);

echo 'Restart the second watcher and try to handle the same events, but don\'t block'.
→˓PHP_EOL;
$w2->again();
Ev::run(Ev::RUN_NOWAIT);

$w = new EvTimer(10, 0, function() {});
echo 'Running a blocking loop'.PHP_EOL;
Ev::run();
echo 'END'.PHP_EOL;
?>

See also Ev and libev.

Specs

Short name Extensions/Extev
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features event-loop
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1496 ext/event

Extension event.

This is an extension to efficiently schedule I/O, time and signal based events using the best I/O notification mechanism
available for specific platform. This is a port of libevent to the PHP infrastructure.

<?php
// Read callback
function readcb($bev, $base) {

//$input = $bev->input; //$bev->getInput();

//$pos = $input->search('TTP');
(continues on next page)

1712 Chapter 14. Rules

https://www.php.net/manual/en/book.ev.php
http://software.schmorp.de/pkg/libev.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$pos = $bev->input->search('TTP');

while (($n = $bev->input->remove($buf, 1024)) > 0) {
echo $buf;

}
}

// Event callback
function eventcb($bev, $events, $base) {

if ($events & EventBufferEvent::CONNECTED) {
echo 'Connected.';

} elseif ($events & (EventBufferEvent::ERROR | EventBufferEvent::EOF)) {
if ($events & EventBufferEvent::ERROR) {

echo 'DNS error: ', $bev->getDnsErrorString(), PHP_EOL;
}

echo 'Closing'.PHP_EOL;
$base->exit();
exit('Done'.PHP_EOL);

}
}

if ($argc != 3) {
echo <<<EOS

Trivial HTTP 0.x client
Syntax: php {$argv[0]} [hostname] [resource]
Example: php {$argv[0]} www.google.com /

EOS;
exit();

}

$base = new EventBase();

$dns_base = new EventDnsBase($base, TRUE); // We'll use async DNS resolving
if (!$dns_base) {

exit('Failed to init DNS Base'.PHP_EOL);
}

$bev = new EventBufferEvent($base, /* use internal socket */ NULL,
EventBufferEvent::OPT_CLOSE_ON_FREE | EventBufferEvent::OPT_DEFER_CALLBACKS,
'readcb', /* writecb */ NULL, 'eventcb'

);
if (!$bev) {

exit('Failed creating bufferevent socket'.PHP_EOL);
}

//$bev->setCallbacks('readcb', /* writecb */ NULL, 'eventcb', $base);
$bev->enable(Event::READ | Event::WRITE);

$output = $bev->output; //$bev->getOutput();
if (!$output->add(

(continues on next page)

14.2. List of Rules 1713

Exakat Documentation, Release 1

(continued from previous page)

'GET '.$argv[2].' HTTP/1.0'."\r\n".
'Host: '.$argv[1]."\r\n".
'Connection: Close'."\r\n\r\n"

)) {
exit('Failed adding request to output buffer\n');

}

if (!$bev->connectHost($dns_base, $argv[1], 80, EventUtil::AF_UNSPEC)) {
exit('Can\'t connect to host '.$argv[1].PHP_EOL);

}

$base->dispatch();
?>

See also Event and libevent.

Specs

Short name Extensions/Extevent
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1497 ext/exif

Extension EXIF : Exchangeable image file format.

The EXIF extension manipulates image meta data.

<?php
echo 'test1.jpg:
';
$exif = exif_read_data('tests/test1.jpg', 'IFD0');
echo $exif===false ? 'No header data found.
' : 'Image contains headers
';

$exif = exif_read_data('tests/test2.jpg', 0, true);
echo 'test2.jpg:
';
foreach ($exif as $key => $section) {

foreach ($section as $name => $val) {
echo $key.$name.': '.$val.'
';

}
}
?>

See also Exchangeable image information.

1714 Chapter 14. Rules

https://www.php.net/event
http://libevent.org/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.exif.php

Exakat Documentation, Release 1

Specs

Short name Extensions/Extexif
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1498 ext/expect

Extension Expect.

This extension allows to interact with processes through PTY. You may consider using the expect:// wrapper with
the filesystem functions which provide a simpler and more intuitive interface.

<?php
ini_set('expect.loguser', 'Off');

$stream = fopen('expect://ssh root@remotehost uptime', 'r');

$cases = array (
array (0 => 'password:', 1 => PASSWORD)

);

switch (expect_expectl ($stream, $cases)) {
case PASSWORD:

fwrite ($stream, 'password'.PHP_EOL);
break;

default:
die ('Error was occurred while connecting to the remote host!'.PHP_EOL);

}

while ($line = fgets($stream)) {
print $line;

}
fclose ($stream);
?>

See also expect.

14.2. List of Rules 1715

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.expect.php

Exakat Documentation, Release 1

Specs

Short name Extensions/Extexpect
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1499 ext/fam

File Alteration Monitor extension.

FAM monitors files and directories, notifying interested applications of changes.

ext/FAM is not available for Windows

<?php

$fam = fam_open('myApplication');
fam_monitor_directory($fam, '/tmp');
fam_close($fam);

?>

See also File Alteration Monitor.

Specs

Short name Extensions/Extfam
Rulesets All, Appinfo, CE
Exakat since 0.12.8
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1500 ext/fann

Extension FANN : Fast Artificial Neural Network.

PHP binding for FANN library which implements multi-layer artificial neural networks with support for both fully
connected and sparsely connected networks.

<?php
$num_input = 2;
$num_output = 1;

(continues on next page)

1716 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
http://oss.sgi.com/projects/fam/
https://www.php.net/manual/en/book.fam.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$num_layers = 3;
$num_neurons_hidden = 3;
$desired_error = 0.001;
$max_epochs = 500000;
$epochs_between_reports = 1000;

$ann = fann_create_standard($num_layers, $num_input, $num_neurons_hidden, $num_output);

if ($ann) {
fann_set_activation_function_hidden($ann, FANN_SIGMOID_SYMMETRIC);
fann_set_activation_function_output($ann, FANN_SIGMOID_SYMMETRIC);

$filename = dirname(__FILE__) . '/xor.data';
if (fann_train_on_file($ann, $filename, $max_epochs, $epochs_between_reports,

→˓$desired_error))
fann_save($ann, dirname(__FILE__) . '/xor_float.net');

fann_destroy($ann);
}
?>

See also extension FANN, PHP-ML, Rubix ML and lib FANN.

Specs

Short name Extensions/Extfann
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision High
Features machine-learning
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1501 ext/ffi

Extension FFI : Foreign Function Interface .

This extension allows the loading of shared libraries (.DLL or .so), calling of C functions and accessing of C data
structures in pure PHP, without having to have deep knowledge of the Zend extension API, and without having to learn
a third “intermediate” language. The public API is implemented as a single class FFI with several static methods (some
of them may be called dynamically), and overloaded object methods, which perform the actual interaction with C data.

<?php
//Example : Calling a function from shared library
// create FFI object, loading libc and exporting function printf()
$ffi = FFI::cdef(

"int printf(const char *format, ...);", // this is a regular C declaration
"libc.so.6");

(continues on next page)

14.2. List of Rules 1717

https://www.php.net/manual/en/book.fann.php
https://php-ml.readthedocs.io/en/latest/
https://rubixml.com/
http://leenissen.dk/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/ffi
https://www.php.net/manual/en/language.oop5.static.php

Exakat Documentation, Release 1

(continued from previous page)

// call C's printf()
$ffi->printf("Hello %s!\n", "world");
?>

See also ext/ffi and A PHP Compiler, aka The FFI Rabbit Hole.

Specs

Short name Extensions/Extffi
Rulesets All, Appinfo, CE
Exakat since 1.7.9
PHP Version With PHP 7.4 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1502 ext/file

Filesystem functions from standard.

Extension that handle access to file on the file system.

<?php
$row = 1;
if (($handle = fopen('test.csv', 'r')) !== FALSE) {

while (($data = fgetcsv($handle, 1000, ',')) !== FALSE) {
$num = count($data);
echo '<p> $num fields in line $row:
</p>'.PHP_EOL;
$row++;
for ($c=0; $c < $num; $c++) {

echo $data[$c] . '
'.PHP_EOL;
}

}
fclose($handle);

}
?>

See also filesystem.

1718 Chapter 14. Rules

https://github.com/dstogov/php-ffi
https://blog.ircmaxell.com/2019/04/compilers-ffi.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
http://www.php.net/manual/en/book.filesystem.php

Exakat Documentation, Release 1

Specs

Short name Extensions/Extfile
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1503 ext/fileinfo

Extension ext/fileinfo.

This module guesses the content type and encoding of a file by looking for certain magic byte sequences at specific
positions within the file.

<?php
$finfo = finfo_open(FILEINFO_MIME_TYPE); // return mime type ala mimetype extension
foreach (glob('*') as $filename) {

echo finfo_file($finfo, $filename) . PHP_EOL;
}
finfo_close($finfo);
?>

See also Filinfo.

Specs

Short name Extensions/Extfileinfo
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1504 ext/filter

Extension filter.

This extension filters data by either validating or sanitizing it.

<?php
$email_a = 'joe@example.com';
$email_b = 'bogus';

(continues on next page)

14.2. List of Rules 1719

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.fileinfo.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

if (filter_var($email_a, FILTER_VALIDATE_EMAIL)) {
echo 'This ($email_a) email address is considered valid.'.PHP_EOL;

}
if (filter_var($email_b, FILTER_VALIDATE_EMAIL)) {

echo 'This ($email_b) email address is considered valid.'.PHP_EOL;
} else {

echo 'This ($email_b) email address is considered invalid.'.PHP_EOL;
}
?>

See also Data filtering.

Specs

Short name Extensions/Extfilter
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1505 ext/fpm

Extension FPM, FastCGI Process Manager.

FPM (FastCGI Process Manager) is an alternative PHP FastCGI implementation with some additional features (mostly)
useful for heavy-loaded sites.

<?php
echo $text;
fastcgi_finish_request();

?>

See also FastCGI Process Manager.

Specs

Short name Extensions/Extfpm
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

1720 Chapter 14. Rules

https://www.php.net/manual/en/book.filter.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/fpm
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1506 ext/ftp

Extension FTP.

The functions in this extension implement client access to files servers speaking the File Transfer Protocol (FTP) as
defined in RFC 959.

<?php
// set up basic connection
$conn_id = ftp_connect($ftp_server);

// login with username and password
$login_result = ftp_login($conn_id, $ftp_user_name, $ftp_user_pass);

// check connection
if ((!$conn_id) || (!$login_result)) {

echo 'FTP connection has failed!';
echo 'Attempted to connect to $ftp_server for user $ftp_user_name';
exit;

} else {
echo 'Connected to $ftp_server, for user $ftp_user_name';

}

// upload the file
$upload = ftp_put($conn_id, $destination_file, $source_file, FTP_BINARY);

// check upload status
if (!$upload) {

echo 'FTP upload has failed!';
} else {

echo 'Uploaded $source_file to $ftp_server as $destination_file';
}

// close the FTP stream
ftp_close($conn_id);
?>

See also FTP.

Specs

Short name Extensions/Extftp
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1721

http://www.faqs.org/rfcs/rfc959
https://www.php.net/manual/en/book.ftp.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1507 ext/gd

Extension GD for PHP.

This extension allows PHP to create and manipulate image files in a variety of different image formats, including GIF,
PNG, JPEG, WBMP, and XPM.

<?php

header("Content-type: image/png");
$string = $_GET['text'];
$im = imagecreatefrompng("images/button1.png");
$orange = imagecolorallocate($im, 220, 210, 60);
$px = (imagesx($im) - 7.5 * strlen($string)) / 2;
imagestring($im, 3, $px, 9, $string, $orange);
imagepng($im);
imagedestroy($im);

?>

See also Image Processing and GD.

Specs

Short name Extensions/Extgd
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1508 ext/gearman

Extension Gearman.

Gearman is a generic application framework for farming out work to multiple machines or processes.

<?php

Create our client object.
$gmclient= new GearmanClient();

Add default server (localhost).
$gmclient->addServer();

echo 'Sending job'.PHP_EOL;

Send reverse job
do

(continues on next page)

1722 Chapter 14. Rules

https://www.php.net/manual/en/book.image.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

{
$result = $gmclient->doNormal('reverse', 'Hello!');

Check for various return packets and errors.
switch($gmclient->returnCode())
{
case GEARMAN_WORK_DATA:
echo 'Data: '.$result . PHP_EOL;;
break;

case GEARMAN_WORK_STATUS:
list($numerator, $denominator)= $gmclient->doStatus();
echo 'Status: '.$numerator.'/'.$denominator.' complete'. PHP_EOL;
break;

case GEARMAN_WORK_FAIL:
echo 'Failed\n';
exit;

case GEARMAN_SUCCESS:
echo 'Success: $result\n';
break;

default:
echo 'RET: ' . $gmclient->returnCode() . PHP_EOL;
exit;

}
}
while($gmclient->returnCode() != GEARMAN_SUCCESS);

?>

See also Gearman on PHP and Gearman.

Specs

Short name Extensions/Extgearman
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1723

https://www.php.net/manual/en/book.gearman.php
http://gearman.org/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1509 ext/gender

Gender extension.

The Gender PHP extension is a port of the gender.c program originally written by Joerg Michael. Its main purpose is
to find out the gender of firstnames, based on a database of over 40000 firstnames from 54 countries.

<?php

namespace Gender;

$gender = new Gender;

$name = 'Milene';
$country = Gender::FRANCE;

$result = $gender->get($name, $country);

$data = $gender->country($country);

switch($result) {
case Gender::IS_FEMALE:

printf('The name %s is female in %s\n', $name, $data['country']);
break;

case Gender::IS_MOSTLY_FEMALE:
printf('The name %s is mostly female in %s\n', $name, $data['country']);

break;

case Gender::IS_MALE:
printf('The name %s is male in %s\n', $name, $data['country']);

break;

case Gender::IS_MOSTLY_MALE:
printf('The name %s is mostly male in %s\n', $name, $data['country']);

break;

case Gender::IS_UNISEX_NAME:
printf('The name %s is unisex in %s\n', $name, $data['country']);

break;

case Gender::IS_A_COUPLE:
printf('The name %s is both male and female in %s\n', $name, $data['country']);

break;

case Gender::NAME_NOT_FOUND:
printf('The name %s was not found for %s\n', $name, $data['country']);

(continues on next page)

1724 Chapter 14. Rules

Exakat Documentation, Release 1

(continued from previous page)

break;

case Gender::ERROR_IN_NAME:
echo 'There is an error in the given name!'.PHP_EOL;

break;

default:
echo 'An error occurred!'.PHP_EOL;

break;

}

?>

See also ext/gender manual and genderReader.

Specs

Short name Extensions/Extgender
Rulesets All, Appinfo, CE
Exakat since 0.11.6
PHP Version With PHP 8.0 and older
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1510 ext/geoip

Extension geoip for PHP.

The GeoIP extension allows the localisation of an IP address.

<?php
$org = geoip_org_by_name('www.example.com');
if ($org) {

echo 'This host IP is allocated to: ' . $org;
}
?>

See also GeoIP.

14.2. List of Rules 1725

https://www.php.net/manual/en/book.gender.php
https://github.com/cstuder/genderReader
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.geoip.php

Exakat Documentation, Release 1

Specs

Short name Extensions/Extgeoip
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1511 ext/gettext

Extension Gettext.

The gettext functions implement an NLS (Native Language Support) API which can be used to internationalize your
PHP applications.

<?php
// Set language to German
putenv('LC_ALL=de_DE');
setlocale(LC_ALL, 'de_DE');

// Specify location of translation tables
bindtextdomain('myPHPApp', './locale');

// Choose domain
textdomain('myPHPApp');

// Translation is looking for in ./locale/de_DE/LC_MESSAGES/myPHPApp.mo now

// Print a test message
echo gettext('Welcome to My PHP Application');

// Or use the alias _() for gettext()
echo _('Have a nice day');
?>

See also Gettext and ext/gettext.

Specs

Short name Extensions/Extgettext
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

1726 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.gnu.org/software/gettext/manual/gettext.html
https://www.php.net/manual/en/book.gettext.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1512 ext/gmagick

Extension gmagick.

Gmagick is a php extension to create, modify and obtain meta information of images using the GraphicsMagick API.

<?php
//Instantiate a new Gmagick object
$image = new Gmagick('example.jpg');

//Make thumbnail from image loaded. 0 for either axes preserves aspect ratio
$image->thumbnailImage(100, 0);

//Create a border around the image, then simulate how the image will look like as an oil␣
→˓painting
//Note the chaining of mutator methods which is supported in gmagick
$image->borderImage("yellow", 8, 8)->oilPaintImage(0.3);

//Write the current image at the current state to a file
$image->write('example_thumbnail.jpg');
?>

See also PHP gmagick and gmagick.

Specs

Short name Extensions/Extgmagick
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1513 ext/gmp

Extension ext/gmp.

These functions allow for arbitrary-length integers to be worked with using the GNU MP library.

<?php
$pow1 = gmp_pow('2', 131);
echo gmp_strval($pow1) . PHP_EOL;
$pow2 = gmp_pow('0', 0);
echo gmp_strval($pow2) . PHP_EOL;
$pow3 = gmp_pow('2', -1); // Negative exp, generates warning
echo gmp_strval($pow3) . PHP_EOL;
?>

See also GMP and GNU MP library.

14.2. List of Rules 1727

http://www.php.net/manual/en/book.gmagick.php
http://www.graphicsmagick.org/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/gmp
https://www.php.net/manual/en/book.gmp.php
https://gmplib.org/

Exakat Documentation, Release 1

Specs

Short name Extensions/Extgmp
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1514 ext/gnupgp

Extension GnuPG.

This module allows you to interact with gnupg.

<?php
// init gnupg
$res = gnupg_init();
// not really needed. Clearsign is default
gnupg_setsignmode($res,GNUPG_SIG_MODE_CLEAR);
// add key with passphrase 'test' for signing
gnupg_addsignkey($res,"8660281B6051D071D94B5B230549F9DC851566DC","test");
// sign
$signed = gnupg_sign($res,"just a test");
echo $signed;
?>

See also Gnupg Function for PHP and GnuPG.

Specs

Short name Extensions/Extgnupg
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

1728 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
http://www.php.net/manual/en/book.gnupg.php
https://www.gnupg.org/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1515 ext/grpc

Extension for GRPC : A high performance, open-source universal RPC framework.

<?php

//https://github.com/grpc/grpc/blob/master/examples/php/greeter_client.php

require dirname(__FILE__).'/vendor/autoload.php';
// The following includes are needed when using protobuf 3.1.0
// and will suppress warnings when using protobuf 3.2.0+
@include_once dirname(__FILE__).'/helloworld.pb.php';
@include_once dirname(__FILE__).'/helloworld_grpc_pb.php';
function greet($name)
{

$client = new Helloworld\GreeterClient('localhost:50051', [
'credentials' => Grpc\ChannelCredentials::createInsecure(),

]);
$request = new Helloworld\HelloRequest();
$request->setName($name);
list($reply, $status) = $client->SayHello($request)->wait();
$message = $reply->getMessage();
return $message;

}
$name = !empty($argv[1]) ? $argv[1] : 'world';
echo greet($name)."\n";

?>

See also GRPC and GRPC on PECL.

Specs

Short name Extensions/Extgrpc
Rulesets All, Appinfo, CE
Exakat since 0.11.3
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1729

http://www.grpc.io/
https://pecl.php.net/package/gRPC
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1516 ext/hash

Extension for HASH Message Digest Framework.

Message Digest (hash) engine. Allows direct or incremental processing of arbitrary length messages using a variety of
hashing algorithms.

<?php
/* Create a file to calculate hash of */
file_put_contents('example.txt', 'The quick brown fox jumped over the lazy dog.');

echo hash_file('md5', 'example.txt');
?>

See also HASH Message Digest Framework.

Specs

Short name Extensions/Exthash
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1517 ext/hrtime

High resolution timing Extension.

The HRTime extension implements a high resolution StopWatch class. It uses the best possible API on different plat-
forms which brings resolution up to nanoseconds. It also makes possible to implement a custom stopwatch using low
level ticks delivered by the underlaying system.

<?php

$c = new HRTime\StopWatch;

$c->start();
/* measure this code block execution */
for ($i = 0; $i < 1024*1024; $i++);
$c->stop();
$elapsed0 = $c->getLastElapsedTime(HRTime\Unit::NANOSECOND);

/* measurement is not running here*/
for ($i = 0; $i < 1024*1024; $i++);

$c->start();
/* measure this code block execution */
for ($i = 0; $i < 1024*1024; $i++);

(continues on next page)

1730 Chapter 14. Rules

https://www.php.net/engine
http://www.php.net/manual/en/book.hash.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$c->stop();
$elapsed1 = $c->getLastElapsedTime(HRTime\Unit::NANOSECOND);

$elapsed_total = $c->getElapsedTime(HRTime\Unit::NANOSECOND);

?>

See also ext/hrtime manual.

Specs

Short name Extensions/Exthrtime
Rulesets All, Appinfo, CE
Exakat since 1.1.5
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1518 ext/ibase

Extensions Interbase and Firebird.

Firebird is a relational database offering many ISO SQL-2003 features that runs on Linux, Windows, and a variety
of Unix platforms.

<?php

$host = 'localhost:/path/to/your.gdb';

$dbh = ibase_connect($host, $username, $password);
$stmt = 'SELECT * FROM tblname';

$sth = ibase_query($dbh, $stmt) or die(ibase_errmsg());

?>

See also Firebase / Interbase and Firebird.

14.2. List of Rules 1731

https://www.php.net/manual/en/intro.hrtime.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.ibase.php
http://www.firebirdsql.org/

Exakat Documentation, Release 1

Specs

Short name Extensions/Extibase
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1519 ext/iconv

Extension ext/iconv.

With this module, you can turn a string represented by a local character set into the one represented by
another character set, which may be the Unicode character set.

<?php
$text = "This is the Euro symbol '€'.";

echo 'Original : ', $text, PHP_EOL;
echo 'TRANSLIT : ', iconv("UTF-8", "ISO-8859-1//TRANSLIT", $text), PHP_EOL;
echo 'IGNORE : ', iconv("UTF-8", "ISO-8859-1//IGNORE", $text), PHP_EOL;
echo 'Plain : ', iconv("UTF-8", "ISO-8859-1", $text), PHP_EOL;

?>

See also Iconv and libiconv.

Specs

Short name Extensions/Exticonv
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

1732 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/iconv
https://www.gnu.org/software/libiconv/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1520 ext/igbinary

Extension igbinary.

igbinary is a drop in replacement for the standard php serializer. Instead of time and space consuming textual repre-
sentation, igbinary stores php data structures in compact binary form.

<?php
$serialized = igbinary_serialize($variable);
$unserialized = igbinary_unserialize($serialized);

?>

See also igbinary.

Specs

Short name Extensions/Extigbinary
Rulesets All, Appinfo, CE
Exakat since 1.0.6
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1521 ext/imagick

Extension Imagick for PHP.

Imagick is a native php extension to create and modify images using the ImageMagick API.

<?php

header('Content-type: image/jpeg');

$image = new Imagick('image.jpg');

// If 0 is provided as a width or height parameter,
// aspect ratio is maintained
$image->thumbnailImage(100, 0);

echo $image;

?>

See also Imagick for PHP and Imagick.

14.2. List of Rules 1733

https://github.com/igbinary/igbinary/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.imagick.php
https://www.imagemagick.org/script/index.php

Exakat Documentation, Release 1

Specs

Short name Extensions/Extimagick
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1522 ext/imap

Extension ext/imap.

This extension operate with the IMAP protocol, as well as the NNTP, POP3 and local mailbox access methods.

<?php
$mbox = imap_open('{imap.example.org}', 'username', 'password', OP_HALFOPEN)

or die('can't connect: ' . imap_last_error());

$list = imap_list($mbox, '{imap.example.org}', '*');
if (is_array($list)) {

foreach ($list as $val) {
echo imap_utf7_decode($val) . PHP_EOL;

}
} else {

echo 'imap_list failed: ' . imap_last_error() . PHP_EOL;
}

imap_close($mbox);
?>

See also IMAP.

Specs

Short name Extensions/Extimap
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

1734 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
http://www.php.net/imap
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1523 ext/info

PHP Options and Information.

These functions enable you to get a lot of information about PHP itself, e.g. runtime configuration, loaded extensions,
version and much more.

<?php
/*
Our php.ini contains the following settings:

display_errors = On
register_globals = Off
post_max_size = 8M
*/

echo 'display_errors = ' . ini_get('display_errors') . "\n";
echo 'register_globals = ' . ini_get('register_globals') . "\n";
echo 'post_max_size = ' . ini_get('post_max_size') . "\n";
echo 'post_max_size+1 = ' . (ini_get('post_max_size')+1) . "\n";
echo 'post_max_size in bytes = ' . return_bytes(ini_get('post_max_size'));

function return_bytes($val) {
$val = trim($val);
$last = strtolower($val[strlen($val)-1]);
switch($last) {

// The 'G' modifier is available since PHP 5.1.0
case 'g':

$val *= 1024;
case 'm':

$val *= 1024;
case 'k':

$val *= 1024;
}

return $val;
}

?>

See also PHP Options And Information.

Specs

Short name Extensions/Extinfo
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1735

https://www.php.net/manual/en/book.info.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1524 ext/inotify

Extension inotify.

The Inotify extension gives access to the Linux kernel subsystem that acts to extend filesystems to notice changes to
the filesystem, and report those changes to applications.

<?php
// Open an inotify instance
$fd = inotify_init();

// Watch __FILE__ for metadata changes (e.g. mtime)
$watch_descriptor = inotify_add_watch($fd, __FILE__, IN_ATTRIB);

// generate an event
touch(__FILE__);

// Read events
$events = inotify_read($fd);
print_r($events);

// The following methods allows to use inotify functions without blocking on inotify_
→˓read():

// - Using stream_select() on $fd:
$read = array($fd);
$write = null;
$except = null;
stream_select($read,$write,$except,0);

// - Using stream_set_blocking() on $fd
stream_set_blocking($fd, 0);
inotify_read($fd); // Does no block, and return false if no events are pending

// - Using inotify_queue_len() to check if event queue is not empty
$queue_len = inotify_queue_len($fd); // If > 0, inotify_read() will not block

// Stop watching __FILE__ for metadata changes
inotify_rm_watch($fd, $watch_descriptor);

// Close the inotify instance
// This may have closed all watches if this was not already done
fclose($fd);

?>

See also ext/inotify manual and inotify.

1736 Chapter 14. Rules

https://www.php.net/manual/en/book.inotify.php
https://en.wikipedia.org/wiki/Inotify

Exakat Documentation, Release 1

Specs

Short name Extensions/Extinotify
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1525 ext/intl

Extension international.

Internationalization extension (further is referred as Intl) is a wrapper for ICU library, enabling PHP programmers to
perform various locale-aware operations including but not limited to formatting, transliteration, encoding conversion,
calendar operations, UCA-conformant collation, locating text boundaries and working with locale identifiers, timezones
and graphemes.

<?php
$coll = new Collator('en_US');
$al = $coll->getLocale(Locale::ACTUAL_LOCALE);
echo "Actual locale: $al\n";

$formatter = new NumberFormatter('en_US', NumberFormatter::DECIMAL);
echo $formatter->format(1234567);
?>

See also Internationalization Functions.

Specs

Short name Extensions/Extintl
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1737

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
http://site.icu-project.org/
https://www.php.net/locale
http://www.unicode.org/reports/tr10/
https://www.php.net/locale
https://www.php.net/manual/en/book.intl.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1526 ext/json

Extension JSON.

This extension implements the JavaScript Object Notation (JSON) data-interchange format. PHP implements a superset
of JSON as specified in the original RFC 7159.

<?php
$arr = array('a' => 1, 'b' => 2, 'c' => 3, 'd' => 4, 'e' => 5);

echo json_encode($arr);
?>

See also JavaScript Object Notation and JSON.

Specs

Short name Extensions/Extjson
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1527 ext/judy

The Judy extension.

PHP Judy is a PECL extension for the Judy C library implementing dynamic sparse arrays.

<?php
$judy = new Judy(Judy::BITSET);
if ($judy->getType() === judy_type($judy) &&

$judy->getType() === Judy::BITSET) {
echo 'Judy BITSET type OK'.PHP_EOL;

} else {
echo 'Judy BITSET type check fail'.PHP_EOL;

}
unset($judy);
?>

See also php-judy.

1738 Chapter 14. Rules

http://www.faqs.org/rfcs/rfc7159
https://www.php.net/manual/en/book.json.php
http://www.json.org/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/Judy
https://www.php.net/Judy
http://judy.sourceforge.net/
https://github.com/orieg/php-judy

Exakat Documentation, Release 1

Specs

Short name Extensions/Extjudy
Rulesets All, Appinfo, CE
Exakat since 0.11.6
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1528 ext/ldap

Extension ext/ldap.

LDAP is the Lightweight Directory <https://www.php.net/`Directory>`_ Access Protocol, and is a protocol used to
access ‘Directory <https://www.php.net/`Directory>`_ Servers’. The Directory <https://www.php.net/`Directory>`_ is
a special kind of database that holds information in a tree structure.

<?php
// basic sequence with LDAP is connect, bind, search, interpret search
// result, close connection

echo '<h3>LDAP query test</h3>';
echo 'Connecting ...';
$ds=ldap_connect('localhost'); // must be a valid LDAP server!
echo 'connect result is ' . $ds . '
';

if ($ds) {
echo 'Binding ...';
$r=ldap_bind($ds); // this is an 'anonymous' bind, typically

// read-only access
echo 'Bind result is ' . $r . '
';

echo 'Searching for (sn=S*) ...';
// Search surname entry
$sr=ldap_search($ds, 'o=My Company, c=US', 'sn=S*');
echo 'Search result is ' . $sr . '
';

echo 'Number of entries returned is ' . ldap_count_entries($ds, $sr) . '
';

echo 'Getting entries ...<p>';
$info = ldap_get_entries($ds, $sr);
echo 'Data for ' . $info['count'] . ' items returned:<p>';

for ($i=0; $i<$info['count']; $i++) {
echo 'dn is: ' . $info[$i]['dn'] . '
';
echo 'first cn entry is: ' . $info[$i]['cn'][0] . '
';
echo 'first email entry is: ' . $info[$i]['mail'][0] . '
<hr />';

}

(continues on next page)

14.2. List of Rules 1739

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/Directory
https://www.php.net/Directory
https://www.php.net/Directory

Exakat Documentation, Release 1

(continued from previous page)

echo 'Closing connection';
ldap_close($ds);

} else {
echo '<h4>Unable to connect to LDAP server</h4>';

}
?>

See also Lightweight Directory Access Protocol.

Specs

Short name Extensions/Extldap
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1529 ext/leveldb

PHP Binding for LevelDB.

LevelDB is a fast key-value storage library written at Google that provides an ordered mapping from string keys to
string values.

<?php

$db = new LevelDB($leveldb_path);

$batch = new LevelDBWriteBatch();
$batch->set('batch_foo', 'batch_bar');
$batch->put('batch_foo2', 'batch_bar2');
$batch->delete('batch_foo');

$db->write($batch);

$batch->clear();
$batch->delete('batch_foo2');
$batch->set('batch_foo', 'batch again');

?>

See also ext/leveldb on Github and Leveldb.

1740 Chapter 14. Rules

https://www.php.net/manual/en/book.ldap.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://github.com/reeze/php-leveldb
https://github.com/google/leveldb

Exakat Documentation, Release 1

Specs

Short name Extensions/Extleveldb
Rulesets All, Appinfo, CE
Exakat since 1.1.7
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1530 ext/libsodium

Extension for libsodium : in PECL until PHP 7.2, and in core ever since.

The Sodium crypto library (libsodium) is a modern, easy-to-use software library for encryption, decryption, signatures,
password hashing and more.

Sodium supports a variety of compilers and operating systems, including Windows (with MinGW or Visual Studio,
x86 and x64), iOS and Android.

The design choices emphasize security, and “magic constants” have clear rationales.

<?php
// Example from the docs : https://paragonie.com/book/pecl-libsodium/read/06-hashing.md
→˓#crypto-generichash

// Fast, unkeyed hash function.
// Can be used as a secure replacement for MD5
$h = \Sodium\crypto_generichash('msg');

// Fast, keyed hash function.
// The key can be of any length between \Sodium\CRYPTO_GENERICHASH_KEYBYTES_MIN
// and \Sodium\CRYPTO_GENERICHASH_KEYBYTES_MAX, in bytes.
// \Sodium\CRYPTO_GENERICHASH_KEYBYTES is the recommended length.
$h = \Sodium\crypto_generichash('msg', $key);

// Fast, keyed hash function, with user-chosen output length, in bytes.
// Output length can be between \Sodium\CRYPTO_GENERICHASH_BYTES_MIN and
// \Sodium\CRYPTO_GENERICHASH_BYTES_MAX.
// \Sodium\CRYPTO_GENERICHASH_BYTES is the default length.
$h = \Sodium\crypto_generichash('msg', $key, 64);

?>

See also PHP extension for libsodium and Using Libsodium in PHP Projects.

14.2. List of Rules 1741

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://github.com/jedisct1/libsodium-php
https://paragonie.com/book/pecl-libsodium/read/00-intro.md

Exakat Documentation, Release 1

Specs

Short name Extensions/Extlibsodium
Rulesets All, Appinfo, CE
Exakat since 0.10.2
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1531 ext/libxml

Extension libxml.

These functions/constants are available as of PHP 5.1.0, and the following core extensions rely on this libxml extension:
DOM, libxml, SimpleXML, SOAP, WDDX, XSL, XML, XMLReader, XMLRPC and XMLWriter.

<?php

// $xmlstr is a string, containing a XML document.

$doc = simplexml_load_string($xmlstr);
$xml = explode(PHP_EOL, $xmlstr);

if ($doc === false) {
$errors = libxml_get_errors();

foreach ($errors as $error) {
echo display_xml_error($error, $xml);

}

libxml_clear_errors();
}

function display_xml_error($error, $xml)
{

$return = $xml[$error->line - 1] . PHP_EOL;
$return .= str_repeat('-', $error->column) . '^'.PHP_EOL;

switch ($error->level) {
case LIBXML_ERR_WARNING:

$return .= 'Warning ',$error->code.': ';
break;

case LIBXML_ERR_ERROR:
$return .= 'Error '.$error->code.': ';
break;

case LIBXML_ERR_FATAL:
$return .= 'Fatal Error '.$error->code.': ';
break;

(continues on next page)

1742 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/xmlreader
https://www.php.net/xmlwriter

Exakat Documentation, Release 1

(continued from previous page)

}

$return .= trim($error->message) .
PHP_EOL.' Line: '.$error->line .
PHP_EOL.' Column: '.$error->column;

if ($error->file) {
$return .= "\n File: $error->file";

}

return $return.PHP_EOL.PHP_EOL.'--'.PHP_
→˓EOL.PHP_EOL;
}

?>

See also libxml.

Specs

Short name Extensions/Extlibxml
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1532 ext/lua

Extension Lua.

‘Lua is a powerful, fast, light-weight, embeddable scripting language.’ This extension embeds the lua interpreter and
offers an OO-API to lua variables and functions.

<?php
$lua = new Lua();
$lua->eval(<<<CODE

print(2);
CODE
);
?>

See also ext/lua manual and LUA.

14.2. List of Rules 1743

http://www.php.net/manual/en/book.libxml.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.lua.php
https://www.lua.org/

Exakat Documentation, Release 1

Specs

Short name Extensions/Extlua
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision High
Features pecl
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1533 ext/lzf

Extension LZF.

LZF is a very fast compression algorithm, ideal for saving space with only slight speed cost. It can be optimized for
speed or space at the time of compilation.

<?php
$compressed = lzf_compress("This is test of LZF extension");

echo base64_encode($compressed);
?>

See also lzf and liblzf.

Specs

Short name Extensions/Extlzf
Rulesets All, Appinfo, CE
Exakat since 1.3.5
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1534 ext/mail

Extension for mail.

The mail() function allows you to send mail.

<?php
// The message
$message = "Line 1\r\nLine 2\r\nLine 3";

// In case any of our lines are larger than 70 characters, we should use wordwrap()
(continues on next page)

1744 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/lzf
http://oldhome.schmorp.de/marc/liblzf.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/mail

Exakat Documentation, Release 1

(continued from previous page)

$message = wordwrap($message, 70, "\r\n");

// Send
mail('caffeinated@example.com', 'My Subject', $message);
?>

See also Mail related functions.

Specs

Short name Extensions/Extmail
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1535 ext/mailparse

Extension mailparse.

Mailparse is an extension for parsing and working with email messages. It can deal with RFC 822 (MIME) and RFC
2045 (MIME) compliant messages.

<?php

$mail = mailparse_msg_create();
mailparse_msg_parse($mail, $mailInString);
$parts = mailparse_msg_get_structure($mail);

foreach($parts as $part) {
$section = mailparse_msg_get_part($mail, $part);
$info = mailparse_msg_get_part_data($section);

}

?>

See also Mailparse.

14.2. List of Rules 1745

http://www.php.net/manual/en/book.mail.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
http://www.faqs.org/rfcs/rfc822.html
http://www.faqs.org/rfcs/rfc2045.html
http://www.faqs.org/rfcs/rfc2045.html
https://www.php.net/manual/en/book.mailparse.php

Exakat Documentation, Release 1

Specs

Short name Extensions/Extmailparse
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features mail
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1536 ext/math

Core functions that provides math standard functions.

This is not a real extension : it is a documentation section, that helps sorting the functions.

<?php
echo decbin(12) . PHP_EOL;
echo decbin(26);
?>

See also Mathematical Functions.

Specs

Short name Extensions/Extmath
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1537 ext/mbstring

Extension ext/mbstring.

mbstring provides multibyte specific string functions that help you deal with multibyte encodings in PHP.

<?php
/* Convert internal character encoding to SJIS */
$str = mb_convert_encoding($str, "SJIS");

/* Convert EUC-JP to UTF-7 */
$str = mb_convert_encoding($str, "UTF-7", "EUC-JP");

(continues on next page)

1746 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.math.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

/* Auto detect encoding from JIS, eucjp-win, sjis-win, then convert str to UCS-2LE */
$str = mb_convert_encoding($str, "UCS-2LE", "JIS, eucjp-win, sjis-win");

/* "auto" is expanded to "ASCII,JIS,UTF-8,EUC-JP,SJIS" */
$str = mb_convert_encoding($str, "EUC-JP", "auto");
?>

See also Mbstring.

Specs

Short name Extensions/Extmbstring
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1538 ext/mcrypt

Extension for mcrypt.

This extension has been deprecated as of PHP 7.1.0 and moved to PECL as of PHP 7.2.0.

This is an interface to the mcrypt library, which supports a wide variety of block algorithms such as DES, TripleDES,
Blowfish (default), 3-WAY, SAFER-SK64, SAFER-SK128, TWOFISH, TEA, RC2 and GOST in CBC, OFB, CFB and
ECB cipher modes. Additionally, it supports RC6 and IDEA which are considered ‘non-free’. CFB/OFB are 8bit by
default.

<?php
--- ENCRYPTION ---

the key should be random binary, use scrypt, bcrypt or PBKDF2 to
convert a string into a key
key is specified using hexadecimal
$key = pack('H*', 'bcb04b7e103a0cd8b54763051cef08bc55abe029fdebae5e1d417e2ffb2a00a3

→˓');

show key size use either 16, 24 or 32 byte keys for AES-128, 192
and 256 respectively
$key_size = strlen($key);
echo 'Key size: ' . $key_size . PHP_EOL;

$plaintext = 'This string was AES-256 / CBC / ZeroBytePadding encrypted.';

create a random IV to use with CBC encoding
$iv_size = mcrypt_get_iv_size(MCRYPT_RIJNDAEL_128, MCRYPT_MODE_CBC);
$iv = mcrypt_create_iv($iv_size, MCRYPT_RAND);

(continues on next page)

14.2. List of Rules 1747

http://www.php.net/manual/en/book.mbstring.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

creates a cipher text compatible with AES (Rijndael block size = 128)
to keep the text confidential
only suitable for encoded input that never ends with value 00h
(because of default zero padding)
$ciphertext = mcrypt_encrypt(MCRYPT_RIJNDAEL_128, $key,

$plaintext, MCRYPT_MODE_CBC, $iv);

prepend the IV for it to be available for decryption
$ciphertext = $iv . $ciphertext;

encode the resulting cipher text so it can be represented by a string
$ciphertext_base64 = base64_encode($ciphertext);

echo $ciphertext_base64 . PHP_EOL;

=== WARNING ===

Resulting cipher text has no integrity or authenticity added
and is not protected against padding oracle attacks.

--- DECRYPTION ---

$ciphertext_dec = base64_decode($ciphertext_base64);

retrieves the IV, iv_size should be created using mcrypt_get_iv_size()
$iv_dec = substr($ciphertext_dec, 0, $iv_size);

retrieves the cipher text (everything except the $iv_size in the front)
$ciphertext_dec = substr($ciphertext_dec, $iv_size);

may remove 00h valued characters from end of plain text
$plaintext_dec = mcrypt_decrypt(MCRYPT_RIJNDAEL_128, $key,

$ciphertext_dec, MCRYPT_MODE_CBC, $iv_dec);

echo $plaintext_dec . PHP_EOL;
?>

See also extension mcrypt and mcrypt.

Specs

Short name Extensions/Extmcrypt
Rulesets All, Appinfo, CE, CompatibilityPHP71
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features crypto, libsodium, openssl
Available in Entreprise Edition, Community Edition, Exakat Cloud

1748 Chapter 14. Rules

http://www.php.net/manual/en/book.mcrypt.php
http://mcrypt.sourceforge.net/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1539 ext/memcache

Extension Memcache.

Memcache module provides handy procedural and object oriented interface to memcached, highly effective caching
daemon, which was especially designed to decrease database load in dynamic web applications.

<?php

$memcache = new Memcache;
$memcache->connect('localhost', 11211) or die ('Could not connect');

$version = $memcache->getVersion();
echo 'Server\'s version: '.$version.'
';

$tmp_object = new stdClass;
$tmp_object->str_attr = 'test';
$tmp_object->int_attr = 123;

$memcache->set('key', $tmp_object, false, 10) or die ('Failed to save data at the server
→˓');
echo 'Store data in the cache (data will expire in 10 seconds)
';

$get_result = $memcache->get('key');
echo 'Data from the cache:
';

var_dump($get_result);

?>

See also Memcache on PHP and memcache on github.

Specs

Short name Extensions/Extmemcache
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1749

http://www.php.net/manual/en/book.memcache.php
https://github.com/websupport-sk/pecl-memcache
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1540 ext/memcached

Extension ext-memcached.

This extension uses the libmemcached library to provide an API for communicating with memcached servers. It also
provides a session handler (memcached).

<?php
$m = new Memcached();
$m->addServer('localhost', 11211);

$m->set('foo', 100);
var_dump($m->get('foo'));
?>

See also ext/memcached manual and memcached.

Specs

Short name Extensions/Extmemcached
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1541 ext/mongo

Extension MongoDB driver (legacy).

Note : this is not the MongoDB driver. This is the legacy extension.

<?php

// connect
$m = new MongoClient();

// select a database
$db = $m->comedy;

// select a collection (analogous to a relational database\'s table)
$collection = $db->cartoons;

// add a record
$document = array('title' => 'Calvin and Hobbes', 'author' => 'Bill Watterson');
$collection->insert($document);

// add another record, with a different 'shape'
$document = array('title' => 'XKCD', 'online' => true);

(continues on next page)

1750 Chapter 14. Rules

https://www.php.net/manual/en/book.memcached.php
http://www.memcached.org/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/MongoDB
https://www.php.net/mongo

Exakat Documentation, Release 1

(continued from previous page)

$collection->insert($document);

// find everything in the collection
$cursor = $collection->find();

// iterate through the results
foreach ($cursor as $document) {

echo $document['title'] . PHP_EOL;
}

?>

See also ext/mongo manual and MongdDb.

Specs

Short name Extensions/Extmongo
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1542 ext/mongodb

Extension MongoDb.

Do not mistake with extension Mongo, the previous version.

Mongodb driver supports both PHP and HHVM and is developed atop the libmongoc and libbson libraries.

<?php
require 'vendor/autoload.php'; // include Composer's autoloader

$client = new MongoDB\Client("mongodb://localhost:27017");
$collection = $client->demo->beers;

$result = $collection->insertOne(['name' => 'Hinterland', 'brewery' => 'BrewDog']);

echo "Inserted with Object ID '{$result->getInsertedId()}'";
?>

See also MongoDB driver and MongdDb.

14.2. List of Rules 1751

https://www.php.net/manual/en/book.mongo.php
https://www.mongodb.com/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/Mongo
https://github.com/mongodb/mongo-c-driver
https://github.com/mongodb/libbson
https://www.php.net/manual/en/set.mongodb.php
https://www.mongodb.com/

Exakat Documentation, Release 1

Specs

Short name Extensions/Extmongodb
Rulesets All, Appinfo, CE
Exakat since 0.9.5
PHP Version With PHP 7.0 and more recent
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1543 ext/msgpack

Extension msgPack.

This extension provide API for handling MessagePack serialization, both encoding and decoding.

<?php

$serialized = msgpack_serialize(array('a' => true, 'b' => 4));
$unserialized = msgpack_unserialize($serialized);

?>

See also msgpack for PHP and MessagePack.

Specs

Short name Extensions/Extmsgpack
Rulesets All, Appinfo, CE
Exakat since 1.3.5
PHP Version All
Severity
Time To Fix
Precision Very high
Features format
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1544 ext/mssql

Extension MSSQL, Microsoft SQL Server.

These functions allow you to access MS SQL Server database.

<?php
// Connect to MSSQL
$link = mssql_connect('KALLESPC\SQLEXPRESS', 'sa', 'phpfi');

if (!$link || !mssql_select_db('php', $link)) {
(continues on next page)

1752 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://github.com/msgpack/msgpack-php
https://msgpack.org/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

die('Unable to connect or select database!');
}

// Do a simple query, select the version of
// MSSQL and print it.
$version = mssql_query('SELECT @@VERSION');
$row = mssql_fetch_array($version);

echo $row[0];

// Clean up
mssql_free_result($version);
?>

See also Microsoft SQL Server and Microsoft PHP Driver for SQL Server.

Specs

Short name Extensions/Extmssql
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1545 ext/mysql

Extension for MySQL (Original MySQL API).

This extension is deprecated as of PHP 5.5.0, and has been removed as of PHP 7.0.0. Instead, either the mysqli or
PDO_MySQL extension should be used.

See also the MySQL API Overview for further help while choosing a MySQL API.

<?php
$result = mysql_query('SELECT * WHERE 1=1');
if (!$result) {

die('Invalid query: ' . mysql_error());
}

?>

See also Original MySQL API and MySQL.

14.2. List of Rules 1753

http://www.php.net/manual/en/book.mssql.php
https://docs.microsoft.com/en-us/sql/connect/php/microsoft-php-driver-for-sql-server
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/mysqli
http://www.php.net/manual/en/book.mysql.php
http://www.mysql.com/

Exakat Documentation, Release 1

Specs

Short name Extensions/Extmysql
Rulesets All, Appinfo, CE, CompatibilityPHP55
Exakat since 0.8.4
PHP Version With PHP 7.0 and older
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1546 ext/mysqli

Extension mysqli for MySQL.

The mysqli extension allows you to access the functionality provided by MySQL 4.1 and above.

<?php
$mysqli = new mysqli('localhost', 'my_user', 'my_password', 'world');

/* check connection */
if (mysqli_connect_errno()) {

printf('Connect failed: %s\n', mysqli_connect_error());
exit();

}

$city = 'Amersfoort';

/* create a prepared statement */
if ($stmt = $mysqli->prepare('SELECT District FROM City WHERE Name=?')) {

/* bind parameters for markers */
$stmt->bind_param('s', $city);

/* execute query */
$stmt->execute();

/* bind result variables */
$stmt->bind_result($district);

/* fetch value */
$stmt->fetch();

printf('%s is in district %s\n', $city, $district);

/* close statement */
$stmt->close();

}

/* close connection */
$mysqli->close();
?>

1754 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/mysqli
https://www.php.net/mysqli

Exakat Documentation, Release 1

See also MySQL Improved Extension, MySQL and Mariadb.

Specs

Short name Extensions/Extmysqli
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1547 ext/ncurses

Extension ncurses (CLI).

ncurses (new curses) is a free software emulation of curses in System V Rel 4.0 (and above).

<?php
ncurses_init();
ncurses_start_color();
ncurses_init_pair(1, NCURSES_COLOR_GREEN, NCURSES_COLOR_BLACK);
ncurses_init_pair(2, NCURSES_COLOR_RED, NCURSES_COLOR_BLACK);
ncurses_init_pair(3, NCURSES_COLOR_WHITE, NCURSES_COLOR_BLACK);
ncurses_color_set(1);
ncurses_addstr('OK ');
ncurses_color_set(3);
ncurses_addstr('Success!'.PHP_EOL);
ncurses_color_set(2);
ncurses_addstr('FAIL ');
ncurses_color_set(3);
ncurses_addstr('Success!'.PHP_EOL);
?>

See also Ncurses Terminal Screen Control and Ncurses.

Specs

Short name Extensions/Extncurses
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1755

https://www.php.net/manual/en/book.mysqli.php
https://www.mysql.com/
https://mariadb.org/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.ncurses.php
https://www.gnu.org/software/ncurses/ncurses.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1548 ext/newt

Newt PHP CLI extension.

This is a PHP language extension for RedHat Newt library, a terminal-based window and widget library for writing
applications with user friendly interface.

<?php
newt_init ();
newt_cls ();

newt_draw_root_text (0, 0, "Test Mode Setup Utility 1.12");
newt_push_help_line (null);

newt_get_screen_size ($rows, $cols);

newt_open_window ($rows/2-17, $cols/2-10, 34, 17, "Choose a Tool");

$form = newt_form ();

$list = newt_listbox (3, 2, 10);

foreach (array (
"Authentication configuration",
"Firewall configuration",
"Mouse configuration",
"Network configuration",
"Printer configuration",
"System services") as $l_item)

{
newt_listbox_add_entry ($list, $l_item, $l_item);

}

$b1 = newt_button (5, 12, "Run Tool");
$b2 = newt_button (21, 12, "Quit");

newt_form_add_component ($form, $list);
newt_form_add_components ($form, array($b1, $b2));

newt_refresh ();
newt_run_form ($form);

newt_pop_window ();
newt_pop_help_line ();
newt_finished ();
newt_form_destroy ($form);
?>

See also Newt.

1756 Chapter 14. Rules

http://people.redhat.com/rjones/ocaml-newt/html/Newt.html

Exakat Documentation, Release 1

Specs

Short name Extensions/Extnewt
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1549 ext/nsapi

NSAPI specific functions calls.

These functions are only available when running PHP as a NSAPI module in Netscape/iPlanet/Sun webservers.

<?php

// This scripts depends on ext/nsapi
if (ini_get('nsapi.read_timeout') < 60) {

doSomething();
}

?>

See also Sun, iPlanet and Netscape servers on Sun Solaris.

Specs

Short name Extensions/Extnsapi
Rulesets All, Appinfo, CE
Exakat since 0.9.2
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1550 ext/ob

Extension Output Buffering Control.

The Output Control functions allow you to control when output is sent from the script.

<?php

ob_start();
echo "Hello\n";

(continues on next page)

14.2. List of Rules 1757

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/install.unix.sun.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

setcookie("cookiename", "cookiedata");

ob_end_flush();

?>

See also Output Buffering Control.

Specs

Short name Extensions/Extob
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1551 ext/oci8

Extension ext/oci8.

OCI8 gives access Oracle Database 12c, 11g, 10g, 9i and 8i.

<?php

$conn = oci_connect('hr', 'welcome', 'localhost/XE');
if (!$conn) {

$e = oci_error();
trigger_error(htmlentities($e['message'], ENT_QUOTES), E_USER_ERROR);

}

// Prepare the statement
$stid = oci_parse($conn, 'SELECT * FROM departments');
if (!$stid) {

$e = oci_error($conn);
trigger_error(htmlentities($e['message'], ENT_QUOTES), E_USER_ERROR);

}

// Perform the logic of the query
$r = oci_execute($stid);
if (!$r) {

$e = oci_error($stid);
trigger_error(htmlentities($e['message'], ENT_QUOTES), E_USER_ERROR);

}

// Fetch the results of the query
print '<table border='1'>' . PHP_EOL;

(continues on next page)

1758 Chapter 14. Rules

https://www.php.net/manual/en/book.outcontrol.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

while ($row = oci_fetch_array($stid, OCI_ASSOC+OCI_RETURN_NULLS)) {
print '<tr>' . PHP_EOL;
foreach ($row as $item) {

print ' <td>' . ($item !== null ? htmlentities($item, ENT_QUOTES) : ' ')␣
→˓. '</td>' . PHP_EOL;

}
print '</tr>' . PHP_EOL;

}
print '</table>' . PHP_EOL;

oci_free_statement($stid);
oci_close($conn);

?>

See also Oracle OCI8 and Oracle.

Specs

Short name Extensions/Extoci8
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version With PHP 7.0 and more recent
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1552 ext/odbc

Extension ODBC.

In addition to normal ODBC support, the Unified ODBC functions in PHP allow you to access several databases that
have borrowed the semantics of the ODBC API to implement their own API. Instead of maintaining multiple database
drivers that were all nearly identical, these drivers have been unified into a single set of ODBC functions.

<?php
$a = 1;
$b = 2;
$c = 3;
$stmt = odbc_prepare($conn, 'CALL myproc(?,?,?)');
$success = odbc_execute($stmt, array($a, $b, $c));
?>

See also ODBC (Unified), Unixodbc and IODBC.

14.2. List of Rules 1759

https://www.php.net/manual/en/book.oci8.php
https://www.oracle.com/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
http://www.php.net/manual/en/book.uodbc.php
http://www.unixodbc.org/
http://www.iodbc.org/dataspace/doc/iodbc/wiki/iodbcWiki/WelcomeVisitors

Exakat Documentation, Release 1

Specs

Short name Extensions/Extodbc
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1553 ext/opcache

Extension opcache.

OPcache improves PHP performance by storing precompiled script bytecode in shared memory, thereby removing the
need for PHP to load and parse scripts on each request.

<?php

echo opcache_compile_file('/var/www/index.php');

print_r(opcache_get_status());

?>

See also OPcache functions.

Specs

Short name Extensions/Extopcache
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1554 ext/opencensus

Extension PHP for OpenCensus.

A stats collection and distributed tracing framework.

<?php
opencensus_trace_begin('root', ['spanId' => '1234']);
opencensus_trace_add_annotation('foo');
opencensus_trace_begin('inner', []);

(continues on next page)

1760 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
http://www.php.net/manual/en/book.opcache.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

opencensus_trace_add_annotation('asdf', ['spanId' => '1234']);
opencensus_trace_add_annotation('abc');
opencensus_trace_finish();
opencensus_trace_finish();
$traces = opencensus_trace_list();
echo "Number of traces: " . count($traces) . "\n";
$span = $traces[0];
print_r($span->timeEvents());
$span2 = $traces[1];
print_r($span2->timeEvents());
?>

See also opencensus.

Specs

Short name Extensions/Extopencensus
Rulesets All, Appinfo, CE
Exakat since 1.1.7
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1555 ext/openssl

Extension Openssl.

This extension binds functions of OpenSSL library for symmetric and asymmetric encryption and decryption, PBKDF2,
PKCS7, PKCS12, X509 and other cryptographic operations. In addition to that it provides implementation of TLS
streams.

<?php
// $data and $signature are assumed to contain the data and the signature

// fetch public key from certificate and ready it
$pubkeyid = openssl_pkey_get_public("file://src/openssl-0.9.6/demos/sign/cert.pem");

// state whether signature is okay or not
$ok = openssl_verify($data, $signature, $pubkeyid);
if ($ok == 1) {

echo "good";
} elseif ($ok == 0) {

echo "bad";
} else {

echo "ugly, error checking signature";
}
// free the key from memory

(continues on next page)

14.2. List of Rules 1761

https://github.com/census-instrumentation/opencensus-php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

openssl_free_key($pubkeyid);
?>

See also ext/OpenSSL and OpenSSL.

Specs

Short name Extensions/Extopenssl
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1556 ext/parle

Extension Parser and Lexer.

The parle extension provides lexing and parsing facilities. The implementation is based on » Ben Hanson’s libraries
and requires a » C++14 capable compiler.

<?php

use Parle\{Token, Lexer, LexerException};

/* name => id */
$token = array(

'EOI' => 0,
'COMMA' => 1,
'CRLF' => 2,
'DECIMAL' => 3,

);
/* id => name */
$token_rev = array_flip($token);

$lex = new Lexer;
$lex->push("[\x2c]", $token['COMMA']);
$lex->push("[\r][\n]", $token['CRLF']);
$lex->push("[\d]+", $token['DECIMAL']);
$lex->build();

$in = "0,1,2\r\n3,42,5\r\n6,77,8\r\n";

$lex->consume($in);

do {
$lex->advance();
$tok = $lex->getToken();

(continues on next page)

1762 Chapter 14. Rules

https://www.php.net/manual/en/book.openssl.php
https://www.openssl.org/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

if (Token::UNKNOWN == $tok->id) {
throw new LexerException('Unknown token "'.$tok->value.'" at offset '.

→˓$tok->offset.'.');
}

echo 'TOKEN: ', $token_rev[$tok->id], PHP_EOL;
} while (Token::EOI != $tok->id);

?>

See also Parsing and Lexing.

Specs

Short name Extensions/Extparle
Rulesets All, Appinfo, CE
Exakat since 0.12.12
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1557 ext/password

Extension password.

The password hashing API provides an easy to use wrapper around crypt() and some other password hashing algorithms,
to make it easy to create and manage passwords in a secure manner.

<?php
// See the password_hash() example to see where this came from.
$hash = '$2y07BCryptRequires22Chrcte/VlQH0piJtjXl.0t1XkA8pw9dMXTpOq';

if (password_verify('rasmuslerdorf', $hash)) {
echo 'Password is valid!';

} else {
echo 'Invalid password.';

}
?>

See also Password Hashing and crypt man page.

14.2. List of Rules 1763

https://www.php.net/manual/en/book.parle.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/crypt
https://www.php.net/secure
https://www.php.net/manual/en/book.password.php
http://man7.org/linux/man-pages/man3/crypt.3.html

Exakat Documentation, Release 1

Specs

Short name Extensions/Extpassword
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1558 ext/pcntl

Extension for process control.

Process Control support in PHP implements the Unix style of process creation, program execution, signal handling and
process termination. Process Control should not be enabled within a web server environment and unexpected results
may happen if any Process Control functions are used within a web server environment.

<?php
declare(ticks=1);

$pid = pcntl_fork();
if ($pid == -1) {

die('could not fork');
} else if ($pid) {

exit(); // we are the parent
} else {

// we are the child
}

// detatch from the controlling terminal
if (posix_setsid() == -1) {

die('could not detach from terminal');
}

// setup signal handlers
pcntl_signal(SIGTERM, 'sig_handler');
pcntl_signal(SIGHUP, 'sig_handler');

// loop forever performing tasks
while (1) {

// do something interesting here

}

function sig_handler($signo)
{

switch ($signo) {
(continues on next page)

1764 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

case SIGTERM:
// handle shutdown tasks
exit;
break;

case SIGHUP:
// handle restart tasks
break;

default:
// handle all other signals

}

}

?>

See also Process Control.

Specs

Short name Extensions/Extpcntl
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1559 ext/pcov

CodeCoverage compatible driver for PHP.

A self contained CodeCoverage compatible driver for PHP7. CodeCoverage provides collection, processing, and ren-
dering functionality for PHP code coverage information.

<?php
\pcov\start();
$d = [];
for ($i = 0; $i < 10; $i++) {

$d[] = $i * 42;
}
\pcov\stop();
var_dump(\pcov\collect());
?>

See also PCOV and phpunit/php-code-coverage.

14.2. List of Rules 1765

https://www.php.net/manual/en/book.pcntl.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://github.com/krakjoe/pcov
https://github.com/sebastianbergmann/php-code-coverage

Exakat Documentation, Release 1

Specs

Short name Extensions/Extpcov
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 1.6.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1560 ext/pcre

Extension ext/pcre. PCRE stands for Perl Compatible Regular Expression. It is a standard PHP extension.

<?php

$zip_code = $_GET['zip'];

// Canadian Zip code H2M 3J1
$zip_ca = '/^([a-zA-Z]\d[a-zA-Z])\ {0,1}(\d[a-zA-Z]\d)$/';

// French Zip code 75017
$zip_fr = '/^\d{5}$/';

// Chinese Zip code 590615
$zip_cn = '/^\d{6}$/';

var_dump(preg_match($_GET['zip']));

?>

See also Regular Expressions (Perl-Compatible).

Specs

Short name Extensions/Extpcre
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

1766 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.pcre.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1561 ext/pdo

Generic extension PDO.

The PHP Data Objects (PDO) extension defines a lightweight, consistent interface for accessing databases in PHP.

<?php
/* Execute a prepared statement by passing an array of values */
$sql = 'SELECT name, colour, calories

FROM fruit
WHERE calories < :calories AND colour = :colour';

$sth = $dbh->prepare($sql, array(PDO::ATTR_CURSOR => PDO::CURSOR_FWDONLY));
$sth->execute(array(':calories' => 150, ':colour' => 'red'));
$red = $sth->fetchAll();
$sth->execute(array(':calories' => 175, ':colour' => 'yellow'));
$yellow = $sth->fetchAll();
?>

See also PHP Data Object.

Specs

Short name Extensions/Extpdo
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1562 ext/pecl_http

Extension HTTP.

This HTTP extension aims to provide a convenient and powerful set of functionalities for one of PHP major applications.

It eases handling of HTTP URL, headers and messages, provides means for negotiation of a client’s preferred con-
tent type, language and charset, as well as a convenient way to send any arbitrary data with caching and resuming
capabilities.

It provides powerful request functionality with support for parallel requests.

<?php

$client = new http\Client;
$client->setSslOptions(array("verifypeer" => true));
$client->addSslOptions(array("verifyhost" => 2));

$client->enqueue($req = new http\Client\Request("GET", "https://twitter.com/"));
$client->send();
$ti = (array) $client->getTransferInfo($req);

(continues on next page)

14.2. List of Rules 1767

https://www.php.net/pdo
https://www.php.net/pdo
https://www.php.net/manual/en/book.pdo.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

var_dump($ti);

?>

See also ext-http and pecl_http.

Specs

Short name Extensions/Exthttp
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1563 ext/pgsql

Extension PostGreSQL.

PostgreSQL is an open source descendant of this original Berkeley code. It provides SQL92/SQL99 language support,
transactions, referential integrity, stored procedures and type extensibility.

<?php
// Connect to a database named 'mary'
$dbconn = pg_connect('dbname=mary');

// Prepare a query for execution
$result = pg_prepare($dbconn, 'my_query', 'SELECT * FROM shops WHERE name = $1');

// Execute the prepared query. Note that it is not necessary to escape
// the string 'Joe's Widgets' in any way
$result = pg_execute($dbconn, 'my_query', array('Joe\'s Widgets'));

// Execute the same prepared query, this time with a different parameter
$result = pg_execute($dbconn, 'my_query', array('Clothes Clothes Clothes'));

?>

See also PostgreSQL and PostgreSQL: The world’s most advanced open source database.

1768 Chapter 14. Rules

https://github.com/m6w6/ext-http
https://pecl.php.net/package/pecl_http
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.pgsql.php
https://www.postgresql.org/

Exakat Documentation, Release 1

Specs

Short name Extensions/Extpgsql
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1564 ext/phalcon

Extension Phalcon : High Performance PHP Framework.

Phalcon’s autoload examples from the docs : Tutorial 1: Let’s learn by example

<?php

use Phalcon\Loader;

// ...

$loader = new Loader();

$loader->registerDirs(
[

../app/controllers/,

../app/models/,
]

);

$loader->register();

?>

See also PhalconPHP.

Specs

Short name Extensions/Extphalcon
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1769

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://docs.phalconphp.com/en/latest/reference/tutorial.html
https://phalconphp.com/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1565 ext/phar

Extension phar.

The phar extension provides a way to put entire PHP applications into a single file called a phar (PHP Archive) for
easy distribution and installation.

<?php
try {

$p = new Phar('/path/to/my.phar', 0, 'my.phar');
$p['myfile.txt'] = 'hi';
$file = $p['myfile.txt'];
var_dump($file->isCompressed(Phar::BZ2));
$p['myfile.txt']->compress(Phar::BZ2);
var_dump($file->isCompressed(Phar::BZ2));

} catch (Exception $e) {
echo 'Create/modify operations on my.phar failed: ', $e;

}
?>

See also phar.

Specs

Short name Extensions/Extphar
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1566 ext/php-ast

PHP-AST extension (PHP 7.0 +).

<?php

$code = <<<'EOC'
<?php
$var = 42;
EOC;

var_dump(ast\parse_code($code, $version=50));

?>

See also ext/ast, Extension exposing PHP 7 abstract syntax tree and Introduction of PHP parse and its application in
hyperf.

1770 Chapter 14. Rules

https://www.php.net/phar
https://www.php.net/phar
http://www.php.net/manual/en/book.phar.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://pecl.php.net/package/ast
https://github.com/nikic/php-ast
https://developpaper.com/introduction-of-php-parse-and-its-application-in-hyperf/
https://developpaper.com/introduction-of-php-parse-and-its-application-in-hyperf/

Exakat Documentation, Release 1

Specs

Short name Extensions/Extast
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version With PHP 7.0 and more recent
Severity
Time To Fix
Precision Very high
Features ast
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1567 ext/pkcs11

In cryptography, PKCS #11 is one of the Public-Key Cryptography Standards. This extensions provides
methods to create, read and check those keys.

<?php

$key = $session->generateKey(new Pkcs11\Mechanism(Pkcs11\CKM_AES_KEY_GEN), [
Pkcs11\CKA_CLASS => Pkcs11\CKO_SECRET_KEY,
Pkcs11\CKA_SENSITIVE => true,
Pkcs11\CKA_ENCRYPT => true,
Pkcs11\CKA_DECRYPT => true,
Pkcs11\CKA_VALUE_LEN => 32,
Pkcs11\CKA_KEY_TYPE => Pkcs11\CKK_AES,
Pkcs11\CKA_LABEL => "Test AES",
Pkcs11\CKA_PRIVATE => true,

]);

?>

Specs

Short name Extensions/Extpkcs11
Rulesets All, Appinfo
Exakat since 2.4.2
PHP Version With PHP 8.0 and more recent
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1771

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1568 ext/posix

Extension POSIX.

Ext/posix contains an interface to those functions defined in the IEEE 1003.1 (POSIX.1) standards document which
are not accessible through other means.

<?php
posix_kill(999459,SIGKILL);
echo 'Your error returned was '.posix_get_last_error(); //Your error was ___
?>

See also 1003.1-2008 - IEEE Standard for Information Technology - Portable Operating System Interface (POSIX(R)).

Specs

Short name Extensions/Extposix
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1569 ext/protobuf

Extension Protobuf.

Protocol Buffers (a.k.a., protobuf) are Google’s language-neutral, platform-neutral, extensible mechanism for serializ-
ing structured data.

<?php

// Example extracted from https://developers.google.com/protocol-buffers/docs/reference/
→˓php-generated

// given a simple message
//message Foo {}

/*
The protocol buffer compiler generates a PHP class called Foo. This class inherits from␣
→˓a common base class, Google\Protobuf\Internal\Message, which provides methods for␣
→˓encoding and decoding your message types, as shown in the following example:
*/

$from = new Foo();
$from->setInt32(1);
$from->setString('a');
$from->getRepeatedInt32()[] = 1;
$from->getMapInt32Int32()[1] = 1;

(continues on next page)

1772 Chapter 14. Rules

https://standards.ieee.org/findstds/standard/1003.1-2008.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$data = $from->serializeToString();
try {
$to->mergeFromString($data);

} catch (Exception $e) {
// Handle parsing error from invalid data.
...

}

?>

See also Protocol Buffers, PHP Protocol Buffers and protobuf-php on packagist.

Specs

Short name Extensions/Extprotobuf
Rulesets All, Appinfo
Exakat since 0.8.4
PHP Version With PHP 7.0 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1570 ext/pspell

Extension pspell.

These functions allow you to check the spelling of a word and offer suggestions.

<?php
$pspell_link = pspell_new('en');

if (pspell_check($pspell_link, 'testt')) {
echo 'This is a valid spelling';

} else {
echo 'Sorry, wrong spelling';

}
?>

See also Pspell and pspell.

14.2. List of Rules 1773

https://developers.google.com/protocol-buffers
https://github.com/protocolbuffers/protobuf
https://github.com/protocolbuffers/protobuf-php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.pspell.php
https://en.wikipedia.org/wiki/Pspell

Exakat Documentation, Release 1

Specs

Short name Extensions/Extpspell
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1571 ext/psr

Extension PSR : PHP Standards Recommendations.

This PHP extension provides the interfaces from the PSR standards as established by the PHP-FIG group. You can use
interfaces provided by this extension in another extension easily - see this example.

Currently supported PSR :

• PSR-3 - psr/http-message

• PSR-11 - psr/container

• PSR-13 - psr/link

• PSR-15 - psr/http-server

• PSR-16 - psr/simple-cache

• PSR-17 - psr/http-factory

<?php
// Example from the tests, for Cache (PSR-6)
use Psr\Cache\CacheException;
class MyCacheException extends Exception implements CacheException {}
$ex = new MyCacheException('test');
var_dump($ex instanceof CacheException);
var_dump($ex instanceof Exception);
try {

throw $ex;
} catch(CacheException $e) {

var_dump($e->getMessage());
}
?>

See also php-psr and PHP-FIG.

1774 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php-fig.org/psr/psr-3
https://www.php-fig.org/psr/psr-11
https://www.php-fig.org/psr/psr-13
https://www.php-fig.org/psr/psr-15
https://www.php-fig.org/psr/psr-16
https://www.php-fig.org/psr/psr-17
https://github.com/jbboehr/php-psr
https://www.php-fig.org/

Exakat Documentation, Release 1

Specs

Short name Extensions/Extpsr
Rulesets All, Appinfo, CE
Exakat since 1.5.2
PHP Version With PHP 7.0 and more recent
Severity
Time To Fix
Precision Very high
Features psr
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1572 ext/rar

Extension RAR.

Rar is a powerful and effective archiver created by Eugene Roshal. This extension gives you possibility to read Rar
archives but doesn’t support writing Rar archives, because this is not supported by the UnRar library and is directly
prohibited by its license.

<?php

$arch = RarArchive::open(example.rar);
if ($arch === FALSE)

die(Cannot open example.rar);

$entries = $arch->getEntries();
if ($entries === FALSE)

die(Cannot retrieve entries);

?>

See also Rar archiving and rarlabs.

Specs

Short name Extensions/Extrar
Rulesets All, Appinfo, CE
Exakat since 0.8.7
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1775

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.rar.php
http://www.rarlabs.com/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1573 ext/rdkafka

Extension for RDkafka.

PHP-rdkafka is a thin librdkafka binding providing a working PHP 5 / PHP 7 Kafka 0.8 / 0.9 / 0.10 client.

<?php

$rk = new RdKafka\Producer();
$rk->setLogLevel(LOG_DEBUG);
$rk->addBrokers("10.0.0.1,10.0.0.2");

?>

See also Kafka client for PHP and librdkafka.

Specs

Short name Extensions/Extrdkafka
Rulesets All, Appinfo, CE
Exakat since 0.12.8
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1574 ext/readline

Extension readline.

The readline functions implement an interface to the GNU Readline library. These are functions that provide editable
command lines.

<?php
//get 3 commands from user
for ($i=0; $i < 3; $i++) {

$line = readline("Command: ");
readline_add_history($line);

}

//dump history
print_r(readline_list_history());

//dump variables
print_r(readline_info());
?>

See also ext/readline and The GNU Readline Library.

1776 Chapter 14. Rules

https://github.com/arnaud-lb/php-rdkafka
https://github.com/edenhill/librdkafka
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.readline.php
https://tiswww.case.edu/php/chet/readline/rltop.html

Exakat Documentation, Release 1

Specs

Short name Extensions/Extreadline
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1575 ext/redis

Extension ext/redis.

The phpredis extension provides an API for communicating with the Redis key-value store.

<?php

$redis = new Redis();
$redis->connect('127.0.0.1', 6379);

$redis->setOption(Redis::OPT_SERIALIZER, Redis::SERIALIZER_NONE); // don't serialize␣
→˓data
$redis->setOption(Redis::OPT_SERIALIZER, Redis::SERIALIZER_PHP); // use built-in␣
→˓serialize/unserialize
$redis->setOption(Redis::OPT_SERIALIZER, Redis::SERIALIZER_IGBINARY); // use␣
→˓igBinary serialize/unserialize

$redis->setOption(Redis::OPT_PREFIX, 'myAppName:'); // use custom prefix on all keys

/* Options for the SCAN family of commands, indicating whether to abstract
empty results from the user. If set to SCAN_NORETRY (the default), phpredis
will just issue one SCAN command at a time, sometimes returning an empty
array of results. If set to SCAN_RETRY, phpredis will retry the scan command
until keys come back OR Redis returns an iterator of zero

*/
$redis->setOption(Redis::OPT_SCAN, Redis::SCAN_NORETRY);
$redis->setOption(Redis::OPT_SCAN, Redis::SCAN_RETRY);
?>

See also A PHP extension for Redis and Redis.

14.2. List of Rules 1777

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://github.com/phpredis/phpredis/
https://redis.io/

Exakat Documentation, Release 1

Specs

Short name Extensions/Extredis
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1576 ext/reflection

Extension Reflection.

PHP comes with a complete reflection API that adds the ability to reverse-engineer classes, interfaces, functions,
methods and extensions. Additionally, the reflection API offers ways to retrieve doc comments for functions, classes
and methods.

<?php
/**
* A simple counter
*
* @return int
*/
function counter1()
{

static $c = 0;
return ++$c;

}

/**
* Another simple counter
*
* @return int
*/
$counter2 = function()
{

static $d = 0;
return ++$d;

};

function dumpReflectionFunction($func)
{

// Print out basic information
printf(

PHP_EOL.'===> The %s function '%s''.PHP_EOL.
' declared in %s'.PHP_EOL.
' lines %d to %d'.PHP_EOL,
$func->isInternal() ? 'internal' : 'user-defined',

(continues on next page)

1778 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/reflection
https://www.php.net/reflection
https://www.php.net/reflection

Exakat Documentation, Release 1

(continued from previous page)

$func->getName(),
$func->getFileName(),
$func->getStartLine(),
$func->getEndline()

);

// Print documentation comment
printf('---> Documentation:'.PHP_EOL.' %s',PHP_EOL, var_export($func->

→˓getDocComment(), 1));

// Print static variables if existant
if ($statics = $func->getStaticVariables())
{

printf('---> Static variables: %s',PHP_EOL, var_export($statics, 1));
}

}

// Create an instance of the ReflectionFunction class
dumpReflectionFunction(new ReflectionFunction('counter1'));
dumpReflectionFunction(new ReflectionFunction($counter2));
?>

See also Reflection.

Specs

Short name Extensions/Extreflection
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1577 ext/scrypt

This is a PHP library providing a wrapper to Colin Percival’s scrypt implementation. Scrypt is a key
derivation function designed to be far more secure against hardware brute-force attacks than alternative
functions such as PBKDF2 or bcrypt.

<?php
echo scrypt("", "", 16, 1, 1, 64) . "\n";
echo scrypt("password", "NaCl", 1024, 8, 16, 64) . "\n";
?>

See also scrypt <http://www.tarsnap.com/scrypt.html> and PHP scrypt module <https://github.com/DomBlack/php-
scrypt>.

14.2. List of Rules 1779

https://www.php.net/manual/en/book.reflection.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/secure

Exakat Documentation, Release 1

Specs

Short name Extensions/Extscrypt
Rulesets All, Appinfo
Exakat since 2.4.7
PHP Version All
Severity
Time To Fix
Precision Very high
Features crypto
Available in Entreprise Edition, Exakat Cloud

14.2.1578 ext/sdl

Extensions ext/sdl.

Simple DirectMedia Layer (SDL) is a cross-platform software development library designed to provide a hardware
abstraction layer for computer multimedia hardware components.

<?php
/**
* Example of how to change screen properties such as title, icon or state using the PHP-
→˓SDL extension.
*
* @author Santiago Lizardo <santiagolizardo@php.net>
*/
require 'common.php';
SDL_Init(SDL_INIT_VIDEO);
$screen = SDL_SetVideoMode(640, 480, 16, SDL_HWSURFACE);
if(null == $screen)
{

fprintf(STDERR, 'Error: %s' . PHP_EOL, SDL_GetError());
}
for($i = 3; $i > 0; $i--)
{

SDL_WM_SetCaption("Switching to fullscreen mode in $i seconds...", null);
SDL_Delay(1000);

}
SDL_WM_ToggleFullscreen($screen);
SDL_Delay(3000);
SDL_WM_ToggleFullscreen($screen);
SDL_WM_SetCaption("Back from fullscreen mode. Quitting in 2 seconds...", null);
SDL_Delay(2000);
SDL_FreeSurface($screen);
SDL_Quit();

?>

See also phpsdl, Simple DirectMedia Layer and About SDL.

1780 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://github.com/Ponup/phpsdl
https://en.wikipedia.org/wiki/Simple_DirectMedia_Layer
https://www.libsdl.org/

Exakat Documentation, Release 1

Specs

Short name Extensions/Extsdl
Rulesets All, Appinfo, CE
Exakat since 1.5.6
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1579 ext/seaslog

Extension Seaslog.

An effective, fast, stable log extension for PHP.

<?php
$basePath_1 = SeasLog::getBasePath();

SeasLog::setBasePath('/log/base_test');
$basePath_2 = SeasLog::getBasePath();

var_dump($basePath_1,$basePath_2);

/*
string(19) "/log/seaslog-ciogao"
string(14) "/log/base_test"
*/

$lastLogger_1 = SeasLog::getLastLogger();

SeasLog::setLogger('testModule/app1');
$lastLogger_2 = SeasLog::getLastLogger();

var_dump($lastLogger_1,$lastLogger_2);
/*
string(7) "default"
string(15) "testModule/app1"
*/
?>

See also ext/SeasLog on Github and SeasLog.

14.2. List of Rules 1781

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://github.com/SeasX/SeasLog
http://seasx.github.io/SeasLog/

Exakat Documentation, Release 1

Specs

Short name Extensions/Extseaslog
Rulesets All, Appinfo, CE
Exakat since 1.4.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1580 ext/sem

Extension Semaphore, Shared Memory and IPC.

This module provides wrappers for the System V IPC family of functions. It includes semaphores, shared memory and
inter-process messaging (IPC).

<?php

$key = ftok(__FILE__,'a');
$semaphore = sem_get($key);
sem_acquire($semaphore);
sem_release($semaphore);
sem_remove($semaphore);

?>

See also Semaphore, Shared Memory and IPC.

Specs

Short name Extensions/Extsem
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

1782 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.sem.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1581 ext/session

Extension ext/session.

Session support in PHP consists of a way to preserve certain data across subsequent accesses.

<?php
session_start();
if (!isset($_SESSION['count'])) {
$_SESSION['count'] = 0;

} else {
$_SESSION['count']++;

}
?>

See also Session.

Specs

Short name Extensions/Extsession
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features session
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1582 ext/shmop

Extension ext/shmop.

Shmop is an easy to use set of functions that allows PHP to read, write, create and delete Unix shared memory segments.

<?php
// Create a temporary file and return its path
$tmp = tempnam('/tmp', 'PHP');

// Get the file token key
$key = ftok($tmp, 'a');

// Attach the SHM resource, notice the cast afterwards
$id = shm_attach($key);

if ($id === false) {
die('Unable to create the shared memory segment');

}

// Cast to integer, since prior to PHP 5.3.0 the resource id
// is returned which can be exposed when casting a resource

(continues on next page)

14.2. List of Rules 1783

https://www.php.net/manual/en/book.session.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/shmop
https://www.php.net/shmop

Exakat Documentation, Release 1

(continued from previous page)

// to an integer
$id = (integer) $id;
?>

See also Semaphore, Shared Memory and IPC.

Specs

Short name Extensions/Extshmop
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1583 ext/simplexml

Extension SimpleXML.

The SimpleXML extension provides a very simple and easily usable toolset to convert XML to an object that can be
processed with normal property selectors and array iterators.

<?php

$xml = <<<'XML'
<?xml version='1.0' standalone='yes' ? >
<movies>
<movie>
<title>PHP: Behind the Parser</title>
<characters>
<character>
<name>Ms. Coder</name>
<actor>Onlivia Actora</actor>
</character>
<character>
<name>Mr. Coder</name>
<actor>El ActÓr</actor>
</character>
</characters>
<plot>
So, this language. It's like, a programming language. Or is it a
scripting language? All is revealed in this thrilling horror spoof
of a documentary.
</plot>
<great-lines>
<line>PHP solves all my web problems</line>
</great-lines>
<rating type="thumbs">7</rating>

(continues on next page)

1784 Chapter 14. Rules

https://www.php.net/manual/en/book.sem.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

<rating type="stars">5</rating>
</movie>
</movies>
XML;

$movies = new SimpleXMLElement($xml);

echo $movies->movie[0]->plot;
?>

See also SimpleXML.

Specs

Short name Extensions/Extsimplexml
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1584 ext/snmp

Extension SNMP.

The SNMP extension provides a very simple and easily usable toolset for managing remote devices via the Simple
Network Management Protocol.

<?php
$nameOfSecondInterface = snmp3_get('localhost', 'james', 'authPriv', 'SHA',

→˓'secret007', 'AES', 'secret007', 'IF-MIB::ifName.2');
?>

See also Net SNMP and SNMP.

Specs

Short name Extensions/Extsnmp
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1785

https://www.php.net/manual/en/book.simplexml.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/SNMP
https://www.php.net/SNMP
http://www.net-snmp.org/
https://www.php.net/manual/en/book.snmp.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1585 ext/soap

Extension SOAP.

The SOAP extension can be used to write SOAP Servers and Clients. It supports subsets of » SOAP 1.1, » SOAP 1.2
and » WSDL 1.1 specifications.

<?php

$client = new SoapClient("some.wsdl");

$client = new SoapClient("some.wsdl", array('soap_version' => SOAP_1_2));

$client = new SoapClient("some.wsdl", array('login' => "some_name",
'password' => "some_password"));

?>

See also SOAP and SOAP specifications.

Specs

Short name Extensions/Extsoap
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1586 ext/sockets

Extension socket.

The socket extension implements a low-level interface to the socket communication functions based on the popular
BSD sockets, providing the possibility to act as a socket server as well as a client.

<?php

//Example #2 Socket example: Simple TCP/IP client
//From the PHP manual

error_reporting(E_ALL);

echo "<h2>TCP/IP Connection</h2>\n";

/* Get the port for the WWW service. */
$service_port = getservbyname('www', 'tcp');

/* Get the IP address for the target host. */
(continues on next page)

1786 Chapter 14. Rules

https://www.php.net/manual/en/book.soap.php
https://www.w3.org/TR/soap/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/socket
https://www.php.net/socket
https://www.php.net/socket
https://www.php.net/socket

Exakat Documentation, Release 1

(continued from previous page)

$address = gethostbyname('www.example.com');

/* Create a TCP/IP socket. */
$socket = socket_create(AF_INET, SOCK_STREAM, SOL_TCP);
if ($socket === false) {

echo 'socket_create() failed: reason: ' . socket_strerror(socket_last_error()) . PHP_
→˓EOL;
} else {

echo 'OK.'.PHP_EOL;
}

echo 'Attempting to connect to '$address' on port '$service_port'...';
$result = socket_connect($socket, $address, $service_port);
if ($result === false) {

echo 'socket_connect() failed.\nReason: ($result) ' . socket_strerror(socket_last_
→˓error($socket)) . '\n';
} else {

echo 'OK.'.PHP_EOL;
}

$in = "HEAD / HTTP/1.1\r\n";
$in .= "Host: www.example.com\r\n";
$in .= "Connection: Close\r\n\r\n";
$out = '';

echo 'Sending HTTP HEAD request...';
socket_write($socket, $in, strlen($in));
echo "OK.\n";

echo 'Reading response:\n\n';
while ($out = socket_read($socket, 2048)) {

echo $out;
}

echo 'Closing socket...';
socket_close($socket);
echo 'OK.\n\n';
?>

See also Sockets.

Specs

Short name Extensions/Extsockets
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1787

https://www.php.net/manual/en/book.sockets.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1587 ext/sphinx

Extension for the Sphinx search server.

This extension provides bindings for Sphinx search client library.

<?php

$s = new SphinxClient;
$s->setServer("localhost", 6712);
$s->setMatchMode(SPH_MATCH_ANY);
$s->setMaxQueryTime(3);

$result = $s->query("test");

var_dump($result);

?>

See also Sphinx Client and Sphinx Search.

Specs

Short name Extensions/Extsphinx
Rulesets All, Appinfo, CE
Exakat since 0.11.3
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1588 ext/spl

SPL extension.

The Standard PHP Library (SPL) is a collection of interfaces and classes that are meant to solve common problems.

<?php

// Example with FilesystemIterator
$files = new FilesystemIterator('/path/to/dir');
foreach($files as $file) {

echo $file->getFilename() . PHP_EOL;
}

?>

See also Standard PHP Library (SPL).

1788 Chapter 14. Rules

https://www.php.net/manual/en/book.sphinx.php
http://sphinxsearch.com/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
http://www.php.net/manual/en/book.spl.php

Exakat Documentation, Release 1

Specs

Short name Extensions/Extspl
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1589 ext/spx

SPX, which stands for Simple Profiling eXtension, is just another profiling extension for PHP.

<?php

while ($task = get_next_ready_task()) {
spx_profiler_start();
try {
$task->process();

} finally {
spx_profiler_stop();

}
}
?>

See also https://github.com/NoiseByNorthwest/php-spx.

Specs

Short name Extensions/Extspx
Rulesets All, Appinfo
Exakat since 2.4.2
PHP Version All
Severity
Time To Fix
Precision Very high
Features profiler
Available in Entreprise Edition, Exakat Cloud

14.2. List of Rules 1789

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://github.com/NoiseByNorthwest/php-spx
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1590 ext/sqlite

Extension Sqlite 2.

Support for SQLite version 2 databases. The support for this version of Sqlite has ended. It is recommended to use
SQLite3.

<?php

if ($db = sqlite_open('mysqlitedb', 0666, $sqliteerror)) {
sqlite_query($db, 'CREATE TABLE foo (bar varchar(10))');
sqlite_query($db, 'INSERT INTO foo VALUES ("fnord")');
$result = sqlite_query($db, 'select bar from foo');
var_dump(sqlite_fetch_array($result));

} else {
die($sqliteerror);

}

?>

See also ext/sqlite and SQLite.

Specs

Short name Extensions/Extsqlite
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.11.3
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1591 ext/sqlite3

Extension Sqlite3.

This extension adds support for SQLite version 3 databases. There used to be a Sqlite2 extension, which have been
discontinued: this is the replacement.

<?php
$db = new SQLite3('mysqlitedb.db');

$results = $db->query('SELECT bar FROM foo');
while ($row = $results->fetchArray()) {

var_dump($row);
}
?>

See also ext/sqlite3 and Sqlite.

1790 Chapter 14. Rules

https://www.php.net/manual/en/book.sqlite.php
http://sqlite.org/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/sqlite3
https://www.php.net/manual/en/book.sqlite3.php
http://sqlite.org/

Exakat Documentation, Release 1

Specs

Short name Extensions/Extsqlite3
Rulesets All, Appinfo, CE, Changed Behavior
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1592 ext/sqlsrv

Extension for Microsoft SQL Server Driver.

The SQLSRV extension allows you to access Microsoft SQL Server and SQL Azure databases when running PHP on
Windows.

<?php
$serverName = 'serverName\sqlexpress';
$connectionInfo = array('Database'=>'dbName', 'UID'=>'username', 'PWD'=>'password');
$conn = sqlsrv_connect($serverName, $connectionInfo);
if($conn === false) {

die(print_r(sqlsrv_errors(), true));
}

$sql = 'INSERT INTO Table_1 (id, data) VALUES (?, ?)';
$params = array(1, 'some data');

$stmt = sqlsrv_query($conn, $sql, $params);
if($stmt === false) {

die(print_r(sqlsrv_errors(), true));
}
?>

See also Microsoft SQL Server Driver and PHP Driver for SQL Server Support for LocalDB.

Specs

Short name Extensions/Extsqlsrv
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1791

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/sqlsrv
http://msdn.microsoft.com/en-us/library/hh487161.aspx
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1593 ext/ssh2

Extension ext/ssh2.

<?php
/* Notify the user if the server terminates the connection */
function my_ssh_disconnect($reason, $message, $language) {
printf("Server disconnected with reason code [%d] and message: %s\n",

$reason, $message);
}

$methods = array(
'kex' => 'diffie-hellman-group1-sha1',
'client_to_server' => array(
'crypt' => '3des-cbc',
'comp' => 'none'),

'server_to_client' => array(
'crypt' => 'aes256-cbc,aes192-cbc,aes128-cbc',
'comp' => 'none'));

$callbacks = array('disconnect' => 'my_ssh_disconnect');

$connection = ssh2_connect('shell.example.com', 22, $methods, $callbacks);
if (!$connection) die('Connection failed');
?>

See also SSH2 functions and ext/ssh2 on PECL.

Specs

Short name Extensions/Extssh2
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1594 ext/standard

Standards PHP functions.

This is not a real PHP extension : it covers the core functions.

<?php
/*
Our php.ini contains the following settings:

display_errors = On
register_globals = Off

(continues on next page)

1792 Chapter 14. Rules

https://www.php.net/manual/en/book.ssh2.php
http://pecl.php.net/package/ssh2
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

post_max_size = 8M
*/

echo 'display_errors = ' . ini_get('display_errors') . PHP_EOL;
echo 'register_globals = ' . ini_get('register_globals') . PHP_EOL;
echo 'post_max_size = ' . ini_get('post_max_size') . PHP_EOL;
echo 'post_max_size+1 = ' . (ini_get('post_max_size')+1) . PHP_EOL;
echo 'post_max_size in bytes = ' . return_bytes(ini_get('post_max_size'));

function return_bytes($val) {
$val = trim($val);
$last = strtolower($val[strlen($val)-1]);
switch($last) {

// The 'G' modifier is available since PHP 5.1.0
case 'g':

$val *= 1024;
case 'm':

$val *= 1024;
case 'k':

$val *= 1024;
}

return $val;
}

?>

See also PHP Options/Info Functions.

Specs

Short name Extensions/Extstandard
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1595 ext/stats

Statistics extension.

This extension contains few dozens of functions useful for statistical computations. It is a wrapper around 2 scien-
tific libraries, namely DCDFLIB (Library of C routines for Cumulative Distributions Functions, Inverses, and Other
parameters) by B. Brown & J. Lavato and RANDLIB by Barry Brown, James Lavato & Kathy Russell.

<?php

(continues on next page)

14.2. List of Rules 1793

https://www.php.net/manual/en/ref.info.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://people.sc.fsu.edu/~jburkardt/c_src/cdflib/cdflib.html
http://people.sc.fsu.edu/~jburkardt/f77_src/ranlib/ranlib.html

Exakat Documentation, Release 1

(continued from previous page)

$x = [15, 16, 8, 6, 15, 12, 12, 18, 12, 20, 12, 14,];
$y = [17.24, 15, 14.91, 4.5, 18, 6.29, 19.23, 18.69, 7.21, 42.06, 7.5, 8,];

sprintf("%2.9f", stats_covariance($a_1, $a_2));

?>

See also Statistics and ext/stats.

Specs

Short name Extensions/Extstats
Rulesets All, Appinfo, CE
Exakat since 0.11.5
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1596 ext/suhosin

Suhosin extension.

Suhosin (pronounced ‘su-ho-shin’) is an advanced protection system for PHP installations. It was designed to protect
servers and users from known and unknown flaws in PHP applications and the PHP core.

Suhosin was a PHP 5 extension, and it has been ported to PHP 7 and 8, as a separate but eponymous project.

<?php

// sha256 is a ext/suhosin specific function
$sha256 = sha256($string);

?>

See also Suhosin.org and Suhosin snuffleupagus.

Specs

Short name Extensions/Extsuhosin
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

1794 Chapter 14. Rules

https://www.php.net/manual/en/book.stats.php
https://pecl.php.net/package/stats
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://suhosin.org/
https://github.com/sektioneins/snuffleupagus
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1597 ext/svm

Extension SVM.

SVM is in interface with the libsvm, from . ``libsvm``is a library for Support Vector Machines, a classification tool for
machine learning.

<?php
$data = array(

array(-1, 1 => 0.43, 3 => 0.12, 9284 => 0.2),
array(1, 1 => 0.22, 5 => 0.01, 94 => 0.11),

);

$svm = new SVM();
$model = $svm->train($data);

$data = array(1 => 0.43, 3 => 0.12, 9284 => 0.2);
$result = $model->predict($data);
var_dump($result);
$model->save('model.svm');

?>

See also SVM, LIBSVM – A Library for Support Vector Machines, ext/svm and ianbarber/php-svm.

Specs

Short name Extensions/Extsvm
Rulesets All, Appinfo, CE
Exakat since 1.7.8
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1598 ext/teds

teds (Tentative Extra Data Structures) is a collection of data structures and iterable functionality.

<?php
// discards keys
$it = new Teds\BitVector(['first' => true, 'second' => false]);
foreach ($it as $key => $value) {

printf("Key: %s\nValue: %s\n", var_export($key, true), var_export($value, true));
}
var_dump($it);
var_dump((array)$it);

$it = new Teds\BitVector([]);
var_dump($it);
var_dump((array)$it);

(continues on next page)

14.2. List of Rules 1795

http://www.php.net/svm
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://pecl.php.net/package/svm
https://github.com/ianbarber/php-svm
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

foreach ($it as $key => $value) {
echo "Unreachable\n";

}

// Teds\BitVector will always reindex keys in the order of iteration, like array_
→˓values() does.
$it = new Teds\BitVector([2 => true, 0 => false]);
var_dump($it);

var_dump(new Teds\BitVector([-1 => false]));
?>

See also PECL TEDS.

Specs

Short name Extensions/Extteds
Rulesets All, Appinfo
Exakat since 2.4.8
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1599 ext/tidy

Extension Tidy.

Tidy is a binding for the Tidy HTML clean and repair utility which allows you to not only clean and otherwise manip-
ulate HTML documents, but also traverse the document tree. <html>a html document</html>

<?php
ob_start();
?>

See also Tidy and HTML-tidy.

Specs

Short name Extensions/Exttidy
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

1796 Chapter 14. Rules

https://github.com/TysonAndre/pecl-teds/blob/main/tests/BitVector/BitVector.phpt
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/tidy
https://www.php.net/tidy
https://www.php.net/tidy
https://www.php.net/manual/en/book.tidy.php
http://www.html-tidy.org/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1600 ext/tokenizer

Extension Tokenizer.

The Tokenizer functions provide an interface to the PHP tokenizer embedded in the Zend Engine.

<?php
/*
* T_ML_COMMENT does not exist in PHP 5.
* The following three lines define it in order to
* preserve backwards compatibility.
*
* The next two lines define the PHP 5 only T_DOC_COMMENT,
* which we will mask as T_ML_COMMENT for PHP 4.
*/
if (!defined('T_ML_COMMENT')) {

define('T_ML_COMMENT', T_COMMENT);
} else {

define('T_DOC_COMMENT', T_ML_COMMENT);
}

$source = file_get_contents('example.php');
$tokens = token_get_all($source);

foreach ($tokens as $token) {
if (is_string($token)) {

// simple 1-character token
echo $token;

} else {
// token array
list($id, $text) = $token;

switch ($id) {
case T_COMMENT:
case T_ML_COMMENT: // we\'ve defined this
case T_DOC_COMMENT: // and this

// no action on comments
break;

default:
// anything else -> output 'as is'
echo $text;
break;

}
}

}
?>

See also tokenizer.

14.2. List of Rules 1797

https://www.php.net/engine
http://www.php.net/tokenizer

Exakat Documentation, Release 1

Specs

Short name Extensions/Exttokenizer
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1601 ext/tokyotyrant

Extension for Tokyo Tyrant.

tokyo_tyrant extension provides a wrapper for Tokyo Tyrant client libraries.

<?php
$tt = new TokyoTyrant("localhost");
$tt->put("key", "value");
echo $tt->get("key");
?>

See also tokyo_tyrant and Tokyo cabinet.

Specs

Short name Extensions/Exttokyotyrant
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1602 ext/trader

Extension trader.

The trader extension is a free open source stock library based on TA-Lib. It’s dedicated to trading software developers
requiring to perform technical analysis of financial market data.

<?php

// get_data() reads the data from a source
var_dump(trader_avgprice(

get_data("open", $data0),
get_data("high", $data0),

(continues on next page)

1798 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.tokyo-tyrant.php
http://fallabs.com/tokyocabinet/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

get_data("low", $data0),
get_data("close", $data0)

));

?>

See also trader (PECL), ‘TA-lib <http://www.ta-lib.org/>`_ and ext/trader.

Specs

Short name Extensions/Exttrader
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1603 ext/uopz

Extension UOPZ : User Operations for Zend.

The uopz extension is focused on providing utilities to aid with unit testing PHP code.

It supports the following activities: Intercepting function execution, Intercepting object creation, Hooking into function
execution, Manipulation of function statics, Manipulation of function flags, Redefinition of constants, Deletion of
constants, Runtime creation of functions and methods,

<?php
// The example is extracted from the UOPZ extension test suite : tests/001.phpt
class Foo {

public function bar(int $arg) : int {
return $arg;

}
}
var_dump(uopz_set_return(Foo::class, 'bar', true));
$foo = new Foo();
var_dump($foo->bar(1));
uopz_set_return(Foo::class, 'bar', function(int $arg) : int {

return $arg * 2;
}, true);
var_dump($foo->bar(2));
try {

uopz_set_return(Foo::class, 'nope', 1);
} catch(Throwable $t) {

var_dump($t->getMessage());
}
class Bar extends Foo {}
try {

(continues on next page)

14.2. List of Rules 1799

https://pecl.php.net/package/trader
http://www.ta-lib.org/
https://www.php.net/manual/en/book.trader.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

uopz_set_return(Bar::class, 'bar', null);
} catch (Throwable $t) {

var_dump($t->getMessage());
}

uopz_set_something(Bar::class, 'bar', null);

?>

See also ext/uopz and User Operations for Zend.

Specs

Short name Extensions/Extuopz
Rulesets All, Appinfo, CE
Exakat since 1.1.7
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1604 ext/uuid

Extension UUID. A universally unique identifier (UUID) is a 128-bit number used to identify information
in computer systems.

An interface to the libuuid system library. The libuuid library is used to generate unique identifiers for objects that may
be accessible beyond the local system. The Linux implementation was created to uniquely identify ext2 filesystems
created by a machine. This library generates UUIDs compatible with those created by the Open Software Foundation
(OSF) Distributed Computing Environment (DCE) utility uuidgen.

<?php
// example from the test suitee of the extension.

// check basic format of generated UUIDs
$uuid = uuid_create();
if (preg_match("/[[:xdigit:]]{8}-[[:xdigit:]]{4}-[[:xdigit:]]{4}-[[:xdigit:]]{4}-

→˓[[:xdigit:]]{12}/", $uuid)) {
echo "basic format ok\n";

} else {
echo "basic UUID format check failed, generated UUID was $uuid\n";

}

?>

See also libuuid and ext/uuid.

1800 Chapter 14. Rules

https://pecl.php.net/package/uopz
https://github.com/krakjoe/uopz
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://linux.die.net/man/3/libuuid
https://github.com/php/pecl-networking-uuid

Exakat Documentation, Release 1

Specs

Short name Extensions/Extuuid
Rulesets All, Appinfo, CE
Exakat since 1.7.9
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1605 ext/v8js

Extension v8js.

This extension embeds the V8 Javascript `Engine <https://bugs.chromium.org/p/v8/issues/list>`_ into PHP.

<?php

$v8 = new V8Js();

/* basic.js */
$JS = <<< EOT
len = print('Hello' + ' ' + 'World!' + '\n');
len;
EOT;

try {
var_dump($v8->executeString($JS, 'basic.js'));

} catch (V8JsException $e) {
var_dump($e);

}

?>

See also V8 Javascript Engine Integration, V8 Javascript Engine for PHP and pecl v8js.

Specs

Short name Extensions/Extv8js
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1801

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/engine
https://bugs.chromium.org/p/v8/issues/list
https://www.php.net/manual/en/book.v8js.php
https://github.com/phpv8/v8js
https://pecl.php.net/package/v8js
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1606 ext/varnish

Extension PHP for varnish.

Varnish Cache is an open source, state of the art web application accelerator. The extension makes it possible to interact
with a running varnish instance through TCP socket or shared memory.

<?php
$args = array(

VARNISH_CONFIG_HOST => '::1',
VARNISH_CONFIG_PORT => 6082,
VARNISH_CONFIG_SECRET => '5174826b-8595-4958-aa7a-0609632ad7ca',
VARNISH_CONFIG_TIMEOUT => 300,

);
$va = new VarnishAdmin($args);

?>

See also ext/varnish and pecl/Varnish.

Specs

Short name Extensions/Extvarnish
Rulesets All, Appinfo, CE
Exakat since 1.1.7
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1607 ext/vips

Extension VIPS.

The VIPS image processing system is a very fast, multi-threaded image processing library with low memory needs.

<?php
dl('vips.' . PHP_SHLIB_SUFFIX);
$x = vips_image_new_from_file($argv[1])["out"];
vips_image_write_to_file($x, $argv[2]);

?>

See also php-vips-ext, libvips and libvips adapter for PHP Imagine.

1802 Chapter 14. Rules

https://www.php.net/socket
https://www.php.net/manual/en/book.varnish.php
http://svn.php.net/viewvc/pecl/varnish/trunk/tests/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://github.com/jcupitt/php-vips-ext
https://jcupitt.github.io/libvips/
https://www.liip.ch/en/blog/libvips-adapter-for-php-imagine

Exakat Documentation, Release 1

Specs

Short name Extensions/Extvips
Rulesets All, Appinfo, CE
Exakat since 1.0.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1608 ext/wasm

Extension WASM.

The goal of the project is to be able to run WebAssembly binaries from PHP directly. So much fun coming!

From the php-ext-wasm documentation :

<?php

//There is a toy program in examples/simple.rs, written in Rust (or any other language␣
→˓that compiles to WASM):
// Stored in file __DIR__ . '/simple.wasm'
/*
#[no_mangle]
pub extern "C" fn sum(x: i32, y: i32) -> i32 {

x + y
}
*/

$instance = new WASM\Instance(__DIR__ . '/simple.wasm');

var_dump(
$instance->sum(5, 37) // 42!

);

?>

See also php-ext-wasm.

Specs

Short name Extensions/Extwasm
Rulesets All, Appinfo, CE
Exakat since 1.5.7
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1803

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://github.com/Hywan/php-ext-wasm
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1609 ext/wddx

Extension WDDX.

The Web Distributed Data Exchange, or WDDX, is a free, open XML-based technology that allows Web applications
created with any platform to easily exchange data with one another over the Web.

<?php
echo wddx_serialize_value("PHP to WDDX packet example", "PHP packet");

?>

See also Wddx on PHP and WDDX.

Specs

Short name Extensions/Extwddx
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1610 ext/weakref

Weak References for PHP.

Weak references provide a non-intrusive gateway to ephemeral objects. Unlike normal (strong) references, weak ref-
erences do not prevent the garbage collector from freeing that object. For this reason, an object may be destroyed even
though a weak reference to that object still exists. In such conditions, the weak reference seamlessly becomes invalid.

<?php
class MyClass {

public function __destruct() {
echo "Destroying object!\n";

}
}

$o1 = new MyClass;

$r1 = new WeakRef($o1);

if ($r1->valid()) {
echo "Object still exists!\n";
var_dump($r1->get());

} else {
echo "Object is dead!\n";

}

unset($o1);
(continues on next page)

1804 Chapter 14. Rules

https://www.php.net/manual/en/intro.wddx.php
http://www.openwddx.org/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

if ($r1->valid()) {
echo "Object still exists!\n";
var_dump($r1->get());

} else {
echo "Object is dead!\n";

}
?>

See also Weak references and PECL extension that implements weak references and weak maps in PHP.

Specs

Short name Extensions/Extweakref
Rulesets All, Appinfo, CE
Exakat since 1.6.5
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1611 ext/xattr

Extensions xattr.

The xattr extension allows for the manipulation of extended attributes on a filesystem.

<?php
$file = 'my_favourite_song.wav';
xattr_set($file, 'Artist', 'Someone');
xattr_set($file, 'My ranking', 'Good');
xattr_set($file, 'Listen count', '34');

/* ... other code ... */

printf('You\'ve played this song %d times', xattr_get($file, 'Listen count'));
?>

See also xattr and Extended attributres.

14.2. List of Rules 1805

https://www.php.net/manual/en/book.weakref.php
https://github.com/colder/php-weakref
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.xattr.php
https://en.wikipedia.org/wiki/Extended_file_attributes

Exakat Documentation, Release 1

Specs

Short name Extensions/Extxattr
Rulesets All, Appinfo, CE
Exakat since 0.12.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features file
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1612 ext/xdebug

Xdebug extension.

The Xdebug is a extension PHP which provides debugging and profiling capabilities.

<?php
class Strings
{

static function fix_string($a)
{

echo
xdebug_call_class().
"::".
xdebug_call_function().
" is called at ".
xdebug_call_file().
":".
xdebug_call_line();

}
}

$ret = Strings::fix_string('Derick');
?>

See also Xdebug.

Specs

Short name Extensions/Extxdebug
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

1806 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://xdebug.org/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1613 ext/xdiff

Extension xdiff.

xdiff extension enables you to create and apply patch files containing differences between different revisions of files.

<?php
$old_version = 'my_script-1.0.php';
$patch = 'my_script.patch';

$errors = xdiff_file_patch($old_version, $patch, 'my_script-1.1.php');
if (is_string($errors)) {
echo 'Rejects:'.PHP_EOL;
echo $errors;

}

?>

See also libxdiff.

Specs

Short name Extensions/Extxdiff
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1614 ext/xhprof

Extension xhprof.

XHProf is a light-weight hierarchical and instrumentation based profiler.

<?php
xhprof_enable(XHPROF_FLAGS_CPU + XHPROF_FLAGS_MEMORY);

for ($i = 0; $i <= 1000; $i++) {
$a = $i * $i;

}

$xhprof_data = xhprof_disable();

$XHPROF_ROOT = '/tools/xhprof/';
include_once $XHPROF_ROOT . '/xhprof_lib/utils/xhprof_lib.php';
include_once $XHPROF_ROOT . '/xhprof_lib/utils/xhprof_runs.php';

$xhprof_runs = new XHProfRuns_Default();
(continues on next page)

14.2. List of Rules 1807

http://www.xmailserver.org/xdiff-lib.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$run_id = $xhprof_runs->save_run($xhprof_data, 'xhprof_testing');

echo 'http://localhost/xhprof/xhprof_html/index.php?run={$run_id}&source=xhprof_testing'.
→˓PHP_EOL;

?>

See also XHprof Documentation and ext/apcu.

Specs

Short name Extensions/Extxhprof
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features profiler
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1615 ext/xml

Extension xml (Parser).

This PHP extension implements support for James Clark’s expat in PHP. This toolkit lets you parse, but not validate,
XML documents.

<?php
$file = "data.xml";
$depth = array();

function startElement($parser, $name, $attrs)
{

global $depth;

if (!isset($depth[$parser])) {
$depth[$parser] = 0;

}

for ($i = 0; $i < $depth[$parser]; $i++) {
echo " ";

}
echo "$name\n";
$depth[$parser]++;

}

function endElement($parser, $name)
{

global $depth;
(continues on next page)

1808 Chapter 14. Rules

http://web.archive.org/web/20110514095512/http://mirror.facebook.net/facebook/xhprof/doc.html
https://pecl.php.net/package/xhprof
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$depth[$parser]--;
}

$xml_parser = xml_parser_create();
xml_set_element_handler($xml_parser, "startElement", "endElement");
if (!($fp = fopen($file, "r"))) {

die("could not open XML input");
}

while ($data = fread($fp, 4096)) {
if (!xml_parse($xml_parser, $data, feof($fp))) {

die(sprintf("XML error: %s at line %d",
xml_error_string(xml_get_error_code($xml_parser)),
xml_get_current_line_number($xml_parser)));

}
}
xml_parser_free($xml_parser);
?>

See also XML Parser.

Specs

Short name Extensions/Extxml
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1616 ext/xmlreader

Extension XMLReader.

The XMLReader extension is an XML Pull parser. The reader acts as a cursor going forward on the document stream
and stopping at each node on the way.

<?php

$xmlreader = new XMLReader();
$xmlreader->xml("<xml><div>Content</div></xml>");
$xmlreader->read();
$xmlreader->read();
$xmlreader->readString();

?>

See also xmlreader.

14.2. List of Rules 1809

http://www.php.net/manual/en/book.xml.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/xmlreader
https://www.php.net/xmlreader
http://www.php.net/manual/en/book.xmlreader.php

Exakat Documentation, Release 1

Specs

Short name Extensions/Extxmlreader
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features xml
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1617 ext/xmlrpc

Extension ext/xmlrpc.

This extension can be used to write XML-RPC servers and clients.

<?php
$request = xmlrpc_encode_request('method', array(1, 2, 3));
$context = stream_context_create(array('http' => array(

'method' => 'POST',
'header' => 'Content-Type: text/xml',
'content' => $request

)));
$file = file_get_contents('http://www.example.com/xmlrpc', false, $context);
$response = xmlrpc_decode($file);
if ($response && xmlrpc_is_fault($response)) {

trigger_error('xmlrpc: '.$response['faultString'].' ('.$response['faultCode']));
} else {

print_r($response);
}
?>

See also XML-RPC.

Specs

Short name Extensions/Extxmlrpc
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version With PHP 8.0 and more recent
Severity
Time To Fix
Precision Very high
Features rpc
Available in Entreprise Edition, Community Edition, Exakat Cloud

1810 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
http://www.php.net/manual/en/book.xmlrpc.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1618 ext/xmlwriter

Extension ext/xmlwriter.

The XMLWriter extension wraps the libxml xmlWriter API inside PHP.

<?php
$xw = xmlwriter_open_memory();
xmlwriter_set_indent($xw, TRUE);
xmlwriter_start_document($xw, NULL, 'UTF-8');
xmlwriter_start_element($xw, 'root');
xmlwriter_write_attribute_ns($xw, 'prefix', '', 'http://www.php.net/uri');
xmlwriter_start_element($xw, 'elem1');
xmlwriter_write_attribute($xw, 'attr1', 'first');
xmlwriter_end_element($xw);
xmlwriter_full_end_element($xw);
xmlwriter_end_document($xw);
$output = xmlwriter_flush($xw, true);
print $output;
// write attribute_ns without start_element first
$xw = xmlwriter_open_memory();
var_dump(xmlwriter_write_attribute_ns($xw, 'prefix', 'id', 'http://www.php.net/uri',
→˓'elem1'));
print xmlwriter_output_memory($xw);
?>

See also XMLWriter and Module xmlwriter from libxml2.

Specs

Short name Extensions/Extxmlwriter
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Features xml
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1619 ext/xsl

Extension XSL.

The XSL extension implements the XSL standard, performing XSLT transformations using the libxslt library.

<?php

// Example from the PHP manual

$xmldoc = new DOMDocument();
(continues on next page)

14.2. List of Rules 1811

https://www.php.net/xmlwriter
https://www.php.net/xmlwriter
https://www.php.net/xmlwriter
https://www.php.net/manual/en/book.xmlwriter.php
http://xmlsoft.org/html/libxml-xmlwriter.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

$xsldoc = new DOMDocument();
$xsl = new XSLTProcessor();

$xmldoc->loadXML('fruits.xml');
$xsldoc->loadXML('fruits.xsl');

libxml_use_internal_errors(true);
$result = $xsl->importStyleSheet($xsldoc);
if (!$result) {

foreach (libxml_get_errors() as $error) {
echo "Libxml error: {$error->message}\n";

}
}
libxml_use_internal_errors(false);

if ($result) {
echo $xsl->transformToXML($xmldoc);

}

?>

See also XSL extension.

Specs

Short name Extensions/Extxsl
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1620 ext/xxtea

Extension xxtea : XXTEA encryption algorithm extension for PHP.

XXTEA is a fast and secure encryption algorithm. This is a XXTEA extension for PHP. It is different from the original
XXTEA encryption algorithm. It encrypts and decrypts string instead of uint32 array, and the key is also string.

<?php
// Example is extracted from the xxtea repository on github : tests/xxtea.phpt

$str = 'Hello World! ';
$key = '1234567890';
$base64 = 'D4t0rVXUDl3bnWdERhqJmFIanfn/6zAxAY9jD6n9MSMQNoD8TOS4rHHcGuE=';
$encrypt_data = xxtea_encrypt($str, $key);
$decrypt_data = xxtea_decrypt($encrypt_data, $key);
if ($str == $decrypt_data && base64_encode($encrypt_data) == $base64) {

(continues on next page)

1812 Chapter 14. Rules

https://www.php.net/manual/en/intro.xsl.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/secure

Exakat Documentation, Release 1

(continued from previous page)

echo 'success!';
} else {

echo base64_encode($encrypt_data);
echo 'fail!';

}
?>

See also PECL ext/xxtea and ext/xxtea on Github.

Specs

Short name Extensions/Extxxtea
Rulesets All, Appinfo, CE
Exakat since 1.1.7
PHP Version With PHP 8.0 and older
Severity
Time To Fix
Precision Very high
Features xxtea
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1621 ext/yaml

Extension YAML.

This extension implements the YAML Ain’t Markup Language (YAML) data serialization standard. Parsing and emit-
ting are handled by the LibYAML library.

<?php
$addr = array(

'given' => 'Chris',
'family'=> 'Dumars',
'address'=> array(

'lines'=> '458 Walkman Dr.
Suite #292',
'city'=> 'Royal Oak',
'state'=> 'MI',
'postal'=> 48046,

),
);

$invoice = array (
'invoice'=> 34843,
'date'=> '2001-01-23',
'bill-to'=> $addr,
'ship-to'=> $addr,
'product'=> array(

array(
'sku'=> 'BL394D',
'quantity'=> 4,
'description'=> 'Basketball',

(continues on next page)

14.2. List of Rules 1813

https://pecl.php.net/package/xxtea
https://github.com/xxtea/xxtea-pecl
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
http://www.yaml.org/
http://pyyaml.org/wiki/LibYAML

Exakat Documentation, Release 1

(continued from previous page)

'price'=> 450,
),

array(
'sku'=> 'BL4438H',
'quantity'=> 1,
'description'=> 'Super Hoop',
'price'=> 2392,

),
),

'tax'=> 251.42,
'total'=> 4443.52,
'comments'=> 'Late afternoon is best. Backup contact is Nancy Billsmer @ 338-4338.',
);

// generate a YAML representation of the invoice
$yaml = yaml_emit($invoice);
var_dump($yaml);

// convert the YAML back into a PHP variable
$parsed = yaml_parse($yaml);

// check that roundtrip conversion produced an equivalent structure
var_dump($parsed == $invoice);
?>

See also YAML.

Specs

Short name Extensions/Extyaml
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1622 ext/zend_monitor

Extension zend_monitor.

The Zend Monitor component is integrated into the runtime environment and serves as an alerting and collection
mechanism for early detection of PHP script problems.

<?php

zend_monitor_pass_error();

?>

1814 Chapter 14. Rules

https://www.php.net/manual/en/book.yaml.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

See also Zend Monitor - PHP API and `Zend Monitor `<https://help.zend.com/zend/Zend-Server-
5.1/monitor.htm>`_.

Specs

Short name Extensions/Extzendmonitor
Rulesets All, Appinfo, CE
Exakat since 1.7.9
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1623 ext/zip

Extension ext/zip.

This extension enables you to transparently read or write ZIP compressed archives and the files inside them.

<?php

$zip = new ZipArchive();
$filename = './test112.zip';

if ($zip->open($filename, ZipArchive::CREATE)!==TRUE) {
exit('cannot open <$filename>');

}

$zip->addFromString('testfilephp.txt' . time(), '#1 This is a test string added as␣
→˓testfilephp.txt.'.PHP_EOL);
$zip->addFromString('testfilephp2.txt' . time(), '#2 This is a test string added as␣
→˓testfilephp2.txt.'.PHP_EOL);
$zip->addFile($thisdir . '/too.php','/testfromfile.php');
echo 'numfiles: ' . $zip->numFiles . PHP_EOL;
echo 'status:' . $zip->status . PHP_EOL;
$zip->close();
?>

See also Zip.

14.2. List of Rules 1815

http://files.zend.com/help/Zend-Server/content/zendserverapi/zend_monitor-php_api.htm
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.zip.php

Exakat Documentation, Release 1

Specs

Short name Extensions/Extzip
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1624 ext/zlib

Extension ext/zlib.

<?php

$filename = tempnam('/tmp', 'zlibtest') . '.gz';
echo "<html>\n<head></head>\n<body>\n<pre>\n";
$s = "Only a test, test, test, test, test, test, test, test!\n";

// open file for writing with maximum compression
$zp = gzopen($filename, 'w9');

// write string to file
gzwrite($zp, $s);

// close file
gzclose($zp);

?>

See also Zlib.

Specs

Short name Extensions/Extzlib
Rulesets All, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity
Time To Fix
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

1816 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/book.zlib.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1625 ext/zookeeper

Extension for Apache Zookeeper.

ZooKeeper is an Apache project that enables centralized service for maintaining configuration information, naming,
providing distributed synchronization, and providing group services.

<?php
$zookeeper = new Zookeeper('locahost:2181');
$path = '/path/to/node';
$value = 'nodevalue';
$zookeeper->set($path, $value);

$r = $zookeeper->get($path);
if ($r)
echo $r;

else
echo 'ERR';

?>

See also ext/zookeeper, Install Zookeeper PHP Extension and Zookeeper.

Specs

Short name Extensions/Extzookeeper
Rulesets All, Appinfo, CE
Exakat since 1.2.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1626 filter_input() As A Source

The filter_input() and filter_input_array() functions access directly to $_GET. They represent a source for
external data just like $_GET, $_POST, etc.

The main feature of filter_input() is that it is already filtered. The main drawback is that FILTER_FLAG_NONE is the
none filter, and that default configuration is FILTER_UNSAFE_RAW.

The filter extension keeps access to the incoming data, even after the super globals, such as $_GET, are unset. Thanks
to Frederic Bouchery for reporting this special case.

<?php

// Removing $_GET
$_GET = [];

// with the default : FILTER_UNSAFE_RAW, this means XSS
echo filter_input(INPUT_GET, 'i');

(continues on next page)

14.2. List of Rules 1817

https://www.php.net/zookeeper
https://blog.programster.org/install-zookeeper-php-extension
https://zookeeper.apache.org/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/filter_input
https://www.php.net/filter_input_array
https://www.php.net/filter_input
https://twitter.com/FredBouchery/
https://twitter.com/FredBouchery/status/1049297213598457857

Exakat Documentation, Release 1

(continued from previous page)

// Same as above :
echo filter_var(_GET, 'i');

?>

See also Data filtering.

Suggestions

• Use the classic $_GET, $_POST super globals, which are easier to audit.

• Use your framework’s parameter access.

Specs

Short name Security/FilterInputSource
Rulesets All, Changed Behavior, Security
Exakat since 1.4.8
PHP Version All
Severity Minor
Time To Fix Slow (1 hour)
Precision High
Features validation
Available in Entreprise Edition, Exakat Cloud

14.2.1627 fputcsv() In Loops

fputcsv() is slow when called on each row. It actually flushes the data to the disk each time, and that results
in a inefficient dump to the disk, each call.

To speed up this process, it is recommended to dump the CSV to memory first, then dump the memory to the disk, in
larger chunks. Since fputcsv() works only on stream, it is necessary to use a memory stream.

The speed improvement is significant on small rows, while it may be less significant on larger rows : with more data in
the rows, the file buffer may fill up more efficiently. On small rows, the speed gain is up to 7 times.

<?php

// Speedy yet memory intensive version
$f = fopen('php://memory', 'w+');
foreach($data_source as $row) {

// You may configure fputcsv as usual
fputcsv($f, $row);

}
rewind($f); // Important
$fp = fopen('final.csv', 'w+');
fputs($fp, stream_get_contents($f));
fclose($fp);
fclose($f);

(continues on next page)

1818 Chapter 14. Rules

https://www.php.net/manual/en/book.filter.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/fputcsv
https://www.php.net/fputcsv

Exakat Documentation, Release 1

(continued from previous page)

// Slower version
$fp = fopen('final.csv', 'w+');
foreach($data_source as $row) {

// You may configure fputcsv as usual
fputcsv($fp, $row);

}
fclose($fp);
?>

Suggestions

• Use fputcsv() on a memory stream, and flush it on the disk once

Specs

Short name Performances/CsvInLoops
Rulesets All, Performances, Top10
Exakat since 1.5.5
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Features csv
Available in Entreprise Edition, Exakat Cloud

14.2.1628 func_get_arg() Modified

func_get_arg() and func_get_args() used to report the calling value of the argument until PHP 7.

Since PHP 7, it is reporting the value of the argument at calling time, which may have been modified by a previous
instruction.

This code will display 1 in PHP 7, and 0 in PHP 5.

<?php

function x($a) {
print func_get_arg(0); // 0
$a++;
print func_get_arg(0); // 1

}

x(0);
?>

14.2. List of Rules 1819

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/func_get_arg
https://www.php.net/func_get_args

Exakat Documentation, Release 1

Suggestions

• Use func_get_arg() early in the function.

• Avoir mixing func_get_args() and direct access to the parameters.

• Avoir using func_get_args() and specifying parameters.

• Avoir modifying parameters.

Specs

Short name Functions/funcGetArgModified
Rulesets All, Analyze, Changed Behavior, CompatibilityPHP70
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Changed Behavior PHP 7.0 - More
Precision High
Features arbitrary-argument
Available in Entreprise Edition, Exakat Cloud

14.2.1629 get_class() Without Argument

get_class() and get_parent_class() should not be called without arguments. It was possible until PHP 8.3,
but it is now a deprecated behavior.

<?php

$a = new stdClass;

print get_class($a);

?>

Suggestions

• Use get_called_class() instead

• Use __CLASS__ magic constant instead

1820 Chapter 14. Rules

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/get_class
https://www.php.net/get_parent_class

Exakat Documentation, Release 1

Specs

Short name Structures/GetClassWithoutArg
Rulesets All, CompatibilityPHP83
Exakat since 2.6.1
PHP Version With PHP 9.0 and older
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Available in Entreprise Edition, Exakat Cloud

14.2.1630 idn_to_ascii() New Default

The default parameter value of idn_to_ascii() and idn_to_utf8() is now INTL_IDNA_VARIANT_UTS46
instead of the deprecated INTL_IDNA_VARIANT_2003.

<?php

echo idn_to_ascii('täst.de');

?>

See also idn_to_ascii, idn_to_utf8 and Unicode IDNA Compatibility Processing.

Suggestions

• Explicitly add the second parameter to the idn_to_ascii() and idn_to_utf8() functions.

Specs

Short name Php/IdnUts46
Rulesets All, CE, CompatibilityPHP74
Exakat since 2.2.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features internationalization
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2. List of Rules 1821

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/idn_to_ascii
https://www.php.net/idn_to_utf8
https://www.php.net/manual/en/function.idn-to-ascii.php
https://www.php.net/manual/en/function.idn-to-utf8.php
http://unicode.org/reports/tr46/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1631 include_once() Usage

Usage of include_once() and require_once(). Those functions should be avoided for performances reasons.

Try using autoload for loading classes, or use include() or require() and make it possible to include several times the
same file without errors.

<?php

// Including a library.
include 'lib/helpers.inc';

// Including a library, and avoiding double inclusion
include_once 'lib/helpers.inc';

?>

Suggestions

• Avoid using include_once() whenever possible

• Use autoload() to load classes, and avoid loading them with include

Specs

Short name Structures/OnceUsage
Rulesets All, Analyze, Appinfo, CE
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Examples XOOPS, Tikiwiki
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1632 is_a() Versus instanceof

is_a() and instanceof have the same functional use: checking if an object is of a specific class.

The analyzed code has less than 10% of one of them: either is_a() or instanceof. For consistency reasons, it is recom-
mended to make them all the same.

It happens that is_a() or instance are used depending on coding style and files. One file may be consistently using is_a(),
while the others are all using instanceof.

<?php

if (is_a($object, $class)) { /**/ }

if ($object instanceof $class) { /**/ }

(continues on next page)

1822 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/is_a
https://www.php.net/manual/en/language.operators.type.php
https://www.php.net/is_a
https://www.php.net/manual/en/language.operators.type.php
https://www.php.net/is_a
https://www.php.net/is_a
https://www.php.net/manual/en/language.operators.type.php

Exakat Documentation, Release 1

(continued from previous page)

// Note : code is not representative of actual code.

?>

Suggestions

• Adopt one of the two syntaxes

Specs

Short name Structures/IsAVersusInstanceof
Rulesets All, Preferences
Exakat since 2.6.4
Severity
Time To Fix
Precision Very high
Features instanceof
Available in Entreprise Edition, Exakat Cloud

14.2.1633 isset() With Constant

Until PHP 7, it was possible to use arrays as constants, but it was not possible to test them with isset.

This would yield an error : Cannot use `isset() <https://www.www.php.net/isset>`_ on the `result
<https://www.php.net/result>`_ of an expression (you can use "null !== expression"
instead). This is a backward incompatibility.

<?php
const X = [1,2,3];

if (isset(X[4])) {}
?>

Suggestions

• Avoid testing values on constants.

14.2. List of Rules 1823

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.www.php.net/isset
https://www.php.net/error

Exakat Documentation, Release 1

Specs

Short name Structures/IssetWithConstant
Rulesets All, Changed Behavior, CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55,

CompatibilityPHP56
Exakat since 0.8.4
PHP Version With PHP 7.0 and more recent
Severity Major
Time To Fix Instant (5 mins)
Changed Be-
havior

PHP 7.0 - More

Precision Very high
Features isset
Available in Entreprise Edition, Exakat Cloud

14.2.1634 list() May Omit Variables

Simply omit any unused variable in a list() call.

list() is the only PHP function that accepts to have omitted arguments. If the following code makes no usage of a listed
variable, just omit it.

<?php
// No need for '2', so no assignation
list ($a, , $b) = array(1, 2, 3);

// works with PHP 7.1 short syntax
[$a, , $b] = array(1, 2, 3);

// No need for '2', so no assignation
list ($a, $c, $b) = array(1, 2, 3);

?>

See also list.

1824 Chapter 14. Rules

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/list
https://www.php.net/list
https://www.php.net/manual/en/function.list.php

Exakat Documentation, Release 1

Suggestions

• Remove the unused variables from the list call

• When the ignored values are at the beginning or the end of the array, array_slice() may be used to shorten the
array.

Specs

Short name Structures/ListOmissions
Rulesets All, Analyze, CE, CI-checks, Suggestions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features class
Examples OpenConf , FuelCMS
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1635 mb_strrpos() Third Argument

Passing the encoding as 3rd parameter to mb_strrpos() is deprecated. Instead pass a 0 offset, and encoding
as 4th parameter.

<?php

// Finds the position of the last occurrence of of a string in a string, starting at␣
→˓position 10
$extract = mb_strrpos($haystack, $needle, 10, 'utf8');

// This is the old behavior. Here, the offset will be 0, by default
$extract = mb_strrpos($haystack, $needle, 'utf8');
?>

See also mb_strrpos().

Suggestions

• Remove usage of mb_strrpos() 3rd parameter.

14.2. List of Rules 1825

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/mb_strrpos

Exakat Documentation, Release 1

Specs

Short name Php/Php74mbstrrpos3rdArg
Rulesets All, CE, Changed Behavior, CompatibilityPHP74
Exakat since 1.8.9
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Changed Behavior PHP 8.0 - More
Precision Very high
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1636 mcrypt_create_iv() With Default Values

Avoid using mcrypt_create_iv() default values.

mcrypt_create_iv() used to have MCRYPT_DEV_RANDOM as default values, and in PHP 5.6, it now uses
MCRYPT_DEV_URANDOM.

If the code doesn’t have a second argument, it relies on the default value. It is recommended to set explicitly the value,
so has to avoid problems while migrating.

<?php
$size = mcrypt_get_iv_size(MCRYPT_CAST_256, MCRYPT_MODE_CFB);
// mcrypt_create_iv is missing the second argument
$iv = mcrypt_create_iv($size);

// Identical to the line below
// $iv = mcrypt_create_iv($size, MCRYPT_DEV_RANDOM);

?>

See also mcrypt_create_iv().

Suggestions

• Avoid using mcrypt_create_iv() default values.

Specs

Short name Structures/McryptcreateivWithoutOption
Rulesets All, Changed Behavior, CompatibilityPHP70
Exakat since 0.8.4
PHP Version With PHP 5.6 and older
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Features mcrypt
Available in Entreprise Edition, Exakat Cloud

1826 Chapter 14. Rules

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/function.mcrypt-create-iv.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1637 move_uploaded_file Instead Of copy

Always use move_uploaded_file() with uploaded files. Avoid using copy or rename with uploaded file.

move_uploaded_file() checks to ensure that the file designated by filename is a valid upload file (meaning that it was
uploaded via PHP’s HTTP POST upload mechanism).

<?php

// $a->file was filled with $_FILES at some point
move_uploaded_file($a->file['tmp_name'], $target);

// $a->file was filled with $_FILES at some point
rename($a->file['tmp_name'], $target);

?>

See also move_uploaded_file and Uploading Files with PHP.

Suggestions

• Always use move_uploaded_file()

• Extract the needed information from the file, and leave it for PHP to remove without storage

Specs

Short name Security/MoveUploadedFile
Rulesets All, Changed Behavior, Security
Exakat since 1.3.2
PHP Version All
Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features file-upload
Available in Entreprise Edition, Exakat Cloud

14.2.1638 openssl_random_pseudo_byte() Second Argument

openssl_random_pseudo_byte() uses exceptions to signal an error. Since PHP 7.4, there is no need to use
the second argument.

On the other hand, it is important to catch the exception that openssl_random_pseudo_byte() may emit.

<?php
// PHP 7.4 way to check on random number generation
try {

$bytes = openssl_random_pseudo_bytes($i);
} catch(\Exception $e) {

die("Error while loading random number");
}

(continues on next page)

14.2. List of Rules 1827

https://www.php.net/move_uploaded_file
https://www.php.net/move_uploaded_file
https://www.php.net/move_uploaded_file
https://www.sitepoint.com/file-uploads-with-php/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/error
https://www.php.net/exception

Exakat Documentation, Release 1

(continued from previous page)

// Old way to check on random number generation
$bytes = openssl_random_pseudo_bytes($i, $cstrong);
if ($cstrong === false) {

die("Error while loading random number");
}

?>

See also openssl_random_pseudo_byte and PHP RFC: Improve openssl_random_pseudo_bytes().

Suggestions

• Skip the second argument, add a try/catch around the call to openssl_random_pseudo_bytes()

Specs

Short name Structures/OpensslRandomPseudoByteSecondArg
Rulesets All, CE, CompatibilityPHP74
Exakat since 1.9.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Features openssl
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1639 parse_str() Warning

The parse_str() function parses a query string and assigns the resulting variables to the local scope. This
may create a unexpected number of variables, and even overwrite the existing one.

Always use an empty variable a second parameter to parse_str(), so as to collect the incoming values, and then, filter
them in that array.

<?php
function foo() {
global $a;

echo $a;
}

parse_str('a=1'); // No second parameter
foo();
// displays 1

?>

See also parse_url() and PHP SSRF Techniques.

1828 Chapter 14. Rules

https://www.php.net/openssl_random_pseudo_bytes
https://wiki.php.net/rfc/improve-openssl-random-pseudo-bytes
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/parse_str
https://www.php.net/parse_str
https://www.php.net/manual/en/function.parse-url.php
https://medium.com/secjuice/php-ssrf-techniques-9d422cb28d51

Exakat Documentation, Release 1

Suggestions

• Use the second parameter when calling parse_url();

• Change to PHP 8.0 version, which made the second argument compulsory

Specs

Short name Security/parseUrlWithoutParameters
Rulesets All, Security
Exakat since 0.8.4
PHP Version With PHP 8.0 and older
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features query-string
ClearPHP know-your-variables
Available in Entreprise Edition, Exakat Cloud

14.2.1640 preg_match_all() Flag

preg_match_all() has an option to configure the structure of the results : it is either by capturing parenthesis
(by default), or by result sets.

The second option is the most interesting when the following foreach() loop has to manipulate several captured strings
at the same time. No need to use an index in the first array and use it in the other arrays. The second syntax is easier
to read and may be marginally faster to execute (preg_match_all() and foreach()).

<?php
$string = 'ababab';

// default behavior
preg_match_all('/(a)(b)/', $string, $r);
$found = '';
foreach($r[1] as $id => $s) {

$found .= $s.$r[2][$id];
}

// better behavior
preg_match_all('/(a)(b)/', $string, $r, PREG_SET_ORDER);
$found = '';
foreach($r as $s) {

$found .= $s[1].$s[2];
}

?>

14.2. List of Rules 1829

https://github.com/dseguy/clearPHP/tree/master/rules/know-your-variables.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/preg_match_all
https://www.php.net/result
https://www.php.net/manual/en/control-structures.foreach.php
https://www.php.net/preg_match_all
https://www.php.net/manual/en/control-structures.foreach.php

Exakat Documentation, Release 1

Suggestions

• Use flags to adapt the results of preg_match_all() to your code, not the contrary.

Specs

Short name Php/PregMatchAllFlag
Rulesets All, Changed Behavior, Suggestions
Exakat since 0.8.4
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision Very high
Examples FuelCMS
Available in Entreprise Edition, Exakat Cloud

14.2.1641 preg_replace With Option e

preg_replace() supported the /e option until PHP 7.0. It allowed the use of eval()’ed expression as replace-
ment. This has been dropped in PHP 7.0, for security reasons.

preg_replace() with /e option may be replaced with preg_replace_callback() and a closure
<https://www.php.net/`closure>`_, or preg_replace_callback_array() and an array of closures.

<?php

// preg_replace with /e
$string = 'abcde';

// PHP 5.6 and older usage of /e
$replaced = preg_replace('/c/e', 'strtoupper($0)', $string);

// PHP 7.0 and more recent
// With one replacement
$replaced = preg_replace_callback('/c/', function ($x) { return strtoupper($x[0]); },
→˓$string);

// With several replacements, preventing multiple calls to preg_replace_callback
$replaced = preg_replace_callback_array(array('/c/' => function ($x) { return strtoupper(
→˓$x[0]); },

'/[a-b]/' => function ($x) { return␣
→˓strtolower($x[0]); }), $string);
?>

1830 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/preg_replace
https://www.php.net/preg_replace
https://www.php.net/preg_replace_callback
https://www.php.net/closure
https://www.php.net/closure
https://www.php.net/preg_replace_callback_array

Exakat Documentation, Release 1

Suggestions

• Replace call to preg_replace() and /e with preg_replace_callback() or preg_replace_callback_array()

Specs

Short name Structures/pregOptionE
Rulesets All, Analyze, CE, CI-checks, CompatibilityPHP70, CompatibilityPHP71, CompatibilityPHP72, Se-

curity
Exakat
since

0.8.4

PHP Ver-
sion

All

Severity Major
Time To Fix Quick (30 mins)
Precision Very high
Features regex
Examples Edusoho
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1642 self, parent, static Outside Class

self, parent and static should be called inside a class or trait. PHP lint won’t report those situations.

self, parent and static may be used in a trait : their actual value will be only known at execution time, when the trait is
used.

Such syntax problem is only revealed at execution time : PHP raises a Fatal error.

The origin of the problem is usually a method that was moved outside a class, at least temporarily.

Closures and arrow functions are reported here, though they might be rebound with a valid context before execution.

<?php
// In the examples, self, parent and static may be used interchangeably

// This raises a Fatal error
//Fatal error: Uncaught Error: Cannot access static:: when no class scope is active
new static();

// static calls
echo self::CONSTANTE;
echo self::$property;
echo self::method();

// as a type hint
function foo(static $x) {

doSomething();
}

// as a instanceof
if ($x instanceof static) {

(continues on next page)

14.2. List of Rules 1831

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/language.oop5.static.php
https://www.php.net/error

Exakat Documentation, Release 1

(continued from previous page)

doSomething();
}

?>

See also Scope Resolution Operator (::).

Suggestions

• Remove the call to static, parent or self

• Make sure the closure is correctly binded before usage

Specs

Short name Classes/NoPSSOutsideClass
Rulesets All, Analyze, Changed Behavior, LintButWontExec
Exakat since 0.10.3
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Precision Very high
Features self, parent, static
Note This issue may lint but will not run
Available in Entreprise Edition, Exakat Cloud

14.2.1643 set_exception_handler() Warning

The set_exception_handler() callable function has to be adapted to PHP 7 : Exception is not the right
typehint, it is now Throwable.

When in doubt about backward compatibility, just drop the typehint. Otherwise, use Throwable.

<?php

// PHP 5.6- typehint
class foo { function bar(\Exception $e) {} }

// PHP 7+ typehint
class foo { function bar(Throwable $e) {} }

// PHP 5 and PHP 7 compatible typehint (note : there is none)
class foo { function bar($e) {} }

set_exception_handler(foo);

?>

See also Drop the type and Use Throwable type.

1832 Chapter 14. Rules

https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/set_exception_handler

Exakat Documentation, Release 1

Suggestions

• Change the typehint from Exception to Throwable.

Specs

Short name Php/SetExceptionHandlerPHP7
Rulesets All, Changed Behavior, CompatibilityPHP70
Exakat since 0.8.4
PHP Version All
Severity Major
Time To Fix Slow (1 hour)
Changed Behavior PHP 7.0 - More
Precision Very high
Features error-handler
Available in Entreprise Edition, Exakat Cloud

14.2.1644 strict_types Preference

strict_types is a PHP mode where typehint are enforced strictly or weakly. By default, it is weak typing,
allowing backward compatibility with previous versions.

This analysis reports if strict_types are used systematically or not. strict_types affects the calling file, not the
definition file.

<?php

// define strict_types
declare(strict_types = 1);

foo(1);

?>

See also Strict typing.

Suggestions

• Use strict_types as early as possible in the development, to make it easier to adopt

14.2. List of Rules 1833

https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration.strict

Exakat Documentation, Release 1

Specs

Short name Php/DeclareStrict
Rulesets All, Appinfo, CE, Changed Behavior, Preferences
Exakat since 0.12.2
PHP Version With PHP 7.0 and more recent
Severity
Time To Fix
Precision Very high
Features strict_types
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1645 strip_tags() Skips Closed Tag

strip_tags() skips non-self closing tags. This means that tags such as
 will be ignored from the
second argument of the function.

<?php

$input = 'a
';

// Displays 'a' and clean the tag
echo strip_tags($input, '
');

// Displays 'a
' and skips the allowed tag
echo strip_tags($input, '
');

?>

See also strip_tags.

Suggestions

• Do not use self-closing tags in the second parameter

Specs

Short name Structures/StripTagsSkipsClosedTag
Rulesets All, Analyze, CE, CI-checks
Exakat since 1.9.3
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Community Edition, Exakat Cloud

1834 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/strip_tags
https://www.php.net/manual/en/language.oop5.paamayim-nekudotayim.php
https://www.php.net/manual/en/function.strip-tags.php
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1646 strpos() Too Much

strpos() covers the whole string before reporting 0. If the expected string is expected be at the beginning,
or a fixed place, it is more stable to use substr() for comparison.

The longer the haystack (the searched string), the more efficient is that trick. The string has to be 10k or more to have
impact, unless it is in a loop. This applies to stripos() too.

<?php

// This always reads the same amount of string
if (substr($html, 0, 6) === '<html>') {

}

// When searching for a single character, checking with a known position ($string[
→˓$position]) is even faster
if ($html[0] === '<') {

}

// With strpos(), the best way is to search for something that exist, and use absence as␣
→˓worst case scenario
if (strpos($html, '<html>') > 0) {

} else {
//

}

// When the search fails, the whole string has been read
if (strpos($html, '<html>') === 0) {

}

?>

Suggestions

• Check for presence, and not for absence

• Use substr() and compare the extracted string

• For single chars, try using the position in the string

14.2. List of Rules 1835

https://www.php.net/strpos
https://www.php.net/substr
https://www.php.net/stripos

Exakat Documentation, Release 1

Specs

Short name Performances/StrposTooMuch
Rulesets All, Analyze, CE, CI-checks, Changed Behavior
Exakat since 1.2.8
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision High
Examples WordPress
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1647 strpos() With Integers

strpos() used to accept integer as second argument, and turn them into their ASCII equivalent. This was
deprecated in PHP 7.x, and dropped in 8.0.

It is recommended to use casting to ensure the variable is actually strings, and strpos() behaves as expected.

<?php

strpos('abc ', 32);
// PHP 8.0+ : false, 32 is not found
// PHP 7.4- : 3, 32 is turned into space, then found

?>

Suggestions

• Add a cast to make the data string

• Test the data to be a string before usage

Specs

Short name Php/StrposWithIntegers
Rulesets All, Analyze, Changed Behavior
Exakat since 2.5.2
PHP Version All
Severity Minor
Time To Fix Quick (30 mins)
Changed Behavior PHP 8.0 - More
Precision High
Available in Entreprise Edition, Exakat Cloud

1836 Chapter 14. Rules

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/strpos
https://www.php.net/strpos
https://php-changed-behaviors.readthedocs.io/en/latest/behavior/.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

14.2.1648 time() Vs strtotime()

time() is actually faster than strtotime() with ‘now’ key string.

This is a micro-optimisation. Relative gain is real, but small unless the function is used many times.

<?php

// Faster version
$a = time();

// Slower version
$b = strtotime('now');

?>

Suggestions

• Replace strtotime() with time(). Do not change strtotime() with other value than ‘now’.

Specs

Short name Performances/timeVsstrtotime
Rulesets All, Changed Behavior, Performances
Exakat since 0.8.7
PHP Version All
Severity Minor
Time To Fix Instant (5 mins)
Precision Very high
Features declare
Examples Woocommerce
Available in Entreprise Edition, Exakat Cloud

14.2.1649 var_dump(). . . Usage

var_dump(), print_r() or var_export() should not be left in any production code. They are debugging
functions.

They may be tolerated during development time, but must be removed so as not to have any chance to be run in
production.

<?php

if ($error) {
// Debugging usage of var_dump
// And major security problem
var_dump($query);

// This is OK : the $query is logged, and not displayed
$this->log(print_r($query, true));

(continues on next page)

14.2. List of Rules 1837

https://www.php.net/time
https://www.php.net/strtotime
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/var_dump
https://www.php.net/print_r
https://www.php.net/var_export

Exakat Documentation, Release 1

(continued from previous page)

}

?>

Suggestions

• Remove usage of var_dump(), print_r(), var_export() without second argument, and other debug functions.

• Push all logging to an external file, instead of the browser.

Specs

Short name Structures/VardumpUsage
Rulesets All, Analyze, CE, CI-checks, Security
Exakat since 0.8.4
PHP Version All
Severity Critical
Time To Fix Instant (5 mins)
Precision Very high
Features debug
ClearPHP no-debug-code
Examples Tine20, Piwigo
Available in Entreprise Edition, Community Edition, Exakat Cloud

14.2.1650 version_compare Operator

version_compare()’s third argument is checked for value. The third argument specifies the operator, which
may be only one of the following : <, lt, <=, le, >, gt, >=, ge, ==, =, eq, !=, <>, ne. The operator is case
sensitive.

Until PHP 8.1, it was silently reverted to the default value. It is a deprecated warning in PHP 8.1 and will be finalized
in PHP 9.0. It is recommended to fix this parameter in any PHP version.

<?php

// return true
var_dump(version_compare('2.0', '2.1', '<'));

// returns false
var_dump(version_compare('2.0', '2.1', '>'));

// returns NULL and might be interpreted as false
var_dump(version_compare('2.0', '2.1', 'as'));

?>

1838 Chapter 14. Rules

https://github.com/dseguy/clearPHP/tree/master/rules/no-debug-code.md
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.php.net/version_compare

Exakat Documentation, Release 1

Suggestions

• Use a valid comparison operator

Specs

Short name Php/VersionCompareOperator
Rulesets All, Analyze, CompatibilityPHP81, CompatibilityPHP82
Exakat since 2.3.1
PHP Version With PHP 8.1 and more recent
Severity Minor
Time To Fix Quick (30 mins)
Precision High
Available in Entreprise Edition, Exakat Cloud

14.3 Directory by Exakat version

List of analyzers, by version of introduction, newest to oldest. In parenthesis, the first element is the analyzer name,
used with ‘analyze -P’ command, and the seconds, if any, are the ruleset, used with the -T option. Rulesets are separated
by commas, as the same analysis may be used in several rulesets.

• 2.6.8

– Deprecated Attribute

• 2.6.7

– Constant Used Only Once

– Constants/RelayConstant

– Include Variables

– No Named Parameters

– Static Inclusions

• 2.6.6

– Count() Is Not Negative

– Empty Json Error

– Exit Without Argument

– PHP 8.1 New Types

– PHP 8.2 New Types

– Strpos() Less Than One

– Useless Coalesce

– Variable Parameter Ambiguity In Arrow Function

• 2.6.5

– Combined Calls

– File_Put_Contents Using Array Argument

14.3. Directory by Exakat version 1839

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

– Nested Match

– Useless NullSafe Operator

– Useless Short Ternary

• 2.6.4

– Check After Null Safe Operator

– Could Be Readonly Property

– Could Cast To Array

– Could Drop Variable

– Could Use strcontains()

– Injectable Version

– Invalid Cast

– Multiple Property Declaration

– New Object Then Immediate Call

– No Null With Null Safe Operator

– Only Variable Passed By Reference

– PHP Native Attributes

– Property Export

– Try Without Catch

– Wrong Precedence In Expression

– is_a() Versus instanceof

• 2.6.3

– Can’t Call Generator

– Cannot Use Append For Reading

– Static Methods Cannot Call Non-Static Methods

• 2.6.2

– Cant Instantiate Non Class

– Count() To Array Append

– Don’t Use The Type As Variable Name

– Friend Attribute

– Non Integer Nor String As Index

– Reserved Methods

– Trait Is Not A Type

– Untyped No Default Properties

– Useless Trailing Comma

– Void Is Not A Reference

• 2.6.1

1840 Chapter 14. Rules

Exakat Documentation, Release 1

– Append And Assign Arrays

– Collect Graph Triplets

– Favorite Casting Method

– Multiline Expressions

– Override

– Property Cannot Be Readonly

– Static Variable In Namespace

– Static Variable Initialisation

– Using Deprecated Feature

– get_class() Without Argument

• 2.6.0

– Typed Class Constants Usage

• 2.5.4

– Rewrote Final Class Constant

• 2.5.3

– Blind Variable Used Beyond Loop

– Class Injection Count

– Collect Catch Calls

– Collect Compared Literals

– Collect Methods Throwing Exceptions

– Collect Property Usage

– Collect Structures

– Collect Throw Calls

– Collects Names

– Comparison On Different Types

– Constants In Traits

– Converted Exceptions

– Could Be array_combine()

– Could Use Yield From

– Default Then Discard

– Final Traits Are Final

– Identical Case In Switch

– Incompatible Property Between Class And Trait

– Inherited Class Constant Visibility

– Method Is Not An If

– New Dynamic Class Constant Syntax

14.3. Directory by Exakat version 1841

Exakat Documentation, Release 1

– No Null For Index

– Readonly Property Changed By Cloning

– Recalled Condition

– Redeclared Static Variable

– Short Or Complete Comparison

– StandaloneType True False Null

– Static Call With Self

– Static Variable Can Default To Arbitrary Expression

– Use DNF

– Use Enum Case In Constant Expression

– Useless Constant Overwrite

– Useless Try

– class_alias() Supports Internal Classes

• 2.5.2

– Argument Counts Per Calls

– Array Access On Literal Array

– Deprecated Mb_string Encodings

– Different Constructors

– Double Checks

– Ellipsis Merge

– Global Definitions

– Init Then Update

– Missing Assignation In Branches

– Misused Yield

– Mono Or Multibytes Favorite

– New Functions In PHP 8.3

– No Empty String With explode()

– No Max On Empty Array

– No Valid Cast

– Pre-Calculate Use

– Short Ternary

– Should Cache Local

– Sidelined Method

– Substr() In Loops

– Superglobals

– Unvalidated Data Cached In Session

1842 Chapter 14. Rules

Exakat Documentation, Release 1

– Use str_ends_with()

– Use str_starts_with()

– strpos() With Integers

• 2.5.1

– Class Could Be Readonly

– Class Invasion

– Collect SetLocale

– Filter Not Raw

– Multiple Type Cases In Switch

– Plus Plus Used On Strings

– Property Invasion

– Useless Method

– Weak Type With Array

• 2.5.0

– Ambiguous Types With Variables

– Coalesce And Ternary Operators Order

– Collect Calls

– Could Use Class Operator

– Could Use Namespace Magic Constant

– Empty Loop

– Incompatible Types With Incoming Values

– Json_encode() Without Exceptions

– Mbstring Unknown Encodings

– Method Property Confusion

– Method Usage

– Named Argument And Variadic

– No Initial S In Variable Names

– No Variable Needed

– Possible TypeError

– Set Chaining Exception

– Set Method Fnp

– Skip Empty Array

– Too Many Chained Calls

– Too Many Extractions

– Type Dodging

– Useless Assignation Of Promoted Property

14.3. Directory by Exakat version 1843

Exakat Documentation, Release 1

• 2.4.9

– Could Be Abstract Method

– No Keyword In Namespace

– Solve Trait Constants

– Unused Public Methods

– date() versus DateTime Preference

• 2.4.8

– Feast usage

– ext/teds

• 2.4.7

– Clone Constant

– Could Inject Parameter

– Empty Array Detection

– Enum Case Values

– Geospatial

– Ip

– No Default For Referenced Parameter

– Random extension

– Strict In_Array() Preference

– ext/scrypt

• 2.4.5

– DateTimeImmutable Is Not Immutable

– If Then Return Favorite

– Invalid Date Scanning Format

– Magic Method Returntype Is Restricted

– No Private Abstract Method In Trait

– Same Name For Property And Method

– Sprintf Format Compilation

– Typehints/CouldBeResource

– Utf8 Encode And Decode Are Deprecated

• 2.4.4

– Could Be Enumeration

– Extensions/Exttaint

– Ice framework

– Wrong Type With Default

• 2.4.3

1844 Chapter 14. Rules

Exakat Documentation, Release 1

– Parent Is Not Static

– Retyped Reference

• 2.4.2

– Array Addition

– Can’t Overwrite Final Method

– Collect Vendor Structures

– Could Set Property Default

– Excimer

– Identity

– Implicit Conversion To Int

– Incoming Date Formats

– Lowered Access Level

– Make All Statics

– No Magic Method For Enum

– No Readonly Assignation In Global

– Overload Existing Names

– Stomp

– Use Same Types For Comparisons

– Used Once Trait

– Wrong Locale

– ext/CSV

– ext/pkcs11

– ext/spx

• 2.4.1

– Collect Stub Structures

– Dollar Curly Interpolation Is Deprecated

– Extensions yar

• 2.4.0

– Could Be A Constant

– Could Be Spaceship

– No Constructor In Interface

– Sylius usage

– Throw Raw Exceptions

– Unused Enumeration Case

– Useless Null Coalesce

• 2.3.9

14.3. Directory by Exakat version 1845

Exakat Documentation, Release 1

– Add Return Typehint

– Can’t Overwrite Final Constant

– Constant : With Or Without Use

– Don’t Add Seconds

– Identical Variables In Foreach

– String Int Comparison

– Use Constants As Returns

• 2.3.8

– String Interpolation Favorite

– Type Could Be Never

• 2.3.7

– Identical Elseif

– Simplify Foreach

– Use Variable Created Inside Loop

• 2.3.6

– Could Use array_sum()

– Is Extension Structure

– Is PHP Structure

– Is Stub Structure

– Missing Type In Definition

– Public Reach To Private Methods

– Static Call May Be Truly Static

– Too Many Stringed Elseif

– Undefined Enumcase

– Undefined Methods

– Unfinished Object

– Unreachable Method

– Use class_alias()

• 2.3.5

– Collect Dependency Extension

– Could Be Ternary

– Could Use Existing Constant

– Don’t Reuse Foreach Source

– Missing Visibility

– Multiple Similar Calls

– Readonly Usage

1846 Chapter 14. Rules

Exakat Documentation, Release 1

– Use File Append

• 2.3.3

– Abstract Class Constants

– Check Division By Zero

– Checks Property Existence

– Could Use Null-Safe Object Operator

– Getter And Setter

– Intersection Typehint

– Recycled Variables

– Scope Resolution Operator

– This Could Be Iterable

– Variable Is A Local Constant

• 2.3.2

– Cant Overload Constants

– Extends stdClass

– Null Type Favorite

– Overwritten Foreach Var

– Variable Anf Property Typehint

• 2.3.1

– Cannot Call Static Trait Method Directly

– Deprecated Callable

– Float Conversion As Index

– Nested Attributes

– New Initializers

– Promoted Properties

– version_compare Operator

• 2.3.0

– False To Array Conversion

– Final Constant

– First Class Callable

– Mixed Keyword

– Mixed Typehint Usage

– Named Parameter Usage

– Never Keyword

– Never Typehint Usage

– New Functions In PHP 8.1

14.3. Directory by Exakat version 1847

Exakat Documentation, Release 1

– New Functions In PHP 8.2

– PHP 8.0 Typehints

– PHP 8.1 Removed Functions

– PHP 8.1 Typehints

– PHP Native Interfaces and Return Type

• 2.2.5

– Calling Static Trait Method

– No Null For Native PHP Functions

• 2.2.4

– $FILES full_path

– Missing Attribute Attribute

– No Referenced Void

– PHP Native Class Type Compatibility

• 2.2.3

– Duplicate Named Parameter

– Htmlentities Using Default Flag

– Incoming Variables

– Openssl Encrypt Default Algorithm Change

– PHP 8.1 Removed Directives

– Wrong Argument Name With PHP Function

– idn_to_ascii() New Default

• 2.2.2

– Cannot Use Static For Closure

– Class Overreach

– Could Be Generator

– Could Use Match

– Enum Usage

– Inherited Property Type Must Match

– Inherited Static Variable

– Multiple Property Declaration On One Line

– No Object As Index

– Only First Byte

– Restrict Global Usage

• 2.2.1

– Avoid get_object_vars()

– Declare Static Once

1848 Chapter 14. Rules

Exakat Documentation, Release 1

– No Static Variable In A Method

– Reserved Match Keyword

• 2.2.0

– Array_Map() Passes By Value

– Cancelled Parameter

– Collect Block Size

– Constant Typo Looks Like A Variable

– Final Private Methods

– Long Preparation For Throw

– Missing __isset() Method

– Modify Immutable

– PHP 8.0 Resources Turned Into Objects

– PHP 8.1 Resources Turned Into Objects

– PHP 80 Named Parameter Variadic

– Searching For Multiple Keys

– Unused Exception Variable

– Use str_contains()

– Wrong Attribute Configuration

• 2.1.9

– Array_Fill() With Objects

– Assumptions

– Collect Use Counts

– Could Be Stringable

– Could Use Promoted Properties

– Modified Typed Parameter

– Negative Start Index In Array

– Nullable With Constant

– Optimize Explode()

– PHP 8.0 Removed Directives

– Php Ext Stub Property And Method

– Unsupported Types With Operators

– Use get_debug_type()

– Useless Typehint

• 2.1.8

– $php_errormsg Usage

– Cancel Common Method

14.3. Directory by Exakat version 1849

Exakat Documentation, Release 1

– Cast Unset Usage

– Collect Atom Counts

– Collect Classes Dependencies

– Collect Files Dependencies

– Collect Php Structures

– Function With Dynamic Code

– Mismatch Parameter And Type

– Mismatch Parameter Name

– Multiple Declaration Of Strict_types

• 2.1.7

– Collect Class Traits Counts

– Collect Definitions Statistics

– Collect Global Variables

– Collect Native Calls Per Expressions

– Collect Readability

– Collects Variables

– Could Be Parent Method

– Don’t Pollute Global Space

– Missing Some Returntype

• 2.1.6

– Different Argument Counts

– GLOB_BRACE Usage

– Iconv With Translit

– Unknown Parameter Name

– Use Closure Trailing Comma

– Use NullSafe Operator

– Use PHP Attributes

• 2.1.5

– Abstract Away

– Avoid Compare Typed Boolean

– Catch With Undefined Variable

– Collect Parameter Names

– Collect Static Class Changes

– Fossilized Methods List

– Large Try Block

– Swapped Arguments

1850 Chapter 14. Rules

Exakat Documentation, Release 1

– Wrong Type For Native PHP Function

• 2.1.4

– Array_merge Needs Array Of Arrays

– Call Order

– Could Be Float

– Extended Typehints

– Mismatch Properties Typehints

– No Need For Triple Equal

– Type Could Be Integer

– Typehint Could Be Iterable

– Uses PHP 8 Match()

• 2.1.3

– Cyclic References

– Protocol lists

– Wrong Argument Type

• 2.1.2

– Collect Class Constant Counts

– Collect Local Variable Counts

– Collect Method Counts

– Collect Property Counts

– Could Be Array Typehint

– Could Be Boolean

– Could Be CIT

– Could Be Callable

– Could Be Null

– Could Be Parent

– Could Be Self

– Could Be String

– Could Be Type

– Could Be Void

– Could Not Type

– Double Object Assignation

– Possible Alias Confusion

– Safe Phpvariables

– Static Global Variables Confusion

– Too Long A Block

14.3. Directory by Exakat version 1851

Exakat Documentation, Release 1

– Too Much Indented

– Using Deprecated Method

• 2.1.1

– Check Crypto Key Length

– Dynamic Self Calls

– Keep Files Access Restricted

– OpenSSL Ciphers Used

– Prefix And Suffixes With Typehint

– Throw Was An Expression

– Undefined Constant Name

– Unused Trait In Class

• 2.1.0

– Fn Argument Variable Confusion

– Implicit Nullable Type

– Missing Abstract Method

– Signature Trailing Comma

• 2.0.9

– Don’t Collect Void

– Php 8.0 Only TypeHints

– Uninitialized Property

– Union Typehint

– Wrong Typed Property Default

• 2.0.8

– New Functions In PHP 8.0

– Php 8.0 Variable Syntax Tweaks

• 2.0.7

– Constant Order

• 2.0.6

– Fossilized Method

– Links Between Parameter And Argument

– Not Equal Is Not !==

– Possible Interfaces

• 2.0.5

– Missing Typehint

– Semantic Typing

• 2.0.4

1852 Chapter 14. Rules

Exakat Documentation, Release 1

– Coalesce Equal

• 2.0.3

– Collect Class Children Count

– Collect Class Depth

– Collect Class Interface Counts

– Exceeding Typehint

• 2.0.2

– Inclusions

– Insufficient Property Typehint

– New Order

– Nullable Without Check

– Typehint Order

– Wrong Typehinted Name

• 1.9.9

– Collect Mbstring Encodings

– Concrete5 usage

– Could Type With Array

– Could Type With Boolean

– Could Type With Int

– Could Type With Iterable

– Could Type With String

– Create Foreach Default

– Filter To add_slashes()

– Immutable Signature

– Is_A() With String

– Mbstring Third Arg

– Mbstring Unknown Encoding

– Merge If Then

– Shell commands

– Typehinting Stats

– Typo 3 usage

– Weird Array Index

– Wrong Case Namespaces

– Wrong Type With Call

• 1.9.8

– Can’t Implement Traversable

14.3. Directory by Exakat version 1853

Exakat Documentation, Release 1

– Parameter Hiding

• 1.9.7

– Foreach() Favorite

– Make Functioncall With Reference

– Should Use Url Query Functions

– Too Many Dereferencing

• 1.9.6

– Collect Parameter Counts

– Create Magic Method

– Dereferencing Levels

– Duplicate Literal

– Internet Domains

– No Weak SSL Crypto

– No mb_substr In Loop

– Non Nullable Getters

– Use The Case Value

• 1.9.5

– Collect Literals

– Environment Variable Usage

– Interfaces Don’t Ensure Properties

– Interfaces Is Not Implemented

– Magic Properties

– No Literal For Reference

– Use array_slice()

• 1.9.4

– Coalesce And Concat

– Comparison Is Always The Same

– Cyclomatic Complexity

– Nested Ternary Without Parenthesis

– PHP 74 New Directives

– Should Use Explode Args

– Spread Operator For Array

– Too Many Array Dimensions

– Use Arrow Functions

• 1.9.3

– Environment Variables

1854 Chapter 14. Rules

Exakat Documentation, Release 1

– Indentation Levels

– Max Level Of Nesting

– No Spread For Hash

– PHP 7.4 Constant Deprecation

– PHP 7.4 Removed Directives

– Set Array Class Definition

– Set Class Method Remote Definition

– Set Class Property Definition With Typehint

– Set Class Remote Definition With Global

– Set Class Remote Definition With Local New

– Set Class Remote Definition With Parenthesis

– Set Class Remote Definition With Return Typehint

– Set Class Remote Definition With Typehint

– Use Contravariance

– Use Covariance

– openssl_random_pseudo_byte() Second Argument

– strip_tags() Skips Closed Tag

• 1.9.2

– Create Compact Variables

– Create Default Values

– Create Magic Property

– Follow Closure Definition

– Implode() Arguments Order

– Make Class Method Definition

– Makes Class Constant Definition

– No ENT_IGNORE

– No More Curly Arrays

– Overwritten Constant

– Overwritten Methods

– Overwritten Properties

– PHP 7.4 Reserved Keyword

– Propagate Constants

– Set Class Remote Definition With Injection

– Set Clone Link

– Set Parent Definition

– Set class_alias() Definition

14.3. Directory by Exakat version 1855

Exakat Documentation, Release 1

– Solve Trait Methods

– array_merge() And Variadic

• 1.9.1

– Php Native Reference Variable

• 1.9.0

– Class Without Parent

– Numeric Literal Separator

– PHP 7.4 Removed Functions

– Reflection Export() Is Deprecated

– Scalar Are Not Arrays

– Serialize Magic Method

– Similar Integers

– Unbinding Closures

– array_key_exists() Works On Arrays

• 1.8.9

– Avoid mb_dectect_encoding()

– Disconnected Classes

– Not Or Tilde

– Overwritten Source And Value

– Useless Type Check

– mb_strrpos() Third Argument

• 1.8.8

– Set Aside Code

– Use Array Functions

• 1.8.7

– Generator Cannot Return

– Methods That Should Not Be Used

– Use DateTimeImmutable Class

– Wrong Type Returned

• 1.8.6

– Dependant Abstract Classes

– Infinite Recursion

– Null Or Boolean Arrays

• 1.8.5

– Could Use Trait

• 1.8.4

1856 Chapter 14. Rules

Exakat Documentation, Release 1

– Always Use Function With array_key_exists()

– Complex Dynamic Names

– Could Be Constant

– New Constants In PHP 7.4

– Regex On Arrays

– Unused Class Constant

– curl_version() Has No Argument

• 1.8.3

– Autoappend

– Make Magic Concrete

– Memoize MagicCall

– Substr To Trim

• 1.8.2

– Identical Methods

– No Append On Source

• 1.8.1

– No Need For get_class()

• 1.8.0

– Already Parents Trait

– Casting Ternary

– Concat And Addition

– Concat Empty String

– Minus One On Error

– New Functions In PHP 7.4

– Unpacking Inside Arrays

– Useless Argument

• 1.7.9

– Avoid option arrays in constructors

– Trait Not Found

– Useless Default Argument

– ext/ffi

– ext/uuid

– ext/zend_monitor

• 1.7.8

– ext/svm

• 1.7.7

14.3. Directory by Exakat version 1857

Exakat Documentation, Release 1

– Implode One Arg

– Incoming Values

– Insecure Integer Validation

• 1.7.6

– Caught Variable

– Multiple Unset()

– PHP Overridden Function

– array_merge With Ellipsis

• 1.7.2

– Check On __Call Usage

– Unsupported Operand Types

• 1.7.0

– Clone With Non-Object

– Self-Transforming Variables

– Should Deep Clone

– Windows Only Constants

• 1.6.9

– Inconsistent Variable Usage

– Type Must Be Returned

• 1.6.8

– PHP 8.0 Removed Constants

– PHP 8.0 Removed Functions

– PHP 8.1 Removed Constants

• 1.6.7

– An OOP Factory

– Constant Dynamic Creation

– Law of Demeter

• 1.6.6

– Bad Type Relay

– Insufficient Typehint

• 1.6.5

– Array With String Initialization

– Variable Is Not A Condition

– ext/pcov

– ext/weakref

• 1.6.4

1858 Chapter 14. Rules

Exakat Documentation, Release 1

– Don’t Be Too Manual

• 1.6.3

– Assign And Compare

• 1.6.2

– Typed Property Usage

• 1.6.1

– Possible Missing Subpattern

– array_key_exists() Speedup

• 1.5.8

– Multiple Identical Closure

– Path lists

• 1.5.7

– Method Could Be Static

– Multiple Usage Of Same Trait

– Self Using Trait

– ext/wasm

• 1.5.6

– Isset() On The Whole Array

– Useless Method Alias

– ext/sdl

• 1.5.5

– Directly Use File

– Safe HTTP Headers

– fputcsv() In Loops

• 1.5.4

– Avoid Self In Interface

– Should Have Destructor

– Unreachable Class Constant

• 1.5.3

– Declare Global Early

– Don’t Loop On Yield

• 1.5.2

– PHP Exception

– Should Yield With Key

– ext/decimal

– ext/psr

14.3. Directory by Exakat version 1859

Exakat Documentation, Release 1

• 1.5.1

– Use Basename Suffix

• 1.5.0

– Could Use Try

– Pack Format Inventory

– Printf Format Inventory

• 1.4.9

– Don’t Read And Write In One Expression

– Invalid Pack Format

– Named Regex

– No Reference For Static Property

– No Return For Generator

– Repeated Interface

– Wrong Access Style to Property

• 1.4.8

– Direct Call To __clone()

– filter_input() As A Source

• 1.4.6

– Only Variable For Reference

• 1.4.5

– Add Default Value

• 1.4.4

– ext/seaslog

• 1.4.3

– Class Could Be Final

– Closure Could Be A Callback

– Inconsistent Elseif

– Use json_decode() Options

• 1.4.2

– Method Collision Traits

– Undefined Insteadof

– Undefined Variable

• 1.4.1

– Must Call Parent Constructor

• 1.4.0

– PHP 7.3 Removed Functions

1860 Chapter 14. Rules

Exakat Documentation, Release 1

– Trailing Comma In Calls

• 1.3.9

– Assert Function Is Reserved

– Avoid Real

– Case Insensitive Constants

– Const Or Define Preference

– Continue Is For Loop

– Could Be Abstract Class

• 1.3.8

– Constant Case Preference

– Detect Current Class

– Use is_countable

• 1.3.7

– Handle Arrays With Callback

• 1.3.5

– Locally Used Property In Trait

– PHP 7.0 Scalar Typehints

– PHP 7.1 Scalar Typehints

– PHP 7.2 Scalar Typehints

– Undefined ::class

– ext/lzf

– ext/msgpack

• 1.3.4

– Ambiguous Visibilities

– Hash Algorithms Incompatible With PHP 7.1-

– Hash Algorithms Incompatible With PHP 7.4-

• 1.3.3

– Abstract Or Implements

– Can’t Throw Throwable

– Incompatible Signature Methods

– Incompatible Signature Methods With Covariance

– ext/eio

• 1.3.2

– Compared But Not Assigned Strings

– Comparisons Orientation

– Could Be Static Closure

14.3. Directory by Exakat version 1861

Exakat Documentation, Release 1

– Don’t Mix ++

– Strict Or Relaxed Comparison

– move_uploaded_file Instead Of copy

• 1.3.0

– Check JSON

– Const Visibility Usage

– Should Use Operator

– Single Use Variables

• 1.2.9

– Configure Extract

– Flexible Heredoc

– Method Signature Must Be Compatible

– Mismatch Type And Default

– Nonexistent Variable In compact()

– Use The Blind Var

• 1.2.8

– Cache Variable Outside Loop

– Can’t Instantiate Class

– Class-typed References

– Do In Base

– Failing Analysis

– Weak Typing

– strpos() Too Much

• 1.2.7

– ext/cmark

• 1.2.6

– Callback Function Needs Return

– Could Use array_unique

– Missing Parenthesis

– One If Is Sufficient

• 1.2.5

– Wrong Range Check

– ext/zookeeper

• 1.2.4

– Processing Collector

• 1.2.3

1862 Chapter 14. Rules

Exakat Documentation, Release 1

– Don’t Unset Properties

– Redefined Private Property

– Strtr Arguments

• 1.2.2

– Drop Substr Last Arg

• 1.2.1

– Possible Increment

– Properties Declaration Consistence

• 1.1.10

– Too Many Native Calls

• 1.1.9

– Should Preprocess Chr()

– Too Many Parameters

• 1.1.8

– Mass Creation Of Arrays

– ext/db2

• 1.1.7

– Could Use array_fill_keys

– Dynamic Library Loading

– PHP 7.3 Last Empty Argument

– Property Could Be Local

– Use Recursive count()

– ext/leveldb

– ext/opencensus

– ext/uopz

– ext/varnish

– ext/xxtea

• 1.1.6

– Could Use Compact

– Foreach On Object

– List With Reference

– Test Then Cast

• 1.1.5

– Possible Infinite Loop

– Should Use Math

– ext/hrtime

14.3. Directory by Exakat version 1863

Exakat Documentation, Release 1

• 1.1.4

– Double array_flip()

– Fallback Function

– Find Key Directly

– Reuse Existing Variable

– Useless Catch

• 1.1.3

– Useless Referenced Argument

• 1.1.2

– Local Globals

– Missing Include

• 1.1.1

– Inclusion Wrong Case

• 1.0.11

– No Net For Xml Load

– Unused Inherited Variable In Closure

• 1.0.10

– Sqlite3 Requires Single Quotes

• 1.0.8

– Identical Consecutive Expression

– Identical On Both Sides

– Mistaken Concatenation

– No Reference For Ternary

• 1.0.7

– Not A Scalar Type

– Should Use array_filter()

• 1.0.6

– Never Called Parameter

– Use Named Boolean In Argument Definition

– ext/igbinary

• 1.0.5

– Assigned In One Branch

– Environment Variables

– Invalid Regex

– Parent First

– Same Variable Foreach

1864 Chapter 14. Rules

Exakat Documentation, Release 1

• 1.0.4

– Argon2 Usage

– Avoid set_error_handler $context Argument

– Can’t Count Non-Countable

– Crypto Usage

– Dl() Usage

– Don’t Send $this In Constructor

– Hash Will Use Objects

– Incoming Variable Index Inventory

– Integer As Property

– Maybe Missing New

– No get_class() With Null

– Php 7.2 New Class

– Php 7.4 New Classes

– Php 8.3 New Classes

– Slice Arrays First

– Type Array Index

– Unknown Pcre2 Option

– Use List With Foreach

– Use PHP7 Encapsed Strings

– ext/vips

• 1.0.3

– Ambiguous Static

– Drupal Usage

– Fuel PHP Usage

– Phalcon Usage

• 1.0.1

– Could Be Else

– Next Month Trap

– Printf Number Of Arguments

– Simple Switch And Match

– Substring First

• 0.12.17

– Is A Magic Property

• 0.12.16

– Cookies Variables

14.3. Directory by Exakat version 1865

Exakat Documentation, Release 1

– Date Formats

– Session Variables

– Too Complex Expression

– Unconditional Break In Loop

• 0.12.15

– Always Anchor Regex

– Is Actually Zero

– Multiple Type Variable

– Session Lazy Write

• 0.12.14

– Regex Inventory

– Switch Fallthrough

– Upload Filename Injection

• 0.12.12

– Use pathinfo() Arguments

– ext/parle

• 0.12.11

– Could Be Protected Class Constant

– Could Be Protected Method

– Method Could Be Private Method

– Method Used Below

– Pathinfo() Returns May Vary

• 0.12.10

– Constant Used Below

– Could Be Private Class Constant

• 0.12.9

– Shell Favorite

• 0.12.8

– ext/fam

– ext/rdkafka

• 0.12.7

– Should Use Foreach

• 0.12.5

– Logical To in_array

– No Substr Minus One

• 0.12.4

1866 Chapter 14. Rules

Exakat Documentation, Release 1

– Assign And Lettered Logical Operator Precedence

– Avoid Concat In Loop

– Child Class Removes Typehint

– Isset Multiple Arguments

– Logical Operators Favorite

– No Magic Method With Array

– Optional Parameter

– ext/xattr

• 0.12.3

– Group Use Trailing Comma

– Mismatched Default Arguments

– Mismatched Typehint

– Scalar Or Object Property

• 0.12.2

– Mkdir Default

– strict_types Preference

• 0.12.1

– Const Or Define

– Declare strict_types Usage

– Encoding Usage

– Mismatched Ternary Alternatives

– No Return Or Throw In Finally

– Ticks Usage

• 0.12.0

– Avoid Optional Properties

– Heredoc Delimiter

– Multiple Functions Declarations

– Non Breakable Space In Names

– Swoole

• 0.11.8

– Cant Inherit Abstract Method

– Codeigniter usage

– Ez cms usage

– Joomla usage

– Laravel usage

– Symfony usage

14.3. Directory by Exakat version 1867

Exakat Documentation, Release 1

– Use session_start() Options

– Wordpress usage

– Yii usage

• 0.11.7

– Forgotten Interface

– Order Of Declaration

• 0.11.6

– Concatenation Interpolation Consistence

– Could Make A Function

– Courier Anti-Pattern

– DI Cyclic Dependencies

– Dependency Injection

– PSR-13 Usage

– PSR-16 Usage

– PSR-3 Usage

– PSR-6 Usage

– PSR-7 Usage

– Too Many Injections

– ext/gender

– ext/judy

• 0.11.5

– Could Typehint

– Implemented Methods Must Be Public

– Mixed Concat And Interpolation

– No Reference On Left Side

– PSR-11 Usage

– ext/stats

• 0.11.4

– No Class As Typehint

– Use Browscap

– Use Debug

• 0.11.3

– No Return Used

– Only Variable Passed By Reference

– Try With Multiple Catch

– ext/grpc

1868 Chapter 14. Rules

Exakat Documentation, Release 1

– ext/sphinx

– ext/sqlite

• 0.11.2

– Alternative Syntax Consistence

– Randomly Sorted Arrays

• 0.11.1

– Difference Consistence

– No Empty Regex

• 0.11.0

– Could Use str_repeat()

– Crc32() Might Be Negative

– Empty Final Element In Array

– Strings With Strange Space

– Suspicious Comparison

• 0.10.9

– Displays Text

– Method Is Overwritten

– No Class In Global

– Repeated Regex

• 0.10.7

– Group Use Declaration

– Missing Cases In Switch

– New Constants In PHP 7.2

– New Functions In PHP 7.2

– New Functions In PHP 7.3

• 0.10.6

– Check All Types

– Do Not Cast To Int

– Manipulates INF

– Manipulates NaN

– Set Cookie Safe Arguments

– Should Use SetCookie()

– Use Cookies

• 0.10.5

– Could Be Typehinted Callable

– Encoded Simple Letters

14.3. Directory by Exakat version 1869

Exakat Documentation, Release 1

– Regex Delimiter

– Strange Name For Constants

– Strange Name For Variables

– Too Many Finds

• 0.10.4

– No Need For Else

– Should Use session_regenerateid()

– ext/ds

• 0.10.3

– Multiple Alias Definitions Per File

– Property Used In One Method Only

– Used Once Property

– __DIR__ Then Slash

– self, parent, static Outside Class

• 0.10.2

– Class Function Confusion

– Forgotten Thrown

– Should Use array_column()

– ext/libsodium

• 0.10.1

– All strings

– SQL queries

– Strange Names In Classes

• 0.10.0

– Error_Log() Usage

– No Boolean As Default

– Raised Access Level

• 0.9.9

– PHP 7.2 Deprecations

– PHP 7.2 Removed Functions

• 0.9.8

– Assigned Twice

– New Line Style

– New On Functioncall Or Identifier

• 0.9.7

– Avoid Large Array Assignation

1870 Chapter 14. Rules

Exakat Documentation, Release 1

– Could Be Protected Property

– Long Arguments

• 0.9.6

– Avoid glob() Usage

– Fetch One Row Format

• 0.9.5

– One Expression Brackets Consistency

– Should Use Function

– ext/mongodb

• 0.9.4

– Class Should Be Final By Ocramius

– String

• 0.9.3

– Close Tags Consistency

– Unset() Or (unset)

• 0.9.2

– $GLOBALS Or global

– Illegal Name For Method

– Too Many Local Variables

– Use Composer Lock

– ext/nsapi

• 0.9.1

– Avoid Using stdClass

– Avoid array_push()

– Invalid Octal In String

• 0.9.0

– Getting Last Element

– Rethrown Exceptions

• 0.8.9

– Array() / [] Consistence

– Bail Out Early

– Die Exit Consistence

– Don’t Change The Blind Var

– More Than One Level Of Indentation

– One Dot Or Object Operator Per Line

– PHP 7.1 Microseconds

14.3. Directory by Exakat version 1871

Exakat Documentation, Release 1

– Unitialized Properties

– Useless Check

• 0.8.7

– Don’t Echo Error

– No isset() With empty()

– Use ::Class Operator

– Useless Type Casting

– ext/rar

– time() Vs strtotime()

• 0.8.6

– Drop Else After Return

– Modernize Empty With Expression

– Use Positive Condition

• 0.8.5

– Should Use Ternary Operator

– Unused Returned Value

• 0.8.4

– $HTTP_RAW_POST_DATA Usage

– $this Belongs To Classes Or Traits

– $this Is Not An Array

– $this Is Not For Static Methods

– ** For Exponent

– @ Operator

– Abstract Class Usage

– Abstract Methods Usage

– Abstract Static Methods

– Access Protected Structures

– Accessing Private

– Adding Zero

– Aliases

– All Uppercase Variables

– Already Parents Interface

– Altering Foreach Without Reference

– Always Positive Comparison

– Ambiguous Array Index

– Anonymous Classes

1872 Chapter 14. Rules

Exakat Documentation, Release 1

– Argument Should Be Typehinted

– Array Index

– Assertions

– Assign Default To Properties

– Autoloading

– Avoid Parenthesis With Language Construct

– Avoid Substr() One

– Avoid Those Hash Functions

– Avoid array_unique()

– Avoid get_class()

– Avoid sleep()/usleep()

– Bad Constants Names

– Binary Glossary

– Blind Variables

– Bracketless Blocks

– Break Outside Loop

– Break With 0

– Break With Non Integer

– Buried Assignation

– Calltime Pass By Reference

– Can’t Disable Class

– Can’t Disable Function

– Can’t Extend Final

– Cant Use Return Value In Write Context

– Cast To Boolean

– Cast Usage

– Catch Overwrite Variable

– Caught Exceptions

– Caught Expressions

– Class Const With Array

– Class Has Fluent Interface

– Class Usage

– Class, Interface, Enum Or Trait With Identical Names

– Classes Mutually Extending Each Other

– Classes Names

– Clone Usage

14.3. Directory by Exakat version 1873

Exakat Documentation, Release 1

– Closing Tags

– Closure May Use $this

– Closures Glossary

– Coalesce

– Common Alternatives

– Compare Hash

– Compared Comparison

– Composer Usage

– Composer’s autoload

– Conditional Structures

– Conditioned Constants

– Conditioned Function

– Confusing Names

– Const With Array

– Constant Class

– Constant Comparison

– Constant Conditions

– Constant Definition

– Constant Scalar Expression

– Constant Scalar Expressions

– Constants Created Outside Its Namespace

– Constants Names

– Constants Usage

– Constants With Strange Names

– Constructors

– Continents

– Could Be A Static Variable

– Could Be Class Constant

– Could Use Alias

– Could Use Short Assignation

– Could Use __DIR__

– Could Use self

– Custom Class Usage

– Custom Constant Usage

– Dangling Array References

– Deep Definitions

1874 Chapter 14. Rules

Exakat Documentation, Release 1

– Define Constants With Array

– Defined Class Constants

– Defined Exceptions

– Defined Parent MP

– Defined Properties

– Defined static:: Or self::

– Definitions Only

– Dependant Trait

– Deprecated PHP Functions

– Dereferencing String And Arrays

– Direct Injection

– Directives Usage

– Don’t Change Incomings

– Double Assignation

– Double Instructions

– Duplicate Calls

– Dynamic Calls

– Dynamic Class Constant

– Dynamic Classes

– Dynamic Code

– Dynamic Function Call

– Dynamic Methodcall

– Dynamic New

– Dynamic Property

– Dynamically Called Classes

– Echo Or Print

– Echo With Concat

– Ellipsis Usage

– Else If Versus Elseif

– Else Usage

– Email Addresses

– Empty Blocks

– Empty Classes

– Empty Function

– Empty Instructions

– Empty Interfaces

14.3. Directory by Exakat version 1875

Exakat Documentation, Release 1

– Empty List

– Empty Namespace

– Empty Slots In Arrays

– Empty Traits

– Empty Try Catch

– Empty With Expression

– Error Messages

– Eval() Usage

– Exception Order

– Exit() Usage

– Exit-like Methods

– Exponent Usage

– External Config Files

– Failed Substr() Comparison

– File Is Component

– File Is Not Definitions Only

– File Uploads

– File Usage

– Final Class Usage

– Final Methods Usage

– Fopen Binary Mode

– For Using Functioncall

– Foreach Don’t Change Pointer

– Foreach Needs Reference Array

– Foreach Reference Is Not Modified

– Foreach With list()

– Forgotten Visibility

– Forgotten Whitespace

– Fully Qualified Constants

– Function Called With Other Case Than Defined

– Function Subscripting

– Function Subscripting, Old Style

– Functioncall Is Global

– Functions Glossary

– Functions In Loop Calls

– Functions Removed In PHP 5.4

1876 Chapter 14. Rules

Exakat Documentation, Release 1

– Functions Removed In PHP 5.5

– Functions Using Reference

– GPRC Aliases

– Global Code Only

– Global Import

– Global In Global

– Global Inside Loop

– Global Usage

– Globals

– Goto Names

– HTTP Status Code

– Hardcoded Passwords

– Has Magic Method

– Has Variable Arguments

– Hash Algorithms

– Hash Algorithms Incompatible With PHP 5.3

– Hash Algorithms Incompatible With PHP 5.4/5.5

– Heredoc Delimiter Glossary

– Hexadecimal Glossary

– Hexadecimal In String

– Hidden Use Expression

– Htmlentities Calls

– Http Headers

– Identical Conditions

– If With Same Conditions

– Iffectations

– Implements Is For Interface

– Implicit Global

– Implied If

– Inclusions

– Incompilable Files

– Inconsistent Concatenation

– Indices Are Int Or String

– Indirect Injection

– Instantiating Abstract Class

– Interface Arguments

14.3. Directory by Exakat version 1877

Exakat Documentation, Release 1

– Interface Methods

– Interfaces Names

– Interfaces Usage

– Internally Used Properties

– Internet Ports

– Interpolation

– Invalid Constant Name

– Is An Extension Class

– Is An Extension Constant

– Is An Extension Function

– Is An Extension Interface

– Is CLI Script

– Is Extension Trait

– Is Global Constant

– Is Interface Method

– Is Library

– Is Not Class Family

– Is PHP Constant

– Is Upper Family

– Joining file()

– Labels

– Linux Only Files

– List Short Syntax

– List With Array Appends

– List With Keys

– Locally Unused Property

– Locally Used Property

– Logical Mistakes

– Logical Should Use Symbolic Operators

– Lone Blocks

– Lost References

– Magic Constant Usage

– Magic Methods

– Magic Visibility

– Mail Usage

– Make Global A Property

1878 Chapter 14. Rules

Exakat Documentation, Release 1

– Make One Call With Array

– Malformed Octal

– Md5 Strings

– Method Has Fluent Interface

– Method Is A Generator

– Method Is Not For Fluent Interface

– Methodcall On New

– Methods Without Return

– Mime Types

– Mixed Keys In Array

– Multidimensional Arrays

– Multiple Alias Definitions

– Multiple Catch

– Multiple Class Declarations

– Multiple Classes In One File

– Multiple Constant Definition

– Multiple Definition Of The Same Argument

– Multiple Exceptions Catch()

– Multiple Identical Trait Or Interface

– Multiple Index Definition

– Multiple Returns

– Multiples Identical Case

– Multiply By One

– Must Return Methods

– Namespaces

– Namespaces Glossary

– Native Alias Functions Usage

– Negative Power

– Nested Ifthen

– Nested Loops

– Nested Ternary

– Never Used Properties

– New Functions In PHP 5.4

– New Functions In PHP 5.5

– New Functions In PHP 5.6

– New Functions In PHP 7.0

14.3. Directory by Exakat version 1879

Exakat Documentation, Release 1

– New Functions In PHP 7.1

– No Choice

– No Count With 0

– No Direct Access

– No Direct Call To Magic Method

– No Direct Usage

– No Hardcoded Hash

– No Hardcoded Ip

– No Hardcoded Path

– No Hardcoded Port

– No List With String

– No Parenthesis For Language Construct

– No Plus One

– No Public Access

– No Real Comparison

– No Self Referencing Constant

– No String With Append

– No array_merge() In Loops

– Non Ascii Variables

– Non Static Methods Called In A Static

– Non-constant Index In Array

– Non-lowercase Keywords

– Normal Methods

– Not Not

– Not Same Name As File

– Nowdoc Delimiter Glossary

– Null On New

– Objects Don’t Need References

– Octal Glossary

– Old Style Constructor

– Old Style __autoload()

– One Letter Functions

– One Object Operator Per Line

– One Variable String

– Only Static Methods Class

– Only Variable Returned By Reference

1880 Chapter 14. Rules

Exakat Documentation, Release 1

– Or Die

– Overwriting Variable

– Overwritten Class Constants

– Overwritten Exceptions

– Overwritten Literals

– PHP 7.0 New Classes

– PHP 7.0 New Interfaces

– PHP 7.0 Removed Directives

– PHP 7.0 Removed Functions

– PHP 7.1 Removed Directives

– PHP 7.2 Object Keyword

– PHP Alternative Syntax

– PHP Arrays Index

– PHP Bugfixes

– PHP Constant Usage

– PHP Echo Tag Usage

– PHP Handlers Usage

– PHP Interfaces

– PHP Keywords As Names

– PHP Sapi

– PHP Variables

– PHP5 Indirect Variable Expression

– PHP7 Dirname

– Parent, Static Or Self Outside Class

– Parenthesis As Parameter

– Pear Usage

– Perl Regex

– Php 7 Indirect Expression

– Php 7.1 New Class

– Php7 Relaxed Keyword

– Phpinfo

– Pre-increment

– Preprocess Arrays

– Preprocessable

– Print And Die

– Property Could Be Private

14.3. Directory by Exakat version 1881

Exakat Documentation, Release 1

– Property Names

– Property Used Above

– Property Used Below

– Property Variable Confusion

– Queries In Loops

– Random Without Try

– Real Functions

– Real Variables

– Recursive Functions

– Redeclared PHP Functions

– Redefined Class Constants

– Redefined Default

– Redefined Methods

– Redefined PHP Traits

– Redefined Property

– Register Globals

– Relay Function

– Repeated print()

– Reserved Keywords In PHP 7

– Resources Usage

– Results May Be Missing

– Return True False

– Return Typehint Usage

– Return With Parenthesis

– Return void

– Safe Curl Options

– Same Conditions In Condition

– Scalar Typehint Usage

– Sensitive Argument

– Sequences In For

– Setlocale() Uses Constants

– Several Instructions On The Same Line

– Shell Usage

– Short Open Tags

– Short Syntax For Arrays

– Should Be Single Quote

1882 Chapter 14. Rules

Exakat Documentation, Release 1

– Should Chain Exception

– Should Make Alias

– Should Typecast

– Should Use Coalesce

– Should Use Existing Constants

– Should Use Local Class

– Should Use Prepared Statement

– Silently Cast Integer

– Simple Global Variable

– Simplify Regex

– Slow Functions

– Special Integers

– Static Loop

– Static Methods

– Static Methods Called From Object

– Static Methods Can’t Contain $this

– Static Properties

– Static Variables

– Strict Comparison With Booleans

– String May Hold A Variable

– Strpos()-like Comparison

– Super Global Usage

– Super Globals Contagion

– Switch To Switch

– Switch With Too Many Default

– Switch Without Default

– Ternary In Concat

– Test Class

– Throw

– Throw Functioncall

– Throw In Destruct

– Thrown Exceptions

– Throws An Assignement

– Timestamp Difference

– Too Many Children

– Trait Methods

14.3. Directory by Exakat version 1883

Exakat Documentation, Release 1

– Trait Names

– Traits Usage

– Trigger Errors

– True False Inconsistant Case

– Try With Finally

– Typehints

– URL List

– Uncaught Exceptions

– Unchecked Resources

– Undefined Caught Exceptions

– Undefined Class Constants

– Undefined Classes

– Undefined Constants

– Undefined Functions

– Undefined Interfaces

– Undefined Parent

– Undefined Properties

– Undefined Trait

– Undefined static:: Or self::

– Unicode Blocks

– Unicode Escape Partial

– Unicode Escape Syntax

– Unknown Directive Name

– Unkown Regex Options

– Unpreprocessed Values

– Unreachable Code

– Unresolved Catch

– Unresolved Classes

– Unresolved Instanceof

– Unresolved Use

– Unserialize Second Arg

– Unset Arguments

– Unset In Foreach

– Unthrown Exception

– Unused Classes

– Unused Constants

1884 Chapter 14. Rules

Exakat Documentation, Release 1

– Unused Functions

– Unused Global

– Unused Interfaces

– Unused Label

– Unused Methods

– Unused Parameter

– Unused Private Methods

– Unused Private Properties

– Unused Protected Methods

– Unused Traits

– Unused Use

– Unusual Case For PHP Functions

– Usage Of class_alias()

– Use === null

– Use Cli

– Use Const And Functions

– Use Constant As Arguments

– Use Constant Instead Of Function

– Use Instanceof

– Use Lower Case For Parent, Static And Self

– Use Nullable Type

– Use PHP Object API

– Use Pathinfo

– Use System Tmp

– Use This

– Use Web

– Use With Fully Qualified Name

– Use const

– Use password_hash()

– Use random_int()

– Used Classes

– Used Functions

– Used Interfaces

– Used Methods

– Used Once Variables (In Scope)

– Used Once Variables

14.3. Directory by Exakat version 1885

Exakat Documentation, Release 1

– Used Private Methods

– Used Protected Method

– Used Static Properties

– Used Trait

– Used Use

– Useless Abstract Class

– Useless Brackets

– Useless Constructor

– Useless Final

– Useless Global

– Useless Instructions

– Useless Interfaces

– Useless Parenthesis

– Useless Return

– Useless Switch

– Useless Unset

– Uses Default Values

– Uses Environment

– Using $this Outside A Class

– Using Short Tags

– Usort Sorting In PHP 7.0

– Var Keyword

– Variable Constants

– Variable References

– Variable Variables

– Variables With Long Names

– Variables With One Letter Names

– While(List() = Each())

– Written Only Variables

– Wrong Class Name Case

– Wrong Function Name Case

– Wrong Number Of Arguments

– Wrong Number Of Arguments In Methods

– Wrong Optional Parameter

– Wrong Parameter Type

– Wrong fopen() Mode

1886 Chapter 14. Rules

Exakat Documentation, Release 1

– Yield From Usage

– Yield Usage

– Yoda Comparison

– ::class

– __debugInfo() Usage

– __halt_compiler

– __toString() Throws Exception

– crypt() Without Salt

– error_reporting() With Integers

– eval() Without Try

– ext/0mq

– ext/amqp

– ext/apache

– ext/apc

– ext/apcu

– ext/array

– ext/bcmath

– ext/bzip2

– ext/calendar

– ext/com

– ext/crypto

– ext/ctype

– ext/curl

– ext/date

– ext/dba

– ext/dio

– ext/dom

– ext/eaccelerator

– ext/enchant

– ext/ev

– ext/event

– ext/exif

– ext/expect

– ext/fann

– ext/file

– ext/fileinfo

14.3. Directory by Exakat version 1887

Exakat Documentation, Release 1

– ext/filter

– ext/fpm

– ext/ftp

– ext/gd

– ext/gearman

– ext/geoip

– ext/gettext

– ext/gmagick

– ext/gmp

– ext/gnupgp

– ext/hash

– ext/ibase

– ext/iconv

– ext/imagick

– ext/imap

– ext/info

– ext/inotify

– ext/intl

– ext/json

– ext/ldap

– ext/libxml

– ext/lua

– ext/mail

– ext/mailparse

– ext/math

– ext/mbstring

– ext/mcrypt

– ext/memcache

– ext/memcached

– ext/mongo

– ext/mssql

– ext/mysql

– ext/mysqli

– ext/ncurses

– ext/newt

– ext/ob

1888 Chapter 14. Rules

Exakat Documentation, Release 1

– ext/oci8

– ext/odbc

– ext/opcache

– ext/openssl

– ext/password

– ext/pcntl

– ext/pcre

– ext/pdo

– ext/pecl_http

– ext/pgsql

– ext/phalcon

– ext/phar

– ext/php-ast

– ext/posix

– ext/protobuf

– ext/pspell

– ext/readline

– ext/redis

– ext/reflection

– ext/sem

– ext/session

– ext/shmop

– ext/simplexml

– ext/snmp

– ext/soap

– ext/sockets

– ext/spl

– ext/sqlite3

– ext/sqlsrv

– ext/ssh2

– ext/standard

– ext/suhosin

– ext/tidy

– ext/tokenizer

– ext/tokyotyrant

– ext/trader

14.3. Directory by Exakat version 1889

Exakat Documentation, Release 1

– ext/v8js

– ext/wddx

– ext/xdebug

– ext/xdiff

– ext/xhprof

– ext/xml

– ext/xmlreader

– ext/xmlrpc

– ext/xmlwriter

– ext/xsl

– ext/yaml

– ext/zip

– ext/zlib

– func_get_arg() Modified

– include_once() Usage

– isset() With Constant

– list() May Omit Variables

– mcrypt_create_iv() With Default Values

– parse_str() Warning

– preg_match_all() Flag

– preg_replace With Option e

– set_exception_handler() Warning

– var_dump(). . . Usage

• 0.8.3

– Variable Global

14.4 Directory by PHP Function

• $

– $HTTP_RAW_POST_DATA

∗ $HTTP_RAW_POST_DATA Usage

– $_ENV

∗ Incoming Variable Index Inventory

∗ Incoming Variables

∗ No Hardcoded Port

∗ Useless Global

1890 Chapter 14. Rules

Exakat Documentation, Release 1

– $_GET

∗ Always Anchor Regex

∗ Avoid mb_dectect_encoding()

∗ Cast Usage

∗ Direct Injection

∗ Don’t Change Incomings

∗ Eval() Usage

∗ Extensions/Exttaint

∗ Favorite Casting Method

∗ GPRC Aliases

∗ Implied If

∗ Incoming Values

∗ Incoming Variable Index Inventory

∗ Incoming Variables

∗ Incompatible Types With Incoming Values

∗ Indirect Injection

∗ Insecure Integer Validation

∗ PHP Variables

∗ Repeated Regex

∗ Safe Phpvariables

∗ Should Use Coalesce

∗ Super Global Usage

∗ Superglobals

∗ Unvalidated Data Cached In Session

∗ Use Web

∗ Useless Global

∗ ext/gd

∗ ext/pcre

∗ filter_input() As A Source

– $_POST

∗ All Uppercase Variables

∗ Crypto Usage

∗ Don’t Change Incomings

∗ GPRC Aliases

∗ Incoming Variable Index Inventory

∗ Indirect Injection

14.4. Directory by PHP Function 1891

Exakat Documentation, Release 1

∗ PHP Keywords As Names

∗ Register Globals

∗ Super Global Usage

∗ Useless Global

– $_REQUEST

∗ GPRC Aliases

∗ Incoming Variable Index Inventory

∗ Indirect Injection

∗ Register Globals

∗ Super Global Usage

∗ Useless Global

– $this

∗ $this Belongs To Classes Or Traits

∗ $this Is Not An Array

∗ $this Is Not For Static Methods

∗ Accessing Private

∗ Assign Default To Properties

∗ Avoid Large Array Assignation

∗ Avoid Optional Properties

∗ Avoid option arrays in constructors

∗ Cannot Use Static For Closure

∗ Check On __Call Usage

∗ Checks Property Existence

∗ Class Has Fluent Interface

∗ Class Invasion

∗ Closure May Use $this

∗ Collect Property Usage

∗ Could Be Class Constant

∗ Could Be Enumeration

∗ Could Be Protected Method

∗ Could Be Protected Property

∗ Could Be Readonly Property

∗ Could Be Static Closure

∗ Could Inject Parameter

∗ Could Set Property Default

∗ Could Use Promoted Properties

1892 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Courier Anti-Pattern

∗ Create Default Values

∗ Create Magic Method

∗ Create Magic Property

∗ Cyclic References

∗ DI Cyclic Dependencies

∗ Dependant Abstract Classes

∗ Dependant Trait

∗ Dependency Injection

∗ Different Constructors

∗ Disconnected Classes

∗ Don’t Send $this In Constructor

∗ Dynamic Self Calls

∗ Extends stdClass

∗ Extensions yar

∗ Feast usage

∗ Getter And Setter

∗ Insufficient Property Typehint

∗ Interfaces Don’t Ensure Properties

∗ Internally Used Properties

∗ Is A Magic Property

∗ Law of Demeter

∗ Locally Unused Property

∗ Locally Used Property

∗ Locally Used Property In Trait

∗ Long Preparation For Throw

∗ Make Class Method Definition

∗ Make Global A Property

∗ Make Magic Concrete

∗ Memoize MagicCall

∗ Method Could Be Private Method

∗ Method Could Be Static

∗ Method Has Fluent Interface

∗ Method Is Not For Fluent Interface

∗ Method Property Confusion

∗ Method Used Below

14.4. Directory by PHP Function 1893

Exakat Documentation, Release 1

∗ Minus One On Error

∗ More Than One Level Of Indentation

∗ Must Return Methods

∗ Never Used Properties

∗ No Direct Call To Magic Method

∗ No Magic Method With Array

∗ No Readonly Assignation In Global

∗ Non Nullable Getters

∗ Non Static Methods Called In A Static

∗ Parent First

∗ Property Cannot Be Readonly

∗ Property Could Be Local

∗ Property Could Be Private

∗ Property Export

∗ Property Invasion

∗ Property Used Above

∗ Property Used Below

∗ Property Used In One Method Only

∗ Property Variable Confusion

∗ Readonly Property Changed By Cloning

∗ Redefined Default

∗ Scalar Or Object Property

∗ Set Aside Code

∗ Set Class Property Definition With Typehint

∗ Set Clone Link

∗ Should Deep Clone

∗ Should Have Destructor

∗ Should Use Local Class

∗ Solve Trait Methods

∗ Static Call With Self

∗ Static Methods Called From Object

∗ Static Methods Can’t Contain $this

∗ Sylius usage

∗ This Could Be Iterable

∗ Throw In Destruct

∗ Too Complex Expression

1894 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Too Many Injections

∗ Typed Property Usage

∗ Typehints/CouldBeResource

∗ Unbinding Closures

∗ Undefined Methods

∗ Undefined Properties

∗ Unfinished Object

∗ Uninitialized Property

∗ Union Typehint

∗ Unitialized Properties

∗ Untyped No Default Properties

∗ Unused Methods

∗ Unused Private Methods

∗ Unused Private Properties

∗ Unused Protected Methods

∗ Unused Trait In Class

∗ Use This

∗ Used Methods

∗ Used Once Property

∗ Used Once Variables

∗ Used Private Methods

∗ Used Protected Method

∗ Used Static Properties

∗ Useless Assignation Of Promoted Property

∗ Useless Typehint

∗ Using $this Outside A Class

∗ Wrong Access Style to Property

∗ Wrong Number Of Arguments In Methods

∗ Wrong Typed Property Default

∗ __debugInfo() Usage

∗ __toString() Throws Exception

∗ var_dump(). . . Usage

• *

– **

∗ ** For Exponent

∗ Constant Scalar Expressions

14.4. Directory by PHP Function 1895

Exakat Documentation, Release 1

∗ Drupal Usage

∗ Exponent Usage

∗ Extensions yar

∗ Laravel usage

∗ Mismatch Type And Default

∗ Modify Immutable

∗ Negative Power

∗ No Named Parameters

∗ Only Variable Passed By Reference

∗ Symfony usage

∗ Unused Traits

∗ Using Deprecated Method

∗ ext/bcmath

∗ ext/decimal

∗ ext/reflection

∗ ext/sdl

∗ is_a() Versus instanceof

• .

– . . .

∗ Ambiguous Static

∗ Array_merge Needs Array Of Arrays

∗ Check On __Call Usage

∗ Collect Vendor Structures

∗ Constant Dynamic Creation

∗ Don’t Be Too Manual

∗ Ellipsis Merge

∗ Ellipsis Usage

∗ File Usage

∗ First Class Callable

∗ Fossilized Methods List

∗ Iffectations

∗ Method Has Fluent Interface

∗ Method Is A Generator

∗ Misused Yield

∗ Multiple Definition Of The Same Argument

∗ Must Return Methods

1896 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Named Argument And Variadic

∗ No Spread For Hash

∗ No array_merge() In Loops

∗ PHP 8.0 Typehints

∗ PHP 80 Named Parameter Variadic

∗ Pack Format Inventory

∗ Repeated Regex

∗ Reserved Keywords In PHP 7

∗ Should Use Operator

∗ Signature Trailing Comma

∗ Skip Empty Array

∗ Spread Operator For Array

∗ Static Properties

∗ Type Dodging

∗ Unknown Parameter Name

∗ Unpacking Inside Arrays

∗ Use PHP Attributes

∗ Used Once Property

∗ Useless Instructions

∗ Yii usage

∗ array_merge With Ellipsis

∗ array_merge() And Variadic

∗ ext/ffi

∗ ext/ldap

∗ ext/phalcon

∗ ext/protobuf

∗ ext/sockets

∗ ext/xattr

• @

– @

∗ @ Operator

∗ Email Addresses

∗ Invalid Octal In String

∗ Too Complex Expression

∗ Useless Instructions

∗ ext/mssql

14.4. Directory by PHP Function 1897

Exakat Documentation, Release 1

∗ ext/yaml

∗ Remove Noscream @

• A

– AF_INET

∗ ext/sockets

– ArgumentCountError

∗ Wrong Number Of Arguments

– ArrayAccess

∗ $this Is Not An Array

∗ Is An Extension Interface

∗ PHP Native Interfaces and Return Type

– ArrayIterator

∗ PHP 7.1 Scalar Typehints

– ArrayObject

∗ Avoid get_object_vars()

– Array_search()

∗ Find Key Directly

– Array_slice()

∗ Use array_slice()

– Attribute

∗ Friend Attribute

∗ Missing Attribute Attribute

∗ PHP Native Attributes

∗ Wrong Attribute Configuration

– abs()

∗ Always Positive Comparison

∗ No Real Comparison

– addslashes()

∗ Filter To add_slashes()

– array()

∗ Append And Assign Arrays

∗ Array With String Initialization

∗ Array() / [] Consistence

∗ Array_merge Needs Array Of Arrays

∗ Avoid Concat In Loop

∗ Class Const With Array

1898 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Confusing Names

∗ Constant Scalar Expressions

∗ Could Use array_unique

∗ Don’t Send $this In Constructor

∗ Empty Final Element In Array

∗ Group Use Trailing Comma

∗ Invalid Cast

∗ List With Array Appends

∗ Memoize MagicCall

∗ Mismatch Type And Default

∗ Mismatched Default Arguments

∗ More Than One Level Of Indentation

∗ No Magic Method With Array

∗ No array_merge() In Loops

∗ PSR-3 Usage

∗ Preprocess Arrays

∗ Short Syntax For Arrays

∗ Should Use array_column()

∗ Should Use array_filter()

∗ Too Many Array Dimensions

∗ Too Many Native Calls

∗ Useless Typehint

∗ array_merge() And Variadic

∗ ext/xml

∗ Array To Bracket

– array_change_key_case()

∗ Use Constant As Arguments

– array_chunk()

∗ Use Array Functions

– array_column()

∗ New Functions In PHP 5.5

∗ Should Use array_column()

∗ Use Array Functions

– array_combine()

∗ Could Be array_combine()

– array_count_values()

14.4. Directory by PHP Function 1899

Exakat Documentation, Release 1

∗ Avoid array_unique()

∗ Slow Functions

– array_diff()

∗ Slow Functions

∗ array_merge With Ellipsis

– array_diff_assoc()

∗ array_merge With Ellipsis

– array_diff_key()

∗ array_merge With Ellipsis

– array_diff_uassoc()

∗ array_merge With Ellipsis

– array_fill()

∗ Array_Fill() With Objects

∗ Could Not Type

– array_fill_keys()

∗ Array_Fill() With Objects

∗ Could Use array_fill_keys

– array_filter()

∗ Should Use array_filter()

∗ Use Array Functions

– array_flip()

∗ Avoid array_unique()

∗ Double array_flip()

∗ Slow Functions

– array_intersect()

∗ Slow Functions

– array_is_list()

∗ New Functions In PHP 8.1

– array_key_exists()

∗ Always Use Function With array_key_exists()

∗ Logical To in_array

∗ Slow Functions

∗ array_key_exists() Speedup

∗ array_key_exists() Works On Arrays

∗ array_key_exists() Speedup

– array_key_last()

1900 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Getting Last Element

– array_keys()

∗ Avoid array_unique()

∗ Collect Compared Literals

∗ Find Key Directly

∗ Getting Last Element

∗ Searching For Multiple Keys

∗ Slow Functions

∗ Strict Comparison With Booleans

– array_map()

∗ Altering Foreach Without Reference

∗ Array_Map() Passes By Value

∗ Callback Function Needs Return

∗ Could Be Typehinted Callable

∗ Handle Arrays With Callback

∗ Slow Functions

– array_merge()

∗ Array_merge Needs Array Of Arrays

∗ Could Use array_sum()

∗ Ellipsis Merge

∗ Multiple Similar Calls

∗ No array_merge() In Loops

∗ Skip Empty Array

∗ Unknown Parameter Name

∗ Unpacking Inside Arrays

∗ Use Array Functions

∗ array_merge With Ellipsis

∗ array_merge() And Variadic

– array_merge_recursive()

∗ No array_merge() In Loops

∗ Skip Empty Array

∗ array_merge With Ellipsis

∗ array_merge() And Variadic

– array_multisort()

∗ Use Constant As Arguments

– array_pad()

14.4. Directory by PHP Function 1901

Exakat Documentation, Release 1

∗ Array_Fill() With Objects

– array_product()

∗ Use Array Functions

– array_push()

∗ Avoid array_push()

∗ Should Use Operator

∗ Use Array Functions

– array_replace()

∗ Useless Instructions

– array_search()

∗ Find Key Directly

∗ Searching For Multiple Keys

∗ Slow Functions

∗ Strict Comparison With Booleans

∗ Strpos()-like Comparison

– array_shift()

∗ Should Use Foreach

– array_slice()

∗ Use Array Functions

– array_splice()

∗ Use array_slice()

– array_sum()

∗ Avoid Concat In Loop

∗ Callback Function Needs Return

∗ Could Use array_sum()

∗ For Using Functioncall

∗ Static Loop

∗ Use Array Functions

– array_udiff()

∗ Slow Functions

– array_uintersect()

∗ Slow Functions

– array_unique()

∗ Avoid array_unique()

∗ Could Use array_unique

∗ Slow Functions

1902 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Use Constant As Arguments

– array_unshift()

∗ Slow Functions

– array_values()

∗ Pathinfo() Returns May Vary

∗ ext/teds

– array_walk()

∗ Altering Foreach Without Reference

∗ Array_Map() Passes By Value

∗ Slow Functions

– arsort()

∗ Use Constant As Arguments

– asort()

∗ Use Constant As Arguments

– assert()

∗ Assert Function Is Reserved

∗ PHP 7.2 Deprecations

– attribute

∗ Deprecated Attribute

∗ Exit-like Methods

∗ Friend Attribute

∗ Injectable Version

∗ Is PHP Structure

∗ Methods That Should Not Be Used

∗ Missing Attribute Attribute

∗ Modify Immutable

∗ Nested Attributes

∗ Override

∗ PHP Native Attributes

∗ PHP Native Class Type Compatibility

∗ PHP Native Interfaces and Return Type

∗ Using Deprecated Feature

∗ Using Deprecated Method

∗ IsExt

∗ IsPHP

∗ IsStub

14.4. Directory by PHP Function 1903

Exakat Documentation, Release 1

• B

– Break

∗ Break With 0

– basename()

∗ Use Basename Suffix

∗ Use pathinfo() Arguments

– boolval()

∗ New Functions In PHP 5.5

– break

∗ Break Outside Loop

∗ Break With 0

∗ Break With Non Integer

∗ Continue Is For Loop

∗ Could Use Match

∗ Exit() Usage

∗ Identical Case In Switch

∗ Logical To in_array

∗ Long Arguments

∗ Long Preparation For Throw

∗ Method Is Not For Fluent Interface

∗ Missing Cases In Switch

∗ Multiple Type Cases In Switch

∗ Multiples Identical Case

∗ Negative Start Index In Array

∗ No Empty String With explode()

∗ No Need For Else

∗ No Return Or Throw In Finally

∗ PHP Handlers Usage

∗ Several Instructions On The Same Line

∗ Simple Switch And Match

∗ Switch Fallthrough

∗ Switch To Switch

∗ Switch With Too Many Default

∗ Switch Without Default

∗ Unconditional Break In Loop

∗ Unreachable Code

1904 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Use The Case Value

∗ Useless Switch

∗ ext/expect

∗ ext/gearman

∗ ext/gender

∗ ext/libxml

∗ ext/pcntl

∗ ext/tokenizer

∗ Switch To Match

• C

– CAL_GREGORIAN

∗ ext/calendar

– COM

∗ ext/com

– COUNT_NORMAL

∗ Use Recursive count()

– COUNT_RECURSIVE

∗ Use Recursive count()

– CURLOPT_FILE

∗ ext/curl

– CURLOPT_HEADER

∗ ext/curl

– CURLOPT_SSL_VERIFYPEER

∗ Safe Curl Options

– CURLOPT_URL

∗ Safe Curl Options

– CURLPIPE_HTTP1

∗ PHP 7.4 Constant Deprecation

– CURLVERSION_NOW

∗ curl_version() Has No Argument

– Closure

∗ Argument Should Be Typehinted

∗ Closure Could Be A Callback

∗ Could Be Static Closure

∗ Follow Closure Definition

∗ Unused Inherited Variable In Closure

14.4. Directory by PHP Function 1905

Exakat Documentation, Release 1

– Collator

∗ ext/intl

– Compact()

∗ Could Use Compact

∗ Nonexistent Variable In compact()

– Connection

∗ No Hardcoded Port

∗ Stomp

∗ ext/event

∗ ext/sockets

∗ ext/ssh2

– Count()

∗ Can’t Count Non-Countable

∗ Uses Default Values

– Countable

∗ Can’t Count Non-Countable

∗ Count() Is Not Negative

∗ PHP Interfaces

∗ PHP Native Interfaces and Return Type

∗ Use is_countable

– call_user_func()

∗ Should Use Operator

– ceil()

∗ Do Not Cast To Int

– chdir()

∗ No Hardcoded Path

– chmod()

∗ Keep Files Access Restricted

– chr()

∗ Mono Or Multibytes Favorite

∗ Should Preprocess Chr()

∗ Should Use Operator

– chroot()

∗ No Hardcoded Path

– class_alias()

∗ Set class_alias() Definition

1906 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Use class_alias()

∗ class_alias() Supports Internal Classes

– class_exists()

∗ Undefined ::class

– class_uses()

∗ New Functions In PHP 5.4

– cli_get_process_title()

∗ New Functions In PHP 5.5

– cli_set_process_title()

∗ New Functions In PHP 5.5

– closure

∗ Avoid set_error_handler $context Argument

∗ Cannot Use Static For Closure

∗ Class Without Parent

∗ Closure Could Be A Callback

∗ Closure May Use $this

∗ Closures Glossary

∗ Collect Parameter Counts

∗ Could Be Static Closure

∗ Could Be Typehinted Callable

∗ First Class Callable

∗ Follow Closure Definition

∗ Function With Dynamic Code

∗ Functions Glossary

∗ Hidden Use Expression

∗ Identity

∗ Multiple Definition Of The Same Argument

∗ Multiple Identical Closure

∗ No Static Variable In A Method

∗ Parent, Static Or Self Outside Class

∗ Pre-Calculate Use

∗ Real Functions

∗ Semantic Typing

∗ Should Use Local Class

∗ Should Use array_filter()

∗ Unbinding Closures

14.4. Directory by PHP Function 1907

Exakat Documentation, Release 1

∗ Unused Inherited Variable In Closure

∗ Use Closure Trailing Comma

∗ Using $this Outside A Class

∗ Using Deprecated Feature

∗ preg_replace With Option e

∗ Make Static Closures And Arrow Functions

– collator_compare()

∗ Strpos()-like Comparison

– collator_get_sort_key()

∗ Strpos()-like Comparison

– com

∗ Abstract Away

∗ Don’t Unset Properties

∗ Extensions yar

∗ Http Headers

∗ If Then Return Favorite

∗ Immutable Signature

∗ Insufficient Typehint

∗ Logical To in_array

∗ Mail Usage

∗ Mismatch Parameter Name

∗ No Append On Source

∗ No Hardcoded Port

∗ No Net For Xml Load

∗ No Object As Index

∗ No Weak SSL Crypto

∗ Not A Scalar Type

∗ Nullable With Constant

∗ Openssl Encrypt Default Algorithm Change

∗ Path lists

∗ Session Lazy Write

∗ Set Cookie Safe Arguments

∗ Should Use Function

∗ Should Yield With Key

∗ Slow Functions

∗ Static Inclusions

1908 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Suspicious Comparison

∗ Throw Raw Exceptions

∗ URL List

∗ Use Cookies

∗ Use Debug

∗ Use Same Types For Comparisons

∗ Wordpress usage

∗ ext/0mq

∗ ext/amqp

∗ ext/curl

∗ ext/event

∗ ext/fam

∗ ext/filter

∗ ext/geoip

∗ ext/grpc

∗ ext/libsodium

∗ ext/mail

∗ ext/mongodb

∗ ext/pecl_http

∗ ext/phalcon

∗ ext/protobuf

∗ ext/sockets

∗ ext/ssh2

∗ ext/xmlrpc

∗ filter_input() As A Source

∗ php-cs-fixable

∗ report-Ambassador

∗ report-BeautyCanon

∗ report-ClassReview

∗ report-Classes dependendies HTML

∗ report-Clustergrammer

∗ report-Code Flower

∗ report-Code Sniffer

∗ report-CompatibilityPHP56

∗ report-CompatibilityPHP74

∗ report-CompatibilityPHP80

14.4. Directory by PHP Function 1909

Exakat Documentation, Release 1

∗ report-CompatibilityPHP81

∗ report-CompatibilityPHP82

∗ report-CompatibilityPHP83

∗ report-Composer

∗ report-Dependency Wheel

∗ report-Diplomat

∗ report-Emissary

∗ report-Exakat Json

∗ report-Exakatyaml

∗ report-File dependendies

∗ report-File dependendies HTML

∗ report-History

∗ report-Inventory

∗ report-Json

∗ report-Marmelab

∗ report-Meters

∗ report-Migration74

∗ report-Migration80

∗ report-Migration81

∗ report-Migration82

∗ report-Naming

∗ report-None

∗ report-OneLiners

∗ report-Owasp

∗ report-Perfile

∗ report-Perfule

∗ report-PhpCompilation

∗ report-PhpConfiguration

∗ report-Phpcity

∗ report-Phpcsfixer

∗ report-PlantUml

∗ report-PublicAccess

∗ report-RadwellCode

∗ report-Rector

∗ report-Sarb

∗ report-Sarif

1910 Chapter 14. Rules

Exakat Documentation, Release 1

∗ report-SimpleTable

∗ report-Sonarcube

∗ report-Stats

∗ report-Stubs

∗ report-StubsJson

∗ report-Text

∗ report-Top10

∗ report-Topology Order

∗ report-TypeChecks

∗ report-TypeSuggestion

∗ report-Uml

∗ report-Unused

∗ report-Weekly

∗ report-Xml

∗ report-Yaml

– compact()

∗ Create Compact Variables

∗ Nonexistent Variable In compact()

– config

∗ Assigned Twice

∗ Same Conditions In Condition

– connection

∗ No Hardcoded Port

∗ Safe Curl Options

∗ Stomp

∗ Use PHP Object API

∗ ext/curl

∗ ext/ftp

∗ ext/ldap

∗ ext/mysqli

∗ ext/ssh2

– constant()

∗ Dynamic Class Constant

∗ Fully Qualified Constants

∗ PHP 7.4 Reserved Keyword

∗ Variable Constants

14.4. Directory by PHP Function 1911

Exakat Documentation, Release 1

– continue

∗ Bail Out Early

∗ Break Outside Loop

∗ Continue Is For Loop

∗ More Than One Level Of Indentation

∗ No Need For Else

∗ No Return Or Throw In Finally

∗ Skip Empty Array

∗ Unconditional Break In Loop

∗ Unreachable Code

∗ Upload Filename Injection

∗ Useless Instructions

– convert_cyr_string()

∗ PHP 7.4 Removed Functions

∗ PHP 8.0 Removed Functions

∗ PHP 8.1 Removed Functions

– copy()

∗ Protocol lists

– count()

∗ $this Is Not For Static Methods

∗ Always Positive Comparison

∗ Cache Variable Outside Loop

∗ Count() Is Not Negative

∗ Count() To Array Append

∗ Empty Array Detection

∗ No Count With 0

∗ PHP Interfaces

∗ Use Constant As Arguments

∗ Use Recursive count()

∗ Use is_countable

∗ Useless Check

∗ Uses Default Values

– countable

∗ Use is_countable

– crc32()

∗ Crc32() Might Be Negative

1912 Chapter 14. Rules

Exakat Documentation, Release 1

– crypt()

∗ Use password_hash()

∗ crypt() Without Salt

∗ ext/password

– ctype

∗ ext/ctype

– curl_escape()

∗ New Functions In PHP 5.5

– curl_exec()

∗ Strpos()-like Comparison

– curl_file_create()

∗ New Functions In PHP 5.5

– curl_init()

∗ PHP 8.0 Resources Turned Into Objects

∗ Safe Curl Options

– curl_multi_errno()

∗ New Functions In PHP 7.1

– curl_multi_init()

∗ PHP 8.0 Resources Turned Into Objects

– curl_multi_setopt()

∗ New Functions In PHP 5.5

– curl_multi_strerror()

∗ New Functions In PHP 5.5

– curl_pause()

∗ New Functions In PHP 5.5

– curl_reset()

∗ New Functions In PHP 5.5

– curl_setopt()

∗ No Weak SSL Crypto

– curl_share_close()

∗ New Functions In PHP 5.5

– curl_share_errno()

∗ New Functions In PHP 7.1

– curl_share_init()

∗ New Functions In PHP 5.5

∗ PHP 8.0 Resources Turned Into Objects

14.4. Directory by PHP Function 1913

Exakat Documentation, Release 1

– curl_share_setopt()

∗ New Functions In PHP 5.5

– curl_share_strerror()

∗ New Functions In PHP 7.1

– curl_strerror()

∗ New Functions In PHP 5.5

– curl_unescape()

∗ New Functions In PHP 5.5

– curl_upkeep()

∗ New Functions In PHP 8.2

– curl_version()

∗ curl_version() Has No Argument

– current()

∗ Foreach Don’t Change Pointer

∗ Strpos()-like Comparison

• D

– DB2_AUTOCOMMIT_OFF

∗ ext/db2

– DIRECTORY_SEPARATOR

∗ Strange Name For Constants

– DNS_NS

∗ Is Global Constant

– DOMDocument

∗ No Net For Xml Load

∗ ext/dom

∗ ext/xsl

– DateError

∗ Php 8.3 New Classes

– DateInterval

∗ ext/date

– DateTime

∗ Clone Usage

∗ Don’t Add Seconds

∗ Timestamp Difference

∗ Use DateTimeImmutable Class

∗ date() versus DateTime Preference

1914 Chapter 14. Rules

Exakat Documentation, Release 1

∗ ext/date

– DateTimeImmutable

∗ DateTimeImmutable Is Not Immutable

∗ Promoted Properties

∗ Use Same Types For Comparisons

∗ date() versus DateTime Preference

– DateTimeZone

∗ ext/date

– Datetime

∗ Invalid Date Scanning Format

– Define()

∗ Constant Case Preference

– Die

∗ Die Exit Consistence

∗ Print And Die

– Directory

∗ Could Inject Parameter

∗ ext/ldap

– DirectoryIterator

∗ Protocol lists

– DivisionByZeroError

∗ Check Division By Zero

∗ Could Use Try

∗ Throw

– date()

∗ Abstract Away

∗ Date Formats

∗ date() versus DateTime Preference

– dateTime

∗ Clone Usage

– date_create()

∗ PHP 7.1 Microseconds

– date_format()

∗ Date Formats

– datefmt_format_object()

∗ New Functions In PHP 5.5

14.4. Directory by PHP Function 1915

Exakat Documentation, Release 1

– datefmt_get_calendar_object()

∗ New Functions In PHP 5.5

– datefmt_get_timezone()

∗ New Functions In PHP 5.5

– datefmt_set_timezone()

∗ New Functions In PHP 5.5

– datetime

∗ Timestamp Difference

– datetimeimmutable

∗ Invalid Date Scanning Format

– debug_backtrace()

∗ Use Debug

– debug_print_backtrace()

∗ Use Debug

– debug_zval_dump()

∗ Use Debug

– define()

∗ Case Insensitive Constants

∗ Conditional Structures

∗ Const Or Define Preference

∗ Constant Case Preference

∗ Constants Created Outside Its Namespace

∗ Constants Names

∗ Define Constants With Array

∗ Fully Qualified Constants

∗ Invalid Constant Name

∗ Non-constant Index In Array

∗ PHP 7.4 Reserved Keyword

∗ Propagate Constants

∗ Use const

– defined()

∗ Undefined Methods

– deflate_init()

∗ PHP 8.0 Resources Turned Into Objects

– dictionary

∗ ext/enchant

1916 Chapter 14. Rules

Exakat Documentation, Release 1

– die

∗ Check JSON

∗ Die Exit Consistence

∗ Don’t Echo Error

∗ Environment Variables

∗ Error Messages

∗ Exit Without Argument

∗ Exit() Usage

∗ Exit-like Methods

∗ Implied If

∗ Joomla usage

∗ No Direct Access

∗ No Hardcoded Port

∗ No Parenthesis For Language Construct

∗ Or Die

∗ PHP 8.1 New Types

∗ Print And Die

∗ Stomp

∗ Type Could Be Never

∗ Unreachable Code

∗ ext/bzip2

∗ ext/crypto

∗ ext/expect

∗ ext/ibase

∗ ext/imap

∗ ext/memcache

∗ ext/mssql

∗ ext/mysql

∗ ext/pcntl

∗ ext/rar

∗ ext/shmop

∗ ext/sqlite

∗ ext/sqlsrv

∗ ext/ssh2

∗ ext/xml

∗ openssl_random_pseudo_byte() Second Argument

14.4. Directory by PHP Function 1917

Exakat Documentation, Release 1

– directory

∗ $FILES full_path

∗ Could Inject Parameter

∗ Could Use __DIR__

∗ Keep Files Access Restricted

∗ No Hardcoded Path

∗ Path lists

∗ Protocol lists

∗ Unchecked Resources

∗ __DIR__ Then Slash

– dirname()

∗ Could Use __DIR__

∗ PHP7 Dirname

∗ Use pathinfo() Arguments

– dl()

∗ Dl() Usage

– dns_get_record()

∗ Use Constant As Arguments

• E

– ENT_IGNORE

∗ No ENT_IGNORE

– ENT_QUOTES

∗ Htmlentities Calls

∗ No ENT_IGNORE

∗ ext/oci8

– ENT_SUBSTITUTE

∗ Htmlentities Using Default Flag

– ERROR

∗ Check JSON

∗ Friend Attribute

∗ PHP Handlers Usage

∗ ext/event

– EXTR_OVERWRITE

∗ Configure Extract

– EXTR_PREFIX_ALL

∗ Configure Extract

1918 Chapter 14. Rules

Exakat Documentation, Release 1

– EXTR_SKIP

∗ Configure Extract

– E_ALL

∗ Dynamic Class Constant

∗ Is Global Constant

∗ error_reporting() With Integers

∗ ext/sockets

– E_DEPRECATED

∗ error_reporting() With Integers

– E_ERROR

∗ Use Constant As Arguments

– E_NOTICE

∗ crypt() Without Salt

∗ error_reporting() With Integers

– E_PARSE

∗ Use Constant As Arguments

– E_STRICT

∗ error_reporting() With Integers

– E_USER_ERROR

∗ PHP Handlers Usage

∗ Trigger Errors

∗ ext/oci8

– E_USER_NOTICE

∗ PHP Handlers Usage

– E_USER_WARNING

∗ PHP Handlers Usage

– E_WARNING

∗ Use Constant As Arguments

∗ error_reporting() With Integers

– Engine

∗ Random extension

∗ ext/tokenizer

∗ ext/v8js

– Error

∗ $this Belongs To Classes Or Traits

∗ Abstract Or Implements

14.4. Directory by PHP Function 1919

Exakat Documentation, Release 1

∗ Assign And Lettered Logical Operator Precedence

∗ Can’t Count Non-Countable

∗ Can’t Throw Throwable

∗ Caught Variable

∗ Check JSON

∗ Constant Typo Looks Like A Variable

∗ Could Use Null-Safe Object Operator

∗ Don’t Echo Error

∗ Error Messages

∗ Inclusion Wrong Case

∗ Inherited Class Constant Visibility

∗ Interfaces Don’t Ensure Properties

∗ Invalid Cast

∗ New Functions In PHP 8.3

∗ No Return For Generator

∗ PHP 7.0 New Classes

∗ Print And Die

∗ Random Without Try

∗ Scalar Or Object Property

∗ Try Without Catch

∗ Uncaught Exceptions

∗ Undefined Constant Name

∗ Undefined Properties

∗ ext/expect

∗ ext/libxml

∗ ext/sdl

∗ openssl_random_pseudo_byte() Second Argument

∗ self, parent, static Outside Class

– Exception

∗ $this Belongs To Classes Or Traits

∗ Array Access On Literal Array

∗ Assign And Lettered Logical Operator Precedence

∗ Can’t Throw Throwable

∗ Catch Overwrite Variable

∗ Catch With Undefined Variable

∗ Caught Expressions

1920 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Caught Variable

∗ Collect Catch Calls

∗ Collect Methods Throwing Exceptions

∗ Collect Throw Calls

∗ Could Drop Variable

∗ Default Then Discard

∗ Defined Exceptions

∗ Don’t Be Too Manual

∗ Empty Classes

∗ Empty Try Catch

∗ Error Messages

∗ Exception Order

∗ Excimer

∗ Exit() Usage

∗ Forgotten Thrown

∗ No Return Or Throw In Finally

∗ Overwritten Exceptions

∗ PHP Native Interfaces and Return Type

∗ Phalcon Usage

∗ Random Without Try

∗ Rethrown Exceptions

∗ Should Chain Exception

∗ Throw In Destruct

∗ Throw Raw Exceptions

∗ Throw Was An Expression

∗ Throws An Assignement

∗ Type Dodging

∗ Uncaught Exceptions

∗ Unchecked Resources

∗ Undefined Caught Exceptions

∗ Unresolved Catch

∗ Unthrown Exception

∗ Use random_int()

∗ Useless Try

∗ __toString() Throws Exception

∗ ext/phar

14.4. Directory by PHP Function 1921

Exakat Documentation, Release 1

∗ ext/protobuf

∗ ext/psr

∗ openssl_random_pseudo_byte() Second Argument

∗ set_exception_handler() Warning

– Exit

∗ Die Exit Consistence

– each()

∗ PHP 7.2 Deprecations

∗ PHP 7.2 Removed Functions

∗ PHP 8.0 Removed Functions

∗ PHP 8.1 Removed Functions

– easter_days()

∗ Use Constant As Arguments

– enchant_broker_init()

∗ PHP 8.0 Resources Turned Into Objects

∗ ext/enchant

– enchant_broker_request_dict()

∗ PHP 8.0 Resources Turned Into Objects

– enchant_broker_request_pwl_dict()

∗ PHP 8.0 Resources Turned Into Objects

– engine

∗ Collect Atom Counts

∗ Is PHP Structure

∗ Multiple Returns

∗ No Net For Xml Load

∗ Non-lowercase Keywords

∗ Unreachable Code

∗ Useless Type Casting

∗ Using $this Outside A Class

∗ ext/hash

– enum_exists()

∗ New Functions In PHP 8.1

– error

∗ $php_errormsg Usage

∗ @ Operator

∗ Abstract Class Constants

1922 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Abstract Or Implements

∗ Accessing Private

∗ Always Anchor Regex

∗ Ambiguous Static

∗ Array_merge Needs Array Of Arrays

∗ Assert Function Is Reserved

∗ Avoid Optional Properties

∗ Avoid Self In Interface

∗ Bad Type Relay

∗ Break With Non Integer

∗ Can’t Count Non-Countable

∗ Can’t Extend Final

∗ Can’t Throw Throwable

∗ Cannot Use Append For Reading

∗ Cant Inherit Abstract Method

∗ Cant Use Return Value In Write Context

∗ Casting Ternary

∗ Caught Variable

∗ Check Division By Zero

∗ Check JSON

∗ Class Without Parent

∗ Class-typed References

∗ Classes Mutually Extending Each Other

∗ Close Tags Consistency

∗ Constant Typo Looks Like A Variable

∗ Converted Exceptions

∗ Could Be Callable

∗ Could Use Null-Safe Object Operator

∗ Could Use Try

∗ Crypto Usage

∗ Custom Constant Usage

∗ Declare strict_types Usage

∗ Don’t Echo Error

∗ Don’t Send $this In Constructor

∗ Duplicate Named Parameter

∗ Empty Json Error

14.4. Directory by PHP Function 1923

Exakat Documentation, Release 1

∗ Empty Try Catch

∗ Error Messages

∗ Eval() Usage

∗ Exit() Usage

∗ Final Class Usage

∗ Final Methods Usage

∗ Forgotten Thrown

∗ Forgotten Whitespace

∗ Hash Will Use Objects

∗ Implemented Methods Must Be Public

∗ Incompatible Signature Methods

∗ Incompatible Signature Methods With Covariance

∗ Inconsistent Concatenation

∗ Inherited Class Constant Visibility

∗ Injectable Version

∗ Insufficient Typehint

∗ Interfaces Is Not Implemented

∗ Invalid Constant Name

∗ Invalid Date Scanning Format

∗ Invalid Octal In String

∗ Invalid Regex

∗ Is Actually Zero

∗ Json_encode() Without Exceptions

∗ Local Globals

∗ Malformed Octal

∗ Mbstring Unknown Encodings

∗ Method Collision Traits

∗ Method Signature Must Be Compatible

∗ Methods That Should Not Be Used

∗ Minus One On Error

∗ Mismatch Type And Default

∗ Missing Abstract Method

∗ Missing Include

∗ Missing Some Returntype

∗ Mixed Concat And Interpolation

∗ Modified Typed Parameter

1924 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Multiple Constant Definition

∗ Multiple Definition Of The Same Argument

∗ Multiple Functions Declarations

∗ Multiple Usage Of Same Trait

∗ Must Call Parent Constructor

∗ Never Called Parameter

∗ No Direct Usage

∗ No Empty Regex

∗ No Keyword In Namespace

∗ No Magic Method With Array

∗ No Max On Empty Array

∗ No Null With Null Safe Operator

∗ No Object As Index

∗ No Real Comparison

∗ No Self Referencing Constant

∗ No Valid Cast

∗ Non Static Methods Called In A Static

∗ Non-constant Index In Array

∗ Not A Scalar Type

∗ Null Or Boolean Arrays

∗ Nullable Without Check

∗ One Expression Brackets Consistency

∗ Only Variable For Reference

∗ Only Variable Passed By Reference

∗ Or Die

∗ Override

∗ Overwritten Foreach Var

∗ PHP 7.0 Scalar Typehints

∗ PHP 7.4 Reserved Keyword

∗ PHP 8.0 Typehints

∗ PHP Exception

∗ PHP Handlers Usage

∗ PSR-3 Usage

∗ Parent, Static Or Self Outside Class

∗ Possible TypeError

∗ Printf Number Of Arguments

14.4. Directory by PHP Function 1925

Exakat Documentation, Release 1

∗ Property Cannot Be Readonly

∗ Raised Access Level

∗ Redefined Private Property

∗ Restrict Global Usage

∗ Sprintf Format Compilation

∗ Strict Comparison With Booleans

∗ String May Hold A Variable

∗ Strpos()-like Comparison

∗ Switch Fallthrough

∗ Test Then Cast

∗ Throw Functioncall

∗ Throw In Destruct

∗ Throw Raw Exceptions

∗ Thrown Exceptions

∗ Too Complex Expression

∗ Too Many Chained Calls

∗ Try Without Catch

∗ Type Must Be Returned

∗ Uncaught Exceptions

∗ Unconditional Break In Loop

∗ Undefined ::class

∗ Undefined Class Constants

∗ Undefined Constant Name

∗ Undefined Functions

∗ Undefined Insteadof

∗ Undefined Parent

∗ Undefined Trait

∗ Unfinished Object

∗ Unicode Escape Partial

∗ Unknown Pcre2 Option

∗ Unkown Regex Options

∗ Unsupported Operand Types

∗ Unthrown Exception

∗ Untyped No Default Properties

∗ Unused Enumeration Case

∗ Unused Parameter

1926 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Upload Filename Injection

∗ Use Constant As Arguments

∗ Use Constants As Returns

∗ Use Lower Case For Parent, Static And Self

∗ Use Nullable Type

∗ Useless Catch

∗ Using $this Outside A Class

∗ Variable Is Not A Condition

∗ Weird Array Index

∗ Wrong Access Style to Property

∗ Wrong Number Of Arguments

∗ Wrong Number Of Arguments In Methods

∗ Wrong Type Returned

∗ Wrong Type With Default

∗ Yoda Comparison

∗ __toString() Throws Exception

∗ array_merge With Ellipsis

∗ array_merge() And Variadic

∗ crypt() Without Salt

∗ error_reporting() With Integers

∗ eval() Without Try

∗ ext/event

∗ ext/gender

∗ ext/libxml

∗ ext/openssl

∗ ext/posix

∗ ext/protobuf

∗ ext/xml

∗ ext/xsl

∗ isset() With Constant

∗ openssl_random_pseudo_byte() Second Argument

∗ self, parent, static Outside Class

∗ var_dump(). . . Usage

– error_clear_last()

∗ New Functions In PHP 7.0

– error_get_last()

14.4. Directory by PHP Function 1927

Exakat Documentation, Release 1

∗ $php_errormsg Usage

– error_log()

∗ Error_Log() Usage

– error_reporting()

∗ PHP Handlers Usage

∗ Use Constant As Arguments

– exception

∗ Catch Overwrite Variable

∗ Catch With Undefined Variable

∗ Caught Variable

∗ Check All Types

∗ Check Division By Zero

∗ Collect Catch Calls

∗ Collect Methods Throwing Exceptions

∗ Collect Throw Calls

∗ Converted Exceptions

∗ Could Drop Variable

∗ Could Use Null-Safe Object Operator

∗ Defined Exceptions

∗ Empty Classes

∗ Exception Order

∗ Exit() Usage

∗ Forgotten Thrown

∗ Json_encode() Without Exceptions

∗ Large Try Block

∗ Long Preparation For Throw

∗ Manipulates INF

∗ Methods That Should Not Be Used

∗ Mixed Keyword

∗ Multiple Returns

∗ Never Keyword

∗ Never Typehint Usage

∗ No Max On Empty Array

∗ No Return Or Throw In Finally

∗ Null On New

∗ Overwritten Exceptions

1928 Chapter 14. Rules

Exakat Documentation, Release 1

∗ PHP Exception

∗ PHP Handlers Usage

∗ Rethrown Exceptions

∗ Set Chaining Exception

∗ Should Chain Exception

∗ Switch Without Default

∗ Throw

∗ Throw Functioncall

∗ Throw In Destruct

∗ Throw Raw Exceptions

∗ Throws An Assignement

∗ Uncaught Exceptions

∗ Undefined Caught Exceptions

∗ Unresolved Catch

∗ Unthrown Exception

∗ Unused Exception Variable

∗ Use Instanceof

∗ Useless Catch

∗ Useless Try

∗ Wrong Number Of Arguments

∗ __toString() Throws Exception

∗ eval() Without Try

∗ openssl_random_pseudo_byte() Second Argument

– exec()

∗ Can’t Disable Function

∗ Shell Favorite

∗ Shell commands

– exit

∗ Die Exit Consistence

∗ Don’t Echo Error

∗ Else Usage

∗ Error Messages

∗ Exit Without Argument

∗ Exit() Usage

∗ Exit-like Methods

∗ Never Typehint Usage

14.4. Directory by PHP Function 1929

Exakat Documentation, Release 1

∗ PHP 8.1 Typehints

∗ PHP Handlers Usage

∗ Print And Die

∗ Switch Without Default

∗ Unreachable Code

∗ Use PHP Object API

∗ ext/dba

∗ ext/event

∗ ext/ftp

∗ ext/gearman

∗ ext/mysqli

∗ ext/pcntl

∗ ext/zip

– explode()

∗ Implode One Arg

∗ No Empty String With explode()

∗ Optimize Explode()

∗ Should Use Explode Args

– extract()

∗ $this Belongs To Classes Or Traits

∗ Configure Extract

∗ Foreach With list()

∗ Function With Dynamic Code

∗ Register Globals

∗ Use Constant As Arguments

– ezmlm_hash()

∗ PHP 7.4 Removed Functions

∗ PHP 8.0 Removed Functions

∗ PHP 8.1 Removed Functions

• F

– FALSE

∗ ext/file

∗ ext/rar

– FFI

∗ ext/ffi

– FILEINFO_MIME_TYPE

1930 Chapter 14. Rules

Exakat Documentation, Release 1

∗ ext/fileinfo

– FILE_APPEND

∗ Use File Append

– FILE_BINARY

∗ PHP 8.1 Removed Constants

– FILE_IGNORE_NEW_LINES

∗ Should Use Existing Constants

– FILE_TEXT

∗ PHP 8.1 Removed Constants

– FILTER_SANITIZE_EMAIL

∗ PHP Variables

– FILTER_SANITIZE_SPECIAL_CHARS

∗ Use Constant As Arguments

– FILTER_SANITIZE_STRING

∗ PHP 8.1 Removed Constants

– FILTER_UNSAFE_RAW

∗ filter_input() As A Source

– FILTER_VALIDATE_EMAIL

∗ ext/filter

– FTP_BINARY

∗ ext/ftp

– False

∗ True False Inconsistant Case

– FilesystemIterator

∗ ext/spl

– FilterIterator

∗ PHP Native Interfaces and Return Type

– For()

∗ Sequences In For

– Foreach()

∗ Altering Foreach Without Reference

∗ Blind Variable Used Beyond Loop

∗ Identical Variables In Foreach

∗ Should Use Foreach

∗ Use List With Foreach

∗ Useless Check

14.4. Directory by PHP Function 1931

Exakat Documentation, Release 1

– false

∗ Always Anchor Regex

∗ Assign And Compare

∗ Bail Out Early

∗ Cant Use Return Value In Write Context

∗ Cast To Boolean

∗ Check All Types

∗ Coalesce And Ternary Operators Order

∗ Compare Hash

∗ Conditioned Constants

∗ Could Be A Constant

∗ Could Be Constant

∗ Could Be Null

∗ Could Use Trait

∗ Could Use strcontains()

∗ Don’t Echo Error

∗ Double Instructions

∗ Double array_flip()

∗ Failed Substr() Comparison

∗ False To Array Conversion

∗ Forgotten Thrown

∗ Implied If

∗ Indices Are Int Or String

∗ Invalid Date Scanning Format

∗ Logical Mistakes

∗ Logical To in_array

∗ Mismatched Typehint

∗ Missing Include

∗ Mixed Typehint Usage

∗ Multiple Constant Definition

∗ Multiple Returns

∗ Multiple Type Cases In Switch

∗ Nested Match

∗ No Boolean As Default

∗ No Direct Usage

∗ No Empty String With explode()

1932 Chapter 14. Rules

Exakat Documentation, Release 1

∗ No Magic Method With Array

∗ No isset() With empty()

∗ Overwritten Literals

∗ PHP 7.1 Microseconds

∗ PHP 8.0 Removed Directives

∗ PHP 8.0 Typehints

∗ PHP 8.1 Removed Directives

∗ PHP 8.1 Resources Turned Into Objects

∗ PHP Handlers Usage

∗ Php 8.0 Only TypeHints

∗ Possible Infinite Loop

∗ Property Used In One Method Only

∗ Redefined Private Property

∗ Reserved Keywords In PHP 7

∗ Return True False

∗ Same Conditions In Condition

∗ Sequences In For

∗ Set Cookie Safe Arguments

∗ StandaloneType True False Null

∗ Strict Comparison With Booleans

∗ String Int Comparison

∗ Strings With Strange Space

∗ Strpos() Less Than One

∗ Strpos()-like Comparison

∗ Unchecked Resources

∗ Undefined Interfaces

∗ Unresolved Catch

∗ Use Instanceof

∗ Use Named Boolean In Argument Definition

∗ Use Same Types For Comparisons

∗ Use str_contains()

∗ Useless Catch

∗ Useless Coalesce

∗ Useless Short Ternary

∗ Uses Default Values

∗ Variables With One Letter Names

14.4. Directory by PHP Function 1933

Exakat Documentation, Release 1

∗ Wrong Precedence In Expression

∗ ext/exif

∗ ext/inotify

∗ ext/libxml

∗ ext/memcache

∗ ext/shmop

∗ ext/sockets

∗ ext/sqlsrv

∗ ext/teds

∗ ext/xmlrpc

∗ ext/xsl

∗ openssl_random_pseudo_byte() Second Argument

∗ strpos() With Integers

∗ version_compare Operator

– fdatasync()

∗ New Functions In PHP 8.1

– fdiv()

∗ New Functions In PHP 8.0

– feof()

∗ Possible Infinite Loop

– ffi

∗ ext/ffi

– fgetc()

∗ Strpos()-like Comparison

– fgetcsv()

∗ Possible Infinite Loop

– fgets()

∗ Possible Infinite Loop

∗ Reuse Existing Variable

– fgetss()

∗ PHP 8.0 Removed Functions

∗ PHP 8.1 Removed Functions

∗ Possible Infinite Loop

– file()

∗ Joining file()

– file_exists()

1934 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Protocol lists

– file_get_contents()

∗ Joining file()

∗ Strpos()-like Comparison

– file_put_contents()

∗ File_Put_Contents Using Array Argument

∗ No array_merge() In Loops

∗ Strpos()-like Comparison

∗ Use File Append

– filesize()

∗ Protocol lists

– filter_input()

∗ Use Constant As Arguments

∗ filter_input() As A Source

– filter_input_array()

∗ filter_input() As A Source

– filter_var()

∗ Use Constant As Arguments

– finfo

∗ ext/fileinfo

– finfo_open()

∗ PHP 8.1 Resources Turned Into Objects

– floor()

∗ Do Not Cast To Int

– fopen()

∗ @ Operator

∗ Fopen Binary Mode

∗ Possible Infinite Loop

∗ Protocol lists

∗ Wrong fopen() Mode

– for()

∗ Bracketless Blocks

∗ Constant Conditions

∗ For Using Functioncall

∗ Add Brackets To Single Instructions

∗ Remove Brackets Around Single Instruction

14.4. Directory by PHP Function 1935

Exakat Documentation, Release 1

– foreach()

∗ Altering Foreach Without Reference

∗ Avoid array_unique()

∗ Bracketless Blocks

∗ Break Outside Loop

∗ Can’t Call Generator

∗ Don’t Change The Blind Var

∗ Don’t Reuse Foreach Source

∗ Find Key Directly

∗ Foreach Don’t Change Pointer

∗ Foreach With list()

∗ Foreach() Favorite

∗ Identical Variables In Foreach

∗ No Direct Usage

∗ Objects Don’t Need References

∗ Overwritten Source And Value

∗ Should Use array_column()

∗ Should Use array_filter()

∗ Should Yield With Key

∗ Simplify Foreach

∗ Slow Functions

∗ Substr() In Loops

∗ Used Once Variables (In Scope)

∗ Useless Referenced Argument

∗ preg_match_all() Flag

∗ Add Brackets To Single Instructions

∗ Remove Brackets Around Single Instruction

– forward_static_call()

∗ Callback Function Needs Return

– forward_static_call_array()

∗ Callback Function Needs Return

– fputcsv()

∗ fputcsv() In Loops

– fread()

∗ Possible Infinite Loop

∗ Strpos()-like Comparison

1936 Chapter 14. Rules

Exakat Documentation, Release 1

– fscanf()

∗ Printf Format Inventory

∗ Sprintf Format Compilation

– fseek()

∗ Use Constant As Arguments

– fsockopen()

∗ Can’t Disable Function

– fsync()

∗ New Functions In PHP 8.1

– ftp_connect()

∗ Can’t Disable Class

∗ Can’t Disable Function

∗ PHP 8.1 Resources Turned Into Objects

– func_get_arg()

∗ Has Variable Arguments

∗ func_get_arg() Modified

– func_get_args()

∗ Ellipsis Usage

∗ Has Variable Arguments

∗ PHP 7.3 Last Empty Argument

∗ Typehinting Stats

∗ Wrong Number Of Arguments

∗ Wrong Number Of Arguments In Methods

∗ func_get_arg() Modified

– func_num_args()

∗ Has Variable Arguments

• G

– GLOB_BRACE

∗ GLOB_BRACE Usage

– GLOB_NOSORT

∗ Avoid glob() Usage

– Generator

∗ Method Is A Generator

∗ Should Yield With Key

– gc_mem_caches()

∗ New Functions In PHP 7.0

14.4. Directory by PHP Function 1937

Exakat Documentation, Release 1

– generator

∗ Can’t Call Generator

∗ Could Be Generator

∗ Could Use Yield From

∗ Don’t Loop On Yield

∗ Generator Cannot Return

∗ Method Is A Generator

∗ Misused Yield

∗ No Return For Generator

∗ PHP 7.1 Scalar Typehints

∗ Yield From Usage

– getType()

∗ ext/judy

– get_browser()

∗ Use Browscap

– get_called_class()

∗ Detect Current Class

∗ Use This

– get_class()

∗ No Need For get_class()

∗ No get_class() With Null

∗ Scope Resolution Operator

∗ Use This

∗ get_class() Without Argument

– get_class_methods()

∗ Use This

– get_class_vars()

∗ Use This

– get_debug_type()

∗ Use get_debug_type()

– get_declared_traits()

∗ New Functions In PHP 5.4

– get_html_translation_table()

∗ Htmlentities Using Default Flag

∗ Use Constant As Arguments

– get_magic_quotes_gpc()

1938 Chapter 14. Rules

Exakat Documentation, Release 1

∗ PHP 7.4 Removed Functions

∗ PHP 8.0 Removed Functions

∗ PHP 8.1 Removed Functions

– get_magic_quotes_runtime()

∗ PHP 7.4 Removed Functions

– get_object_vars()

∗ Avoid get_object_vars()

∗ Property Used In One Method Only

∗ Use This

– get_parent_class()

∗ Use This

∗ get_class() Without Argument

– get_resources()

∗ New Functions In PHP 7.0

– getdate()

∗ date() versus DateTime Preference

– getenv()

∗ Environment Variable Usage

– getimagesizefromstring()

∗ New Functions In PHP 5.4

– getopt()

∗ Use Cli

– gettext()

∗ ext/gettext

– glob()

∗ Avoid glob() Usage

∗ No Direct Usage

∗ No Hardcoded Path

– gmdate()

∗ date() versus DateTime Preference

– gmp

∗ ext/gmp

– gmp_binomial()

∗ New Functions In PHP 7.3

– gmp_div_q()

∗ Use Constant As Arguments

14.4. Directory by PHP Function 1939

Exakat Documentation, Release 1

– gmp_div_qr()

∗ Use Constant As Arguments

– gmp_div_r()

∗ Use Constant As Arguments

– gmp_kronecker()

∗ New Functions In PHP 7.3

– gmp_lcm()

∗ New Functions In PHP 7.3

– gmp_perfect_power()

∗ New Functions In PHP 7.3

– gmp_root()

∗ New Functions In PHP 5.6

– gmp_rootrem()

∗ New Functions In PHP 5.6

– gmstrftime()

∗ Date Formats

• H

– HTML_ENTITIES

∗ Is PHP Constant

– HashContext

∗ Php 7.2 New Class

– hash()

∗ Directly Use File

– hash_algos()

∗ Hash Algorithms

– hash_equals()

∗ Compare Hash

– hash_file()

∗ Directly Use File

– hash_hmac()

∗ Directly Use File

– hash_pbkdf2()

∗ New Functions In PHP 5.5

– hash_update()

∗ Directly Use File

– hash_update_file()

1940 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Directly Use File

– header()

∗ Http Headers

∗ Should Use SetCookie()

∗ Use Cookies

– header_register_callback()

∗ New Functions In PHP 5.4

– hebrevc()

∗ PHP 7.4 Removed Functions

∗ PHP 8.0 Removed Functions

∗ PHP 8.1 Removed Functions

– hex2bin()

∗ New Functions In PHP 5.4

– highlight_file()

∗ Directly Use File

– highlight_string()

∗ Directly Use File

– html_entity_decode()

∗ Htmlentities Using Default Flag

∗ Use Constant As Arguments

– htmlentities()

∗ Htmlentities Calls

∗ Htmlentities Using Default Flag

∗ Use Constant As Arguments

∗ Uses Default Values

– htmlspecialchars()

∗ Htmlentities Calls

∗ Htmlentities Using Default Flag

∗ No ENT_IGNORE

∗ Use Constant As Arguments

– htmlspecialchars_decode()

∗ Htmlentities Using Default Flag

∗ Use Constant As Arguments

– httpRequest

∗ Feast usage

– http_build_query()

14.4. Directory by PHP Function 1941

Exakat Documentation, Release 1

∗ Should Use Url Query Functions

∗ Use Constant As Arguments

– http_build_url()

∗ Use Constant As Arguments

– http_parse_cookie()

∗ Use Constant As Arguments

– http_parse_params()

∗ Use Constant As Arguments

– http_redirect()

∗ Use Constant As Arguments

– http_response_code()

∗ New Functions In PHP 5.4

– http_support()

∗ Use Constant As Arguments

• I

– INF

∗ Manipulates INF

– INPUT_COOKIE

∗ Use Constant As Arguments

– INPUT_ENV

∗ Use Constant As Arguments

– INPUT_GET

∗ Use Constant As Arguments

∗ filter_input() As A Source

– INPUT_POST

∗ Use Constant As Arguments

– INPUT_SERVER

∗ Use Constant As Arguments

– IntervalBoundary

∗ Php 8.3 New Classes

– Intval()

∗ Should Typecast

– Isset

∗ Isset() On The Whole Array

– Iterator

∗ PHP Native Interfaces and Return Type

1942 Chapter 14. Rules

Exakat Documentation, Release 1

– ibase_errmsg()

∗ ext/ibase

– iconv()

∗ Iconv With Translit

∗ Substring First

– iconv_strpos()

∗ Strpos()-like Comparison

– iconv_strrpos()

∗ Strpos()-like Comparison

– iconv_substr()

∗ Failed Substr() Comparison

– idn_to_ascii()

∗ idn_to_ascii() New Default

– idn_to_utf8()

∗ idn_to_ascii() New Default

– imageaffinematrixconcat()

∗ New Functions In PHP 5.5

– imageaffinematrixget()

∗ New Functions In PHP 5.5

– imageavif()

∗ New Functions In PHP 8.1

– imagecolorallocate()

∗ Strpos()-like Comparison

– imagecolorallocatealpha()

∗ Strpos()-like Comparison

– imagecreatefromavif()

∗ New Functions In PHP 8.1

– imagecrop()

∗ New Functions In PHP 5.5

– imagecropauto()

∗ New Functions In PHP 5.5

– imageflip()

∗ New Functions In PHP 5.5

– imagepalettetotruecolor()

∗ New Functions In PHP 5.5

– imagescale()

14.4. Directory by PHP Function 1943

Exakat Documentation, Release 1

∗ New Functions In PHP 5.5

– imap_last_error()

∗ ext/imap

– imap_open()

∗ Can’t Disable Function

∗ PHP 8.1 Resources Turned Into Objects

– implode()

∗ Avoid Concat In Loop

∗ Implode One Arg

∗ Implode() Arguments Order

∗ Multiple Similar Calls

∗ Use Array Functions

– in_array()

∗ Collect Compared Literals

∗ Logical To in_array

∗ Processing Collector

∗ Slow Functions

∗ Strict Comparison With Booleans

∗ Strict In_Array() Preference

∗ Logical To in_array()

– inflate_init()

∗ PHP 8.0 Resources Turned Into Objects

– ini_get()

∗ PHP 8.0 Removed Directives

∗ PHP 8.1 Removed Directives

– ini_parse_quantity()

∗ New Functions In PHP 8.2

– ini_set()

∗ Definitions Only

– instanceof

∗ Already Parents Interface

∗ Avoid get_class()

∗ Can’t Implement Traversable

∗ Class Usage

∗ Collect Classes Dependencies

∗ Could Typehint

1944 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Interfaces Usage

∗ Is An Extension Interface

∗ Missing Parenthesis

∗ Not Equal Is Not !==

∗ Php 8.0 Variable Syntax Tweaks

∗ Reserved Match Keyword

∗ Scalar Or Object Property

∗ Should Make Alias

∗ Should Use Operator

∗ Type Dodging

∗ Undefined ::class

∗ Undefined Classes

∗ Undefined Interfaces

∗ Unresolved Instanceof

∗ Unused Interfaces

∗ Usage Of class_alias()

∗ Use Instanceof

∗ Use is_countable

∗ Used Interfaces

∗ ext/psr

∗ is_a() Versus instanceof

∗ self, parent, static Outside Class

∗ Rename Class

∗ Rename Class

∗ Rename Enums

∗ Rename Interface

– insteadof

∗ Method Collision Traits

∗ Trait Not Found

∗ Undefined Insteadof

– intdiv()

∗ Could Use Try

∗ New Functions In PHP 7.0

– intlcal_add()

∗ New Functions In PHP 5.5

– intlcal_after()

14.4. Directory by PHP Function 1945

Exakat Documentation, Release 1

∗ New Functions In PHP 5.5

– intlcal_before()

∗ New Functions In PHP 5.5

– intlcal_clear()

∗ New Functions In PHP 5.5

– intlcal_create_instance()

∗ New Functions In PHP 5.5

– intlcal_equals()

∗ New Functions In PHP 5.5

– intlcal_field_difference()

∗ New Functions In PHP 5.5

– intlcal_from_date_time()

∗ New Functions In PHP 5.5

– intlcal_get()

∗ New Functions In PHP 5.5

– intlcal_get_actual_maximum()

∗ New Functions In PHP 5.5

– intlcal_get_actual_minimum()

∗ New Functions In PHP 5.5

– intlcal_get_available_locales()

∗ New Functions In PHP 5.5

– intlcal_get_day_of_week_type()

∗ New Functions In PHP 5.5

– intlcal_get_error_code()

∗ New Functions In PHP 5.5

– intlcal_get_error_message()

∗ New Functions In PHP 5.5

– intlcal_get_first_day_of_week()

∗ New Functions In PHP 5.5

– intlcal_get_greatest_minimum()

∗ New Functions In PHP 5.5

– intlcal_get_keyword_values_for_locale()

∗ New Functions In PHP 5.5

– intlcal_get_least_maximum()

∗ New Functions In PHP 5.5

– intlcal_get_locale()

1946 Chapter 14. Rules

Exakat Documentation, Release 1

∗ New Functions In PHP 5.5

– intlcal_get_maximum()

∗ New Functions In PHP 5.5

– intlcal_get_minimal_days_in_first_week()

∗ New Functions In PHP 5.5

– intlcal_get_minimum()

∗ New Functions In PHP 5.5

– intlcal_get_now()

∗ New Functions In PHP 5.5

– intlcal_get_repeated_wall_time_option()

∗ New Functions In PHP 5.5

– intlcal_get_skipped_wall_time_option()

∗ New Functions In PHP 5.5

– intlcal_get_time()

∗ New Functions In PHP 5.5

– intlcal_get_time_zone()

∗ New Functions In PHP 5.5

– intlcal_get_type()

∗ New Functions In PHP 5.5

– intlcal_get_weekend_transition()

∗ New Functions In PHP 5.5

– intlcal_in_daylight_time()

∗ New Functions In PHP 5.5

– intlcal_is_equivalent_to()

∗ New Functions In PHP 5.5

– intlcal_is_lenient()

∗ New Functions In PHP 5.5

– intlcal_is_set()

∗ New Functions In PHP 5.5

– intlcal_is_weekend()

∗ New Functions In PHP 5.5

– intlcal_roll()

∗ New Functions In PHP 5.5

– intlcal_set()

∗ New Functions In PHP 5.5

– intlcal_set_first_day_of_week()

14.4. Directory by PHP Function 1947

Exakat Documentation, Release 1

∗ New Functions In PHP 5.5

– intlcal_set_lenient()

∗ New Functions In PHP 5.5

– intlcal_set_repeated_wall_time_option()

∗ New Functions In PHP 5.5

– intlcal_set_skipped_wall_time_option()

∗ New Functions In PHP 5.5

– intlcal_set_time()

∗ New Functions In PHP 5.5

– intlcal_set_time_zone()

∗ New Functions In PHP 5.5

– intlcal_to_date_time()

∗ New Functions In PHP 5.5

– intlgregcal_create_instance()

∗ New Functions In PHP 5.5

– intlgregcal_get_gregorian_change()

∗ New Functions In PHP 5.5

– intlgregcal_is_leap_year()

∗ New Functions In PHP 5.5

– intlgregcal_set_gregorian_change()

∗ New Functions In PHP 5.5

– intltz_count_equivalent_ids()

∗ New Functions In PHP 5.5

– intltz_create_default()

∗ New Functions In PHP 5.5

– intltz_create_enumeration()

∗ New Functions In PHP 5.5

– intltz_create_time_zone()

∗ New Functions In PHP 5.5

– intltz_create_time_zone_id_enumeration()

∗ New Functions In PHP 5.5

– intltz_from_date_time_zone()

∗ New Functions In PHP 5.5

– intltz_get_canonical_id()

∗ New Functions In PHP 5.5

– intltz_get_display_name()

1948 Chapter 14. Rules

Exakat Documentation, Release 1

∗ New Functions In PHP 5.5

– intltz_get_dst_savings()

∗ New Functions In PHP 5.5

– intltz_get_equivalent_id()

∗ New Functions In PHP 5.5

– intltz_get_error_code()

∗ New Functions In PHP 5.5

– intltz_get_error_message()

∗ New Functions In PHP 5.5

– intltz_get_gmt()

∗ New Functions In PHP 5.5

– intltz_get_id()

∗ New Functions In PHP 5.5

– intltz_get_offset()

∗ New Functions In PHP 5.5

– intltz_get_raw_offset()

∗ New Functions In PHP 5.5

– intltz_get_region()

∗ New Functions In PHP 5.5

– intltz_get_tz_data_version()

∗ New Functions In PHP 5.5

– intltz_get_unknown()

∗ New Functions In PHP 5.5

– intltz_has_same_rules()

∗ New Functions In PHP 5.5

– intltz_to_date_time_zone()

∗ New Functions In PHP 5.5

– intltz_use_daylight_time()

∗ New Functions In PHP 5.5

– intval()

∗ Do Not Cast To Int

∗ Should Typecast

– is_a()

∗ Is_A() With String

∗ is_a() Versus instanceof

– is_array()

14.4. Directory by PHP Function 1949

Exakat Documentation, Release 1

∗ Assumptions

∗ Could Typehint

∗ Should Use Operator

– is_callable()

∗ Check All Types

– is_countable()

∗ New Functions In PHP 7.3

∗ Use is_countable

– is_int()

∗ Double Checks

∗ Should Use Operator

– is_integer()

∗ Use Instanceof

– is_iterable()

∗ Check All Types

∗ New Functions In PHP 7.1

– is_null()

∗ Should Use Operator

∗ Use === null

– is_object()

∗ Should Use Operator

∗ Use Instanceof

– is_readable()

∗ Double Checks

– is_resource()

∗ PHP 8.0 Resources Turned Into Objects

∗ PHP 8.1 Resources Turned Into Objects

– is_scalar()

∗ Use Instanceof

– is_string()

∗ Check All Types

∗ Could Typehint

∗ Use Instanceof

– isset

∗ Array Access On Literal Array

∗ Assert Function Is Reserved

1950 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Checks Property Existence

∗ Cookies Variables

∗ Default Then Discard

∗ Isset Multiple Arguments

∗ Isset() On The Whole Array

∗ Logical To in_array

∗ Multiple Similar Calls

∗ Must Return Methods

∗ No Keyword In Namespace

∗ No isset() With empty()

∗ Session Variables

∗ Should Use Coalesce

∗ Should Use array_column()

∗ Should Use array_filter()

∗ Slow Functions

∗ Too Complex Expression

∗ Try Without Catch

∗ Use Instanceof

∗ Useless Check

∗ Variable Is Not A Condition

∗ array_key_exists() Speedup

∗ ext/session

∗ ext/xml

∗ isset() With Constant

– iterator

∗ Could Type With Iterable

∗ PHP 7.1 Scalar Typehints

∗ ext/redis

– iterator_to_array()

∗ Should Yield With Key

• J

– JSON_ERROR_NONE

∗ Check JSON

– JSON_HEX_AMP

∗ Is An Extension Constant

– JSON_OBJECT_AS_ARRAY

14.4. Directory by PHP Function 1951

Exakat Documentation, Release 1

∗ Use json_decode() Options

– JSON_THROW_ON_ERROR

∗ Json_encode() Without Exceptions

– JsonException

∗ Json_encode() Without Exceptions

– JsonSerializable

∗ PHP Native Interfaces and Return Type

– Judy

∗ ext/judy

– jdtojewish()

∗ Use Constant As Arguments

– json_decode()

∗ Empty Json Error

∗ Json_encode() Without Exceptions

∗ Use json_decode() Options

– json_encode()

∗ Avoid Using stdClass

∗ Json_encode() Without Exceptions

– json_last_error()

∗ Check JSON

∗ Empty Json Error

∗ Json_encode() Without Exceptions

– json_last_error_msg()

∗ New Functions In PHP 5.5

– json_validate()

∗ New Functions In PHP 8.3

– judy

∗ ext/judy

• K

– key()

∗ PHP Native Class Type Compatibility

– krsort()

∗ Use Constant As Arguments

– ksort()

∗ Use Constant As Arguments

• L

1952 Chapter 14. Rules

Exakat Documentation, Release 1

– LC_ALL

∗ Setlocale() Uses Constants

∗ Wrong Locale

∗ ext/gettext

– LC_MESSAGES

∗ Setlocale() Uses Constants

∗ ext/gettext

– LIBXML_DTDLOAD

∗ No Net For Xml Load

– LIBXML_ERR_ERROR

∗ ext/libxml

– LIBXML_ERR_FATAL

∗ ext/libxml

– LIBXML_ERR_WARNING

∗ ext/libxml

– LIBXML_NOENT

∗ No Net For Xml Load

– LOG_DEBUG

∗ ext/rdkafka

– List()

∗ List With Array Appends

– Locale

∗ ext/intl

– LogicException

∗ PHP Exception

– ldap_connect()

∗ PHP 8.1 Resources Turned Into Objects

– ldap_escape()

∗ New Functions In PHP 5.6

– ldap_exop_refresh()

∗ New Functions In PHP 7.3

– ldap_first_entry()

∗ PHP 8.1 Resources Turned Into Objects

– ldap_list()

∗ PHP 8.1 Resources Turned Into Objects

– ldap_read()

14.4. Directory by PHP Function 1953

Exakat Documentation, Release 1

∗ PHP 8.1 Resources Turned Into Objects

– ldap_search()

∗ PHP 8.1 Resources Turned Into Objects

– libxml_clear_errors()

∗ ext/libxml

– libxml_get_errors()

∗ ext/libxml

∗ ext/xsl

– libxml_set_external_entity_loader()

∗ New Functions In PHP 5.4

– link()

∗ Make Class Method Definition

– list()

∗ Empty List

∗ Foreach With list()

∗ List Short Syntax

∗ List With Keys

∗ No List With String

∗ Optimize Explode()

∗ Overwritten Source And Value

∗ Pathinfo() Returns May Vary

∗ Should Use Explode Args

∗ Spread Operator For Array

∗ Use List With Foreach

∗ list() May Omit Variables

– locale

∗ Confusing Names

∗ Fn Argument Variable Confusion

∗ Wrong Locale

∗ ext/ctype

∗ ext/gettext

∗ ext/intl

– localtime()

∗ date() versus DateTime Preference

– log()

∗ Wrong Type For Native PHP Function

1954 Chapter 14. Rules

Exakat Documentation, Release 1

– ltrim()

∗ Substr To Trim

• M

– MYSQLI_STMT_ATTR_UPDATE_MAX_LENGTH

∗ PHP 8.1 Removed Constants

– MYSQLI_STORE_RESULT_COPY_DATA

∗ PHP 8.1 Removed Constants

– M_PI

∗ Constant Scalar Expression

– Match()

∗ Could Use Match

∗ Simple Switch And Match

– MessageFormatter

∗ Null On New

– Mongo

∗ ext/mongodb

– MongoClient

∗ ext/mongo

– MongoDB

∗ ext/mongo

∗ ext/mongodb

– MongoDb

∗ ext/mongodb

– Mongodb

∗ ext/mongodb

– MySQLI

∗ New On Functioncall Or Identifier

– magic_quotes_runtime()

∗ Functions Removed In PHP 5.4

∗ PHP 7.0 Removed Functions

– mail()

∗ Mail Usage

∗ ext/mail

– main()

∗ Extensions/Exttaint

– match()

14.4. Directory by PHP Function 1955

Exakat Documentation, Release 1

∗ Bracketless Blocks

∗ Collect Compared Literals

∗ Could Use Match

∗ Identical Case In Switch

∗ Indentation Levels

∗ Logical To in_array

∗ Multiline Expressions

∗ Multiple Type Cases In Switch

∗ Reserved Match Keyword

∗ Simple Switch And Match

∗ Strict Comparison With Booleans

∗ Switch Without Default

∗ Too Many Stringed Elseif

∗ Uses PHP 8 Match()

∗ Switch To Match

– max()

∗ No Max On Empty Array

– mb_chr()

∗ Mbstring Unknown Encodings

∗ Mono Or Multibytes Favorite

∗ New Functions In PHP 7.1

∗ New Functions In PHP 7.2

– mb_convert_encoding()

∗ Deprecated Mb_string Encodings

– mb_detect_encoding()

∗ Deprecated Mb_string Encodings

– mb_encoding_aliases()

∗ Mbstring Unknown Encoding

∗ Mbstring Unknown Encodings

– mb_list_encodings()

∗ Mbstring Unknown Encoding

∗ Mbstring Unknown Encodings

– mb_ord()

∗ Mono Or Multibytes Favorite

∗ New Functions In PHP 7.1

∗ New Functions In PHP 7.2

1956 Chapter 14. Rules

Exakat Documentation, Release 1

– mb_parse_str()

∗ Mono Or Multibytes Favorite

– mb_scrub()

∗ New Functions In PHP 7.1

∗ New Functions In PHP 7.2

– mb_split()

∗ Optimize Explode()

– mb_str_split()

∗ New Functions In PHP 7.4

– mb_stripos()

∗ Mbstring Third Arg

∗ Mono Or Multibytes Favorite

– mb_stristr()

∗ Mbstring Third Arg

∗ Mono Or Multibytes Favorite

– mb_strlen()

∗ Mono Or Multibytes Favorite

∗ No Count With 0

∗ Strpos()-like Comparison

– mb_strpos()

∗ Mbstring Third Arg

∗ Mono Or Multibytes Favorite

∗ Use str_contains()

– mb_strrchr()

∗ Mbstring Third Arg

∗ Mono Or Multibytes Favorite

– mb_strrichr()

∗ Mbstring Third Arg

– mb_strripos()

∗ Mbstring Third Arg

∗ Mono Or Multibytes Favorite

– mb_strrpos()

∗ Mbstring Third Arg

∗ Mono Or Multibytes Favorite

∗ mb_strrpos() Third Argument

– mb_strstr()

14.4. Directory by PHP Function 1957

Exakat Documentation, Release 1

∗ Mbstring Third Arg

∗ Mono Or Multibytes Favorite

– mb_strtolower()

∗ Mono Or Multibytes Favorite

– mb_strtoupper()

∗ Mono Or Multibytes Favorite

– mb_substr()

∗ Avoid Substr() One

∗ Failed Substr() Comparison

∗ Mbstring Third Arg

∗ Mono Or Multibytes Favorite

∗ No mb_substr In Loop

∗ Substr To Trim

– mb_substr_count()

∗ Mono Or Multibytes Favorite

– md5()

∗ Directly Use File

– md5_file()

∗ Directly Use File

– memory_reset_peak_usage()

∗ New Functions In PHP 8.2

– microtime()

∗ Use random_int()

– min()

∗ No Max On Empty Array

– mkdir()

∗ Keep Files Access Restricted

∗ Mkdir Default

– mktime()

∗ date() versus DateTime Preference

– money_format()

∗ PHP 7.4 Removed Functions

∗ PHP 8.0 Removed Functions

∗ PHP 8.1 Removed Functions

– mongo

∗ ext/mongo

1958 Chapter 14. Rules

Exakat Documentation, Release 1

∗ ext/mongodb

– mongodb

∗ ext/mongodb

– move_uploaded_file()

∗ move_uploaded_file Instead Of copy

– msg_get_queue()

∗ PHP 8.0 Resources Turned Into Objects

– mt_rand()

∗ Use random_int()

– mt_srand()

∗ Use random_int()

– mysql_error()

∗ Don’t Echo Error

∗ ext/mysql

– mysqli

∗ Use PHP Object API

∗ ext/mysql

∗ ext/mysqli

– mysqli_begin_transaction()

∗ New Functions In PHP 5.5

– mysqli_connect_errno()

∗ ext/mysqli

– mysqli_connect_error()

∗ ext/mysqli

– mysqli_error_list()

∗ New Functions In PHP 5.4

– mysqli_execute_query()

∗ New Functions In PHP 8.2

∗ New Functions In PHP 8.3

– mysqli_fetch_column()

∗ New Functions In PHP 8.1

– mysqli_release_savepoint()

∗ New Functions In PHP 5.5

– mysqli_savepoint()

∗ New Functions In PHP 5.5

– mysqli_stmt_error_list()

14.4. Directory by PHP Function 1959

Exakat Documentation, Release 1

∗ New Functions In PHP 5.4

• N

– NCURSES_COLOR_BLACK

∗ ext/ncurses

– NCURSES_COLOR_GREEN

∗ ext/ncurses

– NCURSES_COLOR_RED

∗ ext/ncurses

– NCURSES_COLOR_WHITE

∗ ext/ncurses

– NULL

∗ $this Belongs To Classes Or Traits

∗ $this Is Not For Static Methods

∗ Check After Null Safe Operator

∗ Check All Types

∗ Check JSON

∗ Coalesce And Ternary Operators Order

∗ Empty Slots In Arrays

∗ Implicit Nullable Type

∗ Method Property Confusion

∗ No Max On Empty Array

∗ No Null With Null Safe Operator

∗ Null Or Boolean Arrays

∗ Should Use Coalesce

∗ Static Methods Can’t Contain $this

∗ Strpos()-like Comparison

∗ Used Static Properties

∗ Useless NullSafe Operator

∗ array_key_exists() Speedup

∗ ext/eio

∗ ext/event

∗ ext/xmlwriter

∗ version_compare Operator

– Null

∗ Check After Null Safe Operator

∗ Could Be Null

1960 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Duplicate Literal

∗ Indices Are Int Or String

∗ Method Is Not For Fluent Interface

∗ No Null For Native PHP Functions

∗ Null Or Boolean Arrays

∗ Null Type Favorite

∗ Scalar Or Object Property

∗ Type Must Be Returned

∗ Set Null Type

∗ Set Typehints

– NumberFormatter

∗ ext/intl

– ncurses_init()

∗ ext/ncurses

– ncurses_start_color()

∗ ext/ncurses

– net_get_interfaces()

∗ New Functions In PHP 7.3

– next()

∗ Foreach Don’t Change Pointer

∗ Static Loop

∗ Strpos()-like Comparison

– null

∗ @ Operator

∗ Always Positive Comparison

∗ Assumptions

∗ Avoid Large Array Assignation

∗ Avoid Optional Properties

∗ Break With Non Integer

∗ Casting Ternary

∗ Check After Null Safe Operator

∗ Check All Types

∗ Check JSON

∗ Coalesce And Ternary Operators Order

∗ Collect Compared Literals

∗ Collect Literals

14.4. Directory by PHP Function 1961

Exakat Documentation, Release 1

∗ Comparison Is Always The Same

∗ Constant Conditions

∗ Constant Typo Looks Like A Variable

∗ Could Be Null

∗ Could Be Ternary

∗ Could Use Null-Safe Object Operator

∗ Could Use array_fill_keys

∗ Cyclic References

∗ Default Then Discard

∗ Dereferencing Levels

∗ Don’t Send $this In Constructor

∗ Don’t Unset Properties

∗ File Is Not Definitions Only

∗ Implicit Nullable Type

∗ Incompatible Types With Incoming Values

∗ Indices Are Int Or String

∗ Insufficient Property Typehint

∗ Make Global A Property

∗ Methods Without Return

∗ Mismatch Properties Typehints

∗ Mismatch Type And Default

∗ Mismatched Default Arguments

∗ Mismatched Ternary Alternatives

∗ Missing Some Returntype

∗ Mixed Typehint Usage

∗ Multiple Type Cases In Switch

∗ No Max On Empty Array

∗ No Null For Index

∗ No Null With Null Safe Operator

∗ No Reference For Ternary

∗ No get_class() With Null

∗ Non Nullable Getters

∗ Null On New

∗ Null Or Boolean Arrays

∗ Null Type Favorite

∗ Nullable With Constant

1962 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Nullable Without Check

∗ Objects Don’t Need References

∗ Optional Parameter

∗ PSR-16 Usage

∗ PSR-7 Usage

∗ Parent First

∗ Php 8.0 Only TypeHints

∗ Reserved Keywords In PHP 7

∗ Results May Be Missing

∗ Return void

∗ Scalar Are Not Arrays

∗ Scalar Or Object Property

∗ Set Aside Code

∗ Set Chaining Exception

∗ Set Class Property Definition With Typehint

∗ Should Deep Clone

∗ Should Use Operator

∗ StandaloneType True False Null

∗ Typehinting Stats

∗ Unbinding Closures

∗ Uninitialized Property

∗ Unset In Foreach

∗ Use === null

∗ Use Browscap

∗ Use Closure Trailing Comma

∗ Use Debug

∗ Use NullSafe Operator

∗ Use Nullable Type

∗ Useless Coalesce

∗ Useless Null Coalesce

∗ Useless NullSafe Operator

∗ Useless Short Ternary

∗ Useless Type Check

∗ Weak Typing

∗ __toString() Throws Exception

∗ array_merge With Ellipsis

14.4. Directory by PHP Function 1963

Exakat Documentation, Release 1

∗ ext/amqp

∗ ext/eio

∗ ext/inotify

∗ ext/newt

∗ ext/oci8

∗ ext/sdl

∗ ext/uopz

∗ isset() With Constant

∗ Set Null Type

• O

– OCI_ASSOC

∗ ext/oci8

– OCI_RETURN_NULLS

∗ ext/oci8

– OPENSSL_CIPHER_AES_128_CBC

∗ Openssl Encrypt Default Algorithm Change

– OPENSSL_CIPHER_RC2_40

∗ Openssl Encrypt Default Algorithm Change

– OPENSSL_KEYTYPE_EC

∗ Check Crypto Key Length

– OP_HALFOPEN

∗ ext/imap

– Override

∗ Override

– ob_end_flush()

∗ ext/ob

– ob_start()

∗ ext/ob

∗ ext/tidy

– oci_error()

∗ ext/oci8

– oci_get_implicit_resultset()

∗ New Functions In PHP 5.6

– odbc_connection_string_is_quoted()

∗ New Functions In PHP 8.2

– odbc_connection_string_quote()

1964 Chapter 14. Rules

Exakat Documentation, Release 1

∗ New Functions In PHP 8.2

– odbc_connection_string_should_quote()

∗ New Functions In PHP 8.2

– opcache_get_status()

∗ ext/opcache

– opendir()

∗ Avoid glob() Usage

– openssl_cms_encrypt()

∗ Openssl Encrypt Default Algorithm Change

– openssl_csr_new()

∗ PHP 8.0 Resources Turned Into Objects

– openssl_csr_sign()

∗ PHP 8.0 Resources Turned Into Objects

– openssl_get_cipher_methods()

∗ OpenSSL Ciphers Used

– openssl_pbkdf2()

∗ New Functions In PHP 5.5

– openssl_pkcs7_encrypt()

∗ Openssl Encrypt Default Algorithm Change

– openssl_pkey_derive()

∗ New Functions In PHP 7.3

– openssl_pkey_new()

∗ PHP 8.0 Resources Turned Into Objects

– openssl_random_pseudo_bytes()

∗ Random Without Try

∗ Use random_int()

– openssl_spki_export()

∗ New Functions In PHP 5.6

– openssl_spki_export_challenge()

∗ New Functions In PHP 5.6

– openssl_spki_new()

∗ New Functions In PHP 5.6

– openssl_spki_verify()

∗ New Functions In PHP 5.6

– openssl_x509_fingerprint()

∗ New Functions In PHP 5.6

14.4. Directory by PHP Function 1965

Exakat Documentation, Release 1

– openssl_x509_read()

∗ PHP 8.0 Resources Turned Into Objects

– ord()

∗ Mono Or Multibytes Favorite

– override

∗ Final Class Usage

∗ Final Methods Usage

• P

– PARENT

∗ Use Lower Case For Parent, Static And Self

– PASSWORD_ARGON2I

∗ Argon2 Usage

– PASSWORD_ARGON2_DEFAULT_THREADS

∗ Argon2 Usage

– PASSWORD_ARGON2_DEFAULT_TIME_COST

∗ Argon2 Usage

– PASSWORD_DEFAULT

∗ Use password_hash()

– PATHINFO_BASENAME

∗ Use pathinfo() Arguments

– PATHINFO_DIRNAME

∗ Use pathinfo() Arguments

– PDO

∗ Don’t Be Too Manual

∗ Should Use Prepared Statement

∗ ext/pdo

– PHP_EOL

∗ Compare Hash

∗ Constants Usage

∗ Don’t Change The Blind Var

∗ File Uploads

∗ Final Class Usage

∗ Final Methods Usage

∗ Joining file()

∗ Mono Or Multibytes Favorite

∗ New Line Style

1966 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Next Month Trap

∗ PHP 7.1 Scalar Typehints

∗ PHP Constant Usage

∗ PHP Handlers Usage

∗ Restrict Global Usage

∗ Same Variable Foreach

∗ Should Have Destructor

∗ Should Use Url Query Functions

∗ Should Yield With Key

∗ Useless Instructions

∗ Variable Is Not A Condition

∗ ext/amqp

∗ ext/apc

∗ ext/array

∗ ext/crypto

∗ ext/date

∗ ext/db2

∗ ext/dba

∗ ext/enchant

∗ ext/ev

∗ ext/event

∗ ext/expect

∗ ext/file

∗ ext/fileinfo

∗ ext/filter

∗ ext/gearman

∗ ext/gender

∗ ext/gmp

∗ ext/iconv

∗ ext/imap

∗ ext/judy

∗ ext/libxml

∗ ext/math

∗ ext/mcrypt

∗ ext/mongo

∗ ext/ncurses

14.4. Directory by PHP Function 1967

Exakat Documentation, Release 1

∗ ext/oci8

∗ ext/parle

∗ ext/reflection

∗ ext/sdl

∗ ext/sockets

∗ ext/spl

∗ ext/standard

∗ ext/xdiff

∗ ext/xhprof

∗ ext/zip

– PHP_INT_MAX

∗ Manipulates INF

– PHP_OS

∗ Multiple Constant Definition

∗ PHP Handlers Usage

– PHP_SHLIB_SUFFIX

∗ Dl() Usage

∗ Dynamic Library Loading

∗ ext/vips

– PHP_VERSION

∗ Custom Constant Usage

∗ Is CLI Script

∗ Is Global Constant

∗ PHP Handlers Usage

∗ Redeclared PHP Functions

∗ Use Constant Instead Of Function

– PREG_JIT_STACKLIMIT_ERROR

∗ Use Constants As Returns

– PREG_NO_ERROR

∗ Use Constants As Returns

– PREG_SET_ORDER

∗ preg_match_all() Flag

– PREG_SPLIT_NO_EMPTY

∗ No mb_substr In Loop

– PSPELL_FAST

∗ PHP 8.1 Resources Turned Into Objects

1968 Chapter 14. Rules

Exakat Documentation, Release 1

– PSPELL_RUN_TOGETHER

∗ PHP 8.1 Resources Turned Into Objects

– Parent

∗ Avoid Self In Interface

∗ Parent, Static Or Self Outside Class

∗ Set Class Method Remote Definition

– ParseError

∗ eval() Without Try

– Pdo

∗ Set Aside Code

– Phar

∗ Can’t Disable Class

∗ ext/phar

– pack()

∗ Invalid Pack Format

∗ Pack Format Inventory

∗ Inventory

– parent

∗ Abstract Class Constants

∗ Abstract Static Methods

∗ Already Parents Trait

∗ Avoid Self In Interface

∗ Cancel Common Method

∗ Class Without Parent

∗ Collect Class Depth

∗ Constant Used Below

∗ Could Be Abstract Class

∗ Could Be Parent Method

∗ Could Use __DIR__

∗ Cyclic References

∗ Defined Class Constants

∗ Defined Parent MP

∗ Different Constructors

∗ Disconnected Classes

∗ Empty Function

∗ Fossilized Method

14.4. Directory by PHP Function 1969

Exakat Documentation, Release 1

∗ Fossilized Methods List

∗ Identical Methods

∗ Incompatible Signature Methods

∗ Incompatible Signature Methods With Covariance

∗ Is Upper Family

∗ Locally Unused Property

∗ Method Used Below

∗ Mismatch Properties Typehints

∗ Multiple Identical Trait Or Interface

∗ Must Call Parent Constructor

∗ Never Used Properties

∗ Override

∗ Overwritten Class Constants

∗ Overwritten Constant

∗ PHP7 Dirname

∗ Parent First

∗ Parent Is Not Static

∗ Parent, Static Or Self Outside Class

∗ Property Used Above

∗ Property Used Below

∗ Redefined Property

∗ Repeated Interface

∗ Set Chaining Exception

∗ Set Parent Definition

∗ Should Use Local Class

∗ Too Many Children

∗ Type Dodging

∗ Typed Class Constants Usage

∗ Undefined Class Constants

∗ Undefined Parent

∗ Undefined static:: Or self::

∗ Unreachable Method

∗ Unresolved Classes

∗ Unused Interfaces

∗ Unused Parameter

∗ Use Contravariance

1970 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Use Covariance

∗ Use Lower Case For Parent, Static And Self

∗ Used Once Variables (In Scope)

∗ Used Protected Method

∗ Useless Constant Overwrite

∗ Useless Constructor

∗ Useless Method

∗ ext/pcntl

∗ self, parent, static Outside Class

∗ Set Typehints

– parse_ini_file()

∗ Directly Use File

∗ Use Constant As Arguments

– parse_ini_string()

∗ Directly Use File

∗ Use Constant As Arguments

– parse_str()

∗ $this Belongs To Classes Or Traits

∗ Mono Or Multibytes Favorite

∗ PHP 7.2 Deprecations

∗ Register Globals

∗ Should Use Url Query Functions

∗ parse_str() Warning

– parse_url()

∗ Pathinfo() Returns May Vary

∗ Should Use Url Query Functions

∗ Use Constant As Arguments

– passthru()

∗ Must Call Parent Constructor

– password_algos()

∗ New Functions In PHP 7.4

– password_get_info()

∗ New Functions In PHP 5.5

– password_hash()

∗ Compare Hash

∗ New Functions In PHP 5.5

14.4. Directory by PHP Function 1971

Exakat Documentation, Release 1

∗ Use password_hash()

∗ ext/password

– password_needs_rehash()

∗ New Functions In PHP 5.5

– password_verify()

∗ Compare Hash

∗ New Functions In PHP 5.5

– pathinfo()

∗ Pathinfo() Returns May Vary

∗ Use Constant As Arguments

∗ Use Pathinfo

∗ Use pathinfo() Arguments

– pcntl_fork()

∗ ext/pcntl

– pcntl_getpriority()

∗ Strpos()-like Comparison

– pdo

∗ Don’t Be Too Manual

– pg_connect()

∗ PHP 8.1 Resources Turned Into Objects

– pg_escape_identifier()

∗ New Functions In PHP 5.5

– pg_escape_literal()

∗ New Functions In PHP 5.5

– pg_lo_create()

∗ PHP 8.1 Resources Turned Into Objects

– pg_pconnect()

∗ PHP 8.1 Resources Turned Into Objects

– pg_query()

∗ PHP 8.1 Resources Turned Into Objects

– pg_result_status()

∗ Use Constant As Arguments

– pg_select()

∗ Use Constant As Arguments

– phar

∗ Can’t Disable Class

1972 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Use Basename Suffix

∗ ext/phar

– php_logo_guid()

∗ Functions Removed In PHP 5.5

– php_sapi_name()

∗ Use Constant Instead Of Function

– php_user_filter

∗ PHP Native Interfaces and Return Type

– php_version

∗ Should Use Operator

∗ Use Constant Instead Of Function

– phpcredits()

∗ Use Constant As Arguments

– phpinfo()

∗ Eval() Usage

∗ Phpinfo

∗ Use Constant As Arguments

– phpversion()

∗ Use Constant Instead Of Function

– pi()

∗ Use Constant Instead Of Function

– posix_access()

∗ Use Constant As Arguments

– posix_fpathconf()

∗ New Functions In PHP 8.3

– posix_get_last_error()

∗ ext/posix

– posix_pathconf()

∗ New Functions In PHP 8.3

– posix_setrlimit()

∗ New Functions In PHP 7.0

– posix_setsid()

∗ ext/pcntl

– posix_sysconf()

∗ New Functions In PHP 8.3

– pow()

14.4. Directory by PHP Function 1973

Exakat Documentation, Release 1

∗ ** For Exponent

∗ Negative Power

– preg_filter()

∗ Regex On Arrays

– preg_grep()

∗ Regex On Arrays

∗ Use Constant As Arguments

– preg_last_error()

∗ Use Constants As Returns

– preg_last_error_msg()

∗ New Functions In PHP 8.0

– preg_match()

∗ Regex Delimiter

∗ Regex Inventory

∗ Results May Be Missing

∗ Strpos()-like Comparison

∗ Use Constant As Arguments

– preg_match_all()

∗ Php Native Reference Variable

∗ Regex Delimiter

∗ preg_match_all() Flag

– preg_replace()

∗ Make One Call With Array

∗ Possible Missing Subpattern

∗ Processing Collector

∗ Regex Delimiter

∗ Regex Inventory

∗ Slow Functions

∗ preg_replace With Option e

– preg_replace_callback()

∗ Make One Call With Array

∗ Regex Delimiter

∗ Regex On Arrays

∗ preg_replace With Option e

– preg_replace_callback_array()

∗ Make One Call With Array

1974 Chapter 14. Rules

Exakat Documentation, Release 1

∗ New Functions In PHP 7.0

∗ Regex Delimiter

∗ Regex On Arrays

∗ preg_replace With Option e

– preg_split()

∗ No mb_substr In Loop

∗ Optimize Explode()

∗ Use Constant As Arguments

– prev()

∗ Strpos()-like Comparison

– print()

∗ Property Export

– print_r()

∗ Use Debug

∗ var_dump(). . . Usage

– printf()

∗ Echo Or Print

∗ Printf Format Inventory

∗ Printf Number Of Arguments

∗ Sprintf Format Compilation

∗ ext/ffi

∗ Inventory

– proc_nice()

∗ New Functions In PHP 7.2

– proc_open()

∗ Shell commands

– property_exists()

∗ Checks Property Existence

– pspell_config_create()

∗ PHP 8.1 Resources Turned Into Objects

– pspell_new()

∗ PHP 8.1 Resources Turned Into Objects

– pspell_new_config()

∗ PHP 8.1 Resources Turned Into Objects

– pspell_new_personal()

∗ PHP 8.1 Resources Turned Into Objects

14.4. Directory by PHP Function 1975

Exakat Documentation, Release 1

• R

– Randomizer

∗ Random extension

– RarArchive

∗ ext/rar

– RecursiveFilterIterator

∗ PHP Native Class Type Compatibility

– Reflection

∗ Reflection Export() Is Deprecated

∗ ext/reflection

– ReflectionClassConstant

∗ Php 7.1 New Class

– ReflectionFunction

∗ Reflection Export() Is Deprecated

∗ ext/reflection

– Reflector

∗ Reflection Export() Is Deprecated

– ResourceBundle

∗ Sylius usage

– ReturnTypeWillChange

∗ PHP Native Class Type Compatibility

∗ PHP Native Interfaces and Return Type

– RuntimeException

∗ Caught Variable

∗ Defined Exceptions

∗ Multiple Catch

∗ Resources Usage

∗ Throw Functioncall

– rand()

∗ Constant Dynamic Creation

∗ Only Variable Returned By Reference

∗ Too Many Chained Calls

∗ Use random_int()

– random_bytes()

∗ New Functions In PHP 7.0

∗ Random Without Try

1976 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Use random_int()

– random_int()

∗ Abstract Away

∗ New Functions In PHP 7.0

∗ Random Without Try

∗ Use random_int()

– randomizer

∗ Random extension

– readdir()

∗ Strpos()-like Comparison

– readfile()

∗ Joining file()

– readline_info()

∗ ext/readline

– reflection

∗ Reflection Export() Is Deprecated

∗ ext/reflection

– register_shutdown_function()

∗ Callback Function Needs Return

∗ Definitions Only

– register_tick_function()

∗ Callback Function Needs Return

∗ Ticks Usage

– restore_include_path()

∗ PHP 7.4 Removed Functions

∗ PHP 8.0 Removed Functions

∗ PHP 8.1 Removed Functions

– result

∗ ** For Exponent

∗ Assign And Lettered Logical Operator Precedence

∗ Cache Variable Outside Loop

∗ Casting Ternary

∗ Check After Null Safe Operator

∗ Check Division By Zero

∗ Collect Classes Dependencies

∗ Compared Comparison

14.4. Directory by PHP Function 1977

Exakat Documentation, Release 1

∗ Comparison On Different Types

∗ Constant Scalar Expressions

∗ Could Use Null-Safe Object Operator

∗ Crc32() Might Be Negative

∗ Don’t Be Too Manual

∗ Don’t Collect Void

∗ Don’t Echo Error

∗ Don’t Unset Properties

∗ Double Instructions

∗ Empty With Expression

∗ Foreach Needs Reference Array

∗ Function Subscripting

∗ Identical Consecutive Expression

∗ Identical On Both Sides

∗ Implied If

∗ Joining file()

∗ Large Try Block

∗ Law of Demeter

∗ Logical To in_array

∗ Methodcall On New

∗ Mismatched Ternary Alternatives

∗ No Null With Null Safe Operator

∗ No Valid Cast

∗ No get_class() With Null

∗ Possible Infinite Loop

∗ Possible Missing Subpattern

∗ Property Export

∗ Self-Transforming Variables

∗ Strpos()-like Comparison

∗ Substring First

∗ Too Many Chained Calls

∗ Upload Filename Injection

∗ Use PHP Object API

∗ Useless Instructions

∗ Usort Sorting In PHP 7.0

∗ Wordpress usage

1978 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Written Only Variables

∗ ext/gearman

∗ ext/gender

∗ ext/ldap

∗ ext/mongodb

∗ ext/mysql

∗ ext/mysqli

∗ ext/pgsql

∗ ext/sockets

∗ ext/sphinx

∗ ext/sqlite

∗ ext/svm

∗ ext/xsl

∗ isset() With Constant

∗ preg_match_all() Flag

– round()

∗ Do Not Cast To Int

∗ Use Constant As Arguments

– rsort()

∗ Use Constant As Arguments

– rtrim()

∗ Substr To Trim

• S

– SCANDIR_SORT_NONE

∗ Avoid glob() Usage

– SDL_GetError()

∗ ext/sdl

– SDL_INIT_VIDEO

∗ ext/sdl

– SDL_Quit()

∗ ext/sdl

– SELF

∗ Use Lower Case For Parent, Static And Self

– SIGHUP

∗ ext/pcntl

– SIGKILL

14.4. Directory by PHP Function 1979

Exakat Documentation, Release 1

∗ ext/posix

– SIGTERM

∗ ext/pcntl

– SNMP

∗ ext/snmp

– SOAP_1_2

∗ ext/soap

– SOCK_STREAM

∗ ext/sockets

– SOL_TCP

∗ ext/sockets

– SORT_FLAG_CASE

∗ Use Constant As Arguments

– SORT_LOCALE_STRING

∗ Use Constant As Arguments

– SORT_NATURAL

∗ Use Constant As Arguments

– SORT_NUMERIC

∗ Use Constant As Arguments

– SORT_REGULAR

∗ Use Constant As Arguments

– SORT_STRING

∗ Use Constant As Arguments

– SQLITE3_ASSOC

∗ Fetch One Row Format

– SQLITE3_BOTH

∗ Fetch One Row Format

– SQLITE3_NUM

∗ Fetch One Row Format

– SQLite3

∗ Queries In Loops

∗ ext/sqlite3

– STDERR

∗ ext/sdl

– Secure

∗ Random extension

1980 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Should Use SetCookie()

– Self

∗ Avoid Self In Interface

– SensitiveParameter

∗ Indirect Injection

∗ PHP Native Attributes

– SessionHandlerInterface

∗ PHP Native Interfaces and Return Type

∗ Session Lazy Write

– SessionUpdateTimestampHandlerInterface

∗ PHP 7.0 New Interfaces

∗ Session Lazy Write

– Shmop

∗ ext/shmop

– SimpleXMLElement

∗ ext/simplexml

– SoapClient

∗ ext/soap

– Socket

∗ No Initial S In Variable Names

∗ ext/0mq

∗ ext/sockets

– SplFileObject

∗ Must Call Parent Constructor

– SplQueue

∗ PHP 7.2 Scalar Typehints

– Sqlite3

∗ Don’t Use The Type As Variable Name

∗ Fetch One Row Format

∗ Set Aside Code

∗ ext/sqlite3

– Static

∗ $this Is Not For Static Methods

∗ Abstract Static Methods

∗ Assign Default To Properties

∗ Cannot Call Static Trait Method Directly

14.4. Directory by PHP Function 1981

Exakat Documentation, Release 1

∗ Closure Could Be A Callback

∗ Collect Local Variable Counts

∗ Create Magic Method

∗ Declare Global Early

∗ Function With Dynamic Code

∗ Inherited Static Variable

∗ Magic Properties

∗ No Reference For Static Property

∗ Non Static Methods Called In A Static

∗ Normal Methods

∗ Parent, Static Or Self Outside Class

∗ Real Variables

∗ Redeclared Static Variable

∗ Set Class Method Remote Definition

∗ Should Be Single Quote

∗ Should Use Local Class

∗ Static Call May Be Truly Static

∗ Static Loop

∗ Static Methods Called From Object

∗ Static Methods Can’t Contain $this

∗ Static Variable Can Default To Arbitrary Expression

∗ Static Variable In Namespace

∗ Static Variable Initialisation

∗ Used Once Variables (In Scope)

∗ Wrong Access Style to Property

∗ ext/reflection

– StdClass

∗ Array_Fill() With Objects

∗ PHP 7.2 Scalar Typehints

– Stdclass

∗ Avoid get_class()

∗ Could Use array_fill_keys

∗ Global Import

∗ Is An Extension Class

∗ Missing Parenthesis

∗ Should Deep Clone

1982 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Unresolved Catch

∗ array_key_exists() Works On Arrays

– Stringable

∗ Could Be Stringable

– Strtr()

∗ Strtr Arguments

– Substr()

∗ Drop Substr Last Arg

– Switch()

∗ Missing Cases In Switch

∗ Simple Switch And Match

– scandir()

∗ Avoid glob() Usage

∗ Use Constant As Arguments

– secure

∗ Avoid Those Hash Functions

∗ Session Lazy Write

∗ Set Cookie Safe Arguments

∗ Use random_int()

∗ ext/libsodium

∗ ext/password

∗ ext/scrypt

∗ ext/xxtea

– self

∗ $this Is Not For Static Methods

∗ Abstract Static Methods

∗ Array Access On Literal Array

∗ Avoid Large Array Assignation

∗ Avoid Self In Interface

∗ Const With Array

∗ Constant Class

∗ Constant Used Below

∗ Could Be Private Class Constant

∗ Could Be Protected Class Constant

∗ Could Use self

∗ Defined Class Constants

14.4. Directory by PHP Function 1983

Exakat Documentation, Release 1

∗ Defined static:: Or self::

∗ Deprecated Callable

∗ Detect Current Class

∗ Feast usage

∗ Is Not Class Family

∗ Method Could Be Static

∗ No Self Referencing Constant

∗ No Static Variable In A Method

∗ Overwritten Class Constants

∗ Parent, Static Or Self Outside Class

∗ Php7 Relaxed Keyword

∗ Property Cannot Be Readonly

∗ Property Used In One Method Only

∗ Self Using Trait

∗ Should Use Math

∗ Solve Trait Constants

∗ Static Call With Self

∗ Static Methods Can’t Contain $this

∗ Static Methods Cannot Call Non-Static Methods

∗ Undefined static:: Or self::

∗ Unused Class Constant

∗ Unused Methods

∗ Unused Private Methods

∗ Upload Filename Injection

∗ Use Lower Case For Parent, Static And Self

∗ Used Once Property

∗ Used Private Methods

∗ Wrong Access Style to Property

∗ ext/pcov

∗ self, parent, static Outside Class

∗ strip_tags() Skips Closed Tag

– sem_get()

∗ PHP 8.0 Resources Turned Into Objects

– session_register_shutdown()

∗ New Functions In PHP 5.4

– session_start()

1984 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Should Use session_regenerateid()

∗ Use session_start() Options

∗ ext/session

– session_status()

∗ New Functions In PHP 5.4

– set_error_handler()

∗ Avoid set_error_handler $context Argument

∗ Definitions Only

∗ PHP Handlers Usage

– set_exception_handler()

∗ set_exception_handler() Warning

– set_magic_quotes_runtime()

∗ PHP 7.0 Removed Functions

– setcookie()

∗ Set Cookie Safe Arguments

∗ Should Use SetCookie()

∗ Use Cookies

– setlocale()

∗ Collect SetLocale

∗ Setlocale() Uses Constants

– setrawcookie()

∗ Set Cookie Safe Arguments

∗ Should Use SetCookie()

∗ Use Cookies

– settype()

∗ Should Typecast

– sha1()

∗ Directly Use File

– sha1_file()

∗ Directly Use File

– shell_exec()

∗ Missing Some Returntype

∗ Shell Favorite

∗ Shell commands

∗ Preferences

– shm_attach()

14.4. Directory by PHP Function 1985

Exakat Documentation, Release 1

∗ PHP 8.0 Resources Turned Into Objects

– shmop

∗ ext/shmop

– shmop_open()

∗ PHP 8.0 Resources Turned Into Objects

– show_source()

∗ Directly Use File

– simplexml_load_file()

∗ Directly Use File

– simplexml_load_string()

∗ Directly Use File

– sizeof()

∗ Useless Check

– sleep()

∗ Avoid sleep()/usleep()

– snmp

∗ ext/snmp

– socket

∗ No Weak SSL Crypto

∗ ext/event

∗ ext/sockets

∗ ext/varnish

– socket_accept()

∗ PHP 8.0 Resources Turned Into Objects

– socket_addrinfo_bind()

∗ PHP 8.0 Resources Turned Into Objects

– socket_addrinfo_connect()

∗ PHP 8.0 Resources Turned Into Objects

– socket_atmark()

∗ New Functions In PHP 8.3

– socket_cmsg_space()

∗ New Functions In PHP 5.5

– socket_connect()

∗ ext/sockets

– socket_create()

∗ PHP 8.0 Resources Turned Into Objects

1986 Chapter 14. Rules

Exakat Documentation, Release 1

∗ ext/sockets

– socket_create_listen()

∗ PHP 8.0 Resources Turned Into Objects

– socket_import_stream()

∗ New Functions In PHP 5.4

∗ PHP 8.0 Resources Turned Into Objects

– socket_last_error()

∗ ext/sockets

– socket_read()

∗ Use Constant As Arguments

– socket_recvmsg()

∗ New Functions In PHP 5.5

– socket_sendmsg()

∗ New Functions In PHP 5.5

– sodium_crypto_core_ristretto255_add()

∗ New Functions In PHP 8.1

– sodium_crypto_core_ristretto255_from_hash()

∗ New Functions In PHP 8.1

– sodium_crypto_core_ristretto255_is_valid_point()

∗ New Functions In PHP 8.1

– sodium_crypto_core_ristretto255_random()

∗ New Functions In PHP 8.1

– sodium_crypto_core_ristretto255_scalar_add()

∗ New Functions In PHP 8.1

– sodium_crypto_core_ristretto255_scalar_complement()

∗ New Functions In PHP 8.1

– sodium_crypto_core_ristretto255_scalar_invert()

∗ New Functions In PHP 8.1

– sodium_crypto_core_ristretto255_scalar_mul()

∗ New Functions In PHP 8.1

– sodium_crypto_core_ristretto255_scalar_negate()

∗ New Functions In PHP 8.1

– sodium_crypto_core_ristretto255_scalar_random()

∗ New Functions In PHP 8.1

– sodium_crypto_core_ristretto255_scalar_reduce()

∗ New Functions In PHP 8.1

14.4. Directory by PHP Function 1987

Exakat Documentation, Release 1

– sodium_crypto_core_ristretto255_scalar_sub()

∗ New Functions In PHP 8.1

– sodium_crypto_core_ristretto255_sub()

∗ New Functions In PHP 8.1

– sodium_crypto_scalarmult_ristretto255()

∗ New Functions In PHP 8.1

– sodium_crypto_scalarmult_ristretto255_base()

∗ New Functions In PHP 8.1

– sodium_crypto_stream_xchacha20()

∗ New Functions In PHP 8.1

– sodium_crypto_stream_xchacha20_keygen()

∗ New Functions In PHP 8.1

– sodium_crypto_stream_xchacha20_xor()

∗ New Functions In PHP 8.1

– sodium_crypto_stream_xchacha20_xor_ic()

∗ New Functions In PHP 8.2

– sort()

∗ Collect Compared Literals

∗ Php Native Reference Variable

∗ Use Constant As Arguments

– spl_autoload_register()

∗ Definitions Only

– sprintf()

∗ Printf Format Inventory

∗ Sprintf Format Compilation

– sqlite3

∗ Don’t Use The Type As Variable Name

∗ Set Aside Code

– sqlsrv_errors()

∗ ext/sqlsrv

– srand()

∗ Use random_int()

– sscanf()

∗ Sprintf Format Compilation

– static

∗ $this Belongs To Classes Or Traits

1988 Chapter 14. Rules

Exakat Documentation, Release 1

∗ $this Is Not For Static Methods

∗ Abstract Static Methods

∗ Ambiguous Static

∗ An OOP Factory

∗ Avoid Large Array Assignation

∗ Calling Static Trait Method

∗ Can’t Instantiate Class

∗ Cannot Call Static Trait Method Directly

∗ Cannot Use Static For Closure

∗ Cant Use Return Value In Write Context

∗ Class Invasion

∗ Class Usage

∗ Closure Could Be A Callback

∗ Collect Classes Dependencies

∗ Collect Definitions Statistics

∗ Constant Conditions

∗ Constant Dynamic Creation

∗ Constant Order

∗ Constant Scalar Expressions

∗ Could Be A Static Variable

∗ Could Be Static Closure

∗ Could Be Typehinted Callable

∗ Create Foreach Default

∗ Declare Global Early

∗ Declare Static Once

∗ Defined Parent MP

∗ Defined static:: Or self::

∗ Dependant Abstract Classes

∗ Dependant Trait

∗ Detect Current Class

∗ Don’t Send $this In Constructor

∗ Don’t Unset Properties

∗ Dynamic Calls

∗ Dynamic Classes

∗ Dynamic Library Loading

∗ Dynamic Methodcall

14.4. Directory by PHP Function 1989

Exakat Documentation, Release 1

∗ Dynamic Property

∗ Enum Case Values

∗ File Is Not Definitions Only

∗ Foreach Needs Reference Array

∗ Forgotten Visibility

∗ Fuel PHP Usage

∗ Global Inside Loop

∗ Inherited Static Variable

∗ Is Not Class Family

∗ Is Upper Family

∗ Magic Visibility

∗ Make All Statics

∗ Method Could Be Static

∗ Mismatch Type And Default

∗ Modified Typed Parameter

∗ New Initializers

∗ No Direct Call To Magic Method

∗ No Hardcoded Hash

∗ No Literal For Reference

∗ No Need For get_class()

∗ No Net For Xml Load

∗ No Reference For Static Property

∗ No Return Used

∗ No Static Variable In A Method

∗ Non Static Methods Called In A Static

∗ Normal Methods

∗ Only Static Methods Class

∗ Only Variable For Reference

∗ Only Variable Passed By Reference

∗ Only Variable Returned By Reference

∗ Order Of Declaration

∗ Override

∗ Overwritten Class Constants

∗ Parent, Static Or Self Outside Class

∗ Php 8.0 Variable Syntax Tweaks

∗ Property Names

1990 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Property Used In One Method Only

∗ Real Variables

∗ Redeclared Static Variable

∗ Reserved Match Keyword

∗ Scope Resolution Operator

∗ Set Array Class Definition

∗ Set Class Remote Definition With Typehint

∗ Should Have Destructor

∗ Should Use Local Class

∗ Solve Trait Constants

∗ Static Call May Be Truly Static

∗ Static Call With Self

∗ Static Global Variables Confusion

∗ Static Inclusions

∗ Static Loop

∗ Static Methods

∗ Static Methods Called From Object

∗ Static Methods Can’t Contain $this

∗ Static Methods Cannot Call Non-Static Methods

∗ Static Properties

∗ Static Variable Can Default To Arbitrary Expression

∗ Static Variable In Namespace

∗ Static Variable Initialisation

∗ Static Variables

∗ Too Many Chained Calls

∗ Too Many Dereferencing

∗ Too Many Local Variables

∗ Traits Usage

∗ Typed Class Constants Usage

∗ Unbinding Closures

∗ Undefined Variable

∗ Undefined static:: Or self::

∗ Unsupported Operand Types

∗ Unused Class Constant

∗ Unused Private Methods

∗ Unused Private Properties

14.4. Directory by PHP Function 1991

Exakat Documentation, Release 1

∗ Use ::Class Operator

∗ Use Arrow Functions

∗ Use Lower Case For Parent, Static And Self

∗ Use PHP7 Encapsed Strings

∗ Use This

∗ Use class_alias()

∗ Used Classes

∗ Used Once Variables

∗ Used Private Methods

∗ Used Static Properties

∗ Useless Abstract Class

∗ Useless Null Coalesce

∗ Useless Unset

∗ Using $this Outside A Class

∗ Wrong Access Style to Property

∗ Wrong Type Returned

∗ ext/ffi

∗ ext/reflection

∗ ext/xdebug

∗ self, parent, static Outside Class

∗ Make Static Closures And Arrow Functions

∗ Remove Static From Closures And Arrow Functions

∗ Rename Class

∗ Rename Class

∗ Rename Class

∗ Rename Enums

∗ Rename Interface

∗ Rename Methodcall

∗ Rename Property

∗ Coding conventions

– stdClass

∗ Aliases

∗ Avoid Using stdClass

∗ Cant Inherit Abstract Method

∗ Extends stdClass

∗ New On Functioncall Or Identifier

1992 Chapter 14. Rules

Exakat Documentation, Release 1

∗ No Object As Index

∗ Objects Don’t Need References

∗ Return Typehint Usage

∗ Scope Resolution Operator

∗ class_alias() Supports Internal Classes

∗ ext/memcache

∗ get_class() Without Argument

– stdclass

∗ Extends stdClass

– str_contains()

∗ Logical To in_array

∗ New Functions In PHP 8.0

∗ Strpos()-like Comparison

∗ Use str_contains()

– str_ends_with()

∗ Use str_ends_with()

– str_ireplace()

∗ Make One Call With Array

– str_pad()

∗ Could Use str_repeat()

∗ Use Constant As Arguments

– str_repeat()

∗ Could Use str_repeat()

– str_replace()

∗ Make One Call With Array

– str_split()

∗ No Empty String With explode()

∗ Substr() In Loops

– str_starts_with()

∗ Use str_starts_with()

– stream_isatty()

∗ New Functions In PHP 7.2

– stream_select()

∗ ext/inotify

– stream_set_blocking()

∗ ext/inotify

14.4. Directory by PHP Function 1993

Exakat Documentation, Release 1

– stream_set_chunk_size()

∗ New Functions In PHP 5.4

– stream_socket_client()

∗ Use Constant As Arguments

– stream_socket_enable_crypto()

∗ No Weak SSL Crypto

– stream_socket_server()

∗ @ Operator

∗ Use Constant As Arguments

– strftime()

∗ Date Formats

∗ date() versus DateTime Preference

– strip_tags()

∗ strip_tags() Skips Closed Tag

– stripos()

∗ Mono Or Multibytes Favorite

∗ Simplify Regex

∗ Strpos() Less Than One

∗ Strpos()-like Comparison

∗ Use str_contains()

∗ strpos() Too Much

– stristr()

∗ Mono Or Multibytes Favorite

– strlen()

∗ Always Positive Comparison

∗ Mono Or Multibytes Favorite

∗ No Count With 0

– strpos()

∗ Could Use strcontains()

∗ Logical To in_array

∗ Mono Or Multibytes Favorite

∗ Simplify Regex

∗ Slow Functions

∗ Strpos() Less Than One

∗ Strpos()-like Comparison

∗ Use str_contains()

1994 Chapter 14. Rules

Exakat Documentation, Release 1

∗ strpos() Too Much

∗ strpos() With Integers

– strptime()

∗ date() versus DateTime Preference

– strrchr()

∗ Mono Or Multibytes Favorite

– strripos()

∗ Mono Or Multibytes Favorite

∗ Strpos()-like Comparison

– strrpos()

∗ Mono Or Multibytes Favorite

∗ Strpos()-like Comparison

– strstr()

∗ Mono Or Multibytes Favorite

∗ Slow Functions

– strtok()

∗ Strpos()-like Comparison

– strtolower()

∗ Mono Or Multibytes Favorite

∗ Only Variable Passed By Reference

∗ Overload Existing Names

– strtotime()

∗ Incoming Date Formats

∗ Next Month Trap

∗ date() versus DateTime Preference

∗ time() Vs strtotime()

– strtoupper()

∗ Closure Could Be A Callback

∗ Mono Or Multibytes Favorite

∗ Overload Existing Names

∗ Wrong Number Of Arguments

– strtr()

∗ Strtr Arguments

– strval()

∗ Concat Empty String

– substr()

14.4. Directory by PHP Function 1995

Exakat Documentation, Release 1

∗ Avoid Substr() One

∗ Failed Substr() Comparison

∗ Mono Or Multibytes Favorite

∗ No List With String

∗ No mb_substr In Loop

∗ Substr To Trim

∗ Substr() In Loops

∗ Substring First

∗ Use Basename Suffix

∗ Use array_slice()

∗ Wrong Parameter Type

∗ strpos() Too Much

– substr_count()

∗ Mono Or Multibytes Favorite

– substr_replace()

∗ Make One Call With Array

– switch()

∗ Bracketless Blocks

∗ Break Outside Loop

∗ Collect Compared Literals

∗ Could Use Match

∗ Identical Case In Switch

∗ Logical To in_array

∗ Missing Cases In Switch

∗ Multiline Expressions

∗ Multiple Type Cases In Switch

∗ Strict Comparison With Booleans

∗ Switch To Switch

∗ Switch With Too Many Default

∗ Switch Without Default

∗ Too Many Stringed Elseif

∗ Use The Case Value

∗ Switch To Match

– sys_get_temp_dir()

∗ No Hardcoded Path

∗ Use System Tmp

1996 Chapter 14. Rules

Exakat Documentation, Release 1

– system()

∗ Shell commands

• T

– TRUE

∗ Assertions

∗ Constant Conditions

∗ Missing __isset() Method

∗ True False Inconsistant Case

∗ Use PHP Object API

∗ ext/event

∗ ext/xmlwriter

∗ ext/zip

– T_COMMENT

∗ ext/tokenizer

– T_DOC_COMMENT

∗ ext/tokenizer

– T_STRING

∗ Constants Usage

– Throwable

∗ Can’t Throw Throwable

∗ Empty Try Catch

∗ No Object As Index

∗ PHP 7.0 New Interfaces

∗ Set Chaining Exception

∗ Try With Finally

∗ Useless Catch

∗ ext/uopz

∗ set_exception_handler() Warning

– Tidy

∗ ext/tidy

– Traversable

∗ Can’t Implement Traversable

– True

∗ True False Inconsistant Case

– TypeError

∗ Random Without Try

14.4. Directory by PHP Function 1997

Exakat Documentation, Release 1

∗ Unsupported Types With Operators

∗ Use get_debug_type()

– throwable

∗ Can’t Throw Throwable

– tidy

∗ Use PHP Object API

– time()

∗ Conditioned Constants

∗ Date Formats

∗ Reuse Existing Variable

∗ Session Variables

∗ Set Cookie Safe Arguments

∗ Should Use SetCookie()

∗ Timestamp Difference

∗ Use Cookies

∗ Use random_int()

∗ date() versus DateTime Preference

∗ ext/zip

∗ time() Vs strtotime()

– token_get_all()

∗ @ Operator

– track_errors

∗ PHP 8.0 Removed Directives

– trait_exists()

∗ New Functions In PHP 5.4

– transliterator_create()

∗ New Functions In PHP 5.4

– transliterator_create_from_rules()

∗ New Functions In PHP 5.4

– transliterator_create_inverse()

∗ New Functions In PHP 5.4

– transliterator_get_error_code()

∗ New Functions In PHP 5.4

– transliterator_get_error_message()

∗ New Functions In PHP 5.4

– transliterator_list_ids()

1998 Chapter 14. Rules

Exakat Documentation, Release 1

∗ New Functions In PHP 5.4

– transliterator_transliterate()

∗ New Functions In PHP 5.4

– traversable

∗ This Could Be Iterable

∗ Typehint Could Be Iterable

– trigger_error()

∗ Error Messages

∗ Trigger Errors

∗ Use Constant As Arguments

– trim()

∗ Substr To Trim

∗ Substring First

– true

∗ Already Parents Interface

∗ Always Positive Comparison

∗ Ambiguous Array Index

∗ Argument Counts Per Calls

∗ Assert Function Is Reserved

∗ Assign And Compare

∗ Avoid Compare Typed Boolean

∗ Avoid array_push()

∗ Avoid sleep()/usleep()

∗ Cant Use Return Value In Write Context

∗ Case Insensitive Constants

∗ Cast To Boolean

∗ Compare Hash

∗ Confusing Names

∗ Constant Case Preference

∗ Constant Dynamic Creation

∗ Constant Typo Looks Like A Variable

∗ Could Be A Constant

∗ Could Be Boolean

∗ Could Be Constant

∗ Displays Text

∗ Don’t Echo Error

14.4. Directory by PHP Function 1999

Exakat Documentation, Release 1

∗ Don’t Send $this In Constructor

∗ Drop Else After Return

∗ Exit() Usage

∗ Failed Substr() Comparison

∗ For Using Functioncall

∗ Foreach On Object

∗ Implied If

∗ Indices Are Int Or String

∗ Is_A() With String

∗ Logical Mistakes

∗ Logical To in_array

∗ Method Is Not For Fluent Interface

∗ Methodcall On New

∗ Minus One On Error

∗ Multiple Index Definition

∗ Multiples Identical Case

∗ New Functions In PHP 8.1

∗ No Boolean As Default

∗ Null Or Boolean Arrays

∗ PHP 7.1 Microseconds

∗ PHP 8.1 Resources Turned Into Objects

∗ PHP 8.2 New Types

∗ PHP 80 Named Parameter Variadic

∗ PHP Handlers Usage

∗ PHP Native Class Type Compatibility

∗ Php 8.0 Only TypeHints

∗ Possible Infinite Loop

∗ Queries In Loops

∗ Redefined Private Property

∗ Reflection Export() Is Deprecated

∗ Reserved Keywords In PHP 7

∗ Return True False

∗ Safe Curl Options

∗ Semantic Typing

∗ Set Cookie Safe Arguments

∗ Short Or Complete Comparison

2000 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Should Use SetCookie()

∗ StandaloneType True False Null

∗ Strict Comparison With Booleans

∗ Strict In_Array() Preference

∗ String Int Comparison

∗ Too Many Chained Calls

∗ True False Inconsistant Case

∗ Type Must Be Returned

∗ Use Browscap

∗ Use Debug

∗ Use Named Boolean In Argument Definition

∗ Use Same Types For Comparisons

∗ Useless Null Coalesce

∗ Wrong Parameter Type

∗ Wrong Precedence In Expression

∗ ext/exif

∗ ext/mongo

∗ ext/msgpack

∗ ext/pecl_http

∗ ext/pkcs11

∗ ext/sqlsrv

∗ ext/teds

∗ ext/uopz

∗ ext/xmlwriter

∗ ext/xsl

∗ var_dump(). . . Usage

∗ version_compare Operator

• U

– Usort()

∗ Usort Sorting In PHP 7.0

– uasort()

∗ Slow Functions

∗ Usort Sorting In PHP 7.0

– uksort()

∗ Slow Functions

∗ Usort Sorting In PHP 7.0

14.4. Directory by PHP Function 2001

Exakat Documentation, Release 1

– uniqid()

∗ Use random_int()

∗ ext/eio

– unpack()

∗ Invalid Pack Format

∗ Pack Format Inventory

– unserialize()

∗ Unserialize Second Arg

– urlencode()

∗ Should Use Url Query Functions

– usleep()

∗ Avoid sleep()/usleep()

– usort()

∗ Slow Functions

– utf8_decode()

∗ Utf8 Encode And Decode Are Deprecated

– utf8_encode()

∗ Utf8 Encode And Decode Are Deprecated

• V

– ValueError

∗ No Empty String With explode()

– var_dump()

∗ Use Debug

∗ var_dump(). . . Usage

– var_export()

∗ var_dump(). . . Usage

– version_compare()

∗ version_compare Operator

– vfprintf()

∗ Sprintf Format Compilation

– vprintf()

∗ Printf Format Inventory

∗ Printf Number Of Arguments

∗ Sprintf Format Compilation

– vsprintf()

∗ Printf Number Of Arguments

2002 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Sprintf Format Compilation

• W

– WeakReference

∗ Php 7.4 New Classes

– while()

∗ Bracketless Blocks

∗ Break Outside Loop

∗ Minus One On Error

∗ Add Brackets To Single Instructions

∗ Remove Brackets Around Single Instruction

– wordwrap()

∗ ext/mail

• X

– XMLReader

∗ ext/libxml

∗ ext/xmlreader

– XMLWriter

∗ ext/libxml

∗ ext/xmlwriter

– XSLTProcessor

∗ ext/xsl

– xmlWriter

∗ ext/xmlwriter

– xml_parser_create()

∗ PHP 8.0 Resources Turned Into Objects

∗ ext/xml

– xml_parser_create_ns()

∗ PHP 8.0 Resources Turned Into Objects

– xmlreader

∗ ext/xmlreader

– xmlwriter

∗ ext/xmlwriter

– xmlwriter_open_memory()

∗ ext/xmlwriter

• Z

– zend_logo_guid()

14.4. Directory by PHP Function 2003

Exakat Documentation, Release 1

∗ Functions Removed In PHP 5.5

– zend_monitor_pass_error()

∗ ext/zend_monitor

– zlib_decode()

∗ New Functions In PHP 5.4

– zlib_encode()

∗ New Functions In PHP 5.4

• _

– _()

∗ ext/gettext

– __CLASS__

∗ ::class

∗ Detect Current Class

∗ Interpolation

∗ Non Ascii Variables

– __DIR__

∗ Could Use __DIR__

∗ No Hardcoded Path

∗ PHP Sapi

∗ PHP7 Dirname

∗ Static Inclusions

∗ Use PHP7 Encapsed Strings

∗ __DIR__ Then Slash

∗ ext/wasm

– __FILE__

∗ Could Use __DIR__

∗ Magic Constant Usage

∗ No Hardcoded Path

∗ __halt_compiler

∗ ext/fann

∗ ext/grpc

∗ ext/inotify

∗ ext/sem

– __FUNCTION__

∗ Can’t Call Generator

∗ PHP Overridden Function

2004 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Use Const And Functions

– __LINE__

∗ Magic Constant Usage

– __METHOD__

∗ Already Parents Interface

∗ Anonymous Classes

∗ Class Usage

∗ Non Static Methods Called In A Static

∗ Parent Is Not Static

∗ Should Have Destructor

– __NAMESPACE__

∗ Could Use Namespace Magic Constant

– __call

∗ $this Belongs To Classes Or Traits

∗ Check On __Call Usage

∗ Create Magic Method

∗ Has Magic Method

∗ Magic Methods

∗ Must Return Methods

∗ Undefined Methods

∗ Useless Typehint

– __callStatic

∗ Create Magic Method

∗ Has Magic Method

∗ Magic Methods

∗ Must Return Methods

– __clone

∗ Could Be Readonly Property

∗ Direct Call To __clone()

∗ Has Magic Method

∗ Magic Methods

∗ Magic Visibility

∗ No Direct Call To Magic Method

∗ Readonly Property Changed By Cloning

∗ Set Clone Link

∗ Should Deep Clone

14.4. Directory by PHP Function 2005

Exakat Documentation, Release 1

– __construct

∗ Anonymous Classes

∗ Array Access On Literal Array

∗ Assign Default To Properties

∗ Avoid Large Array Assignation

∗ Avoid Optional Properties

∗ Avoid option arrays in constructors

∗ Can’t Instantiate Class

∗ Collect Method Counts

∗ Constructors

∗ Could Be Readonly Property

∗ Could Be Static Closure

∗ Could Set Property Default

∗ Could Use Promoted Properties

∗ Courier Anti-Pattern

∗ Create Default Values

∗ DI Cyclic Dependencies

∗ DateTimeImmutable Is Not Immutable

∗ Dependency Injection

∗ Different Constructors

∗ Don’t Send $this In Constructor

∗ Friend Attribute

∗ Has Magic Method

∗ Illegal Name For Method

∗ Incompatible Types With Incoming Values

∗ Injectable Version

∗ Insufficient Property Typehint

∗ Magic Method Returntype Is Restricted

∗ Make Global A Property

∗ Missing Type In Definition

∗ Must Call Parent Constructor

∗ No Constructor In Interface

∗ No Magic Method For Enum

∗ Non Ascii Variables

∗ Non Nullable Getters

∗ Old Style Constructor

2006 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Parent First

∗ Promoted Properties

∗ Property Cannot Be Readonly

∗ Property Could Be Local

∗ Readonly Property Changed By Cloning

∗ Redefined Default

∗ Scalar Or Object Property

∗ Set Aside Code

∗ Set Chaining Exception

∗ Set Class Method Remote Definition

∗ Should Deep Clone

∗ Should Have Destructor

∗ Should Use Local Class

∗ Signature Trailing Comma

∗ Static Methods Cannot Call Non-Static Methods

∗ Strange Names In Classes

∗ Throw In Destruct

∗ Too Many Injections

∗ Typed Property Usage

∗ Typehints/CouldBeResource

∗ Unfinished Object

∗ Uninitialized Property

∗ Unitialized Properties

∗ Untyped No Default Properties

∗ Useless Assignation Of Promoted Property

∗ Useless Constructor

∗ Useless Return

∗ Wrong Typed Property Default

∗ __toString() Throws Exception

∗ Set Typehints

– __debugInfo

∗ Has Magic Method

∗ Magic Methods

∗ Must Return Methods

∗ __debugInfo() Usage

– __destruct

14.4. Directory by PHP Function 2007

Exakat Documentation, Release 1

∗ Has Magic Method

∗ Magic Method Returntype Is Restricted

∗ Missing Type In Definition

∗ Should Have Destructor

∗ Throw In Destruct

∗ ext/weakref

– __get

∗ Checks Property Existence

∗ Could Not Type

∗ Create Magic Property

∗ Has Magic Method

∗ Is A Magic Property

∗ Magic Methods

∗ Magic Properties

∗ Magic Visibility

∗ Make Magic Concrete

∗ Memoize MagicCall

∗ Missing __isset() Method

∗ Must Return Methods

∗ No Direct Call To Magic Method

∗ No Magic Method With Array

∗ Useless Typehint

∗ Set Typehints

– __invoke

∗ Has Magic Method

∗ Magic Methods

∗ Must Return Methods

– __isset

∗ Checks Property Existence

∗ Has Magic Method

∗ Magic Method Returntype Is Restricted

∗ Magic Methods

∗ Magic Visibility

∗ Missing __isset() Method

∗ Must Return Methods

– __set

2008 Chapter 14. Rules

Exakat Documentation, Release 1

∗ Checks Property Existence

∗ Could Not Type

∗ Create Magic Property

∗ Extends stdClass

∗ Has Magic Method

∗ Magic Method Returntype Is Restricted

∗ Magic Methods

∗ Magic Properties

∗ Magic Visibility

∗ Make Magic Concrete

∗ No Magic Method With Array

∗ Useless Typehint

∗ Set Typehints

– __set_state

∗ Has Magic Method

∗ Magic Methods

∗ Must Return Methods

– __sleep

∗ Has Magic Method

∗ Magic Methods

∗ Must Return Methods

– __toString

∗ Could Be Stringable

∗ Has Magic Method

∗ Interpolation

∗ Magic Method Returntype Is Restricted

∗ Magic Methods

∗ Must Return Methods

∗ No Direct Call To Magic Method

∗ No Valid Cast

∗ Reflection Export() Is Deprecated

∗ Reserved Methods

∗ __toString() Throws Exception

– __tostring

∗ Could Be Stringable

– __unset

14.4. Directory by PHP Function 2009

Exakat Documentation, Release 1

∗ Has Magic Method

∗ Magic Method Returntype Is Restricted

∗ Magic Methods

– __wakeup

∗ Has Magic Method

∗ Magic Methods

14.5 Directory by PHP Features

Exakat links each rules to PHP features.

• $HTTP_RAW_POST_DATA

– $HTTP_RAW_POST_DATA Usage

• $_FILES

– $FILES full_path

– Useless Global

• $_GET

– Useless Global

• $_POST

– Useless Global

• $_REQUEST

– Useless Global

• $_SERVER

– Useless Global

• $argc

– Use Cli

• $argv

– Use Cli

• $php_errormsg

– $php_errormsg Usage

• $this

– $this Belongs To Classes Or Traits

– $this Is Not An Array

– Closure May Use $this

– Coalesce

– Don’t Send $this In Constructor

– Should Use Local Class

2010 Chapter 14. Rules

Exakat Documentation, Release 1

– Static Methods Can’t Contain $this

– Using $this Outside A Class

• Abstract Class

– Insufficient Typehint

• Abstract Keyword

– Abstract Class Constants

– Abstract Class Usage

– Abstract Methods Usage

– Abstract Or Implements

– Abstract Static Methods

– Anonymous Classes

– Cant Inherit Abstract Method

– Could Be Abstract Class

– Could Be Abstract Method

– Dependant Abstract Classes

– Instantiating Abstract Class

– Interfaces Is Not Implemented

– Internet Ports

– Missing Abstract Method

– No Private Abstract Method In Trait

– Order Of Declaration

– Useless Abstract Class

• Abstract Syntactic Tree

– ext/php-ast

• Addition

– Adding Zero

– Concat And Addition

• Alias

– Multiple Alias Definitions Per File

• Alternative Syntax

– Alternative Syntax Consistence

– PHP Alternative Syntax

• Anonymous Class

– Anonymous Classes

– Internet Ports

– Order Of Declaration

14.5. Directory by PHP Features 2011

Exakat Documentation, Release 1

• Arbitrary Number Of Argument

– func_get_arg() Modified

• Argument

– Links Between Parameter And Argument

– Long Arguments

– Unset Arguments

– Useless Referenced Argument

• ArithmeticError Error

– Check Division By Zero

– Could Use Try

• Array

– Ambiguous Array Index

– Array Index

– Array() / [] Consistence

– Array_Fill() With Objects

– Array_Map() Passes By Value

– Array_merge Needs Array Of Arrays

– Avoid Large Array Assignation

– Avoid array_unique()

– Could Be Array Typehint

– Could Cast To Array

– Could Use array_sum()

– Empty Slots In Arrays

– False To Array Conversion

– Float Conversion As Index

– Getting Last Element

– Indices Are Int Or String

– Mass Creation Of Arrays

– Mistaken Concatenation

– Mixed Keys In Array

– Multidimensional Arrays

– Multiple Index Definition

– No Spread For Hash

– Non-constant Index In Array

– Null Or Boolean Arrays

– PHP Arrays Index

2012 Chapter 14. Rules

Exakat Documentation, Release 1

– Randomly Sorted Arrays

– Scalar Are Not Arrays

– Short Syntax For Arrays

– Slice Arrays First

– Type Array Index

– Use array_slice()

– Use is_countable

– Weak Type With Array

– array_key_exists() Works On Arrays

• Array Append

– Count() To Array Append

– List With Array Appends

– No String With Append

• Array Spread

– No Spread For Hash

– Unpacking Inside Arrays

• Array With Curly Braces

– No More Curly Arrays

• ArrayObject

– Avoid get_object_vars()

• Arrow Functions

– Fn Argument Variable Confusion

– Follow Closure Definition

– Use Arrow Functions

– Variable Parameter Ambiguity In Arrow Function

• Assertions

– Assert Function Is Reserved

– Assertions

• Assignations

– Assign And Compare

– Assigned In One Branch

– Double Assignation

– Iffectations

– Throws An Assignement

• Assumption

– Assumptions

14.5. Directory by PHP Features 2013

Exakat Documentation, Release 1

• Attributes

– Friend Attribute

– Missing Attribute Attribute

– Modify Immutable

– PHP Native Attributes

– Use PHP Attributes

– Using Deprecated Feature

– Wrong Attribute Configuration

• Backed Enumeration

– Enum Case Values

• Binary Integer

– Binary Glossary

• Bitwise Operators

– Not Or Tilde

• Blind Variable

– Blind Variables

– Don’t Change The Blind Var

– Use The Blind Var

• Block

– Empty Blocks

– Lone Blocks

– Too Long A Block

– Useless Brackets

• Boolean

– No Boolean As Default

– Null Or Boolean Arrays

– Return True False

• Break

– Break Outside Loop

– Unconditional Break In Loop

• CSV

– Do In Base

– Fetch One Row Format

– Joining file()

– Make One Call With Array

– No mb_substr In Loop

2014 Chapter 14. Rules

Exakat Documentation, Release 1

– ext/CSV

– fputcsv() In Loops

• Callables

– Could Be Callable

– Could Be Typehinted Callable

– Deprecated Callable

• Callbacks

– Callback Function Needs Return

– Closure Could Be A Callback

– Could Be Callable

• Case

– Non-lowercase Keywords

– Switch Without Default

• Case Sensitivity

– Wrong Function Name Case

• Cast Operator

– Cast To Boolean

– Cast Unset Usage

– Cast Usage

– Casting Ternary

– Could Cast To Array

– Do Not Cast To Int

– Favorite Casting Method

– Invalid Cast

– No Valid Cast

– Not Not

– Should Typecast

– Silently Cast Integer

– Test Then Cast

– Useless Type Casting

• Catch

– Caught Exceptions

– Caught Expressions

– Collect Catch Calls

– Could Drop Variable

– Try Without Catch

14.5. Directory by PHP Features 2015

Exakat Documentation, Release 1

– Useless Catch

• Chaining Exceptions

– Set Chaining Exception

– Should Chain Exception

• Class Aliases

– Set class_alias() Definition

– Usage Of class_alias()

– Use class_alias()

• Class Autoloading

– Autoloading

– Composer’s autoload

– Old Style __autoload()

• Class Constants Visibility

– Const Visibility Usage

• Class Getter Method

– Getter And Setter

• Class Invasion

– Class Invasion

– Class Overreach

– No Readonly Assignation In Global

• Class Operator

– Could Use Class Operator

– Use ::Class Operator

• Class Setter Method

– Getter And Setter

• Classes

– @ Operator

– Abstract Class Usage

– Abstract Methods Usage

– Accessing Private

– Ambiguous Visibilities

– Anonymous Classes

– Avoid get_class()

– Avoid get_object_vars()

– Cancel Common Method

– Cant Overload Constants

2016 Chapter 14. Rules

Exakat Documentation, Release 1

– Class Function Confusion

– Class Usage

– Class, Interface, Enum Or Trait With Identical Names

– Classes Names

– Constant Definition

– Constructors

– Could Be Boolean

– Could Be CIT

– Could Be Generator

– Could Be Parent Method

– Could Be Static Closure

– Could Make A Function

– Could Type With Array

– Could Use self

– Custom Class Usage

– Cyclic References

– Deep Definitions

– Detect Current Class

– Disconnected Classes

– Double Object Assignation

– Dynamic Property

– Dynamically Called Classes

– Else Usage

– Empty Classes

– Functioncall Is Global

– Htmlentities Using Default Flag

– Internet Ports

– Is An Extension Class

– Is Not Class Family

– Is Upper Family

– Is_A() With String

– Make Global A Property

– Manipulates INF

– Method Has Fluent Interface

– Multiple Class Declarations

– Multiple Classes In One File

14.5. Directory by PHP Features 2017

Exakat Documentation, Release 1

– Multiple Constant Definition

– Multiple Definition Of The Same Argument

– Multiple Identical Closure

– No Append On Source

– No Class As Typehint

– No Class In Global

– No Empty Regex

– No Hardcoded Hash

– No Need For get_class()

– No Reference For Ternary

– No isset() With empty()

– Not Same Name As File

– Null On New

– Only Static Methods Class

– Order Of Declaration

– Overwritten Constant

– Overwritten Methods

– Overwritten Properties

– PHP 7.0 New Classes

– PHP 7.0 Scalar Typehints

– PHP 7.1 Scalar Typehints

– PHP 7.2 Scalar Typehints

– PHP 7.3 Last Empty Argument

– Parent, Static Or Self Outside Class

– Php 7.1 New Class

– Php 7.2 New Class

– Php 7.4 New Classes

– Php 8.3 New Classes

– Reserved Keywords In PHP 7

– Set Array Class Definition

– Swapped Arguments

– Too Many Children

– Too Many Finds

– Undefined ::class

– Undefined Classes

– Unreachable Class Constant

2018 Chapter 14. Rules

Exakat Documentation, Release 1

– Unresolved Classes

– Unused Classes

– Usage Of class_alias()

– Use Array Functions

– Use List With Foreach

– Used Classes

– Used Once Variables

– Used Static Properties

– Useless Argument

– list() May Omit Variables

• Clone

– Clone Usage

– Clone With Non-Object

– Direct Call To __clone()

– Set Clone Link

– Should Deep Clone

• Close Tag

– Close Tags Consistency

– Closing Tags

• Closure

– Cannot Use Static For Closure

– Closure Could Be A Callback

– Closure May Use $this

– Closures Glossary

– Coalesce

– Follow Closure Definition

– Pre-Calculate Use

– Unbinding Closures

• Closure Binding

– Unbinding Closures

• Coalesce Operator

– ::class

– Coalesce And Concat

– Coalesce And Ternary Operators Order

– Coalesce Equal

– Could Be Ternary

14.5. Directory by PHP Features 2019

Exakat Documentation, Release 1

– Could Be Ternary

– Isset Multiple Arguments

– Isset() On The Whole Array

– Should Use Coalesce

– Useless Null Coalesce

• Code Reuse

– Used Once Trait

• Coding Conventions

– Unusual Case For PHP Functions

• Command Line Interface

– Avoid sleep()/usleep()

– Is CLI Script

– Use Cli

• Comparison

– Assign And Compare

– Compared Comparison

– Comparison Is Always The Same

– Comparisons Orientation

– Constant Comparison

– Not Equal Is Not !==

– Strict Or Relaxed Comparison

– String Int Comparison

– Suspicious Comparison

– Variable Is Not A Condition

• Composer

– Composer Usage

– Composer’s autoload

– Use Composer Lock

– Wrong Number Of Arguments In Methods

• Compression

– ext/bzip2

• Concatenation

– Coalesce And Concat

– Concat And Addition

– Concatenation Interpolation Consistence

– Inconsistent Concatenation

2020 Chapter 14. Rules

Exakat Documentation, Release 1

– Mistaken Concatenation

– Mixed Concat And Interpolation

– Ternary In Concat

• Concrete Class

– Instantiating Abstract Class

• Condition

– Constant Conditions

• Conditional Structures

– Conditional Structures

• Conditioned Structures

– Conditioned Constants

• Const

– Const Or Define Preference

– Define Constants With Array

– Use const

• Constant Scalar Expression

– Constant Scalar Expression

– Constant Scalar Expressions

– Define Constants With Array

– Propagate Constants

– Static Variable Initialisation

• Constants

– Abstract Static Methods

– Bad Constants Names

– Case Insensitive Constants

– Class Const With Array

– Clone Constant

– Const Or Define

– Const Or Define Preference

– Constant : With Or Without Use

– Constant Case Preference

– Constant Dynamic Creation

– Constant Typo Looks Like A Variable

– Constants Created Outside Its Namespace

– Constants In Traits

– Constants Names

14.5. Directory by PHP Features 2021

Exakat Documentation, Release 1

– Constants Usage

– Constants With Strange Names

– Could Be A Constant

– Could Be Constant

– Could Use Existing Constant

– Custom Constant Usage

– Invalid Constant Name

– Is An Extension Constant

– Is Global Constant

– Is PHP Constant

– New Constants In PHP 7.2

– New Constants In PHP 7.4

– No Self Referencing Constant

– Nullable With Constant

– PHP 8.1 Removed Constants

– PHP Constant Usage

– Propagate Constants

– Should Use Existing Constants

– Strange Name For Constants

– True False Inconsistant Case

– Unused Constants

– Variable Constants

• Continue

– Continue Is For Loop

• Contravariance

– Incompatible Signature Methods With Covariance

– Method Signature Must Be Compatible

– PHP Native Class Type Compatibility

– Use Contravariance

• Cookie

– Cookies Variables

– Set Cookie Safe Arguments

– Should Use SetCookie()

– Use Cookies

• Countable Interface

– Can’t Count Non-Countable

2022 Chapter 14. Rules

Exakat Documentation, Release 1

– Use is_countable

• Covariance

– Incompatible Signature Methods With Covariance

– Method Signature Must Be Compatible

– PHP Native Class Type Compatibility

– Use Contravariance

– Use Covariance

• Cryptography

– Check Crypto Key Length

– Compare Hash

– Crypto Usage

– Deprecated PHP Functions

– Openssl Encrypt Default Algorithm Change

– Optimize Explode()

– ext/mcrypt

– ext/scrypt

• Ctype

– ext/ctype

• Curl

– Safe Curl Options

• Curly Brackets

– Useless Brackets

• Cyclomatic Complexity

– Cyclomatic Complexity

• DRY : Don’t Repeat Yourself

– Identical Case In Switch

– Multiple Property Declaration

• Dates

– Date Formats

– Don’t Add Seconds

– Invalid Date Scanning Format

– Next Month Trap

– Timestamp Difference

– Use DateTimeImmutable Class

– date() versus DateTime Preference

• Dead Code

14.5. Directory by PHP Features 2023

Exakat Documentation, Release 1

– Property Cannot Be Readonly

• Debugger

– Use Debug

– var_dump(). . . Usage

• Declaration

– Multiple Functions Declarations

– Wrong Access Style to Property

• Default

– Default Then Discard

– Mismatch Type And Default

– Switch Without Default

– Useless Default Argument

• Default Value

– Add Default Value

– Assign Default To Properties

– No Boolean As Default

– Redefined Default

– Uninitialized Property

– Wrong Typed Property Default

• Definition

– Definitions Only

• Dependency Injection

– Dependency Injection

• Deprecation

– Functions Removed In PHP 5.5

– Methods That Should Not Be Used

– Using Deprecated Method

• Dereferencing

– Dereferencing Levels

– Dereferencing String And Arrays

– Too Many Dereferencing

• Design Pattern

– An OOP Factory

– Courier Anti-Pattern

– Dependency Injection

• Destructor

2024 Chapter 14. Rules

Exakat Documentation, Release 1

– Should Have Destructor

• Directives

– Directives Usage

– PHP 7.0 Removed Directives

– PHP 7.1 Removed Directives

– PHP 74 New Directives

– PHP 8.0 Removed Constants

– PHP 8.0 Removed Directives

– Unknown Directive Name

• DirectoryIterator

– Avoid glob() Usage

• Disable Classes

– Can’t Disable Class

• Disable Functions

– Can’t Disable Function

• Disjunctive Normal Form (DNF)

– Use DNF

• DivisionByZeroError

– Could Use Try

• Do While

– PHP Alternative Syntax

• Do. . .while

– Collect Block Size

• Double Quotes Strings

– Should Be Single Quote

• Duck Typing

– Forgotten Interface

• Dynamic Call

– Dynamic Calls

– Dynamic Code

– Dynamic Function Call

– Dynamic Methodcall

– Dynamic New

– Function With Dynamic Code

• Dynamic Class

– Dynamic Classes

14.5. Directory by PHP Features 2025

Exakat Documentation, Release 1

– Dynamically Called Classes

• Dynamic Constant

– Case Insensitive Constants

– Dynamic Class Constant

– PHP Constant Usage

– Variable Constants

• Dynamic Loading

– Dl() Usage

• Dynamic Properties

– Extends stdClass

• Dynamic Variable

– Complex Dynamic Names

– Create Compact Variables

• Echo

– Echo Or Print

– Echo With Concat

• Echo Tag

– PHP Echo Tag Usage

– Using Short Tags

• Ellipsis

– Ellipsis Merge

– Ellipsis Usage

– No Spread For Hash

• Email

– Email Addresses

• Empty

– Empty With Expression

– Modernize Empty With Expression

• Encoding

– Deprecated Mb_string Encodings

– Encoding Usage

– Mbstring Unknown Encoding

– Mbstring Unknown Encodings

• Enumeration

– Enum Case Values

– Enum Usage

2026 Chapter 14. Rules

Exakat Documentation, Release 1

– No Magic Method For Enum

– Undefined Enumcase

– Unused Enumeration Case

• Enumeration Case

– Undefined Enumcase

– Use Same Types For Comparisons

• Environment Variables

– Environment Variables

• Error

– Error Messages

– Trigger Errors

• Error Handler

– Avoid set_error_handler $context Argument

– set_exception_handler() Warning

• Escape Sequences

– Encoded Simple Letters

– Htmlentities Using Default Flag

– Unicode Escape Partial

– Unicode Escape Syntax

• Eval()

– Eval() Usage

– eval() Without Try

• Event Loop

– ext/ev

• Exception

– Caught Variable

– Check Division By Zero

– Converted Exceptions

– Could Use Try

– Defined Exceptions

– Error Messages

– Exception Order

– Forgotten Thrown

– Long Preparation For Throw

– Multiple Exceptions Catch()

– Overwritten Exceptions

14.5. Directory by PHP Features 2027

Exakat Documentation, Release 1

– PHP Exception

– Rethrown Exceptions

– Throw

– Throw Functioncall

– Throw Raw Exceptions

– Thrown Exceptions

– Try With Multiple Catch

– Uncaught Exceptions

– Undefined Caught Exceptions

– Unthrown Exception

– Unused Exception Variable

– Useless Catch

– __toString() Throws Exception

• Exit

– Die Exit Consistence

– Error Messages

– Exit Without Argument

– Exit() Usage

– Exit-like Methods

– Print And Die

• Exponent

– Exponent Usage

– Negative Power

• Exponential

– ** For Exponent

• Expression

– Identical Consecutive Expression

• Extensions

– Dl() Usage

– Is An Extension Class

– Is An Extension Function

– ext/decimal

– ext/eaccelerator

• Fallback Function

– Fallback Function

• False

2028 Chapter 14. Rules

Exakat Documentation, Release 1

– PHP 8.0 Typehints

– Php 8.0 Only TypeHints

• Feature

– PHP 7.2 Deprecations

• File

– File Usage

– Fopen Binary Mode

– Linux Only Files

– ext/xattr

• File Upload

– File Uploads

– Upload Filename Injection

– move_uploaded_file Instead Of copy

• FileSystemIterator

– Avoid glob() Usage

• Final Class Constants

– Final Constant

• Final Keyword

– Can’t Extend Final

– Can’t Overwrite Final Constant

– Can’t Overwrite Final Method

– Class Could Be Final

– Class Should Be Final By Ocramius

– Final Class Usage

– Final Private Methods

– Overwritten Constant

– Rewrote Final Class Constant

– Useless Final

• Finally

– No Return Or Throw In Finally

– Try With Finally

– Try Without Catch

• First Class Callable

– First Class Callable

• Floating Point Numbers

– Could Be Float

14.5. Directory by PHP Features 2029

Exakat Documentation, Release 1

– Do Not Cast To Int

– Manipulates NaN

– Null Or Boolean Arrays

– ext/decimal

• Fluent Interface

– Class Has Fluent Interface

– Method Is Not For Fluent Interface

• For

– For Using Functioncall

– PHP Alternative Syntax

– Sequences In For

– Should Use Foreach

• Foreach

– Altering Foreach Without Reference

– Collect Block Size

– Don’t Reuse Foreach Source

– Foreach Don’t Change Pointer

– Foreach Needs Reference Array

– Foreach On Object

– Foreach Reference Is Not Modified

– Foreach With list()

– Foreach() Favorite

– Identical Variables In Foreach

– Overwritten Foreach Var

– Overwritten Source And Value

– PHP Alternative Syntax

– Same Variable Foreach

– Should Use Foreach

– Simplify Foreach

– Unset In Foreach

• Format

– ext/msgpack

• Fossilized Methods

– Fossilized Method

– Fossilized Methods List

• Framework

2030 Chapter 14. Rules

Exakat Documentation, Release 1

– Codeigniter usage

– Concrete5 usage

– Drupal Usage

– Ez cms usage

– Feast usage

– Fuel PHP Usage

– Ice framework

– Joomla usage

– Laravel usage

– Phalcon Usage

– Sylius usage

– Symfony usage

– Typo 3 usage

– Wordpress usage

– Yii usage

• Fully Qualified Name

– Constant : With Or Without Use

• Function Subscripting

– Function Subscripting

– Function Subscripting, Old Style

• Functions

– Class Function Confusion

– Conditioned Function

– Empty Function

– Fallback Function

– Function Called With Other Case Than Defined

– Functions Glossary

– Functions In Loop Calls

– Functions Removed In PHP 5.4

– Functions Using Reference

– Is An Extension Function

– Methods That Should Not Be Used

– New Functions In PHP 7.0

– New Functions In PHP 7.1

– New Functions In PHP 7.2

– New Functions In PHP 7.3

14.5. Directory by PHP Features 2031

Exakat Documentation, Release 1

– New Functions In PHP 7.4

– New Functions In PHP 8.0

– New Functions In PHP 8.1

– New Functions In PHP 8.2

– New Functions In PHP 8.3

– One Letter Functions

– PHP 7.4 Removed Functions

– PHP 8.1 Removed Functions

– PHP Overridden Function

– Real Functions

– Redeclared PHP Functions

– Relay Function

– Undefined Functions

– Unused Functions

– Unusual Case For PHP Functions

– Used Functions

– Useless Default Argument

– Wrong Number Of Arguments

• GLOBALS, the variable

– Global Definitions

• Generator

– Can’t Call Generator

– Generator Cannot Return

– Method Is A Generator

– No Return For Generator

• Global Code

– Global Code Only

• Global Space

– Don’t Pollute Global Space

• Global Variables

– Declare Global Early

– Globals

– Make Global A Property

• Goto

– Goto Names

– Labels

2032 Chapter 14. Rules

Exakat Documentation, Release 1

– Unused Label

• Goto Labels

– Goto Names

– Labels

– Unused Label

• HTML Escaping

– No ENT_IGNORE

• HTML entity

– Htmlentities Calls

– Htmlentities Using Default Flag

• HTTP headers

– Http Headers

– Safe HTTP Headers

– Should Use SetCookie()

• HTTPS

– Safe Curl Options

• Hard Coded

– Hardcoded Passwords

– No Hardcoded Path

• Hash

– Avoid Those Hash Functions

– Compare Hash

– Hash Algorithms

– Hash Will Use Objects

• Heredocs

– All strings

– Flexible Heredoc

– Heredoc Delimiter

– Heredoc Delimiter Glossary

– Nowdoc Delimiter Glossary

• Hexadecimal Integer

– Hexadecimal Glossary

– Hexadecimal In String

• Hyper Text Transfer Protocol (HTTP)

– HTTP Status Code

– Http Headers

14.5. Directory by PHP Features 2033

Exakat Documentation, Release 1

• IP

– Ip

– No Hardcoded Ip

• Iconv

– Iconv With Translit

• Idempotent

– Double Instructions

– Recalled Condition

• If Then Else

– Collect Block Size

– Could Be Else

– Else If Versus Elseif

– Identical Elseif

– Identical On Both Sides

– Inconsistent Elseif

– Merge If Then

– Nested Ifthen

– No Need For Else

• Iffectation

– Recalled Condition

– Variable Is Not A Condition

• ImagickException

– Could Use Try

• ImagickPixelException

– Could Use Try

• Immutable

– Use DateTimeImmutable Class

• Inclusions

– Collect Block Size

– Collect Class Children Count

– Collect Class Depth

– Collect Class Interface Counts

– Collect Local Variable Counts

– Collect Mbstring Encodings

– Collect Method Counts

– Collect Parameter Counts

2034 Chapter 14. Rules

Exakat Documentation, Release 1

– Collect Parameter Names

– Inclusions

– Inclusions

– Indentation Levels

• Incoming Data

– Don’t Change Incomings

• Increment

– Pre-increment

• Indentation

– Indentation Levels

– Max Level Of Nesting

– More Than One Level Of Indentation

– Too Much Indented

• Index

– Multiple Index Definition

– Negative Start Index In Array

– No Object As Index

– Type Array Index

– Weird Array Index

– array_key_exists() Works On Arrays

• Index for arrays

– PHP Arrays Index

• Inequality

– Use Same Types For Comparisons

• Infinite

– Infinite Recursion

• Inheritance

– Already Parents Interface

– Inherited Property Type Must Match

– Inherited Static Variable

– Method Is Overwritten

– Overwritten Constant

– Overwritten Methods

– Overwritten Properties

– Property Used Above

– Too Many Children

14.5. Directory by PHP Features 2035

Exakat Documentation, Release 1

• Initialisation

– Init Then Update

• Injection

– Could Inject Parameter

– DI Cyclic Dependencies

– Direct Injection

– Indirect Injection

– Non Nullable Getters

– Too Many Injections

• Insteadof

– Undefined Insteadof

• Interfaces

– Avoid Self In Interface

– Can’t Implement Traversable

– Cant Overload Constants

– Collect Dependency Extension

– Empty Interfaces

– Forgotten Interface

– Implements Is For Interface

– Insufficient Typehint

– Interface Arguments

– Interfaces Don’t Ensure Properties

– Interfaces Is Not Implemented

– Interfaces Names

– Interfaces Usage

– Is An Extension Interface

– Is Interface Method

– Is_A() With String

– Manipulates INF

– No Constructor In Interface

– PHP 7.0 New Interfaces

– Possible Interfaces

– Repeated Interface

– Undefined Interfaces

– Unused Interfaces

– Used Interfaces

2036 Chapter 14. Rules

Exakat Documentation, Release 1

– Useless Interfaces

• Internationalization

– idn_to_ascii() New Default

• Interpolation

– Interpolation

– Mixed Concat And Interpolation

– One Variable String

– String Interpolation Favorite

– String May Hold A Variable

• Intersection Type

– Union Typehint

– Wrong Type With Call

• InvalidArgumentException

– Could Use Try

• Isset

– Isset Multiple Arguments

– Isset() On The Whole Array

– Missing __isset() Method

– isset() With Constant

• Iterable

– Could Type With Iterable

– This Could Be Iterable

– Typehint Could Be Iterable

• JSON

– Check JSON

– Json_encode() Without Exceptions

– PHP Native Interfaces and Return Type

– Use json_decode() Options

• JsonException

– Could Use Try

• Keyword

– Php7 Relaxed Keyword

• Language construct

– Avoid Parenthesis With Language Construct

– No Parenthesis For Language Construct

• Lazy Loading

14.5. Directory by PHP Features 2037

Exakat Documentation, Release 1

– Abstract Or Implements

– Inherited Class Constant Visibility

• Liskov Substitution Principle

– Type Dodging

• List

– Empty List

– List With Array Appends

– List With Keys

– List With Reference

– No List With String

• Literal

– Duplicate Literal

– No Literal For Reference

– Overwritten Literals

• Locale

– Wrong Locale

• Log

– Error_Log() Usage

• Logical operators

– Assign And Lettered Logical Operator Precedence

– Logical Operators Favorite

– Logical Should Use Symbolic Operators

– Not Not

– Not Or Tilde

• Loops

– Altering Foreach Without Reference

– Avoid Concat In Loop

– Break Outside Loop

– Continue Is For Loop

– Dangling Array References

– Don’t Change The Blind Var

– Empty Loop

– Foreach On Object

– Infinite Recursion

– Possible Infinite Loop

– Queries In Loops

2038 Chapter 14. Rules

Exakat Documentation, Release 1

– Static Loop

– Unconditional Break In Loop

– Use Variable Created Inside Loop

• MD5

– Md5 Strings

• Magic Constants

– Could Use Namespace Magic Constant

– Could Use __DIR__

– Magic Constant Usage

• Magic Methods

– Check On __Call Usage

– Could Be Stringable

– Create Magic Method

– Direct Call To __clone()

– Has Magic Method

– Magic Methods

– Magic Visibility

– Make Magic Concrete

– Missing __isset() Method

– Must Return Methods

– No Magic Method For Enum

– No Magic Method With Array

– Reserved Methods

– Useless Typehint

– __debugInfo() Usage

– __toString() Throws Exception

• Magic Property

– Create Magic Property

– Is A Magic Property

– Magic Properties

• Map

– Array_Map() Passes By Value

• Match

– Could Use Match

– Reserved Match Keyword

– Simple Switch And Match

14.5. Directory by PHP Features 2039

Exakat Documentation, Release 1

– Strict Comparison With Booleans

– Switch To Switch

– Switch Without Default

– Uses PHP 8 Match()

• Memoization

– Memoize MagicCall

– Reuse Existing Variable

• Method

– $this Is Not For Static Methods

– Abstract Static Methods

– Could Be Protected Method

– Different Argument Counts

– Dynamic Methodcall

– Identical Methods

– Illegal Name For Method

– Implemented Methods Must Be Public

– Interface Methods

– Method Collision Traits

– Method Could Be Private Method

– Method Is Not For Fluent Interface

– Method Used Below

– Normal Methods

– Overwritten Methods

– Set Class Method Remote Definition

– Solve Trait Methods

– Trait Methods

– Undefined Insteadof

– Undefined Methods

– Unreachable Method

– Unused Methods

– Unused Public Methods

– Used Methods

– Used Once Property

– Used Private Methods

– Wrong Number Of Arguments

• Micro-optimisation

2040 Chapter 14. Rules

Exakat Documentation, Release 1

– Duplicate Calls

– Ellipsis Merge

– Pre-Calculate Use

– Recalled Condition

– Should Cache Local

– Unpreprocessed Values

• Microtime()

– PHP 7.1 Microseconds

• Mixed

– Mixed Keyword

– Mixed Typehint Usage

– PHP 8.0 Typehints

– Php 8.0 Only TypeHints

• Multibyte String

– Avoid mb_dectect_encoding()

– Mbstring Third Arg

– Mbstring Unknown Encoding

– Mbstring Unknown Encodings

• Multidimensional Array

– Multidimensional Arrays

– Too Many Array Dimensions

• Named Parameters

– Duplicate Named Parameter

– Mismatch Parameter Name

– Named Parameter Usage

– No Named Parameters

– Unknown Parameter Name

– Wrong Argument Name With PHP Function

• Namespaces

– Aliases

– Could Use Alias

– Empty Namespace

– Fully Qualified Constants

– Global Import

– Static Variable In Namespace

– Unresolved Use

14.5. Directory by PHP Features 2041

Exakat Documentation, Release 1

– Wrong Case Namespaces

• Naming

– Reserved Methods

• Native

– Native Alias Functions Usage

– New Functions In PHP 7.1

– New Functions In PHP 7.2

– New Functions In PHP 7.3

– New Functions In PHP 7.4

– New Functions In PHP 8.0

– New Functions In PHP 8.1

– New Functions In PHP 8.2

– New Functions In PHP 8.3

– PHP 7.4 Removed Functions

– PHP 8.0 Removed Functions

– PHP 8.1 Removed Functions

– Too Many Native Calls

• Nested Attributes

– Nested Attributes

– New Initializers

• Nesting

– Nested Loops

• Never Type

– Methods Without Return

– Never Keyword

– Type Could Be Never

– Type Must Be Returned

• New In Initializers

– Nested Attributes

– New Initializers

• Non Breakable Spaces

– Non Breakable Space In Names

– Strings With Strange Space

• Nowdocs

– All strings

– Nowdoc Delimiter Glossary

2042 Chapter 14. Rules

Exakat Documentation, Release 1

• Null

– Avoid Optional Properties

– Coalesce And Ternary Operators Order

– Could Be Null

– No Null For Native PHP Functions

– No get_class() With Null

– Null On New

– Null Or Boolean Arrays

– Null Type Favorite

– Nullable Without Check

– Php 8.0 Only TypeHints

– Use === null

• Null Safe Object Operator

– Check After Null Safe Operator

– Could Use Null-Safe Object Operator

– No Null With Null Safe Operator

• Nullable

– Could Be Null

– Could Use Null-Safe Object Operator

– Implicit Nullable Type

– Use Nullable Type

• Numeric Separator

– Numeric Literal Separator

• Object

– Array_Fill() With Objects

– Hash Will Use Objects

– Scalar Or Object Property

– Static Methods Called From Object

– Unfinished Object

• Object API

– Use PHP Object API

• Object Invasion

– Property Invasion

• Object Nullsafe Operator ?->

– Useless NullSafe Operator

• Object Operator ->

14.5. Directory by PHP Features 2043

Exakat Documentation, Release 1

– Use NullSafe Operator

• Octal Integer

– Malformed Octal

• Opcode

– Always Use Function With array_key_exists()

– array_key_exists() Speedup

• OpenSSL

– Check Crypto Key Length

– OpenSSL Ciphers Used

– Openssl Encrypt Default Algorithm Change

– ext/mcrypt

– openssl_random_pseudo_byte() Second Argument

• Operator Precedence

– Useless Parenthesis

• Operators

– Assign And Lettered Logical Operator Precedence

– Difference Consistence

– Unsupported Types With Operators

– Useless Parenthesis

• Optional Parameter

– Optional Parameter

– Wrong Optional Parameter

• Outgoing Data

– Don’t Change Incomings

• Overenginer

– Used Once Trait

• Overwrite

– Can’t Overwrite Final Constant

– Can’t Overwrite Final Method

– Immutable Signature

– Overwritten Class Constants

• PDOException

– Could Use Try

• PEAR

– Pear Usage

• PECL

2044 Chapter 14. Rules

Exakat Documentation, Release 1

– ext/lua

• PHP Handlers

– PHP Handlers Usage

• PHP Predefined Exception

– Defined Exceptions

– Undefined Caught Exceptions

• PHP Profiler

– ext/spx

– ext/xhprof

• PHP Standards Recommendations (PSR)

– PSR-11 Usage

– PSR-13 Usage

– PSR-16 Usage

– PSR-3 Usage

– PSR-6 Usage

– PSR-7 Usage

– ext/psr

• PHP Tags

– Using Short Tags

• PHP Variables

– Safe Phpvariables

• Parameter

– Links Between Parameter And Argument

– Mismatch Parameter And Type

– Mismatched Default Arguments

– Missing Type In Definition

– Modified Typed Parameter

– Only Variable Passed By Reference

– Optional Parameter

– PHP 80 Named Parameter Variadic

– Parameter Hiding

– Parenthesis As Parameter

– Too Many Parameters

– Unused Parameter

– Wrong Optional Parameter

• Parenthesis

14.5. Directory by PHP Features 2045

Exakat Documentation, Release 1

– Coalesce And Concat

– Dynamic New

– Missing Parenthesis

– Nested Ternary Without Parenthesis

– No Parenthesis For Language Construct

– Parenthesis As Parameter

• Passing By Reference

– Array_Map() Passes By Value

– Calltime Pass By Reference

• Passing By Value

– Array_Map() Passes By Value

– Calltime Pass By Reference

• Password

– Hardcoded Passwords

• Path

– No Hardcoded Path

– Pathinfo() Returns May Vary

– Use pathinfo() Arguments

• PharException

– Could Use Try

• Port

– No Hardcoded Port

• Precedence

– Assign And Lettered Logical Operator Precedence

– Coalesce And Concat

• Predefined Constants

– Should Use Existing Constants

• Preprocessing

– Preprocess Arrays

– Preprocessable

– Should Preprocess Chr()

– Unpreprocessed Values

• Print

– Displays Text

– Echo Or Print

– Print And Die

2046 Chapter 14. Rules

Exakat Documentation, Release 1

– Printf Number Of Arguments

– Repeated print()

• Private Visibility

– Accessing Private

– Method Could Be Private Method

– Redefined Private Property

• Promoted Properties

– Could Use Promoted Properties

– Promoted Properties

– Useless Assignation Of Promoted Property

• Properties

– Avoid Optional Properties

– Checks Property Existence

– Collect Property Counts

– Don’t Unset Properties

– Find Key Directly

– Inherited Property Type Must Match

– Integer As Property

– Internally Used Properties

– Locally Unused Property

– Locally Used Property

– Locally Used Property In Trait

– Mismatch Properties Typehints

– Missing Type In Definition

– Never Used Properties

– Overwritten Properties

– Properties Declaration Consistence

– Property Could Be Local

– Property Names

– Property Used Above

– Property Used Below

– Property Used In One Method Only

– Property Variable Confusion

– Redefined Property

– Static Properties

– Undefined Properties

14.5. Directory by PHP Features 2047

Exakat Documentation, Release 1

– Uninitialized Property

– Unitialized Properties

– Untyped No Default Properties

• Property Type Declaration

– Typed Property Usage

• Protocol

– Protocol lists

• Public Visibility

– Unused Public Methods

• Query

– Queries In Loops

• Query String

– parse_str() Warning

• Random

– Const With Array

– Random Without Try

– Use random_int()

• Readability

– Collect Readability

– Missing Parenthesis

– Preprocessable

– Recycled Variables

• Readonly

– Class Could Be Readonly

– No Readonly Assignation In Global

– Property Cannot Be Readonly

– Readonly Usage

• Real Numbers

– Avoid Real

– No Real Comparison

• Recursion

– Functions In Loop Calls

– Infinite Recursion

– Recursive Functions

• References

– Class-typed References

2048 Chapter 14. Rules

Exakat Documentation, Release 1

– Foreach Needs Reference Array

– Foreach Reference Is Not Modified

– Functions Using Reference

– List With Reference

– Lost References

– Make Functioncall With Reference

– No Default For Referenced Parameter

– No Literal For Reference

– No Reference On Left Side

– No Referenced Void

– Objects Don’t Need References

– Only Variable For Reference

– Only Variable Passed By Reference

– Only Variable Returned By Reference

– Php Native Reference Variable

– Useless Referenced Argument

– Variable References

• Reflection

– Reflection Export() Is Deprecated

• ReflectionException

– Could Use Try

• Register Globals

– Register Globals

• Regular Expressions

– Always Anchor Regex

– Named Regex

– Perl Regex

– Possible Missing Subpattern

– Regex Delimiter

– Regex Inventory

– Regex On Arrays

– Repeated Regex

– Simplify Regex

– Unknown Pcre2 Option

– Unkown Regex Options

– preg_replace With Option e

14.5. Directory by PHP Features 2049

Exakat Documentation, Release 1

• Remote Procedure Call

– Extensions yar

– ext/xmlrpc

• Reserved Names

– PHP Keywords As Names

– Php7 Relaxed Keyword

• Return

– Bail Out Early

– Cant Use Return Value In Write Context

– Drop Else After Return

– Methods Without Return

– Multiple Returns

– No Parenthesis For Language Construct

– No Return Or Throw In Finally

– No Return Used

– Unused Returned Value

– Useless Return

• Return Type Will Change

– PHP Native Class Type Compatibility

• Return Typehint

– Missing Some Returntype

– Nullable Without Check

– Return Typehint Usage

– Type Must Be Returned

• Return Value

– Missing Type In Definition

– Return With Parenthesis

• SAPI

– PHP Sapi

• SSL

– No Weak SSL Crypto

– Safe Curl Options

• SVMException

– Could Use Try

• Scalar Types

– Not A Scalar Type

2050 Chapter 14. Rules

Exakat Documentation, Release 1

– PHP 8.1 Typehints

– Scalar Or Object Property

– Scalar Typehint Usage

• Scope Resolution Operator

+ :ref:`Scope Resolution Operator <scope-resolution-operator>`

• Self

– $this Belongs To Classes Or Traits

– Avoid Self In Interface

– Could Be Self

– Could Use self

– Parent Is Not Static

– Parent, Static Or Self Outside Class

– Should Use Local Class

– Use Lower Case For Parent, Static And Self

– Use This

– self, parent, static Outside Class

• Semantics

– Confusing Names

– Don’t Use The Type As Variable Name

– Mismatch Parameter And Type

– One Letter Functions

– Possible Alias Confusion

– Property Variable Confusion

• Serialization

– Serialize Magic Method

– Unserialize Second Arg

• Session

– Session Lazy Write

– Session Variables

– Should Use session_regenerateid()

– Use session_start() Options

– ext/session

• Shell

– Shell Favorite

– Shell Usage

• Short Assignations

14.5. Directory by PHP Features 2051

Exakat Documentation, Release 1

– Adding Zero

– Could Be Ternary

– Could Use Short Assignation

• Short Syntax

– Coalesce Equal

– List Short Syntax

• Short Tags

– Short Open Tags

– Using Short Tags

• Short Ternary Operator

– Short Ternary

– Useless Short Ternary

• Silent Behavior

– File_Put_Contents Using Array Argument

– Never Called Parameter

– Silently Cast Integer

• Single Quotes Strings

– Should Be Single Quote

• Sort

– Usort Sorting In PHP 7.0

• Spaceship Operator

– Could Be Spaceship

• Sqlite3

– Sqlite3 Requires Single Quotes

• Static Constant

– Abstract Class Constants

– Constant Class

– Constant Definition

– Constant Used Below

– Could Be Class Constant

– Could Be Protected Class Constant

– Defined Class Constants

– Makes Class Constant Definition

– New Dynamic Class Constant Syntax

– Overwritten Class Constants

– Overwritten Constant

2052 Chapter 14. Rules

Exakat Documentation, Release 1

– Redefined Class Constants

– Undefined Class Constants

– Unused Class Constant

• Static Method

– Calling Static Trait Method

– Cannot Call Static Trait Method Directly

– Wrong Number Of Arguments

• Static Variables

– Could Be A Static Variable

– Declare Global Early

– Inherited Static Variable

– No Static Variable In A Method

– Redeclared Static Variable

– Static Variable Can Default To Arbitrary Expression

– Static Variable In Namespace

– Static Variables

– Used Once Variables (In Scope)

• Strict Comparison

– Strict Comparison With Booleans

– Strict In_Array() Preference

– Strpos()-like Comparison

– Use === null

• String

– All strings

– Concat Empty String

– Could Be String

– Could Be Stringable

– Could Type With String

– Could Use str_repeat()

– Dollar Curly Interpolation Is Deprecated

– Failed Substr() Comparison

– Interpolation

– No String With Append

– One Variable String

– Use PHP7 Encapsed Strings

– Use str_contains()

14.5. Directory by PHP Features 2053

Exakat Documentation, Release 1

• String Interpolation

– Dollar Curly Interpolation Is Deprecated

• Stringable

– Could Be Stringable

• Stubs Files

– Is Stub Structure

• Superglobal Variables

– GPRC Aliases

– Incoming Variable Index Inventory

– PHP Variables

– Safe Phpvariables

– Super Global Usage

– Super Globals Contagion

– Useless Global

• Switch

– Could Use Match

– Multiple Type Cases In Switch

– Multiples Identical Case

– PHP Alternative Syntax

– Simple Switch And Match

– Strict Comparison With Booleans

– Switch Fallthrough

– Switch To Switch

– Switch With Too Many Default

– Switch Without Default

– Useless Switch

• Switch Fallthrough

– Switch Fallthrough

• System Call

– Shell commands

• Taint Analysis

– Extensions/Exttaint

• Ternary Operator

– Casting Ternary

– Coalesce And Ternary Operators Order

– Could Be Ternary

2054 Chapter 14. Rules

Exakat Documentation, Release 1

– Nested Ternary

– Nested Ternary Without Parenthesis

– Should Use Ternary Operator

– Ternary In Concat

• Test

– Test Class

• Throwable

– Can’t Throw Throwable

• Tick

– Ticks Usage

• Trailing Comma

– Empty Final Element In Array

– Signature Trailing Comma

– Trailing Comma In Calls

– Use Closure Trailing Comma

– Useless Trailing Comma

• Traits

– Already Parents Trait

– Calling Static Trait Method

– Cannot Call Static Trait Method Directly

– Collect Class Traits Counts

– Constants In Traits

– Could Use Trait

– Dependant Trait

– Empty Traits

– Is Extension Trait

– Locally Used Property In Trait

– Method Collision Traits

– Multiple Identical Trait Or Interface

– Multiple Usage Of Same Trait

– No Private Abstract Method In Trait

– Redefined PHP Traits

– Self Using Trait

– Solve Trait Methods

– Trait Methods

– Trait Names

14.5. Directory by PHP Features 2055

Exakat Documentation, Release 1

– Trait Not Found

– Traits Usage

– Undefined Insteadof

– Unused Trait In Class

– Unused Traits

– Used Trait

– Useless Method Alias

• Try-catch

– Catch Overwrite Variable

– Collect Catch Calls

– Converted Exceptions

– Could Use Try

– Empty Try Catch

– Large Try Block

– Multiple Catch

– Multiple Exceptions Catch()

– Throw

– Try With Finally

– Try Without Catch

– Uncaught Exceptions

– Unresolved Catch

• Type Error

– Could Use Try

• Type Juggling

– Implicit Conversion To Int

– Use Same Types For Comparisons

• Type System

– Argument Should Be Typehinted

– Avoid get_class()

– Bad Type Relay

– Child Class Removes Typehint

– Could Be Null

– Could Be Parent

– Could Inject Parameter

– Could Not Type

– Could Type With Boolean

2056 Chapter 14. Rules

Exakat Documentation, Release 1

– Could Type With Int

– Could Typehint

– Exceeding Typehint

– Extended Typehints

– Implicit Nullable Type

– Incompatible Types With Incoming Values

– Insufficient Property Typehint

– Insufficient Typehint

– Intersection Typehint

– Method Signature Must Be Compatible

– Mismatch Parameter And Type

– Mismatch Type And Default

– Mismatched Default Arguments

– Mismatched Typehint

– Missing Typehint

– Modified Typed Parameter

– Multiple Type Variable

– Never Typehint Usage

– No Class As Typehint

– PHP 8.0 Typehints

– Retyped Reference

– Scalar Typehint Usage

– Semantic Typing

– StandaloneType True False Null

– Type Could Be Integer

– Typed Class Constants Usage

– Typed Property Usage

– Typehint Order

– Typehinting Stats

– Typehints

– Typehints/CouldBeResource

– Union Typehint

– Use DNF

– Useless Type Casting

– Useless Type Check

– Variable Anf Property Typehint

14.5. Directory by PHP Features 2057

Exakat Documentation, Release 1

– Weak Typing

– Wrong Typehinted Name

• TypeError

– Possible TypeError

• Typo

– Undefined Constants

• UnexpectedValueException

– Could Use Try

• Unicode

– Unicode Escape Partial

– Unicode Escape Syntax

• Union Type

– Intersection Typehint

– Wrong Type With Call

• Universal Resource Locator (URL)

– Should Use Url Query Functions

– URL List

• Unreachable Code

– Unreachable Code

• Unused

– Unused Functions

– Unused Global

– Unused Private Properties

– Unused Protected Methods

– Used Functions

• Use

– Collect Use Counts

– Constant : With Or Without Use

– Group Use Declaration

– Group Use Trailing Comma

– Hidden Use Expression

– Unresolved Use

– Unused Use

– Used Use

• Use Alias

– Could Use Alias

2058 Chapter 14. Rules

Exakat Documentation, Release 1

– Overload Existing Names

• Validation

– Filter Not Raw

– Insecure Integer Validation

– Useless Check

– filter_input() As A Source

• Variable Variables

– Variable Variables

• Variables

– All Uppercase Variables

– Assigned Twice

– Collects Variables

– Configure Extract

– Confusing Names

– Constant Typo Looks Like A Variable

– Could Use Compact

– Multiple Type Variable

– One Variable String

– Only Variable For Reference

– Overwriting Variable

– Php 8.0 Variable Syntax Tweaks

– Property Variable Confusion

– Recycled Variables

– Single Use Variables

– Strange Name For Variables

– String May Hold A Variable

– Undefined Variable

– Unused Inherited Variable In Closure

– Variable Anf Property Typehint

– Variable Variables

– Written Only Variables

• Variadic

– PHP 80 Named Parameter Variadic

– Spread Operator For Array

– array_merge() And Variadic

• Virtual Machine

14.5. Directory by PHP Features 2059

Exakat Documentation, Release 1

– Always Use Function With array_key_exists()

• Visibility

– Access Protected Structures

– Ambiguous Visibilities

– Can’t Instantiate Class

– Class Overreach

– Could Be Class Constant

– Could Be Private Class Constant

– Could Be Protected Class Constant

– Could Be Protected Method

– Could Be Protected Property

– Forgotten Visibility

– Implemented Methods Must Be Public

– Inherited Class Constant Visibility

– Lowered Access Level

– Magic Visibility

– Missing Visibility

– No Public Access

– Property Could Be Private

– Public Reach To Private Methods

– Raised Access Level

– Unused Private Methods

– Used Protected Method

– Var Keyword

• Void

– Could Be Void

– Don’t Collect Void

– No Referenced Void

– Return void

• While

– Collect Block Size

– PHP Alternative Syntax

– While(List() = Each())

• Whitespace

– Forgotten Whitespace

• XML

2060 Chapter 14. Rules

Exakat Documentation, Release 1

– No Net For Xml Load

– ext/xmlreader

– ext/xmlwriter

• XXTEA

– ext/xxtea

• Yield

– Can’t Call Generator

– Could Be Generator

– Don’t Loop On Yield

– Method Is A Generator

– No Return For Generator

– Should Yield With Key

– Yield From Usage

– Yield Usage

• __halt_compiler()

– __halt_compiler

• basename

– Use Basename Suffix

• browscap

– Use Browscap

• compact()

– Create Compact Variables

– Nonexistent Variable In compact()

• constructor

– Avoid option arrays in constructors

– Can’t Instantiate Class

– Constructors

– Don’t Send $this In Constructor

– Old Style Constructor

– Unfinished Object

– Useless Constructor

– Wrong Number Of Arguments

• crc32

– Crc32() Might Be Negative

• declare()

– Declare strict_types Usage

14.5. Directory by PHP Features 2061

Exakat Documentation, Release 1

– Multiple Declaration Of Strict_types

– Substring First

– Ticks Usage

– time() Vs strtotime()

• define()

– Const Or Define Preference

– Define Constants With Array

– Use const

• dirname

– Use Basename Suffix

• extends

– Classes Mutually Extending Each Other

– Cyclic References

• extract()

– Configure Extract

• glob()

– Avoid glob() Usage

– GLOB_BRACE Usage

• global Scope

– $GLOBALS Or global

– Collect Global Variables

– Global Definitions

– Global In Global

– Global Usage

– Globals

– Implicit Global

– Local Globals

– PHP Variables

– PHP5 Indirect Variable Expression

– Restrict Global Usage

– Simple Global Variable

– Static Global Variables Confusion

– Unused Global

– Variable Global

• implements

– Abstract Or Implements

2062 Chapter 14. Rules

Exakat Documentation, Release 1

– Already Parents Interface

– Implements Is For Interface

– Interfaces Is Not Implemented

• include

– Inclusion Wrong Case

– Missing Include

– No Parenthesis For Language Construct

• instanceof

– Unresolved Instanceof

– Use Instanceof

– is_a() Versus instanceof

• integer

– Binary Glossary

– Could Type With Int

– Do Not Cast To Int

– Null Or Boolean Arrays

– Octal Glossary

– Similar Integers

– Special Integers

– Type Could Be Integer

• libsodium

– ext/mcrypt

• mcrypt Extension

– mcrypt_create_iv() With Default Values

• mysqli_sql_exception

– Could Use Try

• new

– Clone Constant

– Dynamic New

– Maybe Missing New

– Methodcall On New

– New On Functioncall Or Identifier

– New Order

– Null On New

• pack

– Invalid Pack Format

14.5. Directory by PHP Features 2063

Exakat Documentation, Release 1

– Pack Format Inventory

• parent

– $this Belongs To Classes Or Traits

– Class Without Parent

– Could Be Parent Method

– Must Call Parent Constructor

– Parent First

– Parent Is Not Static

– Parent, Static Or Self Outside Class

– Set Parent Definition

– Undefined Parent

– Use Lower Case For Parent, Static And Self

– self, parent, static Outside Class

• phpinfo()

– Phpinfo

• plus +

– Unsupported Operand Types

• resource

– PHP 8.0 Resources Turned Into Objects

– PHP 8.1 Resources Turned Into Objects

– Resources Usage

– Typehints/CouldBeResource

– Unchecked Resources

• sleep

– Avoid sleep()/usleep()

• sprintf

– Printf Format Inventory

– Sprintf Format Compilation

• static

– $this Belongs To Classes Or Traits

– $this Is Not For Static Methods

– Ambiguous Static

– Cannot Use Static For Closure

– Could Be A Static Variable

– Declare Static Once

– Make All Statics

2064 Chapter 14. Rules

Exakat Documentation, Release 1

– Method Could Be Static

– Non Static Methods Called In A Static

– Only Static Methods Class

– Parent Is Not Static

– Parent, Static Or Self Outside Class

– Scope Resolution Operator

– Static Call May Be Truly Static

– Static Global Variables Confusion

– Static Methods

– Static Methods Called From Object

– Static Methods Can’t Contain $this

– Undefined static:: Or self::

– Use Lower Case For Parent, Static And Self

– Use This

– Used Static Properties

– self, parent, static Outside Class

• stdclass

– Avoid Using stdClass

– Checks Property Existence

– Extends stdClass

• strict_types

– Multiple Declaration Of Strict_types

– strict_types Preference

• throw

– Forgotten Thrown

– Long Preparation For Throw

– Throw In Destruct

– Throw Was An Expression

– Thrown Exceptions

– Throws An Assignement

• unset()

– Cast Unset Usage

– Multiple Unset()

– Unset() Or (unset)

– Useless Unset

• yield from Keyword

14.5. Directory by PHP Features 2065

Exakat Documentation, Release 1

– Can’t Call Generator

– Could Be Generator

– Could Use Yield From

– Method Is A Generator

– Misused Yield

– Yield From Usage

– Yield Usage

14.6 Directory by PHP Error message

Exakat helps reduce the amount of error and warning that code is producing by reporting pattern that are likely to emit
errors.

264 PHP error message detailled :

• “boolean” will be interpreted as a class name. Did you mean “bool”?

• “continue” targeting switch is equivalent to “break”. Did you mean to use “continue 2”?

• $GLOBALS can only be modified using the $GLOBALS[$name] = $value syntax

• %s %s inherits both %s::%s and %s::%s

• ‘break’ operator accepts only positive integers

• A function with return type must return a value (did you mean “return null;” instead of “return;”?)

• A never-returning function must not return

• Abstract function t::someAbstractPrivateFunction() cannot be declared private

• Access level to Bar::$publicProperty must be public (as in class Foo)

• Access level to x::I must be public (as in interface i)

• Access level to x::foo() must be public (as in class i)

• Access level to xx::$x must be public (as in class x)

• Access to undeclared static property

• Access to undeclared static property: x::$y

• Accessing static property aa::$a as non static

• An alias (%s) was defined for method %s(), but this method does not exist

• Argument #1 ($a) must be of type T

• Argument #1 ($array) cannot be passed by reference

• Argument #1 ($array) could not be passed by reference

• Argument #1 ($line) must be passed by reference

• Argument #1 ($s) must be of type X, int given

• Argument #1 ($s) must be of type array, int given

• Argument #1 ($value) must contain at least one element

• Argument #1 must be of type float, string given

2066 Chapter 14. Rules

Exakat Documentation, Release 1

• Argument #2 ($encoding) must be a valid encoding, “xxx” given

• Argument #3 ($case_insensitive) is ignored since declaration of case-insensitive constants is no longer supported

• Argument #3 ($matches) cannot be passed by reference

• Argument 1 passed to foo() must be of the type integer, string given

• Argument cannot be passed by reference

• Argument cannot be passed by reference

• Argument must be of type int, array given

• Array and string offset access syntax with curly braces is deprecated

• Array to string conversion

• Attempt to echo a string that might be tainted

• Attempt to read property “b” on null

• Attribute “AttributeFunction” cannot target Class (allowed targets: Function)

• Call to a member function b() on null

• Call to a member function m() on null

• Call to private Y::__construct() from invalid context

• Call to protected method x::method

• Call to undefined function

• Call to undefined method theParent::bar()

• Call to undefined method x::y()

• Call-time pass-by-reference has been removed

• Calling static trait method Test::test is deprecated, it should only be called on a class using the trait

• Calling static trait method t::t is deprecated, it should only be called on a class using the trait

• Can’t inherit abstract function A::bar()

• Cannot access offset of type stdClass on string

• Cannot access parent:: when current class scope has no parent

• Cannot access parent:: when current class scope has no parent

• Cannot access parent:: when current class scope has no parent

• Cannot access private const

• Cannot access protected constant x::Cpro

• Cannot access protected property x::$property

• Cannot access self:: when no class scope is active

• Cannot access static:: when no class scope is active

• Cannot assign string to property A::$g of type int

• Cannot bind an instance to a static closure

• Cannot call __clone() method on objects - use ‘clone $obj’ instead

• Cannot call constructor

14.6. Directory by PHP Error message 2067

Exakat Documentation, Release 1

• Cannot combine named arguments and argument unpacking

• Cannot inherit previously-inherited or override constant A from interface

• Cannot inherit previously-inherited or override constant A from interface i

• Cannot initialize readonly property x::$p from global scope

• Cannot initialize readonly property x::$p from scope y

• Cannot instantiate enum e

• Cannot instantiate interface i

• Cannot instantiate trait t

• Cannot override final method Foo::Bar()

• Cannot override final method Foo::FooBar()

• Cannot override final method x::method()

• Cannot pass parameter 1 by reference

• Cannot pass parameter 1 by reference

• Cannot perform bitwise not on array

• Cannot perform bitwise not on bool

• Cannot perform bitwise not on object

• Cannot perform bitwise not on resource

• Cannot re-assign auto-global variable

• Cannot unpack array with string keys

• Cannot use “”parent”” when current class scope has no parent

• Cannot use “parent” when current class scope has no parent

• Cannot use “parent” when no class scope is active

• Cannot use “self” when no class scope is active

• Cannot use “static” when no class scope is active

• Cannot use ‘final’ as constant modifier

• Cannot use ‘never’ as class name as it is reserved

• Cannot use ‘never’ as class name as it is reserved

• Cannot use [] for reading

• Cannot use a scalar value as an array

• Cannot use int as default value for parameter $a of type string

• Cannot use int as default value for property x::$a of type string

• Cannot use isset() on the result of an expression (you can use “null !== expression” instead)

• Cannot use isset() on the result of an expression (you can use “null !== expression” instead)

• Cannot use lexical variable $b as a parameter name

• Cannot use object of type Foo as array

• Cannot use positional argument after argument unpacking

2068 Chapter 14. Rules

Exakat Documentation, Release 1

• Case-insensitive constants are deprecated. The correct casing for this constant is “A”

• Class “null” not found

• Class ‘PARENT’ not found

• Class ‘x’ not found

• Class BA contains 1 abstract method and must therefore be declared abstract or implement the remaining methods
(A::aFoo)

• Class b cannot implement previously implemented interface i

• Class b cannot implement previously implemented interface i

• Class bar cannot implement previously implemented interface i

• Class c contains 1 abstract method and must therefore be declared abstract or implement the remaining methods
(a::foo)

• Class fooThrowable cannot implement interface Throwable, extend Exception or Error instead

• Class i cannot extend interface Throwable

• Class x contains 2 abstract methods and must therefore be declared abstract or implement the remaining methods
(x::m1, x::m2)

• Class x must implement interface Traversable as part of either Iterator or IteratorAggregate

• Class y cannot extend final class x

• Constant FILE_BINARY is deprecated

• Constant expression contains invalid operations

• Constant expression contains invalid operations

• Constants may only evaluate to scalar values

• Could not check compatibility between xx::bar(B $a) and foo::bar(A $a), because class A is not available

• Creating default object from empty value

• Declaration of FooParent::Bar() must be compatible with FooChildren::Bar()

• Declaration of a::foo($a) should be compatible with ab1::foo($a)

• Declaration of ab::foo($a) must be compatible with a::foo($a = 1)

• Declaration of ab::foo($a) must be compatible with a::foo($a = 1)

• Declaration of ab::foo($a) should be compatible with a::foo($a = 1)

• Declaration of ab::foo($a) should be compatible with a::foo($a = 1)

• Default value for parameters with a int type can only be int or NULL

• Defining a custom assert() function is deprecated, as the function has special semantics

• Delimiter must not be alphanumeric or backslash

• Deprecated: Required parameter $y follows optional parameter $x

• Empty delimiter

• Enum may not include __construct

• Enum may not include __isset

• Failed to open stream: +wr’ is not a valid mode for fopen

14.6. Directory by PHP Error message 2069

Exakat Documentation, Release 1

• Generators cannot return values using “return”

• Generators cannot return values using “return”

• Headers already sent

• Illegal offset type

• Illegal offset type

• Illegal offset type in isset or empty

• Implicit conversion from float 1.2 to int loses precision

• Implicit conversion from float 3.141592653589793 to int loses precision

• Index invalid or out of range

• Indirect modification of overloaded property c::$b has no effect

• Invalid UTF-8 codepoint escape sequence

• Invalid UTF-8 codepoint escape: Codepoint too large

• Invalid numeric literal

• Method myString::__toString() must not throw an exception

• Method name must be a string

• Methods with the same name as their class will not be constructors in a future version of PHP; %s has a depre-
cated constructor

• Named parameter $a overwrites previous argument

• No ending delimiter ‘/’

• Non-static method A::B() should not be called statically

• Non-static method x::foo() cannot be called statically

• Non-string needles will be interpreted as strings in the future. Use an explicit chr() call to preserve the current
behavior

• Object of class stdClass could not be converted to

• Object of class stdClass could not be converted to float

• Object of class stdClass could not be converted to int

• Octal escape sequence overflow 500 is greater than 377

• Old style constructors are DEPRECATED in PHP 7.0, and will be removed in a future version. You should
always use __construct() in new code.

• Only the first byte will be assigned to the string offset

• Only variable references should be returned by reference

• Only variable references should be returned by reference

• Only variable references should be returned by reference

• Only variables can be passed by reference

• Only variables should be passed by reference

• Only variables should be passed by reference

• Optional parameter $a declared before required parameter $b is implicitly treated as a required parameter

2070 Chapter 14. Rules

Exakat Documentation, Release 1

• Passing null to parameter #2 ($offset) of type int is deprecated

• Private constant MyClass::Z cannot be final as it is not visible to other classes

• Private methods cannot be final as they are never overridden by other classes

• Property %s::$%s does not exist

• Property x::$x cannot have type callable

• Redefinition of parameter $b

• Return type must be array when declared in

• Return type of a::key() should either be compatible with IteratorIterator::key(): mixed, or the #[ReturnTypeWil-
lChange] attribute should be used to temporarily suppress the notice

• Return type of x::jsonserialize() should either be compatible with JsonSerializable::jsonSerialize(): mixed, or
the #[ReturnTypeWillChange] attribute should be used to temporarily suppress the notice

• Return value must be of type mixed, none returned

• Return value of foo() must be an instance of Bar, none returned

• Return value of foo() must be of the type int, string returned

• Static function foo::bar() should not be abstract

• The (real) cast has been removed, use (float) instead

• The (real) cast is deprecated, use (float) instead

• The (unset) cast is deprecated

• The (unset) cast is no longer supported

• The behavior of unparenthesized expressions containing both ‘.’ and ‘+’/’-’ will change in PHP 8: ‘+’/’-’ will
take a higher precedence

• The behavior of unparenthesized expressions containing both ‘.’ and ‘>>’/’

• The each() function is deprecated. This message will be suppressed on further calls

• The magic method x::__call() must have public visibility

• The parent constructor was not called: the object is in an invalid state

• Too few arguments to function Foo::Bar(), 1 passed

• Too few arguments to function foo(), 1 passed and exactly 2 expected

• Too few arguments to function foo(), 1 passed and exactly 2 expected

• Trait ‘T’ not found

• Trait ‘a’ not found

• Trait method M has not been applied, because there are collisions with other trait methods on C

• Trait method f has not been applied, because there are collisions with other trait methods on x

• Trying to access array offset on value of type boolean

• Trying to access array offset on value of type float

• Trying to access array offset on value of type int

• Trying to access array offset on value of type null

• Trying to access array offset on value of type null

14.6. Directory by PHP Error message 2071

Exakat Documentation, Release 1

• Type of b::$a must be array (as in class a)

• Type of b::$a must not be defined (as in class a)

• Type of b::$b must be A (as in class a)

• Type z: unknown format code

• Typed property x::$p2 must not be accessed before initialization

• Uncaught ArgumentCountError: Too few arguments to function, 0 passed

• Uncaught Error: Undefined constant

• Uncaught TypeError: Cannot auto-initialize an array inside property x::$P of type bool

• Undefined array key 2

• Undefined class constant

• Undefined constant ‘A’

• Undefined constant ‘y’

• Undefined constant

• Undefined constant

• Undefined constant x::C

• Undefined constant y::I4

• Undefined function

• Undefined property

• Undefined property: x::$e

• Undefined variable $a

• Undefined variable:

• Undefined variable:

• Unknown format specifier

• Unknown named parameter $d in

• Unparenthesized a ? b : c ? d : e is deprecated. Use either (a ? b : c) ? d : e or a ? b : (c ? d : e)

• Unsupported operand types

• Unsupported operand types

• Use of “parent” in callables is deprecated

• Use of “self” in callables is deprecated

• Use of “static” in callables is deprecated

• Use of undefined constant y - assumed ‘y’ (this will throw an Error in a future version of PHP)

• Using $this when not in object context

• Using $this when not in object context

• Using $this when not in object context

• Using $this when not in object context

• Using array_key_exists() on objects is deprecated. Use isset() or property_exists() instead

2072 Chapter 14. Rules

Exakat Documentation, Release 1

• X() has been disabled for security reasons

• __autoload() is deprecated, use spl_autoload_register() instead

• __clone method called on non-object

• __clone method called on non-object

• array_merge() does not accept unknown named parameters

• array_merge() expects at least 1 parameter, 0 given

• b cannot implement a - it is not an interface

• cannot override final constant

• class_alias(): Argument #1 ($class) must be a user-defined class name, internal class name given

• compact(): Undefined variable $a

• define(): Declaration of case-insensitive constants is deprecated

• does not accept unknown named parameters

• explode(): Argument #1 ($separator) cannot be empty

• iconv(): Wrong charset, conversion from UTF-8’ to ASCII//TRANSLIT’ is not allowed

• include(a.php): failed to open stream: No such file or directory

• mb_convert_encoding(): Handling Base64 via mbstring is deprecated; use base64_encode/base64_decode in-
stead

• needle is not a string or an integer

• pack(): Type t: unknown format code

• printf(): Too few arguments

• static:: is not allowed in compile-time constants

• strlen() expects exactly 1 argument, 3 given

• syntax error, unexpected ‘&’, expecting variable (T_VARIABLE)

• syntax error, unexpected ‘,’

• syntax error, unexpected ‘-’, expecting ‘=’

• syntax error, unexpected ‘match’

• syntax error, unexpected ‘|’, expecting variable (T_VARIABLE)

• theClass and theTrait define the same property ($property) in the composition of theClass. However, the definition
differs and is considered incompatible.

• unpack(): Type t: unknown format code

• version_compare(): Argument #3 ($operator) must be a valid comparison operator

• y::F cannot override final constant x::F

14.6. Directory by PHP Error message 2073

Exakat Documentation, Release 1

14.7 Directory by Exception

Exakat has rules that help identify possible exceptions in the code.

• ArithmeticError Error

– Could Use Try

• DivisionByZeroError

– Could Use Try

• Exception

– Could Use Try

• ImagickException

– Could Use Try

• ImagickPixelException

– Could Use Try

• InvalidArgumentException

– Could Use Try

• JsonException

– Could Use Try

• PDOException

– Could Use Try

• PharException

– Could Use Try

• ReflectionException

– Could Use Try

• SVMException

– Could Use Try

• Type Error

– Could Use Try

• UnexpectedValueException

– Could Use Try

• mysqli_sql_exception

– Could Use Try

2074 Chapter 14. Rules

CHAPTER

FIFTEEN

RULESETS

15.1 Introduction

Exakat provides unique 1650 rules to detect BUGS, CODE SMELLS, SECURITY OR QUALITY ISSUES in your
PHP code.

For more smoothly usage, the ruleset concept allow you to run a set of rules based on a decidated focus. Beawre that a
Ruleset run all the associated rules and any needed dependencies.

Rulesets are configured with the -T option, when running exakat in command line. For example :

php exakat.phar analyze -p <project> -T <Security>

15.2 Summary

Here is the list of the current rulesets supported by Exakat Engine.

Name Description
All All is a dummy ruleset, which includes all the rules.
Analyze Check for common best practices.
Appinfo Appinfo is the equivalent of phpinfo() for your code.
Attributes This ruleset gathers all rules that rely on PHP 8.+ attributes.
CE List of rules that are part of the Community Edition
CI-checks Quick check for common best practices.
Changed Behavior Ruleset with all rules that identify changed behavior across PHP versions.
Class Review A set of rules dedicated to class hygiene
Classdependencies A set of rules dedicated to show classes dependences
Coding conventions List coding conventions violations.
CompatibilityPHP53 List features that are incompatible with PHP 5.3.
CompatibilityPHP54 List features that are incompatible with PHP 5.4.
CompatibilityPHP55 List features that are incompatible with PHP 5.5.
CompatibilityPHP56 List features that are incompatible with PHP 5.6.
CompatibilityPHP70 List features that are incompatible with PHP 7.0.
CompatibilityPHP71 List features that are incompatible with PHP 7.1.
CompatibilityPHP72 List features that are incompatible with PHP 7.2.
CompatibilityPHP73 List features that are incompatible with PHP 7.3.
CompatibilityPHP74 List features that are incompatible with PHP 7.4.
CompatibilityPHP80 List features that are incompatible with PHP 8.0.
CompatibilityPHP81 List features that are incompatible with PHP 8.1.

continues on next page

2075

Exakat Documentation, Release 1

Table 1 – continued from previous page
CompatibilityPHP82 List features that are incompatible with PHP 8.2.
CompatibilityPHP83 List features that are incompatible with PHP 8.3.
Dead code Check the unused code or unreachable code.
Deprecated List of deprecated features, across all PHP versions.
Dump Dump is a collector set of rules.
First A set of rules that are always run at the beginning of a project, because they are frequently used.
Inventory A set of rules that collect various definitions from the code
IsExt Ruleset with analysis which rely on PHP’s optional extensions
IsPHP Ruleset with analysis which rely on PHP’s core extensions
IsStub Ruleset with analysis which rely on custom stubs
LintButWontExec Check the code for common errors that will lead to a Fatal error on production, but lint fine.
NoDoc Ruleset with analysis which are not published in the docs.
One Liners Report expressions that are one liners.
PHP recommendations Report recommendations from the PHP manual.
Performances Check the code for slow code.
Preferences Identify preferences in the code.
Rector Suggests configuration to apply changes with Rector
Security Check the code for common security bad practices, especially in the Web environnement.
Semantics Checks the meanings found the names of the code.
Suggestions List of possible modernisation of the PHP code.
Surprising A ruleset dedicated to surprising pieces of code in PHP.
Top10 The most common issues found in the code
Typechecks Checks related to types.
php-cs-fixable Suggests configuration to apply changes with PHP-CS-FIXER

Note : in command line, don’t forget to add quotes to rulesets’ names that include white space.

15.3 List of rulesets

15.3.1 All

All is a dummy ruleset, which includes all the rules. It is mostly used internally.

Total : 1648 analysis

• Adding Zero

• Ambiguous Array Index

• Array Index

• Multidimensional Arrays

• Multiple Index Definition

• PHP Arrays Index

• Class Usage

• Classes Names

• Constant Definition

• Empty Classes

• Magic Methods

2076 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Forgotten Visibility

• Non Static Methods Called In A Static

• Old Style Constructor

• Property Names

• Static Methods

• Static Methods Called From Object

• Static Properties

• Constants With Strange Names

• Constants Usage

• Constants Names

• True False Inconsistant Case

• Magic Constant Usage

• PHP Constant Usage

• Caught Exceptions

• Defined Exceptions

• Thrown Exceptions

• ext/apc

• ext/bcmath

• ext/bzip2

• ext/calendar

• ext/crypto

• ext/ctype

• ext/curl

• ext/date

• ext/dba

• ext/dom

• ext/enchant

• ext/exif

• ext/fileinfo

• ext/filter

• ext/ftp

• ext/gd

• ext/gmp

• ext/gnupgp

• ext/hash

• ext/iconv

15.3. List of rulesets 2077

Exakat Documentation, Release 1

• ext/json

• ext/ldap

• ext/libxml

• ext/mbstring

• ext/mcrypt

• ext/mongo

• ext/mssql

• ext/mysql

• ext/mysqli

• ext/odbc

• ext/openssl

• ext/pcre

• ext/pdo

• ext/pgsql

• ext/phar

• ext/posix

• ext/readline

• ext/reflection

• ext/sem

• ext/session

• ext/shmop

• ext/simplexml

• ext/snmp

• ext/soap

• ext/sockets

• ext/spl

• ext/sqlite

• ext/sqlite3

• ext/ssh2

• ext/standard

• ext/tidy

• ext/tokenizer

• ext/wddx

• ext/xdebug

• ext/xmlreader

• ext/xmlrpc

2078 Chapter 15. Rulesets

Exakat Documentation, Release 1

• ext/xmlwriter

• ext/xsl

• ext/yaml

• ext/zip

• ext/zlib

• Closures Glossary

• Empty Function

• Function Called With Other Case Than Defined

• Functions Glossary

• Recursive Functions

• Redeclared PHP Functions

• Typehints

• Unset Arguments

• Methods Without Return

• Empty Interfaces

• Interfaces Usage

• Interfaces Names

• PHP Interfaces

• Aliases

• Namespaces Glossary

• Autoloading

• Use Lower Case For Parent, Static And Self

• Goto Names

• __halt_compiler

• Incompilable Files

• Labels

• Functions Removed In PHP 5.4

• Functions Removed In PHP 5.5

• Throw

• Trigger Errors

• Caught Expressions

• Break With 0

• Break With Non Integer

• Calltime Pass By Reference

• error_reporting() With Integers

• Eval() Usage

15.3. List of rulesets 2079

Exakat Documentation, Release 1

• Exit() Usage

• For Using Functioncall

• Forgotten Whitespace

• Iffectations

• Multiply By One

• @ Operator

• Not Not

• include_once() Usage

• Phpinfo

• No Plus One

• Using Short Tags

• Strpos()-like Comparison

• Throws An Assignement

• var_dump(). . . Usage

• __toString() Throws Exception

• Binary Glossary

• Continents

• Email Addresses

• Heredoc Delimiter Glossary

• Hexadecimal Glossary

• Http Headers

• HTTP Status Code

• Malformed Octal

• Md5 Strings

• Mime Types

• Nowdoc Delimiter Glossary

• Octal Glossary

• Perl Regex

• Internet Ports

• Special Integers

• All strings

• Unicode Blocks

• URL List

• Blind Variables

• Interface Arguments

• Variable References

2080 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Static Variables

• Variables With Long Names

• Non Ascii Variables

• Variables With One Letter Names

• PHP Variables

• All Uppercase Variables

• Used Once Variables

• Variable Variables

• Abstract Class Usage

• Abstract Methods Usage

• Clone Usage

• Final Class Usage

• Final Methods Usage

• Bad Constants Names

• Variable Constants

• Empty Traits

• Redefined PHP Traits

• Traits Usage

• Trait Names

• PHP Alternative Syntax

• Short Syntax For Arrays

• Inclusions

• ext/file

• Unused Use

• Use With Fully Qualified Name

• Used Use

• ext/array

• ext/info

• ext/math

• $HTTP_RAW_POST_DATA Usage

• Non-lowercase Keywords

• New Functions In PHP 5.4

• New Functions In PHP 5.5

• Useless Instructions

• Abstract Static Methods

• Interface Methods

15.3. List of rulesets 2081

Exakat Documentation, Release 1

• New Functions In PHP 5.6

• Trait Methods

• Invalid Constant Name

• Multiple Constant Definition

• Wrong Optional Parameter

• Multiple Definition Of The Same Argument

• Echo Or Print

• Use === null

• Constant Comparison

• Fopen Binary Mode

• Assertions

• $this Is Not An Array

• One Variable String

• Cast Usage

• Function Subscripting

• Nested Loops

• Closing Tags

• PHP Echo Tag Usage

• Static Methods Can’t Contain $this

• Closure May Use $this

• While(List() = Each())

• Several Instructions On The Same Line

• One Letter Functions

• Multiples Identical Case

• Switch Without Default

• Function Subscripting, Old Style

• Internally Used Properties

• $this Belongs To Classes Or Traits

• Nested Ternary

• Switch With Too Many Default

• Non-constant Index In Array

• Undefined Constants

• Custom Constant Usage

• Instantiating Abstract Class

• Classes Mutually Extending Each Other

• Class, Interface, Enum Or Trait With Identical Names

2082 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Empty Try Catch

• ext/pcntl

• Undefined Classes

• Is An Extension Class

• Wrong Class Name Case

• ext/redis

• Is An Extension Function

• Is An Extension Interface

• Is An Extension Constant

• Htmlentities Calls

• Bracketless Blocks

• Defined Class Constants

• Undefined Class Constants

• Unused Private Properties

• Used Static Properties

• Used Private Methods

• Unused Private Methods

• Unused Functions

• Used Functions

• Used Once Variables (In Scope)

• Undefined Functions

• Deprecated PHP Functions

• crypt() Without Salt

• mcrypt_create_iv() With Default Values

• Dangling Array References

• ext/sqlsrv

• Queries In Loops

• Var Keyword

• Native Alias Functions Usage

• Uses Default Values

• Wrong Number Of Arguments

• Hardcoded Passwords

• Functions In Loop Calls

• Unresolved Classes

• Ellipsis Usage

• Exponent Usage

15.3. List of rulesets 2083

Exakat Documentation, Release 1

• ** For Exponent

• Constructors

• Useless Constructor

• Too Many Children

• Implements Is For Interface

• Use const

• Unresolved Use

• Conditional Structures

• Unused Constants

• Undefined Parent

• Defined static:: Or self::

• Undefined static:: Or self::

• Accessing Private

• Access Protected Structures

• Parent, Static Or Self Outside Class

• ext/0mq

• ext/memcache

• ext/memcached

• Is Extension Trait

• Dynamic Function Call

• Has Variable Arguments

• Multiple Catch

• Dynamically Called Classes

• Conditioned Function

• Conditioned Constants

• Method Is A Generator

• Try With Finally

• Use password_hash()

• Dereferencing String And Arrays

• ::class

• Foreach With list()

• Empty With Expression

• list() May Omit Variables

• Or Die

• Constant Conditions

• Use Const And Functions

2084 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Constant Scalar Expressions

• Unusual Case For PHP Functions

• Multiple Returns

• Unreachable Code

• Exit-like Methods

• Written Only Variables

• Must Return Methods

• __debugInfo() Usage

• Empty Instructions

• Interpolation

• Mixed Keys In Array

• Empty Slots In Arrays

• Wrong Number Of Arguments In Methods

• Class Has Fluent Interface

• Method Has Fluent Interface

• Method Is Not For Fluent Interface

• PHP Handlers Usage

• ext/imagick

• Unused Methods

• Property Variable Confusion

• ext/oci8

• Used Methods

• Overwritten Exceptions

• Foreach Needs Reference Array

• Foreach Reference Is Not Modified

• ext/imap

• Overwritten Class Constants

• Direct Injection

• Dynamic Class Constant

• Dynamic Methodcall

• Dynamic New

• Dynamic Property

• Don’t Change Incomings

• Super Globals Contagion

• Dynamic Classes

• Return void

15.3. List of rulesets 2085

Exakat Documentation, Release 1

• Compared Comparison

• Useless Return

• Multiple Classes In One File

• File Uploads

• Return With Parenthesis

• Unused Classes

• Used Classes

• ext/intl

• Dynamic Code

• Unpreprocessed Values

• ext/pspell

• No Direct Access

• ext/opcache

• Is PHP Constant

• Sensitive Argument

• Functioncall Is Global

• ext/expect

• Defined Properties

• Undefined Properties

• Has Magic Method

• ext/gettext

• Short Open Tags

• Strict Comparison With Booleans

• Lone Blocks

• $this Is Not For Static Methods

• Avoid sleep()/usleep()

• Argument Should Be Typehinted

• Should Be Single Quote

• Super Global Usage

• Global Usage

• PHP Keywords As Names

• Logical Should Use Symbolic Operators

• Could Use self

• Implicit Global

• Const With Array

• Catch Overwrite Variable

2086 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Namespaces

• Avoid array_unique()

• Definitions Only

• Deep Definitions

• Constant Class

• File Is Not Definitions Only

• Global Code Only

• Preprocess Arrays

• Repeated print()

• Avoid Parenthesis With Language Construct

• Objects Don’t Need References

• Redefined Property

• Locally Unused Property

• Locally Used Property

• Lost References

• Constants Created Outside Its Namespace

• Fully Qualified Constants

• Never Used Properties

• Yoda Comparison

• No Real Comparison

• Sequences In For

• Should Use Local Class

• Use This

• Usage Of class_alias()

• Custom Class Usage

• ext/apache

• ext/eaccelerator

• ext/fpm

• parse_str() Warning

• No Direct Call To Magic Method

• String May Hold A Variable

• Echo With Concat

• Unused Global

• Useless Global

• Preprocessable

• Slow Functions

15.3. List of rulesets 2087

Exakat Documentation, Release 1

• Useless Final

• Use Constant Instead Of Function

• Resources Usage

• Useless Unset

• Buried Assignation

• Duplicate Calls

• No array_merge() In Loops

• Useless Parenthesis

• Shell Usage

• File Usage

• Mail Usage

• Dynamic Calls

• Unresolved Instanceof

• Use PHP Object API

• Unthrown Exception

• Old Style __autoload()

• Altering Foreach Without Reference

• Test Class

• Magic Visibility

• Use Pathinfo

• Should Use Existing Constants

• Hash Algorithms

• Avoid Those Hash Functions

• ext/dio

• No Parenthesis For Language Construct

• Unused Label

• No Hardcoded Path

• Methodcall On New

• No Hardcoded Port

• ext/phalcon

• Use Constant As Arguments

• Implied If

• Overwritten Literals

• Assign Default To Properties

• No Public Access

• Composer Usage

2088 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Composer’s autoload

• Should Chain Exception

• Used Interfaces

• Unused Interfaces

• Useless Interfaces

• Undefined Interfaces

• ext/apcu

• Double Instructions

• Should Use Prepared Statement

• Is Interface Method

• Hash Algorithms Incompatible With PHP 5.3

• Hash Algorithms Incompatible With PHP 5.4/5.5

• Print And Die

• Unchecked Resources

• Class Const With Array

• ext/trader

• ext/mailparse

• ext/mail

• Unresolved Catch

• No Hardcoded Ip

• Variable Global

• Else If Versus Elseif

• Reserved Keywords In PHP 7

• Unset In Foreach

• Could Be Class Constant

• Could Be A Static Variable

• Multiple Class Declarations

• Compare Hash

• Empty Namespace

• Could Use Short Assignation

• Useless Abstract Class

• Only Static Methods Class

• Null On New

• Scalar Typehint Usage

• Return Typehint Usage

• ext/ob

15.3. List of rulesets 2089

Exakat Documentation, Release 1

• Global Import

• Static Loop

• Pre-increment

• Only Variable Returned By Reference

• ext/geoip

• ext/event

• ext/amqp

• ext/gearman

• ext/com

• ext/gmagick

• ext/ibase

• ext/inotify

• ext/xdiff

• ext/ev

• ext/php-ast

• ext/xml

• ext/xhprof

• Indices Are Int Or String

• Should Typecast

• No Self Referencing Constant

• No Direct Usage

• Break Outside Loop

• Inconsistent Concatenation

• Else Usage

• One Object Operator Per Line

• isset() With Constant

• Avoid Substr() One

• Global Inside Loop

• Anonymous Classes

• Is Global Constant

• Coalesce

• Double Assignation

• Unicode Escape Syntax

• New Functions In PHP 7.0

• PHP 7.0 Removed Functions

• PHP 7.0 New Classes

2090 Chapter 15. Rulesets

Exakat Documentation, Release 1

• PHP 7.0 New Interfaces

• Empty List

• List With Array Appends

• Simple Global Variable

• Parenthesis As Parameter

• Foreach Don’t Change Pointer

• PHP5 Indirect Variable Expression

• Php 7 Indirect Expression

• Unicode Escape Partial

• Define Constants With Array

• PHP 7.0 Removed Directives

• Directives Usage

• Useless Brackets

• preg_replace With Option e

• eval() Without Try

• Is Not Class Family

• No List With String

• Setlocale() Uses Constants

• Global In Global

• Usort Sorting In PHP 7.0

• Hexadecimal In String

• ext/fann

• Relay Function

• func_get_arg() Modified

• Use Web

• Use Cli

• PHP Sapi

• Register Globals

• External Config Files

• Avoid get_class()

• Silently Cast Integer

• Used Trait

• Unused Traits

• PHP7 Dirname

• Error Messages

• Timestamp Difference

15.3. List of rulesets 2091

Exakat Documentation, Release 1

• Php7 Relaxed Keyword

• Not Same Name As File

• ext/pecl_http

• Joining file()

• Real Variables

• Real Functions

• Normal Methods

• Unused Parameter

• Uses Environment

• Switch To Switch

• Wrong Parameter Type

• Property Could Be Private

• Redefined Methods

• Redefined Class Constants

• File Is Component

• Redefined Default

• Wrong fopen() Mode

• Unknown Directive Name

• Confusing Names

• Is CLI Script

• PHP Bugfixes

• preg_match_all() Flag

• Safe Curl Options

• Negative Power

• Already Parents Interface

• Use random_int()

• Cant Use Return Value In Write Context

• set_exception_handler() Warning

• Can’t Extend Final

• Ternary In Concat

• Using $this Outside A Class

• Simplify Regex

• ext/tokyotyrant

• ext/v8js

• Yield Usage

• Yield From Usage

2092 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Pear Usage

• Undefined Trait

• No Hardcoded Hash

• Identical Conditions

• Unkown Regex Options

• Random Without Try

• No Choice

• Common Alternatives

• Logical Mistakes

• Exception Order

• ext/lua

• Uncaught Exceptions

• Undefined Caught Exceptions

• Same Conditions In Condition

• Php 7.1 New Class

• Return True False

• GPRC Aliases

• Indirect Injection

• Useless Switch

• Overwriting Variable

• Could Use __DIR__

• Should Use Coalesce

• Make Global A Property

• List With Keys

• If With Same Conditions

• ext/suhosin

• Unserialize Second Arg

• Throw Functioncall

• Can’t Disable Function

• Functions Using Reference

• Use Instanceof

• Make One Call With Array

• Property Used Above

• Property Used Below

• List Short Syntax

• Results May Be Missing

15.3. List of rulesets 2093

Exakat Documentation, Release 1

• Use Nullable Type

• Defined Parent MP

• Globals

• Always Positive Comparison

• PHP 7.1 Removed Directives

• New Functions In PHP 7.1

• Multiple Exceptions Catch()

• Is Upper Family

• Empty Blocks

• Throw In Destruct

• Used Protected Method

• Unused Protected Methods

• Use System Tmp

• Linux Only Files

• No Count With 0

• Dependant Trait

• Hidden Use Expression

• Could Use Alias

• Should Make Alias

• Multiple Identical Trait Or Interface

• Multiple Alias Definitions

• Nested Ifthen

• Cast To Boolean

• Failed Substr() Comparison

• Should Use Ternary Operator

• Unused Returned Value

• Modernize Empty With Expression

• Use Positive Condition

• Drop Else After Return

• Use ::Class Operator

• ext/rar

• Don’t Echo Error

• Useless Type Casting

• No isset() With empty()

• time() Vs strtotime()

• Useless Check

2094 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Unitialized Properties

• More Than One Level Of Indentation

• One Dot Or Object Operator Per Line

• Bail Out Early

• Die Exit Consistence

• Array() / [] Consistence

• PHP 7.1 Microseconds

• Don’t Change The Blind Var

• Getting Last Element

• Rethrown Exceptions

• Avoid Using stdClass

• Invalid Octal In String

• Avoid array_push()

• ext/nsapi

• ext/newt

• ext/ncurses

• Use Composer Lock

• Too Many Local Variables

• $GLOBALS Or global

• Illegal Name For Method

• Unset() Or (unset)

• Close Tags Consistency

• String

• Class Should Be Final By Ocramius

• ext/mongodb

• Should Use Function

• One Expression Brackets Consistency

• Fetch One Row Format

• No String With Append

• Avoid glob() Usage

• Avoid Large Array Assignation

• Could Be Protected Property

• Long Arguments

• New On Functioncall Or Identifier

• Assigned Twice

• New Line Style

15.3. List of rulesets 2095

Exakat Documentation, Release 1

• PHP 7.2 Deprecations

• PHP 7.2 Removed Functions

• Error_Log() Usage

• Raised Access Level

• No Boolean As Default

• SQL queries

• Strange Names In Classes

• ext/libsodium

• Class Function Confusion

• Forgotten Thrown

• Should Use array_column()

• Multiple Alias Definitions Per File

• __DIR__ Then Slash

• self, parent, static Outside Class

• Used Once Property

• Property Used In One Method Only

• ext/ds

• No Need For Else

• Should Use session_regenerateid()

• Strange Name For Variables

• Strange Name For Constants

• Regex Delimiter

• Could Be Typehinted Callable

• Encoded Simple Letters

• Too Many Finds

• Use Cookies

• Should Use SetCookie()

• Set Cookie Safe Arguments

• Check All Types

• Missing Cases In Switch

• New Functions In PHP 7.2

• New Constants In PHP 7.2

• Group Use Declaration

• Method Is Overwritten

• Displays Text

• Repeated Regex

2096 Chapter 15. Rulesets

Exakat Documentation, Release 1

• No Class In Global

• Crc32() Might Be Negative

• Could Use str_repeat()

• Suspicious Comparison

• Empty Final Element In Array

• Strings With Strange Space

• Difference Consistence

• No Empty Regex

• Alternative Syntax Consistence

• Randomly Sorted Arrays

• ext/sphinx

• Try With Multiple Catch

• ext/grpc

• Only Variable Passed By Reference

• No Return Used

• Use Browscap

• Use Debug

• No Class As Typehint

• No Reference On Left Side

• Implemented Methods Must Be Public

• Could Typehint

• PSR-16 Usage

• PSR-7 Usage

• PSR-6 Usage

• PSR-3 Usage

• PSR-11 Usage

• PSR-13 Usage

• Mixed Concat And Interpolation

• ext/stats

• DI Cyclic Dependencies

• Concatenation Interpolation Consistence

• New Functions In PHP 7.3

• Too Many Injections

• Dependency Injection

• Courier Anti-Pattern

• ext/gender

15.3. List of rulesets 2097

Exakat Documentation, Release 1

• ext/judy

• Could Make A Function

• Forgotten Interface

• Order Of Declaration

• Yii usage

• Codeigniter usage

• Laravel usage

• Symfony usage

• Wordpress usage

• Ez cms usage

• Use session_start() Options

• Cant Inherit Abstract Method

• Joomla usage

• Non Breakable Space In Names

• Multiple Functions Declarations

• Avoid Optional Properties

• Heredoc Delimiter

• swoole

• Manipulates NaN

• Manipulates INF

• No Return Or Throw In Finally

• Const Or Define

• Mkdir Default

• strict_types Preference

• Declare strict_types Usage

• Encoding Usage

• Ticks Usage

• Mismatched Ternary Alternatives

• Mismatched Default Arguments

• Mismatched Typehint

• Scalar Or Object Property

• Group Use Trailing Comma

• Assign And Lettered Logical Operator Precedence

• Logical Operators Favorite

• Isset Multiple Arguments

• No Magic Method With Array

2098 Chapter 15. Rulesets

Exakat Documentation, Release 1

• PHP 7.2 Object Keyword

• Child Class Removes Typehint

• ext/xattr

• Avoid Concat In Loop

• Optional Parameter

• No Substr Minus One

• Logical To in_array

• Should Use Foreach

• ext/rdkafka

• ext/fam

• Shell Favorite

• Constant Used Below

• Could Be Private Class Constant

• Could Be Protected Class Constant

• Method Used Below

• Method Could Be Private Method

• Could Be Protected Method

• Pathinfo() Returns May Vary

• Use pathinfo() Arguments

• ext/parle

• Regex Inventory

• Switch Fallthrough

• Upload Filename Injection

• Always Anchor Regex

• Multiple Type Variable

• Is Actually Zero

• Unconditional Break In Loop

• Session Lazy Write

• Session Variables

• Incoming Variables

• Cookies Variables

• Too Complex Expression

• Date Formats

• Is A Magic Property

• Could Be Else

• Simple Switch And Match

15.3. List of rulesets 2099

Exakat Documentation, Release 1

• Next Month Trap

• Printf Number Of Arguments

• Substring First

• Drupal Usage

• Ambiguous Static

• Phalcon Usage

• Fuel PHP Usage

• Use List With Foreach

• Don’t Send $this In Constructor

• Argon2 Usage

• Crypto Usage

• Integer As Property

• No get_class() With Null

• Php 7.2 New Class

• Avoid set_error_handler $context Argument

• Hash Will Use Objects

• Can’t Count Non-Countable

• Maybe Missing New

• Unknown Pcre2 Option

• Use PHP7 Encapsed Strings

• Type Array Index

• Incoming Variable Index Inventory

• Slice Arrays First

• ext/vips

• Dl() Usage

• Parent First

• Environment Variables

• Invalid Regex

• Assigned In One Branch

• Use Named Boolean In Argument Definition

• Same Variable Foreach

• Never Called Parameter

• ext/igbinary

• Should Use array_filter()

• Not A Scalar Type

• Mistaken Concatenation

2100 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Identical On Both Sides

• Identical Consecutive Expression

• No Reference For Ternary

• Sqlite3 Requires Single Quotes

• No Net For Xml Load

• Unused Inherited Variable In Closure

• Inclusion Wrong Case

• Missing Include

• Local Globals

• Useless Referenced Argument

• Fallback Function

• Reuse Existing Variable

• Double array_flip()

• Useless Catch

• Find Key Directly

• Possible Infinite Loop

• Should Use Math

• ext/hrtime

• List With Reference

• Test Then Cast

• Could Use Compact

• Foreach On Object

• ext/xxtea

• ext/uopz

• ext/varnish

• ext/opencensus

• Dynamic Library Loading

• PHP 7.3 Last Empty Argument

• Could Use array_fill_keys

• ext/leveldb

• Use Recursive count()

• Property Could Be Local

• ext/db2

• Mass Creation Of Arrays

• Too Many Native Calls

• Too Many Parameters

15.3. List of rulesets 2101

Exakat Documentation, Release 1

• Should Preprocess Chr()

• Properties Declaration Consistence

• Possible Increment

• Drop Substr Last Arg

• Redefined Private Property

• Don’t Unset Properties

• Strtr Arguments

• Processing Collector

• Missing Parenthesis

• One If Is Sufficient

• Could Use array_unique

• Callback Function Needs Return

• Wrong Range Check

• ext/zookeeper

• ext/cmark

• Failing Analysis

• Can’t Instantiate Class

• strpos() Too Much

• Class-typed References

• Do In Base

• Weak Typing

• Cache Variable Outside Loop

• Use The Blind Var

• Configure Extract

• Nonexistent Variable In compact()

• Method Signature Must Be Compatible

• Mismatch Type And Default

• Flexible Heredoc

• Check JSON

• Const Visibility Usage

• Should Use Operator

• Single Use Variables

• Strict Or Relaxed Comparison

• Comparisons Orientation

• Compared But Not Assigned Strings

• Could Be Static Closure

2102 Chapter 15. Rulesets

Exakat Documentation, Release 1

• move_uploaded_file Instead Of copy

• Don’t Mix ++

• Can’t Throw Throwable

• Abstract Or Implements

• ext/eio

• Incompatible Signature Methods

• Ambiguous Visibilities

• Hash Algorithms Incompatible With PHP 7.1-

• Undefined ::class

• PHP 7.0 Scalar Typehints

• PHP 7.1 Scalar Typehints

• PHP 7.2 Scalar Typehints

• Locally Used Property In Trait

• ext/lzf

• ext/msgpack

• Case Insensitive Constants

• Handle Arrays With Callback

• Use is_countable

• Detect Current Class

• Avoid Real

• Const Or Define Preference

• Constant Case Preference

• Assert Function Is Reserved

• Could Be Abstract Class

• Continue Is For Loop

• PHP 7.3 Removed Functions

• Trailing Comma In Calls

• Must Call Parent Constructor

• Undefined Variable

• Undefined Insteadof

• Method Collision Traits

• Use json_decode() Options

• Class Could Be Final

• Closure Could Be A Callback

• Inconsistent Elseif

• Can’t Disable Class

15.3. List of rulesets 2103

Exakat Documentation, Release 1

• ext/seaslog

• Add Default Value

• Only Variable For Reference

• Direct Call To __clone()

• filter_input() As A Source

• Wrong Access Style to Property

• Named Regex

• Invalid Pack Format

• No Return For Generator

• Repeated Interface

• No Reference For Static Property

• Don’t Read And Write In One Expression

• Pack Format Inventory

• Printf Format Inventory

• idn_to_ascii() New Default

• Could Use Try

• Use Basename Suffix

• PHP Exception

• ext/decimal

• ext/psr

• Should Yield With Key

• Don’t Loop On Yield

• Declare Global Early

• Unreachable Class Constant

• Avoid Self In Interface

• Should Have Destructor

• Safe HTTP Headers

• fputcsv() In Loops

• Directly Use File

• Useless Method Alias

• ext/sdl

• Isset() On The Whole Array

• ext/wasm

• Self Using Trait

• Multiple Usage Of Same Trait

• Method Could Be Static

2104 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Multiple Identical Closure

• Path lists

• Possible Missing Subpattern

• array_key_exists() Speedup

• Assign And Compare

• Typed Property Usage

• Don’t Be Too Manual

• Variable Is Not A Condition

• Array With String Initialization

• ext/weakref

• ext/pcov

• Insufficient Typehint

• Bad Type Relay

• Constant Dynamic Creation

• PHP 8.0 Removed Functions

• PHP 8.0 Removed Constants

• Law of Demeter

• An OOP Factory

• Type Must Be Returned

• Inconsistent Variable Usage

• Should Deep Clone

• Clone With Non-Object

• Self-Transforming Variables

• Check On __Call Usage

• PHP Overridden Function

• Caught Variable

• Multiple Unset()

• Implode One Arg

• Insecure Integer Validation

• Incoming Values

• ext/svm

• Useless Default Argument

• Avoid option arrays in constructors

• ext/ffi

• ext/password

• ext/zend_monitor

15.3. List of rulesets 2105

Exakat Documentation, Release 1

• ext/uuid

• Already Parents Trait

• Trait Not Found

• Casting Ternary

• Concat Empty String

• Concat And Addition

• Useless Argument

• New Functions In PHP 7.4

• Unpacking Inside Arrays

• Minus One On Error

• No Need For get_class()

• Identical Methods

• No Append On Source

• Autoappend

• Memoize MagicCall

• Make Magic Concrete

• Substr To Trim

• Regex On Arrays

• Always Use Function With array_key_exists()

• Complex Dynamic Names

• curl_version() Has No Argument

• Php 7.4 New Classes

• New Constants In PHP 7.4

• Unused Class Constant

• Could Be Constant

• Could Use Trait

• Infinite Recursion

• Null Or Boolean Arrays

• Dependant Abstract Classes

• Wrong Type Returned

• Generator Cannot Return

• Methods That Should Not Be Used

• Use DateTimeImmutable Class

• Set Aside Code

• Use Array Functions

• Useless Type Check

2106 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Disconnected Classes

• Not Or Tilde

• Overwritten Source And Value

• Avoid mb_dectect_encoding()

• PHP 7.4 Removed Functions

• mb_strrpos() Third Argument

• array_key_exists() Works On Arrays

• Reflection Export() Is Deprecated

• Unbinding Closures

• Numeric Literal Separator

• Class Without Parent

• Serialize Magic Method

• Scalar Are Not Arrays

• Similar Integers

• Php Native Reference Variable

• Create Compact Variables

• Propagate Constants

• PHP 7.4 Reserved Keyword

• No ENT_IGNORE

• No More Curly Arrays

• Overwritten Properties

• Overwritten Methods

• Overwritten Constant

• Set Clone Link

• Create Magic Property

• Set Parent Definition

• Make Class Method Definition

• Create Default Values

• array_merge() And Variadic

• Set class_alias() Definition

• Makes Class Constant Definition

• Set Class Remote Definition With Injection

• Solve Trait Methods

• Follow Closure Definition

• PHP 7.4 Constant Deprecation

• Implode() Arguments Order

15.3. List of rulesets 2107

Exakat Documentation, Release 1

• PHP 7.4 Removed Directives

• Hash Algorithms Incompatible With PHP 7.4-

• openssl_random_pseudo_byte() Second Argument

• strip_tags() Skips Closed Tag

• No Spread For Hash

• Use Covariance

• Use Contravariance

• Set Class Remote Definition With Return Typehint

• Set Class Remote Definition With Local New

• Set Class Remote Definition With Typehint

• Set Class Remote Definition With Global

• Set Class Remote Definition With Parenthesis

• Set Class Property Definition With Typehint

• Set Array Class Definition

• Set Class Method Remote Definition

• Use Arrow Functions

• Max Level Of Nesting

• Environment Variable Usage

• Indentation Levels

• Spread Operator For Array

• Nested Ternary Without Parenthesis

• Cyclomatic Complexity

• Should Use Explode Args

• Use array_slice()

• PHP 74 New Directives

• Too Many Array Dimensions

• Coalesce And Concat

• Comparison Is Always The Same

• Incompatible Signature Methods With Covariance

• Interfaces Is Not Implemented

• No Literal For Reference

• Magic Properties

• Interfaces Don’t Ensure Properties

• Collect Literals

• Duplicate Literal

• No Weak SSL Crypto

2108 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Internet Domains

• No mb_substr In Loop

• Collect Parameter Counts

• Collect Local Variable Counts

• Non Nullable Getters

• Use The Case Value

• Dereferencing Levels

• Too Many Dereferencing

• Should Use Url Query Functions

• Make Functioncall With Reference

• Foreach() Favorite

• Can’t Implement Traversable

• Parameter Hiding

• Wrong Function Name Case

• Is_A() With String

• Mbstring Unknown Encoding

• Collect Mbstring Encodings

• Weird Array Index

• Filter To add_slashes()

• Mbstring Third Arg

• Typehinting Stats

• Typo 3 usage

• Concrete5 usage

• Wrong Case Namespaces

• Create Foreach Default

• Immutable Signature

• Merge If Then

• Wrong Type With Call

• Could Type With Int

• Could Type With String

• Could Type With Array

• Could Type With Boolean

• Shell commands

• Could Type With Iterable

• Insufficient Property Typehint

• Inclusions

15.3. List of rulesets 2109

Exakat Documentation, Release 1

• Typehint Order

• New Order

• Wrong Typehinted Name

• Links Between Parameter And Argument

• Exceeding Typehint

• Nullable Without Check

• Collect Class Interface Counts

• Collect Class Depth

• Collect Class Children Count

• Semantic Typing

• Missing Typehint

• Fossilized Method

• Not Equal Is Not !==

• Coalesce Equal

• Possible Interfaces

• Constant Order

• Php 8.0 Variable Syntax Tweaks

• New Functions In PHP 8.0

• Don’t Collect Void

• Php 8.0 Only TypeHints

• Union Typehint

• Uninitialized Property

• Wrong Typed Property Default

• Signature Trailing Comma

• Implicit Nullable Type

• Fn Argument Variable Confusion

• Missing Abstract Method

• Throw Was An Expression

• OpenSSL Ciphers Used

• Unused Trait In Class

• Keep Files Access Restricted

• Check Crypto Key Length

• Undefined Constant Name

• Dynamic Self Calls

• Prefix And Suffixes With Typehint

• Using Deprecated Method

2110 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Too Long A Block

• Static Global Variables Confusion

• Possible Alias Confusion

• Collect Property Counts

• Collect Method Counts

• Collect Class Constant Counts

• Too Much Indented

• Safe Phpvariables

• Could Be String

• Could Be Boolean

• Could Be Void

• Extended Typehints

• Could Be Array Typehint

• Could Be CIT

• Protocol lists

• Cyclic References

• Double Object Assignation

• Could Not Type

• Could Be Callable

• Wrong Argument Type

• Type Could Be Integer

• Call Order

• Could Be Null

• Typehint Could Be Iterable

• Uses PHP 8 Match()

• Could Be Float

• Mismatch Properties Typehints

• Could Be Self

• Could Be Parent

• Collect Parameter Names

• No Need For Triple Equal

• Array_merge Needs Array Of Arrays

• Avoid Compare Typed Boolean

• Abstract Away

• Wrong Type For Native PHP Function

• Large Try Block

15.3. List of rulesets 2111

Exakat Documentation, Release 1

• Catch With Undefined Variable

• Swapped Arguments

• Fossilized Methods List

• GLOB_BRACE Usage

• Iconv With Translit

• Collect Static Class Changes

• Different Argument Counts

• Use PHP Attributes

• Use NullSafe Operator

• Use Closure Trailing Comma

• Unknown Parameter Name

• Missing Some Returntype

• Don’t Pollute Global Space

• Collects Variables

• Could Be Parent Method

• Collect Global Variables

• Collect Readability

• Collect Definitions Statistics

• Collect Class Traits Counts

• Collect Native Calls Per Expressions

• Cancel Common Method

• Function With Dynamic Code

• Cast Unset Usage

• $php_errormsg Usage

• Mismatch Parameter Name

• Multiple Declaration Of Strict_types

• Collect Files Dependencies

• Collect Atom Counts

• Collect Classes Dependencies

• Collect Php Structures

• Mismatch Parameter And Type

• Array_Fill() With Objects

• Modified Typed Parameter

• Assumptions

• Collect Use Counts

• Useless Typehint

2112 Chapter 15. Rulesets

Exakat Documentation, Release 1

• PHP 8.0 Removed Directives

• Unsupported Types With Operators

• Negative Start Index In Array

• Php Ext Stub Property And Method

• Optimize Explode()

• Could Use Promoted Properties

• Could Be Stringable

• Nullable With Constant

• Use get_debug_type()

• Collect Block Size

• Use str_contains()

• PHP 8.0 Resources Turned Into Objects

• PHP 80 Named Parameter Variadic

• Unused Exception Variable

• Wrong Attribute Configuration

• Cancelled Parameter

• Constant Typo Looks Like A Variable

• Final Private Methods

• Array_Map() Passes By Value

• Missing __isset() Method

• Searching For Multiple Keys

• Long Preparation For Throw

• Modify Immutable

• Reserved Match Keyword

• No Static Variable In A Method

• Declare Static Once

• Avoid get_object_vars()

• Could Use Match

• Cannot Use Static For Closure

• Multiple Property Declaration On One Line

• Could Be Generator

• Only First Byte

• Restrict Global Usage

• Inherited Property Type Must Match

• No Object As Index

• Class Overreach

15.3. List of rulesets 2113

Exakat Documentation, Release 1

• Inherited Static Variable

• Enum Usage

• PHP 8.1 Removed Directives

• Htmlentities Using Default Flag

• Openssl Encrypt Default Algorithm Change

• PHP 8.1 Removed Constants

• Wrong Argument Name With PHP Function

• Duplicate Named Parameter

• PHP Native Class Type Compatibility

• Missing Attribute Attribute

• $FILES full_path

• No Null For Native PHP Functions

• Calling Static Trait Method

• No Referenced Void

• PHP Native Interfaces and Return Type

• Final Constant

• Never Typehint Usage

• PHP 8.1 Typehints

• PHP 8.0 Typehints

• Named Parameter Usage

• First Class Callable

• New Functions In PHP 8.1

• PHP 8.1 Removed Functions

• Never Keyword

• Mixed Keyword

• Mixed Typehint Usage

• False To Array Conversion

• Float Conversion As Index

• Cannot Call Static Trait Method Directly

• Nested Attributes

• New Initializers

• Deprecated Callable

• Promoted Properties

• Overwritten Foreach Var

• Null Type Favorite

• Checks Property Existence

2114 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Variable Anf Property Typehint

• Extends stdClass

• Scope Resolution Operator

• Could Use Null-Safe Object Operator

• Cant Overload Constants

• Variable Is A Local Constant

• This Could Be Iterable

• Intersection Typehint

• Abstract Class Constants

• Recycled Variables

• Check Division By Zero

• Getter And Setter

• Multiple Similar Calls

• Could Be Ternary

• Use File Append

• Readonly Usage

• Missing Visibility

• Could Use Existing Constant

• Don’t Reuse Foreach Source

• Collect Dependency Extension

• Public Reach To Private Methods

• Unreachable Method

• Static Call May Be Truly Static

• Could Use array_sum()

• Undefined Methods

• Is Stub Structure

• Is PHP Structure

• Is Extension Structure

• Unfinished Object

• Use class_alias()

• Undefined Enumcase

• Too Many Stringed Elseif

• Missing Type In Definition

• Identical Elseif

• Simplify Foreach

• Use Variable Created Inside Loop

15.3. List of rulesets 2115

Exakat Documentation, Release 1

• String Interpolation Favorite

• Type Could Be Never

• Don’t Add Seconds

• Use Constants As Returns

• Identical Variables In Foreach

• Can’t Overwrite Final Constant

• String Int Comparison

• Add Return Typehint

• ext/protobuf

• Constant : With Or Without Use

• No Constructor In Interface

• Could Be A Constant

• Create Magic Method

• Unsupported Operand Types

• array_merge With Ellipsis

• Is Library

• version_compare Operator

• PHP 8.1 Resources Turned Into Objects

• Do Not Cast To Int

• Constant Scalar Expression

• Windows Only Constants

• Could Be Spaceship

• Sylius usage

• Dollar Curly Interpolation Is Deprecated

• Unused Enumeration Case

• Useless Null Coalesce

• Throw Raw Exceptions

• Extensions yar

• Collect Stub Structures

• Lowered Access Level

• Can’t Overwrite Final Method

• Implicit Conversion To Int

• Excimer

• Use Same Types For Comparisons

• Used Once Trait

• Make All Statics

2116 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Wrong Locale

• ext/pkcs11

• ext/spx

• Parent Is Not Static

• No Magic Method For Enum

• No Readonly Assignation In Global

• Stomp

• ext/CSV

• Could Set Property Default

• Identity

• Overload Existing Names

• Incoming Date Formats

• Collect Vendor Structures

• Array Addition

• Retyped Reference

• Could Be Enumeration

• Wrong Type With Default

• Ice framework

• Extensions/Exttaint

• Sprintf Format Compilation

• Invalid Date Scanning Format

• Same Name For Property And Method

• No Private Abstract Method In Trait

• Utf8 Encode And Decode Are Deprecated

• Magic Method Returntype Is Restricted

• If Then Return Favorite

• Typehints/CouldBeResource

• DateTimeImmutable Is Not Immutable

• New Functions In PHP 8.2

• Empty Array Detection

• Strict In_Array() Preference

• No Default For Referenced Parameter

• Clone Constant

• Enum Case Values

• Random extension

• Ip

15.3. List of rulesets 2117

Exakat Documentation, Release 1

• Could Inject Parameter

• ext/scrypt

• ext/teds

• Geospatial

• Feast usage

• date() versus DateTime Preference

• Unused Public Methods

• Could Be Abstract Method

• Solve Trait Constants

• No Keyword In Namespace

• Ambiguous Types With Variables

• Set Chaining Exception

• Could Use Class Operator

• Mbstring Unknown Encodings

• Named Argument And Variadic

• Coalesce And Ternary Operators Order

• Useless Assignation Of Promoted Property

• Method Property Confusion

• Could Use Namespace Magic Constant

• Incompatible Types With Incoming Values

• Method Usage

• Too Many Chained Calls

• Empty Loop

• Too Many Extractions

• No Variable Needed

• Possible TypeError

• Json_encode() Without Exceptions

• No Initial S In Variable Names

• Collect Calls

• Set Method Fnp

• Type Dodging

• Skip Empty Array

• Useless Method

• Weak Type With Array

• Class Could Be Readonly

• Multiple Type Cases In Switch

2118 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Class Invasion

• Property Invasion

• Filter Not Raw

• Collect SetLocale

• Plus Plus Used On Strings

• No Max On Empty Array

• No Empty String With explode()

• Array Access On Literal Array

• Double Checks

• strpos() With Integers

• Unvalidated Data Cached In Session

• Ellipsis Merge

• Superglobals

• New Functions In PHP 8.3

• Use str_ends_with()

• Use str_starts_with()

• Missing Assignation In Branches

• Mono Or Multibytes Favorite

• Argument Counts Per Calls

• Global Definitions

• Short Ternary

• Deprecated Mb_string Encodings

• Pre-Calculate Use

• No Valid Cast

• Init Then Update

• Different Constructors

• Sidelined Method

• Misused Yield

• Substr() In Loops

• Should Cache Local

• Php 8.3 New Classes

• Rewrote Final Class Constant

• Useless Constant Overwrite

• Blind Variable Used Beyond Loop

• Recalled Condition

• Incompatible Property Between Class And Trait

15.3. List of rulesets 2119

Exakat Documentation, Release 1

• Collect Methods Throwing Exceptions

• Static Call With Self

• Use DNF

• Collect Throw Calls

• Collect Compared Literals

• Could Be array_combine()

• Comparison On Different Types

• No Null For Index

• Collects Names

• Useless Try

• Converted Exceptions

• Method Is Not An If

• Default Then Discard

• Class Injection Count

• Collect Property Usage

• Collect Structures

• Collect Catch Calls

• Identical Case In Switch

• StandaloneType True False Null

• Constants In Traits

• Short Or Complete Comparison

• Could Use Yield From

• Use Enum Case In Constant Expression

• Readonly Property Changed By Cloning

• New Dynamic Class Constant Syntax

• class_alias() Supports Internal Classes

• Redeclared Static Variable

• Static Variable Can Default To Arbitrary Expression

• Inherited Class Constant Visibility

• Final Traits Are Final

• Multiline Expressions

• Typed Class Constants Usage

• Favorite Casting Method

• get_class() Without Argument

• Append And Assign Arrays

• Property Cannot Be Readonly

2120 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Static Variable Initialisation

• Collect Graph Triplets

• Static Variable In Namespace

• Using Deprecated Feature

• override

• Don’t Use The Type As Variable Name

• Static Methods Cannot Call Non-Static Methods

• Untyped No Default Properties

• Trait Is Not A Type

• Cannot Use Append For Reading

• Friend Attribute

• Count() To Array Append

• Useless Trailing Comma

• Reserved Methods

• Void Is Not A Reference

• Can’t Call Generator

• Non Integer Nor String As Index

• Cant Instantiate Non Class

• PHP Native Attributes

• Injectable Version

• Multiple Property Declaration

• is_a() Versus instanceof

• Could Cast To Array

• Check After Null Safe Operator

• No Null With Null Safe Operator

• Invalid Cast

• Could Use strcontains()

• Could Drop Variable

• Could Be Readonly Property

• New Object Then Immediate Call

• Try Without Catch

• Wrong Precedence In Expression

• Only Variable Passed By Reference

• Property Export

• File_Put_Contents Using Array Argument

• Useless NullSafe Operator

15.3. List of rulesets 2121

Exakat Documentation, Release 1

• Nested Match

• Useless Short Ternary

• Combined Calls

• Empty Json Error

• Useless Coalesce

• Count() Is Not Negative

• Exit Without Argument

• PHP 8.1 New Types

• PHP 8.2 New Types

• Variable Parameter Ambiguity In Arrow Function

• Strpos() Less Than One

• Include Variables

• No Named Parameters

• Static Inclusions

• Deprecated Attribute

• Constant Used Only Once

• Constants/RelayConstant

Specs

Short name All
Available in Entreprise Edition, Exakat Cloud

15.3.2 Analyze

This ruleset centralizes a large number of classic trap and pitfalls when writing PHP.

Total : 501 analysis

• Adding Zero

• Ambiguous Array Index

• Multiple Index Definition

• Empty Classes

• Forgotten Visibility

• Non Static Methods Called In A Static

• Old Style Constructor

• Static Methods Called From Object

• Empty Function

• Redeclared PHP Functions

2122 Chapter 15. Rulesets

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• Methods Without Return

• Empty Interfaces

• Incompilable Files

• error_reporting() With Integers

• Eval() Usage

• Exit() Usage

• Forgotten Whitespace

• Iffectations

• Multiply By One

• @ Operator

• Not Not

• include_once() Usage

• Strpos()-like Comparison

• Throws An Assignement

• var_dump(). . . Usage

• __toString() Throws Exception

• Non Ascii Variables

• Used Once Variables

• Bad Constants Names

• Empty Traits

• Use With Fully Qualified Name

• Useless Instructions

• Abstract Static Methods

• Invalid Constant Name

• Multiple Constant Definition

• Wrong Optional Parameter

• Use === null

• $this Is Not An Array

• One Variable String

• Static Methods Can’t Contain $this

• While(List() = Each())

• Several Instructions On The Same Line

• Multiples Identical Case

• Switch Without Default

• $this Belongs To Classes Or Traits

• Nested Ternary

15.3. List of rulesets 2123

Exakat Documentation, Release 1

• Non-constant Index In Array

• Undefined Constants

• Instantiating Abstract Class

• Class, Interface, Enum Or Trait With Identical Names

• Empty Try Catch

• Undefined Classes

• Htmlentities Calls

• Undefined Class Constants

• Used Once Variables (In Scope)

• Undefined Functions

• Deprecated PHP Functions

• Dangling Array References

• Queries In Loops

• Var Keyword

• Native Alias Functions Usage

• Uses Default Values

• Wrong Number Of Arguments

• Hardcoded Passwords

• Unresolved Classes

• Useless Constructor

• Implements Is For Interface

• Use const

• Unresolved Use

• Undefined Parent

• Undefined static:: Or self::

• Accessing Private

• Access Protected Structures

• Parent, Static Or Self Outside Class

• list() May Omit Variables

• Or Die

• Written Only Variables

• Must Return Methods

• Empty Instructions

• Overwritten Exceptions

• Foreach Reference Is Not Modified

• Don’t Change Incomings

2124 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Compared Comparison

• Useless Return

• Unused Classes

• Unpreprocessed Values

• Undefined Properties

• Short Open Tags

• Strict Comparison With Booleans

• Lone Blocks

• $this Is Not For Static Methods

• Global Usage

• Logical Should Use Symbolic Operators

• Could Use self

• Catch Overwrite Variable

• Deep Definitions

• Repeated print()

• Avoid Parenthesis With Language Construct

• Objects Don’t Need References

• Lost References

• Constants Created Outside Its Namespace

• Fully Qualified Constants

• Never Used Properties

• No Real Comparison

• Should Use Local Class

• No Direct Call To Magic Method

• String May Hold A Variable

• Echo With Concat

• Unused Global

• Useless Global

• Preprocessable

• Useless Final

• Use Constant Instead Of Function

• Useless Unset

• Buried Assignation

• No array_merge() In Loops

• Useless Parenthesis

• Unresolved Instanceof

15.3. List of rulesets 2125

Exakat Documentation, Release 1

• Use PHP Object API

• Unthrown Exception

• Old Style __autoload()

• Altering Foreach Without Reference

• Use Pathinfo

• Should Use Existing Constants

• Hash Algorithms

• No Parenthesis For Language Construct

• No Hardcoded Path

• No Hardcoded Port

• Use Constant As Arguments

• Implied If

• Overwritten Literals

• Assign Default To Properties

• No Public Access

• Should Chain Exception

• Useless Interfaces

• Undefined Interfaces

• Double Instructions

• Should Use Prepared Statement

• Print And Die

• Unchecked Resources

• No Hardcoded Ip

• Else If Versus Elseif

• Unset In Foreach

• Could Be A Static Variable

• Multiple Class Declarations

• Empty Namespace

• Could Use Short Assignation

• Useless Abstract Class

• Static Loop

• Pre-increment

• Only Variable Returned By Reference

• Indices Are Int Or String

• Should Typecast

• No Self Referencing Constant

2126 Chapter 15. Rulesets

Exakat Documentation, Release 1

• No Direct Usage

• Break Outside Loop

• Avoid Substr() One

• Double Assignation

• Empty List

• Useless Brackets

• preg_replace With Option e

• eval() Without Try

• func_get_arg() Modified

• Avoid get_class()

• Silently Cast Integer

• Timestamp Difference

• Unused Parameter

• Switch To Switch

• Wrong Parameter Type

• Wrong fopen() Mode

• Negative Power

• Already Parents Interface

• Use random_int()

• Can’t Extend Final

• Ternary In Concat

• Using $this Outside A Class

• Undefined Trait

• No Hardcoded Hash

• Identical Conditions

• Unkown Regex Options

• No Choice

• Common Alternatives

• Logical Mistakes

• Uncaught Exceptions

• Same Conditions In Condition

• Return True False

• Useless Switch

• Could Use __DIR__

• Should Use Coalesce

• Make Global A Property

15.3. List of rulesets 2127

Exakat Documentation, Release 1

• If With Same Conditions

• Throw Functioncall

• Use Instanceof

• Results May Be Missing

• Always Positive Comparison

• Empty Blocks

• Throw In Destruct

• Use System Tmp

• Dependant Trait

• Hidden Use Expression

• Should Make Alias

• Multiple Identical Trait Or Interface

• Multiple Alias Definitions

• Nested Ifthen

• Cast To Boolean

• Failed Substr() Comparison

• Should Use Ternary Operator

• Unused Returned Value

• Modernize Empty With Expression

• Use Positive Condition

• Drop Else After Return

• Use ::Class Operator

• Don’t Echo Error

• Useless Type Casting

• No isset() With empty()

• Useless Check

• Bail Out Early

• Don’t Change The Blind Var

• Avoid Using stdClass

• Too Many Local Variables

• Illegal Name For Method

• Long Arguments

• Assigned Twice

• No Boolean As Default

• Forgotten Thrown

• Multiple Alias Definitions Per File

2128 Chapter 15. Rulesets

Exakat Documentation, Release 1

• __DIR__ Then Slash

• self, parent, static Outside Class

• Used Once Property

• Property Used In One Method Only

• No Need For Else

• Strange Name For Constants

• Too Many Finds

• Should Use SetCookie()

• Check All Types

• Missing Cases In Switch

• Repeated Regex

• No Class In Global

• Crc32() Might Be Negative

• Could Use str_repeat()

• Suspicious Comparison

• Strings With Strange Space

• No Empty Regex

• Alternative Syntax Consistence

• Randomly Sorted Arrays

• Only Variable Passed By Reference

• No Return Used

• No Reference On Left Side

• Implemented Methods Must Be Public

• Mixed Concat And Interpolation

• Too Many Injections

• Could Make A Function

• Forgotten Interface

• Avoid Optional Properties

• Mismatched Ternary Alternatives

• Mismatched Default Arguments

• Mismatched Typehint

• Scalar Or Object Property

• Assign And Lettered Logical Operator Precedence

• No Magic Method With Array

• Logical To in_array

• Pathinfo() Returns May Vary

15.3. List of rulesets 2129

Exakat Documentation, Release 1

• Multiple Type Variable

• Is Actually Zero

• Unconditional Break In Loop

• Could Be Else

• Next Month Trap

• Printf Number Of Arguments

• Ambiguous Static

• Don’t Send $this In Constructor

• No get_class() With Null

• Maybe Missing New

• Unknown Pcre2 Option

• Parent First

• Invalid Regex

• Use Named Boolean In Argument Definition

• Same Variable Foreach

• Never Called Parameter

• Identical On Both Sides

• Identical Consecutive Expression

• No Reference For Ternary

• Unused Inherited Variable In Closure

• Inclusion Wrong Case

• Missing Include

• Useless Referenced Argument

• Possible Infinite Loop

• Test Then Cast

• Foreach On Object

• Property Could Be Local

• Too Many Native Calls

• Don’t Unset Properties

• Strtr Arguments

• Missing Parenthesis

• Callback Function Needs Return

• Wrong Range Check

• Can’t Instantiate Class

• strpos() Too Much

• Class-typed References

2130 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Weak Typing

• Method Signature Must Be Compatible

• Mismatch Type And Default

• Check JSON

• Don’t Mix ++

• Can’t Throw Throwable

• Abstract Or Implements

• Incompatible Signature Methods

• Ambiguous Visibilities

• Undefined ::class

• Assert Function Is Reserved

• Could Be Abstract Class

• Continue Is For Loop

• Must Call Parent Constructor

• Undefined Variable

• Undefined Insteadof

• Method Collision Traits

• Class Could Be Final

• Only Variable For Reference

• Wrong Access Style to Property

• Invalid Pack Format

• Repeated Interface

• Don’t Read And Write In One Expression

• Should Yield With Key

• Useless Method Alias

• Method Could Be Static

• Possible Missing Subpattern

• Assign And Compare

• Variable Is Not A Condition

• Insufficient Typehint

• Type Must Be Returned

• Clone With Non-Object

• Check On __Call Usage

• Avoid option arrays in constructors

• Already Parents Trait

• Trait Not Found

15.3. List of rulesets 2131

Exakat Documentation, Release 1

• Casting Ternary

• Concat Empty String

• Concat And Addition

• Useless Argument

• No Append On Source

• Memoize MagicCall

• Unused Class Constant

• Infinite Recursion

• Null Or Boolean Arrays

• Dependant Abstract Classes

• Wrong Type Returned

• Overwritten Source And Value

• Avoid mb_dectect_encoding()

• array_key_exists() Works On Arrays

• Class Without Parent

• Scalar Are Not Arrays

• array_merge() And Variadic

• Implode() Arguments Order

• strip_tags() Skips Closed Tag

• No Spread For Hash

• Max Level Of Nesting

• Should Use Explode Args

• Use array_slice()

• Too Many Array Dimensions

• Coalesce And Concat

• Comparison Is Always The Same

• Incompatible Signature Methods With Covariance

• Interfaces Is Not Implemented

• No Literal For Reference

• Interfaces Don’t Ensure Properties

• Non Nullable Getters

• Too Many Dereferencing

• Can’t Implement Traversable

• Is_A() With String

• Mbstring Unknown Encoding

• Mbstring Third Arg

2132 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Merge If Then

• Wrong Type With Call

• Not Equal Is Not !==

• Don’t Collect Void

• Wrong Typed Property Default

• Implicit Nullable Type

• Fn Argument Variable Confusion

• Missing Abstract Method

• Undefined Constant Name

• Using Deprecated Method

• Cyclic References

• Double Object Assignation

• Wrong Argument Type

• Mismatch Properties Typehints

• No Need For Triple Equal

• Array_merge Needs Array Of Arrays

• Wrong Type For Native PHP Function

• Catch With Undefined Variable

• Swapped Arguments

• Different Argument Counts

• Unknown Parameter Name

• Missing Some Returntype

• Don’t Pollute Global Space

• Mismatch Parameter Name

• Multiple Declaration Of Strict_types

• Array_Fill() With Objects

• Modified Typed Parameter

• Assumptions

• Unsupported Types With Operators

• Wrong Attribute Configuration

• Cancelled Parameter

• Constant Typo Looks Like A Variable

• Array_Map() Passes By Value

• Missing __isset() Method

• Modify Immutable

• Cannot Use Static For Closure

15.3. List of rulesets 2133

Exakat Documentation, Release 1

• Only First Byte

• Inherited Property Type Must Match

• No Object As Index

• Htmlentities Using Default Flag

• Wrong Argument Name With PHP Function

• Duplicate Named Parameter

• PHP Native Class Type Compatibility

• Missing Attribute Attribute

• No Null For Native PHP Functions

• No Referenced Void

• PHP Native Interfaces and Return Type

• New Functions In PHP 8.1

• Never Keyword

• False To Array Conversion

• Float Conversion As Index

• Cannot Call Static Trait Method Directly

• Overwritten Foreach Var

• Recycled Variables

• Check Division By Zero

• Don’t Reuse Foreach Source

• Unreachable Method

• Unfinished Object

• Undefined Enumcase

• Don’t Add Seconds

• Use Constants As Returns

• Identical Variables In Foreach

• Can’t Overwrite Final Constant

• Unsupported Operand Types

• version_compare Operator

• Do Not Cast To Int

• Could Be Spaceship

• Unused Enumeration Case

• Useless Null Coalesce

• Throw Raw Exceptions

• Implicit Conversion To Int

• Use Same Types For Comparisons

2134 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Wrong Locale

• Parent Is Not Static

• No Magic Method For Enum

• No Readonly Assignation In Global

• Overload Existing Names

• Retyped Reference

• Wrong Type With Default

• Sprintf Format Compilation

• Invalid Date Scanning Format

• Same Name For Property And Method

• DateTimeImmutable Is Not Immutable

• No Default For Referenced Parameter

• Clone Constant

• Could Inject Parameter

• Unused Public Methods

• Mbstring Unknown Encodings

• Coalesce And Ternary Operators Order

• Useless Assignation Of Promoted Property

• Empty Loop

• Useless Method

• Weak Type With Array

• No Empty String With explode()

• Array Access On Literal Array

• Double Checks

• strpos() With Integers

• Missing Assignation In Branches

• No Valid Cast

• Misused Yield

• No Null For Index

• Useless Try

• Converted Exceptions

• Method Is Not An If

• Default Then Discard

• Identical Case In Switch

• StandaloneType True False Null

• Could Use Yield From

15.3. List of rulesets 2135

Exakat Documentation, Release 1

• Append And Assign Arrays

• Static Methods Cannot Call Non-Static Methods

• Trait Is Not A Type

• Cannot Use Append For Reading

• Void Is Not A Reference

• Can’t Call Generator

• Non Integer Nor String As Index

• Cant Instantiate Non Class

• Check After Null Safe Operator

• No Null With Null Safe Operator

• Invalid Cast

• New Object Then Immediate Call

• Wrong Precedence In Expression

• Only Variable Passed By Reference

• Nested Match

• Useless Short Ternary

• Empty Json Error

• Useless Coalesce

• Count() Is Not Negative

• Exit Without Argument

• Strpos() Less Than One

• Static Inclusions

• Constant Used Only Once

Specs

Short name Analyze
Available in Entreprise Edition, Community Edition, Exakat Cloud
Reports Ambassador, Diplomat

15.3.3 Appinfo

A set of rules that describes with PHP features is used in the code.

Total : 388 analysis

• Array Index

• Multidimensional Arrays

• PHP Arrays Index

2136 Chapter 15. Rulesets

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• Classes Names

• Constant Definition

• Magic Methods

• Old Style Constructor

• Static Methods

• Static Properties

• Constants Usage

• Magic Constant Usage

• PHP Constant Usage

• Defined Exceptions

• Thrown Exceptions

• ext/apc

• ext/bcmath

• ext/bzip2

• ext/calendar

• ext/crypto

• ext/ctype

• ext/curl

• ext/date

• ext/dba

• ext/dom

• ext/enchant

• ext/exif

• ext/fileinfo

• ext/filter

• ext/ftp

• ext/gd

• ext/gmp

• ext/gnupgp

• ext/hash

• ext/iconv

• ext/json

• ext/ldap

• ext/libxml

• ext/mbstring

• ext/mcrypt

15.3. List of rulesets 2137

Exakat Documentation, Release 1

• ext/mongo

• ext/mssql

• ext/mysql

• ext/mysqli

• ext/odbc

• ext/openssl

• ext/pcre

• ext/pdo

• ext/pgsql

• ext/phar

• ext/posix

• ext/readline

• ext/reflection

• ext/sem

• ext/session

• ext/shmop

• ext/simplexml

• ext/snmp

• ext/soap

• ext/sockets

• ext/spl

• ext/sqlite

• ext/sqlite3

• ext/ssh2

• ext/standard

• ext/tidy

• ext/tokenizer

• ext/wddx

• ext/xdebug

• ext/xmlreader

• ext/xmlrpc

• ext/xmlwriter

• ext/xsl

• ext/yaml

• ext/zip

• ext/zlib

2138 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Closures Glossary

• Functions Glossary

• Recursive Functions

• Redeclared PHP Functions

• Typehints

• Interfaces Names

• Aliases

• Namespaces Glossary

• Autoloading

• Goto Names

• __halt_compiler

• Incompilable Files

• Labels

• Throw

• Trigger Errors

• Caught Expressions

• Eval() Usage

• Exit() Usage

• @ Operator

• include_once() Usage

• Using Short Tags

• Binary Glossary

• Email Addresses

• Heredoc Delimiter Glossary

• Hexadecimal Glossary

• Md5 Strings

• Nowdoc Delimiter Glossary

• Octal Glossary

• URL List

• Variable References

• Static Variables

• Variables With Long Names

• PHP Variables

• Variable Variables

• Abstract Class Usage

• Abstract Methods Usage

15.3. List of rulesets 2139

Exakat Documentation, Release 1

• Clone Usage

• Variable Constants

• Redefined PHP Traits

• Traits Usage

• Trait Names

• PHP Alternative Syntax

• Short Syntax For Arrays

• Inclusions

• ext/file

• ext/array

• ext/info

• ext/math

• $HTTP_RAW_POST_DATA Usage

• Assertions

• Cast Usage

• Function Subscripting

• Nested Loops

• PHP Echo Tag Usage

• ext/pcntl

• ext/redis

• ext/sqlsrv

• Ellipsis Usage

• ext/0mq

• ext/memcache

• ext/memcached

• Dynamic Function Call

• Has Variable Arguments

• Multiple Catch

• Dynamically Called Classes

• Conditioned Function

• Conditioned Constants

• Method Is A Generator

• Try With Finally

• Dereferencing String And Arrays

• Constant Scalar Expressions

• ext/imagick

2140 Chapter 15. Rulesets

Exakat Documentation, Release 1

• ext/oci8

• ext/imap

• Overwritten Class Constants

• Dynamic Class Constant

• Dynamic Methodcall

• Dynamic New

• Dynamic Property

• Dynamic Classes

• Multiple Classes In One File

• File Uploads

• ext/intl

• Dynamic Code

• ext/pspell

• No Direct Access

• ext/opcache

• ext/expect

• ext/gettext

• Super Global Usage

• Global Usage

• Namespaces

• Deep Definitions

• File Is Not Definitions Only

• Usage Of class_alias()

• ext/apache

• ext/eaccelerator

• ext/fpm

• Resources Usage

• Shell Usage

• File Usage

• Mail Usage

• Dynamic Calls

• Test Class

• ext/dio

• ext/phalcon

• Composer Usage

• Composer’s autoload

15.3. List of rulesets 2141

Exakat Documentation, Release 1

• ext/apcu

• ext/trader

• ext/mailparse

• ext/mail

• Scalar Typehint Usage

• Return Typehint Usage

• ext/ob

• ext/geoip

• ext/event

• ext/amqp

• ext/gearman

• ext/com

• ext/gmagick

• ext/ibase

• ext/inotify

• ext/xdiff

• ext/ev

• ext/php-ast

• ext/xml

• ext/xhprof

• Else Usage

• Anonymous Classes

• Coalesce

• Directives Usage

• Global In Global

• ext/fann

• Use Web

• Use Cli

• Error Messages

• Php7 Relaxed Keyword

• ext/pecl_http

• Uses Environment

• Redefined Methods

• Is CLI Script

• PHP Bugfixes

• ext/tokyotyrant

2142 Chapter 15. Rulesets

Exakat Documentation, Release 1

• ext/v8js

• Yield Usage

• Yield From Usage

• Pear Usage

• ext/lua

• List With Keys

• ext/suhosin

• Can’t Disable Function

• Functions Using Reference

• List Short Syntax

• Use Nullable Type

• Multiple Exceptions Catch()

• ext/rar

• ext/nsapi

• ext/newt

• ext/ncurses

• Use Composer Lock

• String

• ext/mongodb

• Error_Log() Usage

• SQL queries

• ext/libsodium

• ext/ds

• Use Cookies

• Group Use Declaration

• ext/sphinx

• Try With Multiple Catch

• ext/grpc

• Use Browscap

• Use Debug

• PSR-16 Usage

• PSR-7 Usage

• PSR-6 Usage

• PSR-3 Usage

• PSR-11 Usage

• PSR-13 Usage

15.3. List of rulesets 2143

Exakat Documentation, Release 1

• ext/stats

• Dependency Injection

• Courier Anti-Pattern

• ext/gender

• ext/judy

• Yii usage

• Codeigniter usage

• Laravel usage

• Symfony usage

• Wordpress usage

• Ez cms usage

• Joomla usage

• Non Breakable Space In Names

• Multiple Functions Declarations

• swoole

• Manipulates NaN

• Manipulates INF

• Const Or Define

• strict_types Preference

• Declare strict_types Usage

• Encoding Usage

• Ticks Usage

• ext/xattr

• ext/rdkafka

• ext/fam

• ext/parle

• Regex Inventory

• Too Complex Expression

• Drupal Usage

• Phalcon Usage

• Fuel PHP Usage

• Argon2 Usage

• Crypto Usage

• Type Array Index

• Incoming Variable Index Inventory

• ext/vips

2144 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Dl() Usage

• Environment Variables

• ext/igbinary

• Fallback Function

• ext/hrtime

• ext/xxtea

• ext/uopz

• ext/varnish

• ext/opencensus

• ext/leveldb

• ext/db2

• ext/zookeeper

• ext/cmark

• Const Visibility Usage

• ext/eio

• ext/lzf

• ext/msgpack

• Case Insensitive Constants

• Handle Arrays With Callback

• Trailing Comma In Calls

• Can’t Disable Class

• ext/seaslog

• Pack Format Inventory

• Printf Format Inventory

• ext/decimal

• ext/psr

• ext/sdl

• ext/wasm

• Path lists

• Typed Property Usage

• ext/weakref

• ext/pcov

• Constant Dynamic Creation

• An OOP Factory

• PHP Overridden Function

• ext/svm

15.3. List of rulesets 2145

Exakat Documentation, Release 1

• ext/ffi

• ext/password

• ext/zend_monitor

• ext/uuid

• Numeric Literal Separator

• Use Covariance

• Use Contravariance

• Use Arrow Functions

• Spread Operator For Array

• Nested Ternary Without Parenthesis

• Typo 3 usage

• Concrete5 usage

• Immutable Signature

• Shell commands

• Links Between Parameter And Argument

• Php 8.0 Variable Syntax Tweaks

• Php 8.0 Only TypeHints

• Union Typehint

• Protocol lists

• Use PHP Attributes

• Use NullSafe Operator

• Use Closure Trailing Comma

• Class Overreach

• Final Constant

• Never Typehint Usage

• Named Parameter Usage

• First Class Callable

• Never Keyword

• Mixed Typehint Usage

• Nested Attributes

• New Initializers

• Promoted Properties

• Intersection Typehint

• Readonly Usage

• Use class_alias()

• ext/protobuf

2146 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Constant Scalar Expression

• Sylius usage

• Extensions yar

• Excimer

• ext/pkcs11

• ext/spx

• Stomp

• ext/CSV

• Array Addition

• Ice framework

• Extensions/Exttaint

• Random extension

• Ip

• ext/scrypt

• ext/teds

• Geospatial

• Feast usage

• date() versus DateTime Preference

• Plus Plus Used On Strings

• Short Ternary

• Use DNF

• Use Enum Case In Constant Expression

• New Dynamic Class Constant Syntax

• Untyped No Default Properties

• File_Put_Contents Using Array Argument

Specs

Short name Appinfo
Available in Entreprise Edition, Community Edition, Exakat Cloud
Reports Diplomat, Ambassador

15.3. List of rulesets 2147

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

15.3.4 Attributes

This ruleset gathers all rules that rely on PHP 8.+ attributes.

Total : 9 analysis

• Exit-like Methods

• Using Deprecated Method

• Modify Immutable

• Missing Attribute Attribute

• Using Deprecated Feature

• override

• Friend Attribute

• PHP Native Attributes

• Deprecated Attribute

Specs

Short name Attributes
Available in Entreprise Edition, Exakat Cloud

15.3.5 CE

This ruleset is the Community Edition list. It holds all the analysis that are in the community edition version of Exakat.

Total : 624 analysis

• Adding Zero

• Array Index

• Multidimensional Arrays

• Multiple Index Definition

• PHP Arrays Index

• Classes Names

• Constant Definition

• Magic Methods

• Forgotten Visibility

• Non Static Methods Called In A Static

• Old Style Constructor

• Static Methods

• Static Methods Called From Object

• Static Properties

• Constants With Strange Names

2148 Chapter 15. Rulesets

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• Constants Usage

• Constants Names

• Magic Constant Usage

• PHP Constant Usage

• Defined Exceptions

• Thrown Exceptions

• ext/apc

• ext/bcmath

• ext/bzip2

• ext/calendar

• ext/crypto

• ext/ctype

• ext/curl

• ext/date

• ext/dba

• ext/dom

• ext/enchant

• ext/exif

• ext/fileinfo

• ext/filter

• ext/ftp

• ext/gd

• ext/gmp

• ext/gnupgp

• ext/hash

• ext/iconv

• ext/json

• ext/ldap

• ext/libxml

• ext/mbstring

• ext/mcrypt

• ext/mongo

• ext/mssql

• ext/mysql

• ext/mysqli

• ext/odbc

15.3. List of rulesets 2149

Exakat Documentation, Release 1

• ext/openssl

• ext/pcre

• ext/pdo

• ext/pgsql

• ext/phar

• ext/posix

• ext/readline

• ext/reflection

• ext/sem

• ext/session

• ext/shmop

• ext/simplexml

• ext/snmp

• ext/soap

• ext/sockets

• ext/spl

• ext/sqlite

• ext/sqlite3

• ext/ssh2

• ext/standard

• ext/tidy

• ext/tokenizer

• ext/wddx

• ext/xdebug

• ext/xmlreader

• ext/xmlrpc

• ext/xmlwriter

• ext/xsl

• ext/yaml

• ext/zip

• ext/zlib

• Closures Glossary

• Functions Glossary

• Recursive Functions

• Redeclared PHP Functions

• Typehints

2150 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Interfaces Names

• Aliases

• Namespaces Glossary

• Autoloading

• Goto Names

• __halt_compiler

• Incompilable Files

• Labels

• Throw

• Trigger Errors

• Caught Expressions

• error_reporting() With Integers

• Eval() Usage

• Exit() Usage

• Forgotten Whitespace

• Multiply By One

• @ Operator

• Not Not

• include_once() Usage

• Using Short Tags

• Strpos()-like Comparison

• Throws An Assignement

• var_dump(). . . Usage

• Binary Glossary

• Email Addresses

• Heredoc Delimiter Glossary

• Hexadecimal Glossary

• Md5 Strings

• Nowdoc Delimiter Glossary

• Octal Glossary

• URL List

• Variable References

• Static Variables

• Variables With Long Names

• Variable Variables

• Abstract Class Usage

15.3. List of rulesets 2151

Exakat Documentation, Release 1

• Abstract Methods Usage

• Clone Usage

• Variable Constants

• Redefined PHP Traits

• Traits Usage

• Trait Names

• PHP Alternative Syntax

• Short Syntax For Arrays

• Inclusions

• ext/file

• ext/array

• ext/info

• ext/math

• $HTTP_RAW_POST_DATA Usage

• Useless Instructions

• Multiple Constant Definition

• Wrong Optional Parameter

• Use === null

• Assertions

• One Variable String

• Cast Usage

• Function Subscripting

• Nested Loops

• PHP Echo Tag Usage

• Static Methods Can’t Contain $this

• While(List() = Each())

• Multiples Identical Case

• Switch Without Default

• Nested Ternary

• Undefined Constants

• Custom Constant Usage

• ext/pcntl

• ext/redis

• Is An Extension Function

• Is An Extension Interface

• Is An Extension Constant

2152 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Htmlentities Calls

• Defined Class Constants

• Undefined Class Constants

• Used Once Variables (In Scope)

• Undefined Functions

• Deprecated PHP Functions

• Dangling Array References

• ext/sqlsrv

• Native Alias Functions Usage

• Uses Default Values

• Wrong Number Of Arguments

• Ellipsis Usage

• Use const

• ext/0mq

• ext/memcache

• ext/memcached

• Is Extension Trait

• Dynamic Function Call

• Has Variable Arguments

• Multiple Catch

• Dynamically Called Classes

• Conditioned Function

• Method Is A Generator

• Try With Finally

• Dereferencing String And Arrays

• list() May Omit Variables

• Or Die

• Constant Scalar Expressions

• Exit-like Methods

• Must Return Methods

• ext/imagick

• ext/oci8

• Overwritten Exceptions

• Foreach Reference Is Not Modified

• ext/imap

• Overwritten Class Constants

15.3. List of rulesets 2153

Exakat Documentation, Release 1

• Dynamic Class Constant

• Dynamic Methodcall

• Dynamic New

• Dynamic Property

• Dynamic Classes

• Multiple Classes In One File

• File Uploads

• ext/intl

• Dynamic Code

• ext/pspell

• No Direct Access

• ext/opcache

• Is PHP Constant

• ext/expect

• Defined Properties

• Undefined Properties

• Has Magic Method

• ext/gettext

• Strict Comparison With Booleans

• Lone Blocks

• Super Global Usage

• Global Usage

• Logical Should Use Symbolic Operators

• Namespaces

• Deep Definitions

• Constant Class

• File Is Not Definitions Only

• Repeated print()

• Avoid Parenthesis With Language Construct

• Objects Don’t Need References

• No Real Comparison

• Usage Of class_alias()

• ext/apache

• ext/eaccelerator

• ext/fpm

• No Direct Call To Magic Method

2154 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Useless Final

• Use Constant Instead Of Function

• Resources Usage

• Useless Unset

• No array_merge() In Loops

• Useless Parenthesis

• Shell Usage

• File Usage

• Mail Usage

• Dynamic Calls

• Use PHP Object API

• Altering Foreach Without Reference

• Test Class

• Use Pathinfo

• ext/dio

• No Parenthesis For Language Construct

• ext/phalcon

• Use Constant As Arguments

• Implied If

• Composer Usage

• Composer’s autoload

• Should Chain Exception

• Undefined Interfaces

• ext/apcu

• Should Use Prepared Statement

• Print And Die

• Unchecked Resources

• ext/trader

• ext/mailparse

• ext/mail

• Else If Versus Elseif

• Multiple Class Declarations

• Empty Namespace

• Could Use Short Assignation

• Scalar Typehint Usage

• Return Typehint Usage

15.3. List of rulesets 2155

Exakat Documentation, Release 1

• ext/ob

• Pre-increment

• ext/geoip

• ext/event

• ext/amqp

• ext/gearman

• ext/com

• ext/gmagick

• ext/ibase

• ext/inotify

• ext/xdiff

• ext/ev

• ext/php-ast

• ext/xml

• ext/xhprof

• Indices Are Int Or String

• Should Typecast

• Else Usage

• Avoid Substr() One

• Anonymous Classes

• Coalesce

• Directives Usage

• Useless Brackets

• preg_replace With Option e

• eval() Without Try

• Is Not Class Family

• Global In Global

• ext/fann

• Use Web

• Use Cli

• Avoid get_class()

• Silently Cast Integer

• Error Messages

• Timestamp Difference

• Php7 Relaxed Keyword

• ext/pecl_http

2156 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Uses Environment

• Wrong Parameter Type

• Redefined Methods

• Redefined Class Constants

• Redefined Default

• Wrong fopen() Mode

• Is CLI Script

• PHP Bugfixes

• Negative Power

• Use random_int()

• Ternary In Concat

• ext/tokyotyrant

• ext/v8js

• Yield Usage

• Yield From Usage

• Pear Usage

• Undefined Trait

• Identical Conditions

• Unkown Regex Options

• No Choice

• Logical Mistakes

• ext/lua

• Same Conditions In Condition

• Return True False

• Could Use __DIR__

• Should Use Coalesce

• List With Keys

• If With Same Conditions

• ext/suhosin

• Throw Functioncall

• Can’t Disable Function

• Functions Using Reference

• Use Instanceof

• List Short Syntax

• Results May Be Missing

• Use Nullable Type

15.3. List of rulesets 2157

Exakat Documentation, Release 1

• Always Positive Comparison

• Multiple Exceptions Catch()

• Empty Blocks

• Throw In Destruct

• Use System Tmp

• Hidden Use Expression

• Should Make Alias

• Multiple Identical Trait Or Interface

• Multiple Alias Definitions

• Failed Substr() Comparison

• Should Use Ternary Operator

• Drop Else After Return

• Use ::Class Operator

• ext/rar

• Don’t Echo Error

• Useless Type Casting

• No isset() With empty()

• Useless Check

• ext/nsapi

• ext/newt

• ext/ncurses

• Use Composer Lock

• String

• ext/mongodb

• Error_Log() Usage

• SQL queries

• ext/libsodium

• Multiple Alias Definitions Per File

• __DIR__ Then Slash

• ext/ds

• Use Cookies

• Group Use Declaration

• Repeated Regex

• No Class In Global

• Could Use str_repeat()

• Strings With Strange Space

2158 Chapter 15. Rulesets

Exakat Documentation, Release 1

• No Empty Regex

• ext/sphinx

• Try With Multiple Catch

• ext/grpc

• Use Browscap

• Use Debug

• No Reference On Left Side

• PSR-16 Usage

• PSR-7 Usage

• PSR-6 Usage

• PSR-3 Usage

• PSR-11 Usage

• PSR-13 Usage

• ext/stats

• Dependency Injection

• Courier Anti-Pattern

• ext/gender

• ext/judy

• Yii usage

• Codeigniter usage

• Laravel usage

• Symfony usage

• Wordpress usage

• Ez cms usage

• Joomla usage

• Non Breakable Space In Names

• Multiple Functions Declarations

• swoole

• Manipulates NaN

• Manipulates INF

• Const Or Define

• strict_types Preference

• Declare strict_types Usage

• Encoding Usage

• Ticks Usage

• Assign And Lettered Logical Operator Precedence

15.3. List of rulesets 2159

Exakat Documentation, Release 1

• No Magic Method With Array

• ext/xattr

• ext/rdkafka

• ext/fam

• ext/parle

• Regex Inventory

• Is Actually Zero

• Unconditional Break In Loop

• Too Complex Expression

• Is A Magic Property

• Next Month Trap

• Printf Number Of Arguments

• Drupal Usage

• Phalcon Usage

• Fuel PHP Usage

• Argon2 Usage

• Crypto Usage

• Type Array Index

• Incoming Variable Index Inventory

• ext/vips

• Dl() Usage

• Environment Variables

• Invalid Regex

• Same Variable Foreach

• ext/igbinary

• Identical On Both Sides

• No Reference For Ternary

• Unused Inherited Variable In Closure

• Fallback Function

• ext/hrtime

• ext/xxtea

• ext/uopz

• ext/varnish

• ext/opencensus

• ext/leveldb

• ext/db2

2160 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Don’t Unset Properties

• Strtr Arguments

• Missing Parenthesis

• Callback Function Needs Return

• ext/zookeeper

• ext/cmark

• strpos() Too Much

• Class-typed References

• Check JSON

• ext/eio

• Undefined ::class

• ext/lzf

• ext/msgpack

• Case Insensitive Constants

• Handle Arrays With Callback

• Detect Current Class

• Trailing Comma In Calls

• Undefined Variable

• Undefined Insteadof

• Can’t Disable Class

• ext/seaslog

• Wrong Access Style to Property

• Invalid Pack Format

• Don’t Read And Write In One Expression

• Pack Format Inventory

• Printf Format Inventory

• idn_to_ascii() New Default

• ext/decimal

• ext/psr

• Should Yield With Key

• Useless Method Alias

• ext/sdl

• ext/wasm

• Path lists

• Possible Missing Subpattern

• Assign And Compare

15.3. List of rulesets 2161

Exakat Documentation, Release 1

• Typed Property Usage

• ext/weakref

• ext/pcov

• Constant Dynamic Creation

• PHP 8.0 Removed Functions

• PHP 8.0 Removed Constants

• An OOP Factory

• Type Must Be Returned

• Self-Transforming Variables

• Check On __Call Usage

• PHP Overridden Function

• ext/svm

• ext/ffi

• ext/password

• ext/zend_monitor

• ext/uuid

• Casting Ternary

• Concat And Addition

• New Functions In PHP 7.4

• curl_version() Has No Argument

• Php 7.4 New Classes

• New Constants In PHP 7.4

• Wrong Type Returned

• Methods That Should Not Be Used

• PHP 7.4 Removed Functions

• mb_strrpos() Third Argument

• array_key_exists() Works On Arrays

• Reflection Export() Is Deprecated

• Unbinding Closures

• Numeric Literal Separator

• Class Without Parent

• Scalar Are Not Arrays

• Create Compact Variables

• PHP 7.4 Reserved Keyword

• No More Curly Arrays

• Overwritten Properties

2162 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Overwritten Constant

• Create Magic Property

• Set Parent Definition

• Makes Class Constant Definition

• Follow Closure Definition

• PHP 7.4 Constant Deprecation

• Implode() Arguments Order

• PHP 7.4 Removed Directives

• Hash Algorithms Incompatible With PHP 7.4-

• openssl_random_pseudo_byte() Second Argument

• strip_tags() Skips Closed Tag

• Use Covariance

• Use Contravariance

• Set Array Class Definition

• Use Arrow Functions

• Environment Variable Usage

• Indentation Levels

• Spread Operator For Array

• Nested Ternary Without Parenthesis

• Cyclomatic Complexity

• Should Use Explode Args

• Use array_slice()

• Coalesce And Concat

• Interfaces Is Not Implemented

• No Literal For Reference

• Collect Literals

• Collect Parameter Counts

• Collect Local Variable Counts

• Dereferencing Levels

• Make Functioncall With Reference

• Foreach() Favorite

• Can’t Implement Traversable

• Is_A() With String

• Mbstring Unknown Encoding

• Collect Mbstring Encodings

• Filter To add_slashes()

15.3. List of rulesets 2163

Exakat Documentation, Release 1

• Mbstring Third Arg

• Typehinting Stats

• Typo 3 usage

• Concrete5 usage

• Immutable Signature

• Merge If Then

• Wrong Type With Call

• Shell commands

• Inclusions

• Typehint Order

• New Order

• Links Between Parameter And Argument

• Collect Class Interface Counts

• Collect Class Depth

• Collect Class Children Count

• Not Equal Is Not !==

• Constant Order

• Php 8.0 Variable Syntax Tweaks

• New Functions In PHP 8.0

• Php 8.0 Only TypeHints

• Union Typehint

• Wrong Typed Property Default

• Signature Trailing Comma

• Throw Was An Expression

• Collect Property Counts

• Collect Method Counts

• Collect Class Constant Counts

• Could Be String

• Could Be Boolean

• Could Be Array Typehint

• Could Be CIT

• Protocol lists

• Type Could Be Integer

• Call Order

• Could Be Null

• Uses PHP 8 Match()

2164 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Could Be Float

• Collect Parameter Names

• Wrong Type For Native PHP Function

• Fossilized Methods List

• Collect Static Class Changes

• Use PHP Attributes

• Use NullSafe Operator

• Use Closure Trailing Comma

• Unknown Parameter Name

• Missing Some Returntype

• Collects Variables

• Collect Global Variables

• Collect Readability

• Collect Definitions Statistics

• Collect Class Traits Counts

• Collect Native Calls Per Expressions

• Function With Dynamic Code

• Cast Unset Usage

• $php_errormsg Usage

• Mismatch Parameter Name

• Collect Files Dependencies

• Collect Atom Counts

• Collect Classes Dependencies

• Collect Php Structures

• Collect Use Counts

• PHP 8.0 Removed Directives

• Unsupported Types With Operators

• Negative Start Index In Array

• Nullable With Constant

• PHP 8.0 Resources Turned Into Objects

• PHP 80 Named Parameter Variadic

• Final Private Methods

• Array_Map() Passes By Value

15.3. List of rulesets 2165

Exakat Documentation, Release 1

Specs

Short name CE
Available in Entreprise Edition, Exakat Cloud

15.3.6 CI-checks

This ruleset is a collection of important rules to run in a CI pipeline.

Total : 177 analysis

• Adding Zero

• Multiple Index Definition

• Forgotten Visibility

• Non Static Methods Called In A Static

• Static Methods Called From Object

• Constants With Strange Names

• Redeclared PHP Functions

• error_reporting() With Integers

• Exit() Usage

• Forgotten Whitespace

• Multiply By One

• @ Operator

• Not Not

• Strpos()-like Comparison

• Throws An Assignement

• var_dump(). . . Usage

• Useless Instructions

• Multiple Constant Definition

• Wrong Optional Parameter

• Use === null

• One Variable String

• Static Methods Can’t Contain $this

• While(List() = Each())

• Multiples Identical Case

• Switch Without Default

• Nested Ternary

• Undefined Constants

• Htmlentities Calls

2166 Chapter 15. Rulesets

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• Undefined Class Constants

• Undefined Functions

• Deprecated PHP Functions

• Dangling Array References

• Native Alias Functions Usage

• Uses Default Values

• Wrong Number Of Arguments

• Use const

• list() May Omit Variables

• Or Die

• Must Return Methods

• Overwritten Exceptions

• Foreach Reference Is Not Modified

• Undefined Properties

• Strict Comparison With Booleans

• Lone Blocks

• Logical Should Use Symbolic Operators

• Repeated print()

• Avoid Parenthesis With Language Construct

• Objects Don’t Need References

• No Real Comparison

• No Direct Call To Magic Method

• Useless Final

• Use Constant Instead Of Function

• Useless Unset

• No array_merge() In Loops

• Useless Parenthesis

• Use PHP Object API

• Altering Foreach Without Reference

• Use Pathinfo

• No Parenthesis For Language Construct

• Use Constant As Arguments

• Implied If

• Should Chain Exception

• Undefined Interfaces

• Should Use Prepared Statement

15.3. List of rulesets 2167

Exakat Documentation, Release 1

• Print And Die

• Unchecked Resources

• Else If Versus Elseif

• Multiple Class Declarations

• Empty Namespace

• Could Use Short Assignation

• Pre-increment

• Indices Are Int Or String

• Should Typecast

• Avoid Substr() One

• Useless Brackets

• preg_replace With Option e

• eval() Without Try

• Avoid get_class()

• Silently Cast Integer

• Timestamp Difference

• Wrong Parameter Type

• Redefined Class Constants

• Redefined Default

• Wrong fopen() Mode

• Negative Power

• Use random_int()

• Ternary In Concat

• Undefined Trait

• Identical Conditions

• No Choice

• Logical Mistakes

• Same Conditions In Condition

• Return True False

• Could Use __DIR__

• Should Use Coalesce

• If With Same Conditions

• Throw Functioncall

• Use Instanceof

• Results May Be Missing

• Always Positive Comparison

2168 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Empty Blocks

• Throw In Destruct

• Use System Tmp

• Hidden Use Expression

• Should Make Alias

• Multiple Identical Trait Or Interface

• Multiple Alias Definitions

• Failed Substr() Comparison

• Should Use Ternary Operator

• Drop Else After Return

• Use ::Class Operator

• Don’t Echo Error

• Useless Type Casting

• No isset() With empty()

• Useless Check

• Multiple Alias Definitions Per File

• __DIR__ Then Slash

• Repeated Regex

• No Class In Global

• Could Use str_repeat()

• Strings With Strange Space

• No Empty Regex

• No Reference On Left Side

• Assign And Lettered Logical Operator Precedence

• No Magic Method With Array

• Is Actually Zero

• Unconditional Break In Loop

• Next Month Trap

• Printf Number Of Arguments

• Invalid Regex

• Same Variable Foreach

• Identical On Both Sides

• No Reference For Ternary

• Unused Inherited Variable In Closure

• Don’t Unset Properties

• Strtr Arguments

15.3. List of rulesets 2169

Exakat Documentation, Release 1

• Missing Parenthesis

• Callback Function Needs Return

• strpos() Too Much

• Class-typed References

• Check JSON

• Undefined ::class

• Undefined Variable

• Undefined Insteadof

• Wrong Access Style to Property

• Invalid Pack Format

• Should Yield With Key

• Useless Method Alias

• Possible Missing Subpattern

• Assign And Compare

• Type Must Be Returned

• Check On __Call Usage

• Casting Ternary

• Concat And Addition

• Wrong Type Returned

• Class Without Parent

• Scalar Are Not Arrays

• Implode() Arguments Order

• strip_tags() Skips Closed Tag

• Should Use Explode Args

• Use array_slice()

• Coalesce And Concat

• Interfaces Is Not Implemented

• No Literal For Reference

• Can’t Implement Traversable

• Is_A() With String

• Mbstring Unknown Encoding

• Mbstring Third Arg

• Merge If Then

• Wrong Type With Call

• Not Equal Is Not !==

• Wrong Typed Property Default

2170 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Wrong Type For Native PHP Function

• Unknown Parameter Name

• Missing Some Returntype

• Htmlentities Using Default Flag

• Wrong Argument Name With PHP Function

Specs

Short name CI-checks
Available in Entreprise Edition, Exakat Cloud

15.3.7 Changed Behavior

Ruleset with all rules that identify changed behavior across PHP versions. This means that some syntax behave differ-
ently, depending on PHP version.

Total : 609 analysis

• Ambiguous Array Index

• Array Index

• True False Inconsistant Case

• Magic Constant Usage

• PHP Constant Usage

• Caught Exceptions

• Defined Exceptions

• ext/apc

• ext/bcmath

• ext/bzip2

• ext/calendar

• ext/sqlite

• ext/sqlite3

• Closures Glossary

• Recursive Functions

• Empty Interfaces

• Interfaces Usage

• Interfaces Names

• PHP Interfaces

• Aliases

• Namespaces Glossary

15.3. List of rulesets 2171

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• Autoloading

• Use Lower Case For Parent, Static And Self

• Goto Names

• Labels

• Functions Removed In PHP 5.4

• For Using Functioncall

• No Plus One

• Throws An Assignement

• __toString() Throws Exception

• Binary Glossary

• Email Addresses

• HTTP Status Code

• All strings

• Interface Arguments

• Variable References

• Abstract Class Usage

• Variable Constants

• Empty Traits

• Redefined PHP Traits

• Traits Usage

• Trait Names

• Short Syntax For Arrays

• Unused Use

• Use With Fully Qualified Name

• Used Use

• ext/array

• Non-lowercase Keywords

• Abstract Static Methods

• Interface Methods

• Trait Methods

• Invalid Constant Name

• Multiple Constant Definition

• Wrong Optional Parameter

• Use === null

• $this Is Not An Array

• Cast Usage

2172 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Closure May Use $this

• While(List() = Each())

• Several Instructions On The Same Line

• Function Subscripting, Old Style

• $this Belongs To Classes Or Traits

• Non-constant Index In Array

• Undefined Constants

• Custom Constant Usage

• Is An Extension Interface

• Is An Extension Constant

• Bracketless Blocks

• Undefined Class Constants

• Used Private Methods

• Unused Private Methods

• crypt() Without Salt

• mcrypt_create_iv() With Default Values

• Native Alias Functions Usage

• Unresolved Classes

• ** For Exponent

• Useless Constructor

• Unresolved Use

• Unused Constants

• Undefined static:: Or self::

• Parent, Static Or Self Outside Class

• Is Extension Trait

• Dynamically Called Classes

• Conditioned Function

• Method Is A Generator

• Use password_hash()

• Dereferencing String And Arrays

• Empty With Expression

• Use Const And Functions

• Constant Scalar Expressions

• Unreachable Code

• Must Return Methods

• Interpolation

15.3. List of rulesets 2173

Exakat Documentation, Release 1

• Empty Slots In Arrays

• Method Is Not For Fluent Interface

• PHP Handlers Usage

• Unused Methods

• Used Methods

• Overwritten Exceptions

• Direct Injection

• Return void

• Return With Parenthesis

• Unused Classes

• Used Classes

• Is PHP Constant

• Sensitive Argument

• Undefined Properties

• Short Open Tags

• Lone Blocks

• Avoid sleep()/usleep()

• PHP Keywords As Names

• Const With Array

• Namespaces

• Repeated print()

• Constants Created Outside Its Namespace

• Fully Qualified Constants

• Use This

• ext/apache

• Slow Functions

• Useless Final

• No array_merge() In Loops

• Unresolved Instanceof

• Unthrown Exception

• Magic Visibility

• No Parenthesis For Language Construct

• Unused Label

• Methodcall On New

• Used Interfaces

• Unused Interfaces

2174 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Useless Interfaces

• Undefined Interfaces

• ext/apcu

• Should Use Prepared Statement

• Class Const With Array

• Unresolved Catch

• Reserved Keywords In PHP 7

• Could Be A Static Variable

• Empty Namespace

• Could Use Short Assignation

• Useless Abstract Class

• Scalar Typehint Usage

• Return Typehint Usage

• Global Import

• Pre-increment

• ext/amqp

• ext/php-ast

• Indices Are Int Or String

• isset() With Constant

• Is Global Constant

• Coalesce

• List With Array Appends

• Simple Global Variable

• Parenthesis As Parameter

• Foreach Don’t Change Pointer

• Unicode Escape Partial

• Directives Usage

• eval() Without Try

• No List With String

• Usort Sorting In PHP 7.0

• func_get_arg() Modified

• Register Globals

• Avoid get_class()

• Used Trait

• Unused Traits

• Wrong Parameter Type

15.3. List of rulesets 2175

Exakat Documentation, Release 1

• Redefined Methods

• Redefined Class Constants

• Redefined Default

• Wrong fopen() Mode

• Confusing Names

• PHP Bugfixes

• preg_match_all() Flag

• Safe Curl Options

• Already Parents Interface

• Use random_int()

• Cant Use Return Value In Write Context

• set_exception_handler() Warning

• Using $this Outside A Class

• Pear Usage

• Undefined Trait

• No Choice

• Exception Order

• Uncaught Exceptions

• Undefined Caught Exceptions

• GPRC Aliases

• Indirect Injection

• List With Keys

• Throw Functioncall

• Use Instanceof

• Make One Call With Array

• List Short Syntax

• Defined Parent MP

• Multiple Exceptions Catch()

• Used Protected Method

• Unused Protected Methods

• No Count With 0

• Dependant Trait

• Hidden Use Expression

• Could Use Alias

• Should Make Alias

• Multiple Identical Trait Or Interface

2176 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Multiple Alias Definitions

• Use ::Class Operator

• Don’t Echo Error

• time() Vs strtotime()

• Unitialized Properties

• PHP 7.1 Microseconds

• Getting Last Element

• Rethrown Exceptions

• Avoid array_push()

• $GLOBALS Or global

• Close Tags Consistency

• Fetch One Row Format

• Avoid glob() Usage

• Could Be Protected Property

• Raised Access Level

• Class Function Confusion

• Forgotten Thrown

• Multiple Alias Definitions Per File

• __DIR__ Then Slash

• self, parent, static Outside Class

• Used Once Property

• Should Use session_regenerateid()

• Strange Name For Constants

• Could Be Typehinted Callable

• Encoded Simple Letters

• Too Many Finds

• Set Cookie Safe Arguments

• New Constants In PHP 7.2

• Group Use Declaration

• Displays Text

• No Class In Global

• Crc32() Might Be Negative

• Use Debug

• Could Typehint

• DI Cyclic Dependencies

• Too Many Injections

15.3. List of rulesets 2177

Exakat Documentation, Release 1

• Dependency Injection

• Courier Anti-Pattern

• Could Make A Function

• Forgotten Interface

• Manipulates NaN

• Manipulates INF

• Mkdir Default

• strict_types Preference

• Declare strict_types Usage

• Encoding Usage

• Group Use Trailing Comma

• Logical Operators Favorite

• Isset Multiple Arguments

• No Magic Method With Array

• Avoid Concat In Loop

• No Substr Minus One

• Logical To in_array

• Shell Favorite

• Could Be Protected Class Constant

• Could Be Protected Method

• Pathinfo() Returns May Vary

• Is Actually Zero

• Session Lazy Write

• Session Variables

• Cookies Variables

• Date Formats

• Simple Switch And Match

• Substring First

• Use List With Foreach

• Crypto Usage

• Php 7.2 New Class

• Avoid set_error_handler $context Argument

• Hash Will Use Objects

• Maybe Missing New

• Use PHP7 Encapsed Strings

• Type Array Index

2178 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Dl() Usage

• Invalid Regex

• Use Named Boolean In Argument Definition

• Not A Scalar Type

• Sqlite3 Requires Single Quotes

• No Net For Xml Load

• Useless Referenced Argument

• Double array_flip()

• Foreach On Object

• Dynamic Library Loading

• PHP 7.3 Last Empty Argument

• Use Recursive count()

• Processing Collector

• Missing Parenthesis

• strpos() Too Much

• Do In Base

• Weak Typing

• Cache Variable Outside Loop

• Use The Blind Var

• Nonexistent Variable In compact()

• Mismatch Type And Default

• Flexible Heredoc

• Comparisons Orientation

• Could Be Static Closure

• move_uploaded_file Instead Of copy

• Can’t Throw Throwable

• Abstract Or Implements

• Ambiguous Visibilities

• Hash Algorithms Incompatible With PHP 7.1-

• Undefined ::class

• PHP 7.0 Scalar Typehints

• PHP 7.1 Scalar Typehints

• PHP 7.2 Scalar Typehints

• Locally Used Property In Trait

• Handle Arrays With Callback

• Use is_countable

15.3. List of rulesets 2179

Exakat Documentation, Release 1

• Detect Current Class

• Avoid Real

• Const Or Define Preference

• Constant Case Preference

• Assert Function Is Reserved

• Must Call Parent Constructor

• Undefined Insteadof

• Method Collision Traits

• Closure Could Be A Callback

• Add Default Value

• filter_input() As A Source

• Invalid Pack Format

• Repeated Interface

• No Reference For Static Property

• Printf Format Inventory

• PHP Exception

• Unreachable Class Constant

• Avoid Self In Interface

• Safe HTTP Headers

• Useless Method Alias

• Isset() On The Whole Array

• Self Using Trait

• Multiple Usage Of Same Trait

• Possible Missing Subpattern

• array_key_exists() Speedup

• ext/pcov

• Constant Dynamic Creation

• An OOP Factory

• Type Must Be Returned

• Inconsistent Variable Usage

• Self-Transforming Variables

• Caught Variable

• Implode One Arg

• Insecure Integer Validation

• Incoming Values

• Useless Default Argument

2180 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Trait Not Found

• Concat And Addition

• Minus One On Error

• Autoappend

• Memoize MagicCall

• Regex On Arrays

• Always Use Function With array_key_exists()

• curl_version() Has No Argument

• Unused Class Constant

• Could Use Trait

• Generator Cannot Return

• Methods That Should Not Be Used

• Use Array Functions

• Avoid mb_dectect_encoding()

• mb_strrpos() Third Argument

• array_key_exists() Works On Arrays

• Reflection Export() Is Deprecated

• Numeric Literal Separator

• Class Without Parent

• Serialize Magic Method

• Scalar Are Not Arrays

• Php Native Reference Variable

• Create Compact Variables

• Propagate Constants

• No ENT_IGNORE

• Overwritten Properties

• Set Clone Link

• Create Magic Property

• Set Parent Definition

• Make Class Method Definition

• Create Default Values

• Makes Class Constant Definition

• Set Class Remote Definition With Injection

• Solve Trait Methods

• Follow Closure Definition

• Implode() Arguments Order

15.3. List of rulesets 2181

Exakat Documentation, Release 1

• Hash Algorithms Incompatible With PHP 7.4-

• No Spread For Hash

• Set Class Remote Definition With Return Typehint

• Set Class Remote Definition With Local New

• Set Class Remote Definition With Typehint

• Set Class Remote Definition With Global

• Set Class Property Definition With Typehint

• Set Array Class Definition

• Set Class Method Remote Definition

• Use Arrow Functions

• Environment Variable Usage

• Indentation Levels

• Nested Ternary Without Parenthesis

• Cyclomatic Complexity

• Use array_slice()

• Comparison Is Always The Same

• Interfaces Is Not Implemented

• No Literal For Reference

• Interfaces Don’t Ensure Properties

• Duplicate Literal

• No Weak SSL Crypto

• No mb_substr In Loop

• Collect Parameter Counts

• Collect Local Variable Counts

• Use The Case Value

• Too Many Dereferencing

• Can’t Implement Traversable

• Is_A() With String

• Filter To add_slashes()

• Typehinting Stats

• Wrong Case Namespaces

• Create Foreach Default

• Merge If Then

• Inclusions

• Typehint Order

• New Order

2182 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Links Between Parameter And Argument

• Exceeding Typehint

• Collect Class Interface Counts

• Collect Class Depth

• Collect Class Children Count

• Coalesce Equal

• Possible Interfaces

• Php 8.0 Only TypeHints

• Uninitialized Property

• Throw Was An Expression

• Unused Trait In Class

• Keep Files Access Restricted

• Possible Alias Confusion

• Collect Property Counts

• Collect Method Counts

• Safe Phpvariables

• Extended Typehints

• Double Object Assignation

• Call Order

• Array_merge Needs Array Of Arrays

• Abstract Away

• Large Try Block

• Catch With Undefined Variable

• Fossilized Methods List

• Collect Static Class Changes

• Use PHP Attributes

• Use NullSafe Operator

• Collect Readability

• Collect Class Traits Counts

• Collect Native Calls Per Expressions

• Function With Dynamic Code

• $php_errormsg Usage

• Mismatch Parameter Name

• Multiple Declaration Of Strict_types

• Assumptions

• Collect Use Counts

15.3. List of rulesets 2183

Exakat Documentation, Release 1

• Useless Typehint

• Negative Start Index In Array

• Php Ext Stub Property And Method

• Optimize Explode()

• Unused Exception Variable

• Cancelled Parameter

• Missing __isset() Method

• Long Preparation For Throw

• Modify Immutable

• Avoid get_object_vars()

• Cannot Use Static For Closure

• Only First Byte

• Restrict Global Usage

• Inherited Static Variable

• Htmlentities Using Default Flag

• Openssl Encrypt Default Algorithm Change

• PHP Native Class Type Compatibility

• Missing Attribute Attribute

• $FILES full_path

• No Null For Native PHP Functions

• Calling Static Trait Method

• PHP Native Interfaces and Return Type

• Final Constant

• Never Typehint Usage

• PHP 8.1 Typehints

• PHP 8.0 Typehints

• Never Keyword

• Float Conversion As Index

• Nested Attributes

• Promoted Properties

• Null Type Favorite

• Variable Anf Property Typehint

• Extends stdClass

• Scope Resolution Operator

• Cant Overload Constants

• Variable Is A Local Constant

2184 Chapter 15. Rulesets

Exakat Documentation, Release 1

• This Could Be Iterable

• Abstract Class Constants

• Check Division By Zero

• Getter And Setter

• Multiple Similar Calls

• Use File Append

• Readonly Usage

• Missing Visibility

• Could Use Existing Constant

• Collect Dependency Extension

• Public Reach To Private Methods

• Unreachable Method

• String Int Comparison

• Add Return Typehint

• Create Magic Method

• PHP 8.1 Resources Turned Into Objects

• Do Not Cast To Int

• Constant Scalar Expression

• No Readonly Assignation In Global

• Could Set Property Default

• No Private Abstract Method In Trait

• Typehints/CouldBeResource

• New Functions In PHP 8.2

• Ip

• Could Inject Parameter

• date() versus DateTime Preference

• Unused Public Methods

• Solve Trait Constants

• No Keyword In Namespace

• Ambiguous Types With Variables

• Set Chaining Exception

• Could Use Class Operator

• Mbstring Unknown Encodings

• Named Argument And Variadic

• Coalesce And Ternary Operators Order

• Useless Assignation Of Promoted Property

15.3. List of rulesets 2185

Exakat Documentation, Release 1

• Method Property Confusion

• Could Use Namespace Magic Constant

• Incompatible Types With Incoming Values

• Method Usage

• Empty Loop

• Too Many Extractions

• Possible TypeError

• Collect Calls

• Set Method Fnp

• Type Dodging

• Skip Empty Array

• Weak Type With Array

• Filter Not Raw

• Collect SetLocale

• No Max On Empty Array

• No Empty String With explode()

• Array Access On Literal Array

• strpos() With Integers

• Unvalidated Data Cached In Session

• Ellipsis Merge

• New Functions In PHP 8.3

• Missing Assignation In Branches

• Short Ternary

• Deprecated Mb_string Encodings

• Pre-Calculate Use

• Init Then Update

• Different Constructors

• Misused Yield

• Substr() In Loops

• Php 8.3 New Classes

• Recalled Condition

• Incompatible Property Between Class And Trait

• Could Be array_combine()

• Comparison On Different Types

• No Null For Index

• Useless Try

2186 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Class Injection Count

• Collect Property Usage

• Collect Structures

• Collect Catch Calls

• Identical Case In Switch

• StandaloneType True False Null

• Constants In Traits

• Short Or Complete Comparison

• Could Use Yield From

• Static Variable Can Default To Arbitrary Expression

• Multiline Expressions

• Append And Assign Arrays

• Property Cannot Be Readonly

• Static Variable Initialisation

• Collect Graph Triplets

• Don’t Use The Type As Variable Name

• Count() To Array Append

• Useless Trailing Comma

• Reserved Methods

• Void Is Not A Reference

• Non Integer Nor String As Index

• PHP Native Attributes

• Injectable Version

• Multiple Property Declaration

• Could Cast To Array

• Check After Null Safe Operator

• No Null With Null Safe Operator

• Invalid Cast

• Could Use strcontains()

• Could Drop Variable

• Could Be Readonly Property

• Try Without Catch

• Wrong Precedence In Expression

• Only Variable Passed By Reference

• Property Export

• File_Put_Contents Using Array Argument

15.3. List of rulesets 2187

Exakat Documentation, Release 1

• Useless NullSafe Operator

• Nested Match

• Useless Short Ternary

• Combined Calls

• Empty Json Error

• Useless Coalesce

• Count() Is Not Negative

• Exit Without Argument

• PHP 8.1 New Types

• PHP 8.2 New Types

• Variable Parameter Ambiguity In Arrow Function

• Strpos() Less Than One

Specs

Short name ChangedBehavior
Available in Entreprise Edition, Community Edition, Exakat Cloud

15.3.8 Class Review

This ruleset focuses on classes construction issues, and their related structures : traits, interfaces, methods, properties,
constants.

Total : 100 analysis

• Final Class Usage

• Final Methods Usage

• Classes Mutually Extending Each Other

• Could Use self

• Constant Class

• Redefined Property

• Useless Interfaces

• Could Be Class Constant

• Could Be A Static Variable

• No Self Referencing Constant

• Property Could Be Private

• Redefined Methods

• Class Should Be Final By Ocramius

• Could Be Protected Property

2188 Chapter 15. Rulesets

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• Raised Access Level

• Could Be Private Class Constant

• Could Be Protected Class Constant

• Method Could Be Private Method

• Could Be Protected Method

• Property Could Be Local

• Could Be Abstract Class

• Class Could Be Final

• Wrong Access Style to Property

• Unreachable Class Constant

• Avoid Self In Interface

• Self Using Trait

• Method Could Be Static

• Avoid option arrays in constructors

• Memoize MagicCall

• Unused Class Constant

• Dependant Abstract Classes

• Wrong Type Returned

• Disconnected Classes

• Class Without Parent

• Interfaces Is Not Implemented

• Interfaces Don’t Ensure Properties

• Non Nullable Getters

• Insufficient Property Typehint

• Exceeding Typehint

• Nullable Without Check

• Fossilized Method

• Uninitialized Property

• Wrong Typed Property Default

• Implicit Nullable Type

• Missing Abstract Method

• Unused Trait In Class

• Cyclic References

• Double Object Assignation

• Mismatch Properties Typehints

• Different Argument Counts

15.3. List of rulesets 2189

Exakat Documentation, Release 1

• Could Be Parent Method

• Cancel Common Method

• Modified Typed Parameter

• Useless Typehint

• Could Be Stringable

• Final Private Methods

• Missing __isset() Method

• No Static Variable In A Method

• Inherited Property Type Must Match

• Abstract Class Constants

• Missing Visibility

• Unreachable Method

• Undefined Methods

• Unfinished Object

• Undefined Enumcase

• Can’t Overwrite Final Constant

• No Constructor In Interface

• Lowered Access Level

• Used Once Trait

• Parent Is Not Static

• No Magic Method For Enum

• No Readonly Assignation In Global

• Could Set Property Default

• Wrong Type With Default

• Same Name For Property And Method

• Magic Method Returntype Is Restricted

• Could Inject Parameter

• Set Chaining Exception

• Useless Assignation Of Promoted Property

• Type Dodging

• Class Could Be Readonly

• Class Invasion

• Property Invasion

• Different Constructors

• Sidelined Method

• Rewrote Final Class Constant

2190 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Useless Constant Overwrite

• Incompatible Property Between Class And Trait

• Static Call With Self

• Property Cannot Be Readonly

• Static Methods Cannot Call Non-Static Methods

• Untyped No Default Properties

• Trait Is Not A Type

• Cant Instantiate Non Class

• Multiple Property Declaration

• No Null With Null Safe Operator

• Could Be Readonly Property

• New Object Then Immediate Call

• Property Export

• Useless NullSafe Operator

Specs

Short name ClassReview
Available in Entreprise Edition, Exakat Cloud

15.3.9 Classdependencies

This ruleset list all dependencies between classes : heritage and type.

Total : 1 analysis

• Collect Classes Dependencies

Specs

Short name Classdependencies
Available in Entreprise Edition, Exakat Cloud
Reports report-classdependencies

15.3. List of rulesets 2191

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

15.3.10 Coding conventions

This ruleset centralizes all analysis related to coding conventions. Sometimes, those are easy to extract with static
analysis, and so here they are. No all o them are available.

Total : 29 analysis

• No Plus One

• All Uppercase Variables

• Use With Fully Qualified Name

• Non-lowercase Keywords

• Echo Or Print

• Constant Comparison

• Closing Tags

• One Letter Functions

• Wrong Class Name Case

• Bracketless Blocks

• Use const

• Unusual Case For PHP Functions

• Interpolation

• Empty Slots In Arrays

• Multiple Classes In One File

• Return With Parenthesis

• Should Be Single Quote

• Yoda Comparison

• Mixed Concat And Interpolation

• Order Of Declaration

• Heredoc Delimiter

• Mistaken Concatenation

• Don’t Be Too Manual

• Similar Integers

• Wrong Function Name Case

• Wrong Case Namespaces

• Wrong Typehinted Name

• Multiple Property Declaration On One Line

• Useless Trailing Comma

2192 Chapter 15. Rulesets

Exakat Documentation, Release 1

Specs

Short name Coding Conventions
Available in Entreprise Edition, Exakat Cloud

15.3.11 CompatibilityPHP53

This ruleset centralizes all analysis for the migration from PHP 5.2 to 5.3.

Total : 98 analysis

• Non Static Methods Called In A Static

• ext/dba

• Use Lower Case For Parent, Static And Self

• Break With 0

• Binary Glossary

• Malformed Octal

• Short Syntax For Arrays

• New Functions In PHP 5.4

• New Functions In PHP 5.5

• New Functions In PHP 5.6

• Multiple Definition Of The Same Argument

• Function Subscripting

• Closure May Use $this

• Switch With Too Many Default

• Ellipsis Usage

• Exponent Usage

• Dereferencing String And Arrays

• ::class

• Foreach With list()

• Use Const And Functions

• Constant Scalar Expressions

• __debugInfo() Usage

• Mixed Keys In Array

• Const With Array

• Methodcall On New

• Hash Algorithms Incompatible With PHP 5.3

• Class Const With Array

• Variable Global

15.3. List of rulesets 2193

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• Null On New

• isset() With Constant

• Anonymous Classes

• Unicode Escape Syntax

• New Functions In PHP 7.0

• PHP 7.0 New Classes

• PHP 7.0 New Interfaces

• Parenthesis As Parameter

• PHP5 Indirect Variable Expression

• Php 7 Indirect Expression

• Unicode Escape Partial

• Define Constants With Array

• No List With String

• PHP7 Dirname

• Php7 Relaxed Keyword

• Cant Use Return Value In Write Context

• Php 7.1 New Class

• List With Keys

• List Short Syntax

• Use Nullable Type

• Multiple Exceptions Catch()

• No String With Append

• Group Use Declaration

• New Functions In PHP 7.3

• Cant Inherit Abstract Method

• Group Use Trailing Comma

• Child Class Removes Typehint

• No Substr Minus One

• Integer As Property

• No get_class() With Null

• Php 7.2 New Class

• List With Reference

• PHP 7.3 Last Empty Argument

• Flexible Heredoc

• Const Visibility Usage

• Hash Algorithms Incompatible With PHP 7.1-

2194 Chapter 15. Rulesets

Exakat Documentation, Release 1

• PHP 7.0 Scalar Typehints

• PHP 7.1 Scalar Typehints

• PHP 7.2 Scalar Typehints

• Continue Is For Loop

• Trailing Comma In Calls

• Direct Call To __clone()

• No Return For Generator

• No Reference For Static Property

• Typed Property Usage

• Concat And Addition

• Unpacking Inside Arrays

• Generator Cannot Return

• Coalesce Equal

• Enum Usage

• $FILES full_path

• Never Typehint Usage

• PHP 8.1 Typehints

• PHP 8.0 Typehints

• Named Parameter Usage

• Cant Overload Constants

• Constant Scalar Expression

• No Private Abstract Method In Trait

• Clone Constant

• Use Enum Case In Constant Expression

• Readonly Property Changed By Cloning

• New Dynamic Class Constant Syntax

• class_alias() Supports Internal Classes

• Redeclared Static Variable

• Static Variable Can Default To Arbitrary Expression

• Final Traits Are Final

• Typed Class Constants Usage

• Void Is Not A Reference

• PHP 8.1 New Types

• PHP 8.2 New Types

15.3. List of rulesets 2195

Exakat Documentation, Release 1

Specs

Short name CompatibilityPHP53
Available in Entreprise Edition, Exakat Cloud
Reports Ambassador

15.3.12 CompatibilityPHP54

This ruleset centralizes all analysis for the migration from PHP 5.3 to 5.4.

Total : 95 analysis

• Non Static Methods Called In A Static

• Use Lower Case For Parent, Static And Self

• Functions Removed In PHP 5.4

• Break With Non Integer

• Calltime Pass By Reference

• Malformed Octal

• New Functions In PHP 5.5

• New Functions In PHP 5.6

• Multiple Definition Of The Same Argument

• Switch With Too Many Default

• crypt() Without Salt

• Ellipsis Usage

• Exponent Usage

• Dereferencing String And Arrays

• ::class

• Foreach With list()

• Use Const And Functions

• Constant Scalar Expressions

• __debugInfo() Usage

• Mixed Keys In Array

• Const With Array

• Hash Algorithms Incompatible With PHP 5.3

• Hash Algorithms Incompatible With PHP 5.4/5.5

• Class Const With Array

• Variable Global

• Null On New

• isset() With Constant

2196 Chapter 15. Rulesets

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• Anonymous Classes

• Unicode Escape Syntax

• New Functions In PHP 7.0

• PHP 7.0 New Classes

• PHP 7.0 New Interfaces

• Parenthesis As Parameter

• PHP5 Indirect Variable Expression

• Php 7 Indirect Expression

• Unicode Escape Partial

• Define Constants With Array

• No List With String

• PHP7 Dirname

• Php7 Relaxed Keyword

• Cant Use Return Value In Write Context

• Php 7.1 New Class

• List With Keys

• List Short Syntax

• Use Nullable Type

• Multiple Exceptions Catch()

• No String With Append

• Group Use Declaration

• New Functions In PHP 7.3

• Cant Inherit Abstract Method

• Group Use Trailing Comma

• Child Class Removes Typehint

• No Substr Minus One

• Integer As Property

• No get_class() With Null

• Php 7.2 New Class

• List With Reference

• PHP 7.3 Last Empty Argument

• Flexible Heredoc

• Const Visibility Usage

• Hash Algorithms Incompatible With PHP 7.1-

• PHP 7.0 Scalar Typehints

• PHP 7.1 Scalar Typehints

15.3. List of rulesets 2197

Exakat Documentation, Release 1

• PHP 7.2 Scalar Typehints

• Continue Is For Loop

• Trailing Comma In Calls

• Direct Call To __clone()

• No Return For Generator

• No Reference For Static Property

• Typed Property Usage

• Concat And Addition

• Unpacking Inside Arrays

• Generator Cannot Return

• Coalesce Equal

• Enum Usage

• $FILES full_path

• Never Typehint Usage

• PHP 8.1 Typehints

• PHP 8.0 Typehints

• Named Parameter Usage

• Cant Overload Constants

• Constant Scalar Expression

• No Private Abstract Method In Trait

• Clone Constant

• Use Enum Case In Constant Expression

• Readonly Property Changed By Cloning

• New Dynamic Class Constant Syntax

• class_alias() Supports Internal Classes

• Redeclared Static Variable

• Static Variable Can Default To Arbitrary Expression

• Final Traits Are Final

• Typed Class Constants Usage

• Void Is Not A Reference

• PHP 8.1 New Types

• PHP 8.2 New Types

2198 Chapter 15. Rulesets

Exakat Documentation, Release 1

Specs

Short name CompatibilityPHP54
Available in Entreprise Edition, Exakat Cloud
Reports Ambassador

15.3.13 CompatibilityPHP55

This ruleset centralizes all analysis for the migration from PHP 5.4 to 5.5.

Total : 88 analysis

• Non Static Methods Called In A Static

• ext/apc

• ext/mysql

• Functions Removed In PHP 5.5

• Malformed Octal

• New Functions In PHP 5.6

• Multiple Definition Of The Same Argument

• Switch With Too Many Default

• Ellipsis Usage

• Exponent Usage

• Use password_hash()

• Use Const And Functions

• Constant Scalar Expressions

• __debugInfo() Usage

• Const With Array

• Hash Algorithms Incompatible With PHP 5.3

• Hash Algorithms Incompatible With PHP 5.4/5.5

• Class Const With Array

• Variable Global

• Null On New

• isset() With Constant

• Anonymous Classes

• Unicode Escape Syntax

• New Functions In PHP 7.0

• PHP 7.0 New Classes

• PHP 7.0 New Interfaces

• Parenthesis As Parameter

15.3. List of rulesets 2199

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• PHP5 Indirect Variable Expression

• Php 7 Indirect Expression

• Unicode Escape Partial

• Define Constants With Array

• No List With String

• PHP7 Dirname

• Php7 Relaxed Keyword

• Php 7.1 New Class

• List With Keys

• List Short Syntax

• Use Nullable Type

• Multiple Exceptions Catch()

• No String With Append

• Group Use Declaration

• New Functions In PHP 7.3

• Cant Inherit Abstract Method

• Group Use Trailing Comma

• Child Class Removes Typehint

• No Substr Minus One

• Integer As Property

• No get_class() With Null

• Php 7.2 New Class

• List With Reference

• PHP 7.3 Last Empty Argument

• Flexible Heredoc

• Const Visibility Usage

• Hash Algorithms Incompatible With PHP 7.1-

• PHP 7.0 Scalar Typehints

• PHP 7.1 Scalar Typehints

• PHP 7.2 Scalar Typehints

• Continue Is For Loop

• Trailing Comma In Calls

• Direct Call To __clone()

• No Return For Generator

• No Reference For Static Property

• Typed Property Usage

2200 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Concat And Addition

• Unpacking Inside Arrays

• Generator Cannot Return

• Coalesce Equal

• Enum Usage

• $FILES full_path

• Never Typehint Usage

• PHP 8.1 Typehints

• PHP 8.0 Typehints

• Named Parameter Usage

• Cant Overload Constants

• Constant Scalar Expression

• No Private Abstract Method In Trait

• Clone Constant

• Use Enum Case In Constant Expression

• Readonly Property Changed By Cloning

• New Dynamic Class Constant Syntax

• class_alias() Supports Internal Classes

• Redeclared Static Variable

• Static Variable Can Default To Arbitrary Expression

• Final Traits Are Final

• Typed Class Constants Usage

• Void Is Not A Reference

• PHP 8.1 New Types

• PHP 8.2 New Types

Specs

Short name CompatibilityPHP55
Available in Entreprise Edition, Exakat Cloud
Reports Ambassador

15.3. List of rulesets 2201

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

15.3.14 CompatibilityPHP56

This ruleset centralizes all analysis for the migration from PHP 5.5 to 5.6.

Total : 78 analysis

• Non Static Methods Called In A Static

• Malformed Octal

• $HTTP_RAW_POST_DATA Usage

• Multiple Definition Of The Same Argument

• Switch With Too Many Default

• Hash Algorithms Incompatible With PHP 5.3

• Hash Algorithms Incompatible With PHP 5.4/5.5

• Variable Global

• Null On New

• isset() With Constant

• Anonymous Classes

• Unicode Escape Syntax

• New Functions In PHP 7.0

• PHP 7.0 New Classes

• PHP 7.0 New Interfaces

• Parenthesis As Parameter

• PHP5 Indirect Variable Expression

• Php 7 Indirect Expression

• Unicode Escape Partial

• Define Constants With Array

• No List With String

• PHP7 Dirname

• Php7 Relaxed Keyword

• Php 7.1 New Class

• List With Keys

• List Short Syntax

• Use Nullable Type

• Multiple Exceptions Catch()

• No String With Append

• Group Use Declaration

• New Functions In PHP 7.3

• Cant Inherit Abstract Method

• Group Use Trailing Comma

2202 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Child Class Removes Typehint

• No Substr Minus One

• Integer As Property

• No get_class() With Null

• Php 7.2 New Class

• List With Reference

• PHP 7.3 Last Empty Argument

• Flexible Heredoc

• Const Visibility Usage

• Hash Algorithms Incompatible With PHP 7.1-

• PHP 7.0 Scalar Typehints

• PHP 7.1 Scalar Typehints

• PHP 7.2 Scalar Typehints

• Continue Is For Loop

• Trailing Comma In Calls

• Direct Call To __clone()

• No Return For Generator

• No Reference For Static Property

• Typed Property Usage

• Concat And Addition

• Unpacking Inside Arrays

• Generator Cannot Return

• Coalesce Equal

• Php 8.0 Only TypeHints

• Enum Usage

• $FILES full_path

• Never Typehint Usage

• PHP 8.1 Typehints

• PHP 8.0 Typehints

• Named Parameter Usage

• Cant Overload Constants

• Constant Scalar Expression

• No Private Abstract Method In Trait

• Clone Constant

• Use Enum Case In Constant Expression

• Readonly Property Changed By Cloning

15.3. List of rulesets 2203

Exakat Documentation, Release 1

• New Dynamic Class Constant Syntax

• class_alias() Supports Internal Classes

• Redeclared Static Variable

• Static Variable Can Default To Arbitrary Expression

• Final Traits Are Final

• Typed Class Constants Usage

• Void Is Not A Reference

• PHP 8.1 New Types

• PHP 8.2 New Types

Specs

Short name CompatibilityPHP56
Available in Entreprise Edition, Exakat Cloud
Reports Ambassador

15.3.15 CompatibilityPHP70

This ruleset centralizes all analysis for the migration from PHP 5.6 to 7.0.

Total : 69 analysis

• mcrypt_create_iv() With Default Values

• Magic Visibility

• Hash Algorithms Incompatible With PHP 5.3

• Hash Algorithms Incompatible With PHP 5.4/5.5

• Reserved Keywords In PHP 7

• Break Outside Loop

• PHP 7.0 Removed Functions

• Empty List

• List With Array Appends

• Simple Global Variable

• Foreach Don’t Change Pointer

• Php 7 Indirect Expression

• PHP 7.0 Removed Directives

• preg_replace With Option e

• Setlocale() Uses Constants

• Usort Sorting In PHP 7.0

• Hexadecimal In String

2204 Chapter 15. Rulesets

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• func_get_arg() Modified

• set_exception_handler() Warning

• Php 7.1 New Class

• List With Keys

• List Short Syntax

• Use Nullable Type

• Multiple Exceptions Catch()

• New Functions In PHP 7.3

• Cant Inherit Abstract Method

• Group Use Trailing Comma

• Child Class Removes Typehint

• No Substr Minus One

• Integer As Property

• No get_class() With Null

• Php 7.2 New Class

• List With Reference

• PHP 7.3 Last Empty Argument

• Flexible Heredoc

• Const Visibility Usage

• Hash Algorithms Incompatible With PHP 7.1-

• PHP 7.1 Scalar Typehints

• PHP 7.2 Scalar Typehints

• Continue Is For Loop

• Trailing Comma In Calls

• No Reference For Static Property

• Typed Property Usage

• Concat And Addition

• Unpacking Inside Arrays

• Coalesce Equal

• Php 8.0 Only TypeHints

• Union Typehint

• Enum Usage

• $FILES full_path

• Final Constant

• Never Typehint Usage

• PHP 8.1 Typehints

15.3. List of rulesets 2205

Exakat Documentation, Release 1

• PHP 8.0 Typehints

• Named Parameter Usage

• Cant Overload Constants

• No Private Abstract Method In Trait

• Clone Constant

• Use Enum Case In Constant Expression

• Readonly Property Changed By Cloning

• New Dynamic Class Constant Syntax

• class_alias() Supports Internal Classes

• Redeclared Static Variable

• Static Variable Can Default To Arbitrary Expression

• Final Traits Are Final

• Typed Class Constants Usage

• Void Is Not A Reference

• PHP 8.1 New Types

• PHP 8.2 New Types

Specs

Short name CompatibilityPHP70
Available in Entreprise Edition, Exakat Cloud
Reports Ambassador

15.3.16 CompatibilityPHP71

This ruleset centralizes all analysis for the migration from PHP 7.0 to 7.1.

Total : 59 analysis

• ext/mcrypt

• Hash Algorithms Incompatible With PHP 5.3

• Hash Algorithms Incompatible With PHP 5.4/5.5

• Avoid Substr() One

• PHP 7.0 Removed Functions

• PHP 7.0 Removed Directives

• preg_replace With Option e

• Hexadecimal In String

• Use random_int()

• Using $this Outside A Class

2206 Chapter 15. Rulesets

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• PHP 7.1 Removed Directives

• New Functions In PHP 7.1

• PHP 7.1 Microseconds

• Invalid Octal In String

• New Functions In PHP 7.3

• Cant Inherit Abstract Method

• Group Use Trailing Comma

• Child Class Removes Typehint

• Integer As Property

• No get_class() With Null

• Php 7.2 New Class

• List With Reference

• PHP 7.3 Last Empty Argument

• Flexible Heredoc

• PHP 7.2 Scalar Typehints

• Continue Is For Loop

• Trailing Comma In Calls

• No Reference For Static Property

• Typed Property Usage

• Array With String Initialization

• Concat And Addition

• Unpacking Inside Arrays

• Coalesce Equal

• Php 8.0 Only TypeHints

• Union Typehint

• Signature Trailing Comma

• Enum Usage

• $FILES full_path

• Final Constant

• Never Typehint Usage

• PHP 8.1 Typehints

• PHP 8.0 Typehints

• Named Parameter Usage

• Cant Overload Constants

• array_merge With Ellipsis

• No Private Abstract Method In Trait

15.3. List of rulesets 2207

Exakat Documentation, Release 1

• Clone Constant

• No Keyword In Namespace

• Use Enum Case In Constant Expression

• Readonly Property Changed By Cloning

• New Dynamic Class Constant Syntax

• class_alias() Supports Internal Classes

• Redeclared Static Variable

• Static Variable Can Default To Arbitrary Expression

• Final Traits Are Final

• Typed Class Constants Usage

• Void Is Not A Reference

• PHP 8.1 New Types

• PHP 8.2 New Types

Specs

Short name CompatibilityPHP71
Available in Entreprise Edition, Exakat Cloud
Reports Ambassador

15.3.17 CompatibilityPHP72

This ruleset centralizes all analysis for the migration from PHP 7.1 to 7.2.

Total : 52 analysis

• Undefined Constants

• Hash Algorithms Incompatible With PHP 5.3

• Hash Algorithms Incompatible With PHP 5.4/5.5

• preg_replace With Option e

• PHP 7.2 Deprecations

• PHP 7.2 Removed Functions

• New Functions In PHP 7.2

• New Constants In PHP 7.2

• New Functions In PHP 7.3

• PHP 7.2 Object Keyword

• No get_class() With Null

• Php 7.2 New Class

• Avoid set_error_handler $context Argument

2208 Chapter 15. Rulesets

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• Hash Will Use Objects

• Can’t Count Non-Countable

• List With Reference

• PHP 7.3 Last Empty Argument

• Flexible Heredoc

• Continue Is For Loop

• Trailing Comma In Calls

• No Reference For Static Property

• Typed Property Usage

• Concat And Addition

• Unpacking Inside Arrays

• Coalesce Equal

• Php 8.0 Only TypeHints

• Union Typehint

• Signature Trailing Comma

• Throw Was An Expression

• Enum Usage

• $FILES full_path

• Final Constant

• Never Typehint Usage

• PHP 8.1 Typehints

• PHP 8.0 Typehints

• Named Parameter Usage

• Cant Overload Constants

• array_merge With Ellipsis

• No Private Abstract Method In Trait

• Clone Constant

• No Keyword In Namespace

• Use Enum Case In Constant Expression

• Readonly Property Changed By Cloning

• New Dynamic Class Constant Syntax

• class_alias() Supports Internal Classes

• Redeclared Static Variable

• Static Variable Can Default To Arbitrary Expression

• Final Traits Are Final

• Typed Class Constants Usage

15.3. List of rulesets 2209

Exakat Documentation, Release 1

• Void Is Not A Reference

• PHP 8.1 New Types

• PHP 8.2 New Types

Specs

Short name CompatibilityPHP72
Available in Entreprise Edition, Exakat Cloud
Reports Ambassador

15.3.18 CompatibilityPHP73

This ruleset centralizes all analysis for the migration from PHP 7.2 to 7.3.

Total : 43 analysis

• New Functions In PHP 7.3

• Unknown Pcre2 Option

• Nonexistent Variable In compact()

• Case Insensitive Constants

• Assert Function Is Reserved

• Continue Is For Loop

• PHP 7.3 Removed Functions

• Don’t Read And Write In One Expression

• Typed Property Usage

• Concat And Addition

• Unpacking Inside Arrays

• Numeric Literal Separator

• PHP 74 New Directives

• Coalesce Equal

• Php 8.0 Only TypeHints

• Union Typehint

• Signature Trailing Comma

• Throw Was An Expression

• Enum Usage

• $FILES full_path

• Final Constant

• Never Typehint Usage

• PHP 8.1 Typehints

2210 Chapter 15. Rulesets

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• PHP 8.0 Typehints

• Named Parameter Usage

• Nested Attributes

• New Initializers

• Cant Overload Constants

• array_merge With Ellipsis

• No Private Abstract Method In Trait

• Clone Constant

• No Keyword In Namespace

• Use Enum Case In Constant Expression

• Readonly Property Changed By Cloning

• New Dynamic Class Constant Syntax

• class_alias() Supports Internal Classes

• Redeclared Static Variable

• Static Variable Can Default To Arbitrary Expression

• Final Traits Are Final

• Typed Class Constants Usage

• Void Is Not A Reference

• PHP 8.1 New Types

• PHP 8.2 New Types

Specs

Short name CompatibilityPHP73
Available in Entreprise Edition, Exakat Cloud
Reports Ambassador

15.3.19 CompatibilityPHP74

This ruleset centralizes all analysis for the migration from PHP 7.3 to 7.4.

Total : 55 analysis

• Detect Current Class

• Don’t Read And Write In One Expression

• idn_to_ascii() New Default

• Concat And Addition

• New Functions In PHP 7.4

• curl_version() Has No Argument

15.3. List of rulesets 2211

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• Php 7.4 New Classes

• New Constants In PHP 7.4

• PHP 7.4 Removed Functions

• mb_strrpos() Third Argument

• array_key_exists() Works On Arrays

• Reflection Export() Is Deprecated

• Unbinding Closures

• Scalar Are Not Arrays

• PHP 7.4 Reserved Keyword

• No More Curly Arrays

• PHP 7.4 Constant Deprecation

• PHP 7.4 Removed Directives

• Hash Algorithms Incompatible With PHP 7.4-

• openssl_random_pseudo_byte() Second Argument

• Nested Ternary Without Parenthesis

• Filter To add_slashes()

• Php 8.0 Variable Syntax Tweaks

• New Functions In PHP 8.0

• Php 8.0 Only TypeHints

• Union Typehint

• Signature Trailing Comma

• Throw Was An Expression

• Uses PHP 8 Match()

• Avoid get_object_vars()

• Enum Usage

• $FILES full_path

• Final Constant

• Never Typehint Usage

• PHP 8.1 Typehints

• PHP 8.0 Typehints

• Named Parameter Usage

• Nested Attributes

• New Initializers

• Cant Overload Constants

• No Private Abstract Method In Trait

• Clone Constant

2212 Chapter 15. Rulesets

Exakat Documentation, Release 1

• No Keyword In Namespace

• Constants In Traits

• Use Enum Case In Constant Expression

• Readonly Property Changed By Cloning

• New Dynamic Class Constant Syntax

• class_alias() Supports Internal Classes

• Redeclared Static Variable

• Static Variable Can Default To Arbitrary Expression

• Final Traits Are Final

• Typed Class Constants Usage

• Void Is Not A Reference

• PHP 8.1 New Types

• PHP 8.2 New Types

Specs

Short name CompatibilityPHP74
Available in Entreprise Edition, Community Edition, Exakat Cloud
Reports Diplomat, Ambassador

15.3.20 CompatibilityPHP80

This ruleset centralizes all analysis for the migration from PHP 7.4 to 8.0.

Total : 45 analysis

• Old Style Constructor

• Wrong Optional Parameter

• PHP 8.0 Removed Functions

• PHP 8.0 Removed Constants

• Concat And Addition

• PHP 7.4 Removed Directives

• Cast Unset Usage

• $php_errormsg Usage

• Mismatch Parameter Name

• PHP 8.0 Removed Directives

• Unsupported Types With Operators

• Negative Start Index In Array

• Nullable With Constant

15.3. List of rulesets 2213

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• PHP 8.0 Resources Turned Into Objects

• PHP 80 Named Parameter Variadic

• Final Private Methods

• Array_Map() Passes By Value

• Reserved Match Keyword

• Avoid get_object_vars()

• Enum Usage

• Final Constant

• Never Typehint Usage

• PHP 8.1 Typehints

• Mixed Keyword

• Nested Attributes

• New Initializers

• Cant Overload Constants

• String Int Comparison

• PHP 8.1 Resources Turned Into Objects

• Clone Constant

• Named Argument And Variadic

• Multiple Type Cases In Switch

• No Max On Empty Array

• Constants In Traits

• Use Enum Case In Constant Expression

• Readonly Property Changed By Cloning

• New Dynamic Class Constant Syntax

• class_alias() Supports Internal Classes

• Redeclared Static Variable

• Static Variable Can Default To Arbitrary Expression

• Final Traits Are Final

• Typed Class Constants Usage

• Void Is Not A Reference

• PHP 8.1 New Types

• PHP 8.2 New Types

2214 Chapter 15. Rulesets

Exakat Documentation, Release 1

Specs

Short name CompatibilityPHP80
Available in Entreprise Edition, Community Edition, Exakat Cloud
Reports Diplomat, Ambassador

15.3.21 CompatibilityPHP81

This ruleset centralizes all analysis for the migration from PHP 8.0 to 8.1.

Total : 34 analysis

• PHP 7.4 Removed Directives

• PHP 8.0 Removed Directives

• Restrict Global Usage

• Inherited Static Variable

• PHP 8.1 Removed Directives

• Openssl Encrypt Default Algorithm Change

• PHP 8.1 Removed Constants

• PHP Native Class Type Compatibility

• No Null For Native PHP Functions

• Calling Static Trait Method

• No Referenced Void

• PHP Native Interfaces and Return Type

• New Functions In PHP 8.1

• PHP 8.1 Removed Functions

• Never Keyword

• Mixed Keyword

• False To Array Conversion

• Float Conversion As Index

• Cannot Call Static Trait Method Directly

• version_compare Operator

• Named Argument And Variadic

• Constants In Traits

• Use Enum Case In Constant Expression

• Readonly Property Changed By Cloning

• New Dynamic Class Constant Syntax

• class_alias() Supports Internal Classes

• Redeclared Static Variable

15.3. List of rulesets 2215

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• Static Variable Can Default To Arbitrary Expression

• Final Traits Are Final

• Typed Class Constants Usage

• Static Variable Initialisation

• Void Is Not A Reference

• PHP 8.1 New Types

• PHP 8.2 New Types

Specs

Short name CompatibilityPHP81
Available in Entreprise Edition, Community Edition, Exakat Cloud
Reports Diplomat, Ambassador

15.3.22 CompatibilityPHP82

This ruleset centralizes all analysis for the migration from PHP 8.1 to 8.2.

Total : 22 analysis

• Undefined Properties

• False To Array Conversion

• Float Conversion As Index

• Cannot Call Static Trait Method Directly

• Deprecated Callable

• Checks Property Existence

• Extends stdClass

• version_compare Operator

• Dollar Curly Interpolation Is Deprecated

• Utf8 Encode And Decode Are Deprecated

• New Functions In PHP 8.2

• Deprecated Mb_string Encodings

• Constants In Traits

• Readonly Property Changed By Cloning

• New Dynamic Class Constant Syntax

• class_alias() Supports Internal Classes

• Redeclared Static Variable

• Static Variable Can Default To Arbitrary Expression

• Inherited Class Constant Visibility

2216 Chapter 15. Rulesets

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• Final Traits Are Final

• Typed Class Constants Usage

• Static Variable Initialisation

Specs

Short name CompatibilityPHP82
Available in Entreprise Edition, Community Edition, Exakat Cloud
Reports Diplomat, Ambassador

15.3.23 CompatibilityPHP83

This ruleset centralizes all analysis for the migration from PHP 8.2 to 8.3.

Total : 5 analysis

• New Functions In PHP 8.3

• Php 8.3 New Classes

• Constants In Traits

• Inherited Class Constant Visibility

• get_class() Without Argument

Specs

Short name CompatibilityPHP83
Available in Entreprise Edition, Community Edition, Exakat Cloud
Reports Diplomat, Ambassador

15.3.24 Dead code

This ruleset focuses on dead code : expressions or even structures that are written, valid but never used.

Total : 33 analysis

• Empty Traits

• Unused Use

• Unused Private Properties

• Unused Private Methods

• Unused Functions

• Unused Constants

• Unreachable Code

• Empty Instructions

• Unused Methods

15.3. List of rulesets 2217

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• Unused Classes

• Locally Unused Property

• Unresolved Instanceof

• Unthrown Exception

• Unused Label

• Unused Interfaces

• Unresolved Catch

• Unset In Foreach

• Empty Namespace

• Can’t Extend Final

• Exception Order

• Undefined Caught Exceptions

• Unused Protected Methods

• Unused Returned Value

• Rethrown Exceptions

• Unused Inherited Variable In Closure

• Self Using Trait

• Useless Type Check

• Unreachable Method

• Identical Elseif

• Use Variable Created Inside Loop

• Unused Enumeration Case

• Static Variable In Namespace

• Could Drop Variable

Specs

Short name Dead code
Available in Entreprise Edition, Exakat Cloud
Reports Ambassador, Rector

2218 Chapter 15. Rulesets

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

15.3.25 Deprecated

This ruleset centralizes all analysis that are marked as ‘deprecated feature’ for some versions.

For example :

• Php/NestedTernaryWithoutParenthesis : deprecated PHP 7.4, removed PHP 8.0

• Php/NoMoreCurlyArrays : deprecated PHP 7.4, removed PHP 8.0

• Classes/NoParent : deprecated PHP 7.4, removed PHP 8.0

• Php/Php74RemovedDirective : deprecated PHP 7.4, removed PHP 8.0

• Php/ArrayKeyExistsWithObjects : deprecated PHP 7.4, removed PHP 8.0

Total : 8 analysis

• Is An Extension Function

• Case Insensitive Constants

• Assert Function Is Reserved

• Nested Ternary Without Parenthesis

• No Null For Native PHP Functions

• Calling Static Trait Method

• No Referenced Void

• PHP Native Interfaces and Return Type

Specs

Short name Deprecated
Available in Entreprise Edition, Exakat Cloud

15.3.26 Dump

This ruleset collects various names given to different structures in the code : for example, variables, classes, methods,
constants, etc. It also collects networks of data, like file inclusion or external dependencies.

Total : 57 analysis

• Caught Exceptions

• Environment Variable Usage

• Indentation Levels

• Cyclomatic Complexity

• Collect Literals

• Collect Parameter Counts

• Collect Local Variable Counts

• Dereferencing Levels

• Foreach() Favorite

15.3. List of rulesets 2219

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• Collect Mbstring Encodings

• Typehinting Stats

• Inclusions

• Typehint Order

• New Order

• Collect Class Interface Counts

• Collect Class Depth

• Collect Class Children Count

• Constant Order

• Collect Property Counts

• Collect Method Counts

• Collect Class Constant Counts

• Call Order

• Collect Parameter Names

• Fossilized Methods List

• Collect Static Class Changes

• Collects Variables

• Collect Global Variables

• Collect Readability

• Collect Definitions Statistics

• Collect Class Traits Counts

• Collect Native Calls Per Expressions

• Collect Files Dependencies

• Collect Atom Counts

• Collect Classes Dependencies

• Collect Php Structures

• Collect Use Counts

• Collect Block Size

• Collect Dependency Extension

• Could Be A Constant

• Collect Stub Structures

• Collect Vendor Structures

• Collect Calls

• Collect SetLocale

• Argument Counts Per Calls

• Collect Methods Throwing Exceptions

2220 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Collect Throw Calls

• Collect Compared Literals

• Comparison On Different Types

• Collects Names

• Class Injection Count

• Collect Property Usage

• Collect Structures

• Collect Catch Calls

• Collect Graph Triplets

• Try Without Catch

• Combined Calls

• Include Variables

Specs

Short name Dump
Available in Entreprise Edition, Community Edition, Exakat Cloud
Reports

15.3.27 First

A set of rules that are always run at the beginning of a project, because they are frequently used. It is mostly used
internally.

Total : 3 analysis

• Variable Anf Property Typehint

• Variable Is A Local Constant

• Add Return Typehint

Specs

Short name First
Available in Entreprise Edition, Community Edition, Exakat Cloud

15.3. List of rulesets 2221

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

15.3.28 Inventory

This ruleset collect all free-text names used in the code : variables, global, arguments, methods, classes, etc. . .

For example :

• Classes/MagicProperties

• Constants/Constantnames : names of global Constants

• Php/CookieVariables : names of cookies

• Php/DateFormats : date formats

• Php/IncomingVariables : names of the GET/POST arguments

• Php/SessionVariables : names of the session variables

• Type/ArrayIndex : indices used in arrays

• Type/Binary : binary values

• Type/CharString : string values

• Type/Email : hardcoded emails

• Type/GPCIndex : GET, POST and COOKIE names

• Type/Hexadecimal : hexadecimal values

• Type/HexadecimalString : hexadecimal values

• Type/HttpHeader : HTTP headers

• Type/HttpStatus : HTTP status

• Type/Md5String : MD5 string

• Type/MimeType : Mime types

• Type/OctalInString : octal values

• Type/OpensslCipher : names of OpenSSL cipher

• Type/Pack : pack() formats

• Type/Pcre : regex strings

• Type/Ports : server ports mentioned

• Type/Printf : printf() and co formatting strings

• Type/Regex : regex strings

• Type/SpecialIntegers : integer, with special values

• Type/Sql : SQL strings

• Type/UdpDomains : UDP domains

• Type/UnicodeBlock : Unicode blocks

• Type/Url : URL

Total : 39 analysis

• Constants Names

• Binary Glossary

• Email Addresses

2222 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Heredoc Delimiter Glossary

• Hexadecimal Glossary

• Http Headers

• HTTP Status Code

• Md5 Strings

• Mime Types

• Perl Regex

• Internet Ports

• Special Integers

• All strings

• Unicode Blocks

• URL List

• Hexadecimal In String

• Relay Function

• Invalid Octal In String

• SQL queries

• Regex Inventory

• Switch Fallthrough

• Session Variables

• Incoming Variables

• Cookies Variables

• Date Formats

• Type Array Index

• Incoming Variable Index Inventory

• Pack Format Inventory

• Printf Format Inventory

• Multiple Identical Closure

• Magic Properties

• Internet Domains

• OpenSSL Ciphers Used

• Promoted Properties

• Extends stdClass

• Incoming Date Formats

• Ip

• Init Then Update

• Constants/RelayConstant

15.3. List of rulesets 2223

Exakat Documentation, Release 1

Specs

Short name Inventory
Available in Entreprise Edition, Exakat Cloud
Reports

15.3.29 IsExt

This is automatically filled, based on the documentation’s isExt attribute.

Total : 19 analysis

• Non Static Methods Called In A Static

• Static Methods Called From Object

• Defined Class Constants

• Uses Default Values

• Wrong Number Of Arguments

• Access Protected Structures

• Unusual Case For PHP Functions

• Is Interface Method

• Can’t Extend Final

• Only Variable Passed By Reference

• Too Many Native Calls

• Redefined Private Property

• PHP Overridden Function

• Don’t Collect Void

• Array_Map() Passes By Value

• Wrong Argument Name With PHP Function

• Undefined Enumcase

• Lowered Access Level

• Overload Existing Names

Specs

Short name IsExt
Available in Entreprise Edition, Exakat Cloud

2224 Chapter 15. Rulesets

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

15.3.30 IsPHP

This is automatically filled, based on the documentation’s isPHP attribute.

Total : 19 analysis

• Non Static Methods Called In A Static

• Static Methods Called From Object

• Defined Class Constants

• Uses Default Values

• Wrong Number Of Arguments

• Access Protected Structures

• Unusual Case For PHP Functions

• Is Interface Method

• Can’t Extend Final

• Only Variable Passed By Reference

• Too Many Native Calls

• Redefined Private Property

• PHP Overridden Function

• Don’t Collect Void

• Array_Map() Passes By Value

• Wrong Argument Name With PHP Function

• Undefined Enumcase

• Lowered Access Level

• Overload Existing Names

Specs

Short name IsPHP
Available in Entreprise Edition, Exakat Cloud

15.3.31 IsStub

This is automatically filled, based on the documentation’s isStub attribute.

Total : 17 analysis

• Non Static Methods Called In A Static

• Static Methods Called From Object

• Defined Class Constants

• Uses Default Values

• Wrong Number Of Arguments

15.3. List of rulesets 2225

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• Access Protected Structures

• Is Interface Method

• Can’t Extend Final

• Only Variable Passed By Reference

• Redefined Private Property

• PHP Overridden Function

• Don’t Collect Void

• Array_Map() Passes By Value

• Wrong Argument Name With PHP Function

• Undefined Enumcase

• Lowered Access Level

• Overload Existing Names

Specs

Short name IsStub
Available in Entreprise Edition, Exakat Cloud

15.3.32 LintButWontExec

This ruleset focuses on PHP code that lint (php -l), but that will not run. As such, this ruleset tries to go further than
PHP, by connecting files, just like during execution.

Total : 47 analysis

• Final Class Usage

• Final Methods Usage

• $this Belongs To Classes Or Traits

• Classes Mutually Extending Each Other

• Undefined Class Constants

• Must Return Methods

• Undefined Interfaces

• No Self Referencing Constant

• Using $this Outside A Class

• Undefined Trait

• Raised Access Level

• self, parent, static Outside Class

• Implemented Methods Must Be Public

• No Magic Method With Array

2226 Chapter 15. Rulesets

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• Method Signature Must Be Compatible

• Mismatch Type And Default

• Can’t Throw Throwable

• Abstract Or Implements

• Incompatible Signature Methods

• Undefined Insteadof

• Method Collision Traits

• Only Variable For Reference

• Repeated Interface

• Avoid Self In Interface

• Useless Method Alias

• Type Must Be Returned

• Clone With Non-Object

• Trait Not Found

• Wrong Type Returned

• Interfaces Is Not Implemented

• Can’t Implement Traversable

• Wrong Typed Property Default

• Mismatch Properties Typehints

• Could Be Stringable

• Inherited Property Type Must Match

• Duplicate Named Parameter

• PHP Native Interfaces and Return Type

• False To Array Conversion

• Deprecated Callable

• Cant Overload Constants

• Can’t Overwrite Final Constant

• Implicit Conversion To Int

• No Magic Method For Enum

• Wrong Type With Default

• Clone Constant

• Invalid Cast

• Only Variable Passed By Reference

15.3. List of rulesets 2227

Exakat Documentation, Release 1

Specs

Short name LintButWontExec
Available in Entreprise Edition, Exakat Cloud

15.3.33 NoDoc

Ruleset with analysis which are not published in the docs.

Total : 36 analysis

• Php Native Reference Variable

• Create Compact Variables

• Propagate Constants

• Overwritten Properties

• Overwritten Methods

• Overwritten Constant

• Set Clone Link

• Create Magic Property

• Set Parent Definition

• Make Class Method Definition

• Create Default Values

• Set class_alias() Definition

• Makes Class Constant Definition

• Set Class Remote Definition With Injection

• Solve Trait Methods

• Follow Closure Definition

• Set Class Remote Definition With Return Typehint

• Set Class Remote Definition With Local New

• Set Class Remote Definition With Typehint

• Set Class Remote Definition With Global

• Set Class Remote Definition With Parenthesis

• Set Class Property Definition With Typehint

• Set Array Class Definition

• Set Class Method Remote Definition

• Make Functioncall With Reference

• Create Foreach Default

• Extended Typehints

• Php Ext Stub Property And Method

2228 Chapter 15. Rulesets

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• Variable Anf Property Typehint

• Variable Is A Local Constant

• Is Stub Structure

• Is PHP Structure

• Is Extension Structure

• Add Return Typehint

• Create Magic Method

• Make All Statics

Specs

Short name NoDoc
Available in Entreprise Edition, Exakat Cloud

15.3.34 One Liners

This ruleset focuses on reporting one liners, which makes using an IDE had.

Total : 5 analysis

• Coalesce

• Use Arrow Functions

• Throw Was An Expression

• Use NullSafe Operator

• Short Ternary

Specs

Short name OneLiners
Available in Entreprise Edition, Exakat Cloud
Reports

15.3.35 PHP recommendations

This ruleset is a collection of warnings and notes that are available in the PHP manual. For example, return do not
require parenthesis.

Total : 22 analysis

• Eval() Usage

• Using Short Tags

• Strpos()-like Comparison

• Bad Constants Names

15.3. List of rulesets 2229

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• Use With Fully Qualified Name

• Dangling Array References

• Return With Parenthesis

• No Real Comparison

• Use Constant Instead Of Function

• Throw In Destruct

• Useless Type Casting

• No isset() With empty()

• Avoid array_push()

• Crc32() Might Be Negative

• Not A Scalar Type

• Implode One Arg

• Could Be Stringable

• Missing Attribute Attribute

• No Constructor In Interface

• Unsupported Operand Types

• Do Not Cast To Int

• Reserved Methods

Specs

Short name PHP recommendations
Available in Entreprise Edition, Exakat Cloud

15.3.36 Performances

This ruleset focuses on performances issues : anything that slows the code’s execution.

Total : 60 analysis

• Eval() Usage

• For Using Functioncall

• @ Operator

• Nested Loops

• While(List() = Each())

• Unpreprocessed Values

• Avoid array_unique()

• Echo With Concat

• Slow Functions

2230 Chapter 15. Rulesets

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• No array_merge() In Loops

• Could Use Short Assignation

• Pre-increment

• Avoid Substr() One

• Global Inside Loop

• Joining file()

• Simplify Regex

• Make One Call With Array

• No Count With 0

• Use ::Class Operator

• time() Vs strtotime()

• Getting Last Element

• Avoid array_push()

• Should Use Function

• Fetch One Row Format

• Avoid glob() Usage

• Avoid Large Array Assignation

• Should Use array_column()

• Avoid Concat In Loop

• Use pathinfo() Arguments

• Simple Switch And Match

• Substring First

• Use PHP7 Encapsed Strings

• Slice Arrays First

• Double array_flip()

• Processing Collector

• Do In Base

• Cache Variable Outside Loop

• Use The Blind Var

• Closure Could Be A Callback

• fputcsv() In Loops

• Isset() On The Whole Array

• array_key_exists() Speedup

• Autoappend

• Make Magic Concrete

• Regex On Arrays

15.3. List of rulesets 2231

Exakat Documentation, Release 1

• Always Use Function With array_key_exists()

• No mb_substr In Loop

• Optimize Explode()

• Scope Resolution Operator

• Static Call May Be Truly Static

• Simplify Foreach

• Too Many Extractions

• Skip Empty Array

• Ellipsis Merge

• Pre-Calculate Use

• Substr() In Loops

• Should Cache Local

• Recalled Condition

• Could Use Yield From

• Count() To Array Append

Specs

Short name Performances
Available in Entreprise Edition, Exakat Cloud
Reports

15.3.37 Preferences

This ruleset identify code with multiple forms, and report when one is more frequent than the others. Echo vs print,
shell_exec() vs ``, etc.

Total : 40 analysis

• True False Inconsistant Case

• Echo Or Print

• Constant Comparison

• Die Exit Consistence

• Array() / [] Consistence

• $GLOBALS Or global

• Unset() Or (unset)

• Close Tags Consistency

• One Expression Brackets Consistency

• New On Functioncall Or Identifier

• New Line Style

2232 Chapter 15. Rulesets

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• Regex Delimiter

• Empty Final Element In Array

• Difference Consistence

• Concatenation Interpolation Consistence

• Heredoc Delimiter

• strict_types Preference

• Declare strict_types Usage

• Encoding Usage

• Ticks Usage

• Logical Operators Favorite

• Shell Favorite

• Properties Declaration Consistence

• Strict Or Relaxed Comparison

• Comparisons Orientation

• Const Or Define Preference

• Constant Case Preference

• Caught Variable

• Not Or Tilde

• Null Type Favorite

• String Interpolation Favorite

• Constant : With Or Without Use

• If Then Return Favorite

• Empty Array Detection

• Strict In_Array() Preference

• date() versus DateTime Preference

• Mono Or Multibytes Favorite

• Short Or Complete Comparison

• Favorite Casting Method

• is_a() Versus instanceof

15.3. List of rulesets 2233

Exakat Documentation, Release 1

Specs

Short name Preferences
Available in Entreprise Edition, Exakat Cloud
Reports Ambassador, Diplomat

15.3.38 Rector

RectorPHP is a reconstructor tool. It applies modifications in the PHP code automatically. Exakat finds results which
may be automatically updated with rector.

Total : 15 analysis

• Adding Zero

• Multiple Index Definition

• For Using Functioncall

• Multiply By One

• Multiples Identical Case

• Preprocessable

• Implied If

• Else If Versus Elseif

• Could Use Short Assignation

• Should Typecast

• No Choice

• Never Called Parameter

• Closure Could Be A Callback

• Is_A() With String

• Could Use strcontains()

Specs

Short name Rector
Available in Entreprise Edition, Exakat Cloud
Reports Ambassador, Rector

2234 Chapter 15. Rulesets

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://getrector.org/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

15.3.39 Security

This ruleset focuses on code security.

Total : 47 analysis

• Eval() Usage

• Phpinfo

• var_dump(). . . Usage

• Hardcoded Passwords

• Direct Injection

• Avoid sleep()/usleep()

• parse_str() Warning

• Avoid Those Hash Functions

• No Hardcoded Port

• Should Use Prepared Statement

• No Hardcoded Ip

• Compare Hash

• preg_replace With Option e

• eval() Without Try

• Register Globals

• Safe Curl Options

• Use random_int()

• No Hardcoded Hash

• Random Without Try

• Indirect Injection

• Unserialize Second Arg

• Don’t Echo Error

• Should Use session_regenerateid()

• Encoded Simple Letters

• Set Cookie Safe Arguments

• No Return Or Throw In Finally

• Mkdir Default

• Switch Fallthrough

• Upload Filename Injection

• Always Anchor Regex

• Session Lazy Write

• Sqlite3 Requires Single Quotes

• No Net For Xml Load

15.3. List of rulesets 2235

Exakat Documentation, Release 1

• Dynamic Library Loading

• Configure Extract

• move_uploaded_file Instead Of copy

• filter_input() As A Source

• Safe HTTP Headers

• Insecure Integer Validation

• Minus One On Error

• No ENT_IGNORE

• No Weak SSL Crypto

• Keep Files Access Restricted

• Check Crypto Key Length

• Incompatible Types With Incoming Values

• Filter Not Raw

• Unvalidated Data Cached In Session

Specs

Short name Security
Available in Entreprise Edition, Exakat Cloud
Reports Ambassador, Owasp

15.3.40 Semantics

This ruleset focuses on human interpretation of the code. It reviews special values of literals, and named structures.

Total : 35 analysis

• Ambiguous Array Index

• Constants With Strange Names

• Function Called With Other Case Than Defined

• Variables With One Letter Names

• One Letter Functions

• Property Variable Confusion

• PHP Keywords As Names

• Strange Names In Classes

• Class Function Confusion

• Strange Name For Variables

• Strange Name For Constants

• Ambiguous Static

2236 Chapter 15. Rulesets

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• Ambiguous Visibilities

• Could Be Constant

• Similar Integers

• Duplicate Literal

• Parameter Hiding

• Weird Array Index

• Wrong Typehinted Name

• Semantic Typing

• Fn Argument Variable Confusion

• Prefix And Suffixes With Typehint

• Static Global Variables Confusion

• Possible Alias Confusion

• Mismatch Parameter And Type

• Wrong Locale

• Overload Existing Names

• Same Name For Property And Method

• Ambiguous Types With Variables

• Method Property Confusion

• Too Many Chained Calls

• No Variable Needed

• No Initial S In Variable Names

• Array Access On Literal Array

• Don’t Use The Type As Variable Name

Specs

Short name Semantics
Available in Entreprise Edition, Exakat Cloud

15.3.41 Suggestions

This ruleset focuses on possibly better syntax than the one currently used. Those may be code modernization, alterna-
tives, more efficient solutions, or simply left over from older versions.

Total : 128 analysis

• While(List() = Each())

• Function Subscripting, Old Style

• ** For Exponent

15.3. List of rulesets 2237

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• Too Many Children

• Empty With Expression

• list() May Omit Variables

• Unreachable Code

• Overwritten Exceptions

• Return With Parenthesis

• Strict Comparison With Booleans

• Logical Should Use Symbolic Operators

• Could Use self

• Preprocess Arrays

• Repeated print()

• Echo With Concat

• No Parenthesis For Language Construct

• Unused Interfaces

• Avoid Substr() One

• PHP7 Dirname

• preg_match_all() Flag

• Already Parents Interface

• Could Use __DIR__

• Should Use Coalesce

• Could Use Alias

• Drop Else After Return

• Unitialized Properties

• Should Use array_column()

• Randomly Sorted Arrays

• No Return Used

• Could Make A Function

• Use session_start() Options

• Mismatched Ternary Alternatives

• Isset Multiple Arguments

• Should Use Foreach

• Substring First

• Use List With Foreach

• Slice Arrays First

• Parent First

• Never Called Parameter

2238 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Should Use array_filter()

• Reuse Existing Variable

• Should Use Math

• Could Use Compact

• Could Use array_fill_keys

• Use Recursive count()

• Too Many Parameters

• Should Preprocess Chr()

• Possible Increment

• Drop Substr Last Arg

• One If Is Sufficient

• Could Use array_unique

• Nonexistent Variable In compact()

• Should Use Operator

• Could Be Static Closure

• Use is_countable

• Detect Current Class

• Avoid Real

• Use json_decode() Options

• Closure Could Be A Callback

• Add Default Value

• Named Regex

• Could Use Try

• Use Basename Suffix

• Don’t Loop On Yield

• Should Have Destructor

• Directly Use File

• Isset() On The Whole Array

• Multiple Usage Of Same Trait

• array_key_exists() Speedup

• Should Deep Clone

• Multiple Unset()

• Implode One Arg

• Useless Default Argument

• No Need For get_class()

• Substr To Trim

15.3. List of rulesets 2239

Exakat Documentation, Release 1

• Complex Dynamic Names

• Use DateTimeImmutable Class

• Set Aside Code

• Use Array Functions

• Use The Case Value

• Should Use Url Query Functions

• Too Long A Block

• Static Global Variables Confusion

• Possible Alias Confusion

• Too Much Indented

• Avoid Compare Typed Boolean

• Abstract Away

• Large Try Block

• Cancel Common Method

• Useless Typehint

• Could Use Promoted Properties

• Use get_debug_type()

• Use str_contains()

• Unused Exception Variable

• Searching For Multiple Keys

• Long Preparation For Throw

• No Static Variable In A Method

• Declare Static Once

• Could Use Match

• Could Use Null-Safe Object Operator

• This Could Be Iterable

• Multiple Similar Calls

• Could Be Ternary

• Use File Append

• Could Use Existing Constant

• Could Use array_sum()

• Too Many Stringed Elseif

• Could Be Spaceship

• Throw Raw Exceptions

• Lowered Access Level

• Could Set Property Default

2240 Chapter 15. Rulesets

Exakat Documentation, Release 1

• Could Be Enumeration

• Magic Method Returntype Is Restricted

• Could Be Abstract Method

• Could Use Class Operator

• Could Use Namespace Magic Constant

• Json_encode() Without Exceptions

• Class Could Be Readonly

• Use str_ends_with()

• Use str_starts_with()

• Blind Variable Used Beyond Loop

• Could Be array_combine()

• Multiline Expressions

• Could Cast To Array

• Check After Null Safe Operator

• Could Use strcontains()

• Could Drop Variable

• Could Be Readonly Property

Specs

Short name Suggestions
Available in Entreprise Edition, Exakat Cloud
Reports Diplomat, Ambassador

15.3.42 Surprising

PHP is full of exceptional situations where something doesn’t work as expected, or as we thought would be expected.
Then, exakat gets a rule for that, and it is listed here. Watch out, unusual beasts are hidden in this list : the most
interesting is possibly the docs.

Total : 2 analysis

• Sequences In For

• Strpos() Less Than One

15.3. List of rulesets 2241

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short name Surprising
Available in Entreprise Edition, Exakat Cloud
Reports Text

15.3.43 Top10

This ruleset is a selection of analysis, with the top 10 most common. Actually, it is a little larger than that.

Total : 28 analysis

• For Using Functioncall

• Strpos()-like Comparison

• Used Once Variables

• Dangling Array References

• Queries In Loops

• Use const

• Logical Should Use Symbolic Operators

• Repeated print()

• Objects Don’t Need References

• No Real Comparison

• No array_merge() In Loops

• Unresolved Instanceof

• Avoid Substr() One

• No Choice

• Failed Substr() Comparison

• Unitialized Properties

• Could Use str_repeat()

• Logical Operators Favorite

• Avoid Concat In Loop

• Next Month Trap

• Substring First

• Use List With Foreach

• Don’t Unset Properties

• Avoid Real

• Should Yield With Key

• fputcsv() In Loops

• Possible Missing Subpattern

2242 Chapter 15. Rulesets

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• Concat And Addition

Specs

Short name Top10
Available in Entreprise Edition, Exakat Cloud
Reports Top10

15.3.44 Typechecks

This ruleset focuses on typehinting. Missing typehints, or inconsistent typehint, are reported.

Total : 28 analysis

• Argument Should Be Typehinted

• Useless Interfaces

• No Class As Typehint

• Mismatched Default Arguments

• Mismatched Typehint

• Child Class Removes Typehint

• Not A Scalar Type

• Mismatch Type And Default

• Insufficient Typehint

• Bad Type Relay

• Wrong Type With Call

• Missing Typehint

• Fossilized Method

• Could Be String

• Could Be Void

• Could Be Callable

• Wrong Argument Type

• Type Could Be Integer

• Could Be Null

• Typehint Could Be Iterable

• Could Be Float

• Could Be Self

• Could Be Parent

• Could Be Generator

• This Could Be Iterable

15.3. List of rulesets 2243

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

• Type Could Be Never

• Typehints/CouldBeResource

• Possible TypeError

Specs

Short name Typechecks
Available in Entreprise Edition, Exakat Cloud

15.3.45 php-cs-fixable

php-cs-fixer is a tool to automatically fix PHP Coding Standards issues. It applies modifications in the PHP code
automatically. Exakat finds results which may be automatically updated with PHP-CS-FIXER.

Total : 12 analysis

• Unused Use

• Use === null

• ** For Exponent

• Logical Should Use Symbolic Operators

• Use Constant Instead Of Function

• Else If Versus Elseif

• PHP7 Dirname

• Could Use __DIR__

• Isset Multiple Arguments

• Don’t Unset Properties

• Multiple Unset()

• Implode One Arg

Specs

Short name php-cs-fixable
Available in Entreprise Edition, Exakat Cloud
Reports Phpcsfixer

2244 Chapter 15. Rulesets

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://github.com/FriendsOfPHP/PHP-CS-Fixer
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

CHAPTER

SIXTEEN

REPORTS

16.1 Introduction

Exakat provides multiple view to explore issue or metric generated by the rules.

16.2 Summary

• Ambassador

• BeautyCanon

• ClassReview

• Classes dependendies HTML

• Clustergrammer

• Code Flower

• Code Sniffer

• CompatibilityPHP56

• CompatibilityPHP74

• CompatibilityPHP80

• CompatibilityPHP81

• CompatibilityPHP82

• CompatibilityPHP83

• Composer

• Dependency Wheel

• Diplomat

• Emissary

• Exakat Json

• Exakatyaml

• File dependendies

• File dependendies HTML

• History

2245

Exakat Documentation, Release 1

• Inventory

• Json

• Marmelab

• Meters

• Migration74

• Migration80

• Migration81

• Migration82

• Naming

• None

• OneLiners

• Owasp

• Perfile

• Perfule

• PhpCompilation

• PhpConfiguration

• Phpcity

• Phpcsfixer

• PlantUml

• PublicAccess

• RadwellCode

• Rector

• Sarb

• Sarif

• SimpleTable

• Sonarcube

• Stats

• Stubs

• StubsJson

• Text

• Top10

• Topology Order

• TypeChecks

• TypeSuggestion

• Uml

• Unused

2246 Chapter 16. Reports

Exakat Documentation, Release 1

• Weekly

• Xml

• Yaml

16.3 List of Reports

16.3.1 Ambassador

Ambassador

Ambassador is the most complete Exakat report. It used to be the default report, until Exakat 1.7.0

The Ambassador report many reports.

• Full configuration for the audit

• Full documentation of the analysis

• All results, searchable and browsable by file and analysis

• Extra reports for
– Minor versions compatibility

– PHP Directive usage

– PHP compilation recommendations

– Error messages list

– List of processed files

Reference/images/report.ambassador.png

Ambassador includes the report from 3 other reports : PhpCompilation, PhpConfiguration, Stats.

Specs

Short
name

Ambassador

Rule-
sets

CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56, Compatibility-
PHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73, CompatibilityPHP74, Compat-
ibilityPHP80, Analyze, Preferences, Inventory, Performances, Appinfo, Dead code, Security, Suggestions.

Type HTML
Tar-
get

This report is written in ‘report’.

Avail-
able
in

Entreprise Edition

16.3. List of Reports 2247

https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

16.3.2 BeautyCanon

BeautyCanon

The Beauty Canon report lists all rules that report no issues.

The Beauty Canon report displays one result per line. This report lists all issues in the provided ruleset that are reporting
no error.

The title of the analysis is listed on the left, and the analysis short name is listed on the right, for further documentation.

This analysis uses “Analysis” as default rule. It may otherwise configured with the -T option.

Compare Hash Security/
→˓CompareHash
Configure Extract Security/
→˓ConfigureExtract
Dynamic Library Loading Security/DynamicDl
Encoded Simple Letters Security/
→˓EncodedLetters
Indirect Injection Security/
→˓IndirectInjection
Integer Conversion Security/
→˓IntegerConversion
Minus One On Error Security/
→˓MinusOneOnError
Mkdir Default Security/
→˓MkdirDefault
No ENT_IGNORE Security/
→˓NoEntIgnore
No Hardcoded Hash Structures/
→˓NoHardcodedHash
No Hardcoded Ip Structures/
→˓NoHardcodedIp
No Hardcoded Port Structures/
→˓NoHardcodedPort

Specs

Short name BeautyCanon
Rulesets This reports works with an arbitrary list of results.
Type Text
Target This report is written to the standard output.
Available in Entreprise Edition

2248 Chapter 16. Reports

https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

16.3.3 ClassReview

ClassReview

The ClassReview report focuses on reviewing classes, traits and interfaces.

The ` ClassReview `` report focuses on good code hygiene for classes, interfaces, enumerations and traits.

It checks the internal structure of classes, and suggest visibility, typehint updates.

Reference/images/report.classreview.png

Specs

Short name ClassReview
Rulesets ClassReview.
Type HTML
Target This report is written in ‘classreview’.
Available in Entreprise Edition

16.3.4 Classes dependendies HTML

Classes dependendies HTML

This reports displays the class dependencies, based on definition usages.

This report displays all dependencies between classes, interfaces and traits. A class (or interface or trait) depends on
another class (or interface or trait) when it makes usage of one of its definitions : extends, implements, use, and static
calls.

For example, A depends on B, because A extends B.

The resulting diagram is in HTML file, which is readable with most browsers, from a web server.

Warning : for browser security reasons, the report will NOT load as a local file. It needs to be served by an HTTP
server, so all resources are correctly located.

Warning : large applications (> 1000 classes) will require a lot of resources to open.

Reference/images/report.classdependencies.png

16.3. List of Reports 2249

https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

Specs

Short name Classes dependendies HTML
Rulesets Classes dependendies HTML doesn’t depend on rulesets.
Type HTML
Target This report is written in ‘class_dependencies’.
Available in Entreprise Edition

16.3.5 Clustergrammer

Clustergrammer

The Clustergrammar report format data for a clustergrammer diagram.

` Clustergrammer ` is a visualisation tool that may be found online. After generation of this report, a TEXT file is
available in the project directory. Upload it on http://amp.pharm.mssm.edu/clustergrammer/ to visualize it.

See a live report here : Clustergrammer.

Reference/images/report.clustergrammer.png

Specs

Short name Clustergrammer
Rulesets Clustergrammer doesn’t depend on rulesets.
Type TEXT
Target This report is written in ‘clustergrammer.txt’.
Available in Entreprise Edition

16.3.6 Code Flower

Code Flower

The Code Flower represents hierarchies in a code source.

Codeflower is a javascript visualization of the code. It is based on Francois Zaninotto’s CodeFlower Source code
visualization.

It represents :

• Class hierarchy

• Namespace hierarchy

• Inclusion

2250 Chapter 16. Reports

https://www.exakat.io/entreprise-edition
http://amp.pharm.mssm.edu/clustergrammer/
http://amp.pharm.mssm.edu/clustergrammer/viz_sim_mats/5a8d41bf3a82d32a9dacddd9/clustergrammer.txt
https://www.exakat.io/entreprise-edition
http://www.redotheweb.com/CodeFlower/
http://www.redotheweb.com/CodeFlower/

Exakat Documentation, Release 1

Reference/images/report.codeflower.png

Specs

Short name Code Flower
Rulesets Code Flower doesn’t depend on rulesets.
Type HTML
Target This report is written in ‘codeflower’.
Available in Entreprise Edition

16.3.7 Code Sniffer

Code Sniffer

The CodeSniffer report exports in the CodeSniffer format.

This format reports analysis using the Codesniffer’s result format.

See also Code Sniffer Report.

FILE : /Path/To/View/The/File.php
--
FOUND 3 ISSUES AFFECTING 3 LINES
--
32 | MINOR | Could Use Alias
41 | MINOR | Could Make A Function
43 | MINOR | Could Make A Function
--

Specs

Short name Code Sniffer
Rulesets This reports works with an arbitrary list of results.
Type TEXT
Target This report is written in ‘exakat.txt’.
Available in Entreprise Edition

16.3. List of Reports 2251

https://www.exakat.io/entreprise-edition
https://github.com/squizlabs/PHP_CodeSniffer/wiki/Reporting
https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

16.3.8 CompatibilityPHP56

CompatibilityPHP56

The CompatibilityPHP56 report list all detected issues with PHP 5.6 compatibility.

The CompatibilityPHP56 report displays one result per line, grouped by rule, and ordered by file and line number. Here
is an example :

/path/from/project/root/to/file:line[space]name of analysis

This format is fast, and fitted for human review. It is the same format as PerRule.

→˓-----------
Coalesce Equal (https://exakat.readthedocs.io/en/latest/Reference/Rules.html#php-
→˓coalesceequal)

→˓-----------
/src/Bridges/Tracy/BlueScreenPanel.php:25 $blueScreen ??= Tracy\
→˓Debugger::getBlueScreen()
/src/Bridges/Tracy/LattePanel.php:32 $bar ??= Tracy\
→˓Debugger::getBar()
/src/Latte/Compiler/Lexer.php:371 $type ??= $this->
→˓defaultSyntax
/src/Latte/Compiler/Nodes/FragmentNode.php:38 $this->line ??= $node->line
/src/Latte/Compiler/Parser.php:723 $layer ??= $this->layer
/src/Latte/Compiler/PhpWriter.php:137 $uniq ??= '$' .␣
→˓bin2hex(random_bytes(5))
/src/Latte/Compiler/PhpWriter.php:194 $tokens ??= $this->tokens
/src/Latte/Extensions/Blueprint.php:83 $native ??= (PHP_VERSION_
→˓ID >= 70400)
/src/Latte/Extensions/Filters.php:52 $info->contentType ??=
→˓'html'
/src/Latte/Runtime/Template.php:340 $block ??= new Block
/src/Latte/Runtime/Template.php:399 $destId ??= $staticId

→˓-----------

→˓-----------
Const Visibility Usage (https://exakat.readthedocs.io/en/latest/Reference/Rules.html
→˓#classes-constvisibilityusage)

→˓-----------
/src/Latte/Compiler/Lexer.php:26 public const RE_STRING = '\
→˓'(?:\\\\.|[^\'\\\\])*+\'|"(?:\\\\.|[^"\\\\])*+"'
/src/Latte/Compiler/Lexer.php:29 public const RE_TAG_NAME =
→˓'[a-zA-Z][a-zA-Z0-9:_.-]*'
/src/Latte/Compiler/Lexer.php:30 public const RE_VALUE_NAME␣
→˓= '[^\p{C} "\'<>=`/{}]+'
/src/Latte/Compiler/Lexer.php:31 public const RE_INDENT =
→˓'((?<=\n|^)[\t]+)?'

(continues on next page)

2252 Chapter 16. Reports

Exakat Documentation, Release 1

(continued from previous page)

/src/Latte/Compiler/Lexer.php:34 public const N_PREFIX = 'n:
→˓'
/src/Latte/Compiler/Lexer.php:37 public const STATE_PLAIN_
→˓TEXT = 'statePlain', STATE_HTML_TEXT = 'stateHtmlText'
/src/Latte/Compiler/MacroTokens.php:18 public const T_WHITESPACE␣
→˓= 1, T_COMMENT = 2, T_SYMBOL = 3, T_NUMBER = 4, T_VARIABLE = 5, T_STRING = 6, T_CAST =␣
→˓7, T_KEYWORD = 8, T_CHAR = 9
/src/Latte/Compiler/MacroTokens.php:29 public const SIGNIFICANT =␣
→˓[self::T_SYMBOL, self::T_NUMBER, self::T_VARIABLE, self::T_STRING, self::T_CAST,␣
→˓self::T_KEYWORD, self::T_CHAR], NON_SIGNIFICANT = [self::T_COMMENT, self::T_WHITESPACE]
/src/Latte/Compiler/NodeTraverser.php:15 public const DONT_TRAVERSE_
→˓CHILDREN = 1
/src/Latte/Compiler/NodeTraverser.php:16 public const STOP_
→˓TRAVERSAL = 2
/src/Latte/Compiler/Parser.php:30 public const LOCATION_HEAD␣
→˓= 1, LOCATION_TEXT = 2, LOCATION_TAG = 3
/src/Latte/Compiler/Tag.php:25 public const PREFIX_INNER␣
→˓= 'inner', PREFIX_TAG = 'tag', PREFIX_NONE = ''
/src/Latte/Compiler/Token.php:20 public const TEXT = 'text'
/src/Latte/Compiler/Token.php:21 public const WHITESPACE =
→˓'whitespace'
/src/Latte/Compiler/Token.php:22 public const SLASH = 'slash
→˓'
/src/Latte/Compiler/Token.php:23 public const EQUALS =
→˓'equals'
/src/Latte/Compiler/Token.php:24 public const QUOTE = 'quote
→˓'
/src/Latte/Compiler/Token.php:26 public const LATTE_TAG_
→˓OPEN = 'latteTagOpen'
/src/Latte/Compiler/Token.php:27 public const LATTE_TAG_END␣
→˓= 'latteTagEnd'
/src/Latte/Compiler/Token.php:28 public const LATTE_NAME =
→˓'latteName'
/src/Latte/Compiler/Token.php:29 public const LATTE_ARGS =
→˓'latteArgs'
/src/Latte/Compiler/Token.php:30 public const LATTE_COMMENT_
→˓OPEN = 'latteCommentOpen'
/src/Latte/Compiler/Token.php:31 public const LATTE_COMMENT_
→˓CLOSE = 'latteCommentClose'
/src/Latte/Compiler/Token.php:33 public const HTML_TAG_OPEN␣
→˓= 'htmlTagOpen'
/src/Latte/Compiler/Token.php:34 public const HTML_TAG_
→˓CLOSE = 'htmlTagClose'
/src/Latte/Compiler/Token.php:35 public const HTML_COMMENT_
→˓OPEN = 'htmlCommentOpen'
/src/Latte/Compiler/Token.php:36 public const HTML_COMMENT_
→˓CLOSE = 'htmlCommentClose'
/src/Latte/Compiler/Token.php:37 public const HTML_BOGUS_
→˓TAG_OPEN = 'htmlBogusTagOpen'
/src/Latte/Compiler/Token.php:38 public const HTML_NAME =
→˓'htmlName'
/src/Latte/Compiler/Tokenizer.php:25 public const VALUE = 0,␣

(continues on next page)

16.3. List of Reports 2253

Exakat Documentation, Release 1

(continued from previous page)

→˓OFFSET = 1, TYPE = 2
/src/Latte/Context.php:19 public const TEXT = 'text',
→˓ HTML = 'html', XML = 'xml', JS = 'js', CSS = 'css', ICAL = 'ical'
/src/Latte/Context.php:27 public const HTML_TEXT =␣
→˓null, HTML_COMMENT = 'Comment', HTML_BOGUSTAG = 'Bogus', HTML_CSS = 'Css', HTML_JS =
→˓'Js', HTML_TAG = 'Tag', HTML_ATTRIBUTE = 'Attr', HTML_ATTRIBUTE_JS = 'AttrJs', HTML_
→˓ATTRIBUTE_CSS = 'AttrCss', HTML_ATTRIBUTE_URL = 'AttrUrl', HTML_ATTRIBUTE_UNQUOTED =
→˓'Unquoted'
/src/Latte/Context.php:40 public const XML_TEXT =␣
→˓null, XML_COMMENT = 'Comment', XML_BOGUSTAG = 'Bogus', XML_TAG = 'Tag', XML_ATTRIBUTE␣
→˓= 'Attr'
/src/Latte/Engine.php:20 public const VERSION = '3.
→˓0.0-dev'
/src/Latte/Engine.php:21 public const VERSION_ID =␣
→˓30000
/src/Latte/Engine.php:24 public const CONTENT_HTML␣
→˓= Context::HTML, CONTENT_XML = Context::XML, CONTENT_JS = Context::JS, CONTENT_CSS =␣
→˓Context::CSS, CONTENT_ICAL = Context::ICAL, CONTENT_TEXT = Context::TEXT
/src/Latte/Runtime/SnippetDriver.php:23 public const TYPE_STATIC =
→˓'static', TYPE_DYNAMIC = 'dynamic', TYPE_AREA = 'area'
/src/Latte/Runtime/Template.php:24 public const LAYER_TOP = 0,
→˓ LAYER_SNIPPET = 'snippet', LAYER_LOCAL = 'local'
/src/Latte/Runtime/Template.php:29 protected const CONTENT_
→˓TYPE = Latte\Context::HTML
/src/Latte/Runtime/Template.php:31 protected const BLOCKS = [␣
→˓]
/src/Latte/Sandbox/SecurityPolicy.php:22 public const ALL = ['*']
/src/Latte/exceptions.php:45 public const MESSAGES =␣
→˓[PREG_INTERNAL_ERROR => 'Internal error', PREG_BACKTRACK_LIMIT_ERROR => 'Backtrack␣
→˓limit was exhausted', PREG_RECURSION_LIMIT_ERROR => 'Recursion limit was exhausted',␣
→˓PREG_BAD_UTF8_ERROR => 'Malformed UTF-8 data', PREG_BAD_UTF8_OFFSET_ERROR => 'Offset␣
→˓didn\'t correspond to the begin of a valid UTF-8 code point', 6 => 'Failed due to␣
→˓limited JIT stack space',]

→˓-----------

→˓-----------
Generator Cannot Return (https://exakat.readthedocs.io/en/latest/Reference/Rules.html
→˓#functions-generatorcannotreturn)

→˓-----------
/src/Latte/Compiler/Lexer.php:321 private function␣
→˓match(string $re) : \Generator { /**/ }
/src/Latte/Compiler/Node.php:21 public function &
→˓getIterator() : \Generator { /**/ }
/src/Latte/Extensions/CoreExtension.php:229 public function␣
→˓parseSyntax(Tag $tag, Parser $parser) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/BlockNode.php:37 public static function␣
→˓parse(Tag $tag, Parser $parser) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/CaptureNode.php:33 public static function␣
→˓parse(Tag $tag) : \Generator { /**/ }

(continues on next page)

2254 Chapter 16. Reports

Exakat Documentation, Release 1

(continued from previous page)

/src/Latte/Extensions/Nodes/DefineNode.php:36 public static function␣
→˓parse(Tag $tag, Parser $parser) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/EmbedNode.php:38 public static function␣
→˓parse(Tag $tag, Parser $parser) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/FirstLastSepNode.php:36 public static function␣
→˓parse(Tag $tag) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/ForNode.php:31 public static function␣
→˓parse(Tag $tag) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/ForeachNode.php:37 public static function␣
→˓parse(Tag $tag) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/IfChangedNode.php:32 public static function␣
→˓parse(Tag $tag) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/IfContentNode.php:33 public static function␣
→˓parse(Tag $tag, Parser $parser) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/IfNode.php:40 public static function␣
→˓parse(Tag $tag, Parser $parser) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/IterateWhileNode.php:34 public static function␣
→˓parse(Tag $tag) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/SnippetAreaNode.php:36 public static function␣
→˓parse(Tag $tag, Parser $parser) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/SnippetNode.php:41 public static function␣
→˓parse(Tag $tag, Parser $parser) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/SpacelessNode.php:30 public static function␣
→˓parse(Tag $tag) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/SwitchNode.php:32 public static function␣
→˓parse(Tag $tag) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/TranslateNode.php:34 public static function␣
→˓parse(Tag $tag, Parser $parser) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/TryNode.php:30 public static function␣
→˓parse(Tag $tag) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/WhileNode.php:32 public static function␣
→˓parse(Tag $tag) : \Generator { /**/ }

→˓-----------

→˓-----------
List Short Syntax (https://exakat.readthedocs.io/en/latest/Reference/Rules.html#php-
→˓listshortsyntax)

→˓-----------
/src/Latte/Compiler/Parser.php:311 [$prevDepth, $this->
→˓htmlDepth]
/src/Latte/Compiler/Parser.php:644 [$gen, $line]
/src/Latte/Compiler/PhpHelpers.php:35 [$name, $token]
/src/Latte/Compiler/PhpWriter.php:85 [, $l, $source, $format,
→˓$cond, $r]
/src/Latte/Compiler/PhpWriter.php:865 [$contentType, $context,
→˓$flag]
/src/Latte/Compiler/PhpWriter.php:866 [$lq, $rq]
/src/Latte/Compiler/Tokenizer.php:76 [$line, $col]

(continues on next page)

16.3. List of Reports 2255

Exakat Documentation, Release 1

(continued from previous page)

/src/Latte/Extensions/CoreExtension.php:233 [$inner]
/src/Latte/Extensions/CoreExtension.php:247 [$name, $mod]
/src/Latte/Extensions/Nodes/BlockNode.php:40 [$name, $local]
/src/Latte/Extensions/Nodes/BlockNode.php:53 [$node->content]
/src/Latte/Extensions/Nodes/CaptureNode.php:42 [$node->content]
/src/Latte/Extensions/Nodes/DefineNode.php:39 [$name, $local]
/src/Latte/Extensions/Nodes/DefineNode.php:49 [$node->content]
/src/Latte/Extensions/Nodes/EmbedNode.php:43 [$node->name, $mode]
/src/Latte/Extensions/Nodes/EmbedNode.php:50 [$node->blocks]
/src/Latte/Extensions/Nodes/FirstLastSepNode.php:51 [$node->then, $nextTag]
/src/Latte/Extensions/Nodes/FirstLastSepNode.php:54 [$node->else]
/src/Latte/Extensions/Nodes/ForNode.php:36 [$node->content]
/src/Latte/Extensions/Nodes/ForeachNode.php:57 [$node->content, $nextTag]
/src/Latte/Extensions/Nodes/ForeachNode.php:60 [$node->else]
/src/Latte/Extensions/Nodes/IfChangedNode.php:43 [$node->then, $nextTag]
/src/Latte/Extensions/Nodes/IfChangedNode.php:46 [$node->else]
/src/Latte/Extensions/Nodes/IfContentNode.php:38 [$node->content]
/src/Latte/Extensions/Nodes/IfNode.php:158 [$name, $block]
/src/Latte/Extensions/Nodes/IfNode.php:54 [$node->then, $nextTag]
/src/Latte/Extensions/Nodes/IfNode.php:61 [$node->else, $nextTag]
/src/Latte/Extensions/Nodes/IncludeBlockNode.php:40 [$name]
/src/Latte/Extensions/Nodes/IncludeFileNode.php:37 [$node->file]
/src/Latte/Extensions/Nodes/IterateWhileNode.php:49 [$node->content, $nextTag]
/src/Latte/Extensions/Nodes/SnippetAreaNode.php:44 [$node->content]
/src/Latte/Extensions/Nodes/SnippetNode.php:85 [$node->content]
/src/Latte/Extensions/Nodes/SpacelessNode.php:34 [$node->content]
/src/Latte/Extensions/Nodes/SwitchNode.php:109 [&$case, &$stmt]
/src/Latte/Extensions/Nodes/SwitchNode.php:43 [$content, $nextTag]
/src/Latte/Extensions/Nodes/SwitchNode.php:55 [$content, $nextTag]
/src/Latte/Extensions/Nodes/SwitchNode.php:63 [$content, $nextTag]
/src/Latte/Extensions/Nodes/SwitchNode.php:82 [$condition, $stmt]
/src/Latte/Extensions/Nodes/TranslateNode.php:48 [$node->content]
/src/Latte/Extensions/Nodes/TryNode.php:40 [$node->try, $nextTag]
/src/Latte/Extensions/Nodes/TryNode.php:43 [$node->else]
/src/Latte/Extensions/Nodes/WhileNode.php:41 [$node->content, $nextTag]
/src/Latte/Runtime/FilterExecutor.php:119 [$callback, $aware]
/src/Latte/Runtime/FilterExecutor.php:67 [$callback, $aware]
/src/Latte/Runtime/SnippetDriver.php:76 [$name, $obStarted]
/src/Latte/Runtime/Template.php:402 [$method, $contentType]

→˓-----------

2256 Chapter 16. Reports

Exakat Documentation, Release 1

Specs

Short name CompatibilityPHP56
Rulesets CompatibilityPHP56.
Type Text
Target This report is written in ‘stdout’.
Available in Entreprise Edition

16.3.9 CompatibilityPHP74

CompatibilityPHP74

The CompatibilityPHP74 report list all detected issues with PHP 7.4 compatibility.

The CompatibilityPHP74 report displays one result per line, grouped by rule, and ordered by file and line number. Here
is an example :

/path/from/project/root/to/file:line[space]name of analysis

This format is fast, and fitted for human review. It is the same format as PerRule.

→˓-----------
PHP 7.4 Removed Functions (https://exakat.readthedocs.io/en/latest/Reference/Rules.html
→˓#php-php74removedfunctions)

→˓-----------
/src/wp-includes/ID3/getid3.php:443 get_magic_quotes_runtime()

→˓-----------

→˓-----------
idn_to_ascii() New Default (https://exakat.readthedocs.io/en/latest/Reference/Rules.html
→˓#php-idnuts46)

→˓-----------
/src/wp-includes/PHPMailer/PHPMailer.php:1468 idn_to_ascii($domain,
→˓$errorcode)

→˓-----------

16.3. List of Reports 2257

https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

Specs

Short name CompatibilityPHP74
Rulesets CompatibilityPHP74.
Type Text
Target This report is written in ‘stdout’.
Available in Entreprise Edition

16.3.10 CompatibilityPHP80

CompatibilityPHP80

The CompatibilityPHP80 report list all detected issues with PHP 8.0 compatibility.

The CompatibilityPHP80 report displays one result per line, grouped by rule, and ordered by file and line number. Here
is an example :

/path/from/project/root/to/file:line[space]name of analysis

This format is fast, and fitted for human review. It is the same format as PerRule.

→˓-----------
PHP 8.0 Resources Turned Into Objects (https://exakat.readthedocs.io/en/latest/
→˓Reference/Rules.html#php-php80removesresources)

→˓-----------
/src/wp-includes/Requests/Transport/cURL.php:116 is_resource($this->handle)

→˓-----------

→˓-----------
PHP 80 Named Parameter Variadic (https://exakat.readthedocs.io/en/latest/Reference/
→˓Rules.html#php-php80namedparametervariadic)

→˓-----------
/src/wp-includes/capabilities.php:44 function map_meta_cap($cap,
→˓ $user_id, ...$args) { /**/ }
/src/wp-includes/class-wp-walker.php:286 public function paged_walk(
→˓$elements, $max_depth, $page_num, $per_page, ...$args) { /**/ }
/src/wp-includes/functions.php:1108 function add_query_arg(...
→˓$args) { /**/ }
/src/wp-includes/plugin.php:439 function do_action($hook_
→˓name, ...$arg) { /**/ }
/src/wp-includes/theme.php:2568 function add_theme_support(
→˓$feature, ...$args) { /**/ }
/src/wp-includes/theme.php:2899 function get_theme_support(
→˓$feature, ...$args) { /**/ }
/src/wp-includes/theme.php:3029 function current_theme_

(continues on next page)

2258 Chapter 16. Reports

https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

(continued from previous page)

→˓supports($feature, ...$args) { /**/ }
/src/wp-includes/wp-db.php:1395 public function prepare(
→˓$query, ...$args) { /**/ }

→˓-----------

Specs

Short name CompatibilityPHP80
Rulesets CompatibilityPHP80.
Type Text
Target This report is written in ‘stdout’.
Available in Entreprise Edition

16.3.11 CompatibilityPHP81

CompatibilityPHP81

The CompatibilityPHP56 report list all detected issues with PHP 8.1 compatibility.

The CompatibilityPHP81 report displays one result per line, grouped by rule, and ordered by file and line number. Here
is an example :

/path/from/project/root/to/file:line[space]name of analysis

This format is fast, and fitted for human review. It is the same format as PerRule.

→˓-----------
PHP 8.1 Removed Directives (https://exakat.readthedocs.io/en/latest/Reference/Rules.html
→˓#php-php81removeddirective)

→˓-----------
/src/wp-includes/pomo/po.php:24 @ini_set('auto_detect_line_
→˓endings', 1)

→˓-----------

→˓-----------
PHP Native Class Type Compatibility (https://exakat.readthedocs.io/en/latest/Reference/
→˓Rules.html#php-nativeclasstypecompatibility)

→˓-----------
/src/wp-includes/Requests/Cookie/Jar.php:102 public function␣
→˓offsetUnset($key) { /**/ }
/src/wp-includes/Requests/Cookie/Jar.php:63 public function␣
→˓offsetExists($key) { /**/ }

(continues on next page)

16.3. List of Reports 2259

https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

(continued from previous page)

/src/wp-includes/Requests/Cookie/Jar.php:73 public function offsetGet(
→˓$key) { /**/ }
/src/wp-includes/Requests/Cookie/Jar.php:89 public function offsetSet(
→˓$key, $value) { /**/ }
/src/wp-includes/Requests/Response/Headers.php:26 public function offsetGet(
→˓$key) { /**/ }
/src/wp-includes/Requests/Response/Headers.php:43 public function offsetSet(
→˓$key, $value) { /**/ }
/src/wp-includes/Requests/Utility/CaseInsensitiveDictionary.php:40 public function␣
→˓offsetExists($key) { /**/ }
/src/wp-includes/Requests/Utility/CaseInsensitiveDictionary.php:51 public function␣
→˓offsetGet($key) { /**/ }
/src/wp-includes/Requests/Utility/CaseInsensitiveDictionary.php:68 public function␣
→˓offsetSet($key, $value) { /**/ }
/src/wp-includes/Requests/Utility/CaseInsensitiveDictionary.php:82 public function␣
→˓offsetUnset($key) { /**/ }
/src/wp-includes/Requests/Utility/FilteredIterator.php:40 public function current()
→˓{ /**/ }
/src/wp-includes/Requests/Utility/FilteredIterator.php:53 public function␣
→˓unserialize($serialized) { /**/ }
/src/wp-includes/Requests/Utility/FilteredIterator.php:53 public function␣
→˓unserialize($serialized) { /**/ }
/src/wp-includes/sodium_compat/src/PHP52/SplFixedArray.php:103 public function␣
→˓offsetGet($index) { /**/ }
/src/wp-includes/sodium_compat/src/PHP52/SplFixedArray.php:114 public function␣
→˓offsetSet($index, $newval) { /**/ }
/src/wp-includes/sodium_compat/src/PHP52/SplFixedArray.php:122 public function␣
→˓offsetUnset($index) { /**/ }
/src/wp-includes/sodium_compat/src/PHP52/SplFixedArray.php:35 public function count()
→˓{ /**/ }
/src/wp-includes/sodium_compat/src/PHP52/SplFixedArray.php:94 public function␣
→˓offsetExists($index) { /**/ }

→˓-----------

Specs

Short name CompatibilityPHP81
Rulesets CompatibilityPHP81.
Type Text
Target This report is written in ‘stdout’.
Available in Entreprise Edition

2260 Chapter 16. Reports

https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

16.3.12 CompatibilityPHP82

CompatibilityPHP82

The CompatibilityPHP82 report list all detected issues with PHP 8.2 compatibility.

The CompatibilityPHP82 report displays one result per line, grouped by rule, and ordered by file and line number. Here
is an example :

/path/from/project/root/to/file:line[space]name of analysis

This format is fast, and fitted for human review. It is the same format as PerRule.

→˓-----------
Checks Property Existence (https://exakat.readthedocs.io/en/latest/Reference/Rules.html
→˓#classes-checkspropertyexistence)

→˓-----------
/app/Domain/Service/Project/ProjectIssue/Update.php:31 isset($params->tags)
/app/Domain/Service/Project/ProjectIssue/Update.php:35 isset($params->releases)
/app/Domain/Service/Project/ProjectIssue/Update.php:39 isset($params->modules)
/app/Domain/Service/Project/ProjectIssue/Update.php:43 isset($params->content)
/app/Domain/Service/Project/ProjectIssue/Update.php:47 isset($params->completed)
/app/Domain/Service/Project/ProjectIssue/Update.php:49 isset($params->
→˓completedDate)
/app/Domain/Service/Project/ProjectRelease/UpdateParams.php:42 isset($this->
→˓completedDate)

→˓-----------

→˓-----------
Undefined Properties (https://exakat.readthedocs.io/en/latest/Reference/Rules.html
→˓#classes-undefinedproperty)

→˓-----------
/app/Controller/Api/V1/Attachment/Upload.php:36 $request->files
/app/Controller/Api/V1/Login/Code.php:39 $request->query
/app/Controller/BaseBrand.php:103 $this->in
/app/Controller/BaseBrand.php:115 $this->in
/app/Controller/BaseBrand.php:120 $this->in
/app/Controller/BaseBrand.php:132 $this->in
/app/Controller/BaseBrand.php:137 $this->in
--
→˓------------

16.3. List of Reports 2261

Exakat Documentation, Release 1

Specs

Short name CompatibilityPHP82
Rulesets CompatibilityPHP82.
Type Text
Target This report is written in ‘stdout’.
Available in Entreprise Edition

16.3.13 CompatibilityPHP83

CompatibilityPHP83

The CompatibilityPHP83 report list all detected issues with PHP 8.2 compatibility.

The CompatibilityPHP83 report displays one result per line, grouped by rule, and ordered by file and line number. Here
is an example :

/path/from/project/root/to/file:line[space]name of analysis

This format is fast, and fitted for human review. It is the same format as PerRule.

→˓-----------
New Functions In PHP 8.3 (https://exakat.readthedocs.io/en/latest/Reference/Rules.html
→˓#php-php83newfunctions)

→˓-----------

→˓-----------

Specs

Short name CompatibilityPHP83
Rulesets CompatibilityPHP83.
Type Text
Target This report is written in ‘stdout’.
Available in Entreprise Edition

16.3.14 Composer

Composer

The Composer report provide elements for the require attribute in the composer.json.

It helps documenting the composer.json, by providing more information, extracted from the code.

This report makes a copy then updates the composer.json, when available; otherwise, it creates a totally new com-
poser.json.

2262 Chapter 16. Reports

https://www.exakat.io/entreprise-edition
https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

The report provides a calculated value for “php”: “^7.3” and all the identified PHP extensions (such as “ext-exif”,
“ext-gd”, “ext-finfo”, etc). Core PHP extensions are omitted.

It is recommended to review manually the results of the suggested composer.json before using it.

Name,File,Line
0,/features/bootstrap/FeatureContext.php,61
10000,/features/bootstrap/FeatureContext.php,61
777,/features/bootstrap/FeatureContext.php,63
20,/features/bootstrap/FeatureContext.php,73
0,/features/bootstrap/FeatureContext.php,334
0,/features/bootstrap/FeatureContext.php,339
0,/features/bootstrap/FeatureContext.php,344
0,/features/bootstrap/FeatureContext.php,362
0,/features/bootstrap/FeatureContext.php,366
0,/features/bootstrap/FeatureContext.php,368
0,/features/bootstrap/FeatureContext.php,372
777,/features/bootstrap/FeatureContext.php,423
777,/features/bootstrap/FeatureContext.php,431
0,/src/Behat/Behat/Context/ContextClass/SimpleClassGenerator.php,68
1,/src/Behat/Behat/Context/ContextClass/SimpleClassGenerator.php,69
0,/src/Behat/Behat/Context/Environment/InitializedContextEnvironment.php,84
0,/src/Behat/Behat/Context/Environment/InitializedContextEnvironment.php,150

Specs

Short name Composer
Rulesets Appinfo.
Type JSON
Target This report is written in ‘composer.json’.
Available in Entreprise Edition

16.3.15 Dependency Wheel

Dependency Wheel

The DependencyWheel represents dependencies in a code source.

Dependency Wheel is a javascript visualization of the classes dependencies in the code. Every class, interface and trait
are represented as a circle, and every relation between the classes are represented by a link between them, inside the
circle.

It is based on Francois Zaninotto’s DependencyWheel and the d3.js.

Reference/images/report.dependencywheel.png

16.3. List of Reports 2263

https://www.exakat.io/entreprise-edition
http://fzaninotto.github.com/DependencyWheel
https://github.com/mbostock/d3

Exakat Documentation, Release 1

Specs

Short name Dependency Wheel
Rulesets Dependency Wheel doesn’t depend on rulesets.
Type HTML
Target This report is written in ‘wheel’.
Available in Entreprise Edition

16.3.16 Diplomat

Diplomat

The Diplomat is the default human readable report.

The Diplomat report is the default report since Exakat 1.7.0. It is a light version of the Ambassador report, and uses a
shorter list of analysis.

Reference/images/report.diplomat.png

Specs

Short
name

Diplomat

Rule-
sets

CompatibilityPHP53, CompatibilityPHP54, CompatibilityPHP55, CompatibilityPHP56, Compatibility-
PHP70, CompatibilityPHP71, CompatibilityPHP72, CompatibilityPHP73, CompatibilityPHP74, Compat-
ibilityPHP80, Top10, Preferences, Appinfo, Suggestions.

Type HTML
Tar-
get

This report is written in ‘diplomat’.

Avail-
able
in

Entreprise Edition, Community Edition

16.3.17 Emissary

Emissary

Emissary is the template for other HTML reports : Ambassador and Diplomat

The Emissary report is not to be used directly. Use Ambassador or Diplomat instead.

Emissary includes the report from 3 other reports : PhpCompilation, PhpConfiguration, Stats.

2264 Chapter 16. Reports

https://www.exakat.io/entreprise-edition
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition

Exakat Documentation, Release 1

Specs

Short name Emissary
Rulesets This reports works with an arbitrary list of results.
Type HTML
Target This report is written in ‘report’.
Available in Entreprise Edition

16.3.18 Exakat Json

Exakat Json

The Exakat JSON report exports in a flat JSON format.

Simple Json format. It is a flat array of objects, all with the same structure.

[
{
"exakatVersion": "2.2.2",
"exakatFingerprint": "f93c98ed693f29abc75b52154482ac4f6ff1b59b",
"analyzedAt": "2021-09-10T16:59:20+00:00",
"uuid": "1234567abcd",
"project": "sculpin",
"branch": "master",
"lastCommitId": "b7c9027f05d9bff4dc6e92f36d29c4738bfc0b42",
"ruleId": "Classes\\/ChildRemoveTypehint",
"type": "warning",
"severity": "major",
"fixable": "fixable",
"file": "\\/src\\/Sculpin\\/Core\\/Source\\/SourceInterface.php",
"namespace": "\\sculpin\\core\\source",
"class": "",
"function": "",
"message": "Child Class Removes Typehint",
"startLine": 144,
"endLine": 144,
"fullCode": "public function duplicate(string $newSourceId) : SourceInterface ;",

},

]

This Report may be configured with the [Exakatjson] section, to provide the uuid value.

[Exakatjson]
uuid="1234567abcd";

16.3. List of Reports 2265

https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

Specs

Short name Exakat Json
Rulesets This reports works with an arbitrary list of results.
Type Json
Target
Available in Entreprise Edition, Exakat Cloud

16.3.19 Exakatyaml

Exakatyaml

Builds a list of ruleset, based on the number of issues from the previous audit.

Exakatyaml helps with the configuration of exakat in a CI. It builds a list of ruleset, based on the number of issues from
the previous audit.

Continuous Integration require steps that yield no issues. This is good for analysis that yield no results : in a word, all
analysis that are currently clean should be in the CI. That way, any return will be monitored.

On the other hand, other analysis that currently yield issues needs to be fully cleaned before usage.

project: my_project
project_name: my_project
project_themes: { }
project_reports:

- Ambassador
rulesets:

ruleset_0: # 0 errors found
"Accessing Private": Classes/AccessPrivate
"Adding Zero": Structures/AddZero
"Aliases Usage": Functions/AliasesUsage
"Already Parents Interface": Interfaces/

→˓AlreadyParentsInterface
"Already Parents Trait": Traits/AlreadyParentsTrait
"Altering Foreach Without Reference": Structures/

→˓AlteringForeachWithoutReference
"Alternative Syntax Consistence": Structures/

→˓AlternativeConsistenceByFile
"Always Positive Comparison": Structures/NeverNegative

Other results here
ruleset_1: # 1 errors found

"Constant Class": Classes/ConstantClass
"Could Be Abstract Class": Classes/

→˓CouldBeAbstractClass
"Dependant Trait": Traits/DependantTrait
"Double Instructions": Structures/

→˓DoubleInstruction
Other results here

ruleset_2: # 2 errors found
"Always Anchor Regex": Security/AnchorRegex
"Forgotten Interface": Interfaces/

(continues on next page)

2266 Chapter 16. Reports

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

→˓CouldUseInterface
Other results here

ruleset_3: # 3 errors found
"@ Operator": Structures/Noscream
"Indices Are Int Or String": Structures/

→˓IndicesAreIntOrString
"Modernize Empty With Expression": Structures/ModernEmpty
"Property Variable Confusion": Structures/

→˓PropertyVariableConfusion
Other results here

ruleset_4: # 4 errors found
"Buried Assignation": Structures/

→˓BuriedAssignation
"Identical Consecutive Expression": Structures/

→˓IdenticalConsecutive
Other results here

ruleset_122: # 122 errors found
"Method Could Be Static": Classes/CouldBeStatic

project: page_manager
project_name: drupal_page_manager
project_themes: { }
project_reports:

- Ambassador
rulesets:

ruleset_0: # 0 errors found
"$HTTP_RAW_POST_DATA Usage": Php/RawPostDataUsage
"$this Belongs To Classes Or Traits": Classes/ThisIsForClasses
"$this Is Not An Array": Classes/ThisIsNotAnArray
"$this Is Not For Static Methods": Classes/ThisIsNotForStatic
"Abstract Or Implements": Classes/

→˓AbstractOrImplements
"Access Protected Structures": Classes/AccessProtected
"Accessing Private": Classes/AccessPrivate
"Adding Zero": Structures/AddZero
"Aliases Usage": Functions/AliasesUsage
"Already Parents Interface": Interfaces/

→˓AlreadyParentsInterface
"Already Parents Trait": Traits/AlreadyParentsTrait
"Altering Foreach Without Reference": Structures/

→˓AlteringForeachWithoutReference
"Alternative Syntax Consistence": Structures/

→˓AlternativeConsistenceByFile
"Always Positive Comparison": Structures/NeverNegative
"Ambiguous Array Index": Arrays/AmbiguousKeys
"Ambiguous Static": Classes/AmbiguousStatic
"Ambiguous Visibilities": Classes/

→˓AmbiguousVisibilities
"Anonymous Classes": Classes/Anonymous
"Assert Function Is Reserved": Php/

→˓AssertFunctionIsReserved
"Assign And Compare": Structures/

(continues on next page)

16.3. List of Reports 2267

Exakat Documentation, Release 1

(continued from previous page)

→˓AssigneAndCompare
"Assign Default To Properties": Classes/MakeDefault
"Assign With And": Php/AssignAnd
"Assigned Twice": Variables/

→˓AssignedTwiceOrMore
"Avoid Parenthesis": Structures/

→˓PrintWithoutParenthesis
"Avoid Those Hash Functions": Security/AvoidThoseCrypto
"Avoid Using stdClass": Php/UseStdclass
"Avoid get_class()": Structures/UseInstanceof
"Avoid option arrays in constructors": Classes/AvoidOptionArrays
"Avoid set_error_handler $context Argument": Php/

→˓AvoidSetErrorHandlerContextArg
"Avoid sleep()/usleep()": Security/NoSleep
"Bad Constants Names": Constants/BadConstantnames
"Callback Needs Return": Functions/

→˓CallbackNeedsReturn
"Can't Count Non-Countable": Structures/

→˓CanCountNonCountable
"Can't Extend Final": Classes/CantExtendFinal
"Can't Throw Throwable": Exceptions/CantThrow
"Cant Inherit Abstract Method": Classes/

→˓CantInheritAbstractMethod
"Cant Instantiate Class": Classes/

→˓CantInstantiateClass
"Case Insensitive Constants": Constants/

→˓CaseInsensitiveConstants
"Cast To Boolean": Structures/CastToBoolean
"Casting Ternary": Structures/CastingTernary
"Catch Overwrite Variable": Structures/

→˓CatchShadowsVariable
"Check All Types": Structures/CheckAllTypes
"Check JSON": Structures/CheckJson
"Check On __Call Usage": Classes/CheckOnCallUsage
"Child Class Removes Typehint": Classes/ChildRemoveTypehint
"Class Function Confusion": Php/ClassFunctionConfusion
"Class Should Be Final By Ocramius": Classes/FinalByOcramius
"Class, Interface Or Trait With Identical Names": Classes/CitSameName
"Classes Mutually Extending Each Other": Classes/MutualExtension
"Clone With Non-Object": Classes/CloneWithNonObject
"Common Alternatives": Structures/

→˓CommonAlternatives
"Compact Inexistant Variable": Php/CompactInexistant
"Compare Hash": Security/CompareHash
"Compared Comparison": Structures/

→˓ComparedComparison
"Concat And Addition": Php/ConcatAndAddition
"Concat Empty String": Structures/ConcatEmpty
"Concrete Visibility": Interfaces/

→˓ConcreteVisibility
"Configure Extract": Security/ConfigureExtract
"Const Visibility Usage": Classes/

(continues on next page)

2268 Chapter 16. Reports

Exakat Documentation, Release 1

(continued from previous page)

→˓ConstVisibilityUsage
"Constants Created Outside Its Namespace": Constants/

→˓CreatedOutsideItsNamespace
"Constants With Strange Names": Constants/

→˓ConstantStrangeNames
"Continue Is For Loop": Structures/

→˓ContinueIsForLoop
"Could Be Else": Structures/CouldBeElse
"Could Be Static": Structures/CouldBeStatic
"Could Use Short Assignation": Structures/

→˓CouldUseShortAssignation
"Could Use __DIR__": Structures/CouldUseDir
"Could Use self": Classes/ShouldUseSelf
"Could Use str_repeat()": Structures/

→˓CouldUseStrrepeat
"Crc32() Might Be Negative": Php/Crc32MightBeNegative
"Dangling Array References": Structures/

→˓DanglingArrayReferences
"Deep Definitions": Functions/DeepDefinitions
"Define With Array": Php/DefineWithArray
"Deprecated Functions": Php/Deprecated
"Direct Call To __clone()": Php/DirectCallToClone
"Direct Injection": Security/DirectInjection
"Don't Change Incomings": Structures/

→˓NoChangeIncomingVariables
"Don't Echo Error": Security/DontEchoError
"Don't Read And Write In One Expression": Structures/

→˓DontReadAndWriteInOneExpression
"Don't Send $this In Constructor": Classes/

→˓DontSendThisInConstructor
"Don't Unset Properties": Classes/DontUnsetProperties
"Dont Change The Blind Var": Structures/

→˓DontChangeBlindKey
"Dont Mix ++": Structures/DontMixPlusPlus
"Double Assignation": Structures/

→˓DoubleAssignation
"Dynamic Library Loading": Security/DynamicDl
"Echo With Concat": Structures/EchoWithConcat
"Else If Versus Elseif": Structures/ElseIfElseif
"Empty Blocks": Structures/EmptyBlocks
"Empty Instructions": Structures/EmptyLines
"Empty Interfaces": Interfaces/EmptyInterface
"Empty Namespace": Namespaces/EmptyNamespace
"Empty Traits": Traits/EmptyTrait
"Empty Try Catch": Structures/EmptyTryCatch
"Encoded Simple Letters": Security/EncodedLetters
"Eval() Usage": Structures/EvalUsage
"Exception Order": Exceptions/AlreadyCaught
"Exit() Usage": Structures/ExitUsage
"Failed Substr Comparison": Structures/

→˓FailingSubstrComparison
"Flexible Heredoc": Php/FlexibleHeredoc

(continues on next page)

16.3. List of Reports 2269

Exakat Documentation, Release 1

(continued from previous page)

"Foreach On Object": Php/ForeachObject
"Foreach Reference Is Not Modified": Structures/

→˓ForeachReferenceIsNotModified
"Forgotten Visibility": Classes/NonPpp
"Forgotten Whitespace": Structures/

→˓ForgottenWhiteSpace
"Fully Qualified Constants": Namespaces/

→˓ConstantFullyQualified
"Functions/BadTypehintRelay": Functions/BadTypehintRelay
"Global Usage": Structures/GlobalUsage
"Group Use Declaration": Php/GroupUseDeclaration
"Group Use Trailing Comma": Php/GroupUseTrailingComma
"Hash Algorithms Incompatible With PHP 5.3": Php/HashAlgos53
"Hash Algorithms": Php/HashAlgos
"Hash Will Use Objects": Php/HashUsesObjects
"Hexadecimal In String": Type/HexadecimalString
"Hidden Use Expression": Namespaces/HiddenUse
"Htmlentities Calls": Structures/Htmlentitiescall
"Identical Conditions": Structures/

→˓IdenticalConditions
"Identical On Both Sides": Structures/

→˓IdenticalOnBothSides
"If With Same Conditions": Structures/

→˓IfWithSameConditions
"Illegal Name For Method": Classes/WrongName
"Implement Is For Interface": Classes/

→˓ImplementIsForInterface
"Implemented Methods Are Public": Classes/

→˓ImplementedMethodsArePublic
"Implicit Global": Structures/ImplicitGlobal
"Implied If": Structures/ImpliedIf
"Inclusion Wrong Case": Files/InclusionWrongCase
"Incompatible Signature Methods": Classes/

→˓IncompatibleSignature
"Incompilable Files": Php/Incompilable
"Indirect Injection": Security/IndirectInjection
"Integer As Property": Classes/IntegerAsProperty
"Integer Conversion": Security/IntegerConversion
"Invalid Class Name": Classes/WrongCase
"Invalid Constant Name": Constants/InvalidName
"Invalid Pack Format": Structures/

→˓InvalidPackFormat
"Invalid Regex": Structures/InvalidRegex
"Is Actually Zero": Structures/IsZero
"List Short Syntax": Php/ListShortSyntax
"List With Appends": Php/ListWithAppends
"List With Reference": Php/ListWithReference
"Logical Mistakes": Structures/LogicalMistakes
"Logical Should Use Symbolic Operators": Php/LogicalInLetters
"Lone Blocks": Structures/LoneBlock
"Lost References": Variables/LostReferences
"Make Global A Property": Classes/MakeGlobalAProperty

(continues on next page)

2270 Chapter 16. Reports

Exakat Documentation, Release 1

(continued from previous page)

"Method Collision Traits": Traits/
→˓MethodCollisionTraits

"Method Signature Must Be Compatible": Classes/
→˓MethodSignatureMustBeCompatible

"Minus One On Error": Security/MinusOneOnError
"Mismatch Type And Default": Functions/

→˓MismatchTypeAndDefault
"Mismatched Default Arguments": Functions/

→˓MismatchedDefaultArguments
"Mismatched Ternary Alternatives": Structures/

→˓MismatchedTernary
"Mismatched Typehint": Functions/

→˓MismatchedTypehint
"Missing Cases In Switch": Structures/MissingCases
"Missing Include": Files/MissingInclude
"Missing New ?": Structures/MissingNew
"Missing Parenthesis": Structures/

→˓MissingParenthesis
"Mixed Concat And Interpolation": Structures/

→˓MixedConcatInterpolation
"Mkdir Default": Security/MkdirDefault
"Multiple Alias Definitions Per File": Namespaces/

→˓MultipleAliasDefinitionPerFile
"Multiple Class Declarations": Classes/

→˓MultipleDeclarations
"Multiple Constant Definition": Constants/

→˓MultipleConstantDefinition
"Multiple Exceptions Catch()": Exceptions/MultipleCatch
"Multiple Identical Trait Or Interface": Classes/

→˓MultipleTraitOrInterface
"Multiple Index Definition": Arrays/

→˓MultipleIdenticalKeys
"Multiple Type Variable": Structures/

→˓MultipleTypeVariable
"Multiples Identical Case": Structures/

→˓MultipleDefinedCase
"Multiply By One": Structures/MultiplyByOne
"Must Call Parent Constructor": Php/

→˓MustCallParentConstructor
"Must Return Methods": Functions/MustReturn
"Negative Power": Structures/NegativePow
"Nested Ternary": Structures/NestedTernary
"Never Used Parameter": Functions/

→˓NeverUsedParameter
"New Constants In PHP 7.2": Php/Php72NewConstants
"New Functions In PHP 7.0": Php/Php70NewFunctions
"New Functions In PHP 7.1": Php/Php71NewFunctions
"New Functions In PHP 7.2": Php/Php72NewFunctions
"New Functions In PHP 7.3": Php/Php73NewFunctions
"Next Month Trap": Structures/NextMonthTrap
"No Choice": Structures/NoChoice
"No Direct Call To Magic Method": Classes/

(continues on next page)

16.3. List of Reports 2271

Exakat Documentation, Release 1

(continued from previous page)

→˓DirectCallToMagicMethod
"No Direct Usage": Structures/NoDirectUsage
"No Empty Regex": Structures/NoEmptyRegex
"No Hardcoded Hash": Structures/NoHardcodedHash
"No Hardcoded Ip": Structures/NoHardcodedIp
"No Hardcoded Path": Structures/NoHardcodedPath
"No Hardcoded Port": Structures/NoHardcodedPort
"No Magic With Array": Classes/NoMagicWithArray
"No Parenthesis For Language Construct": Structures/

→˓NoParenthesisForLanguageConstruct
"No Real Comparison": Type/NoRealComparison
"No Reference For Ternary": Php/NoReferenceForTernary
"No Reference On Left Side": Structures/

→˓NoReferenceOnLeft
"No Return For Generator": Php/NoReturnForGenerator
"No Return Or Throw In Finally": Structures/

→˓NoReturnInFinally
"No Return Used": Functions/NoReturnUsed
"No Self Referencing Constant": Classes/

→˓NoSelfReferencingConstant
"No String With Append": Php/NoStringWithAppend
"No Substr Minus One": Php/NoSubstrMinusOne
"No Substr() One": Structures/NoSubstrOne
"No get_class() With Null": Structures/NoGetClassNull
"No isset() With empty()": Structures/NoIssetWithEmpty
"Non Ascii Variables": Variables/VariableNonascii
"Non Static Methods Called In A Static": Classes/

→˓NonStaticMethodsCalledStatic
"Non-constant Index In Array": Arrays/NonConstantArray
"Not A Scalar Type": Php/NotScalarType
"Not Not": Structures/NotNot
"Objects Don't Need References": Structures/ObjectReferences
"Old Style Constructor": Classes/OldStyleConstructor
"Old Style __autoload()": Php/oldAutoloadUsage
"One Variable String": Type/OneVariableStrings
"Only Variable For Reference": Functions/

→˓OnlyVariableForReference
"Only Variable Passed By Reference": Functions/

→˓OnlyVariablePassedByReference
"Only Variable Returned By Reference": Structures/

→˓OnlyVariableReturnedByReference
"Or Die": Structures/OrDie
"Overwritten Exceptions": Exceptions/

→˓OverwriteException
"Overwritten Literals": Variables/

→˓OverwrittenLiterals
"PHP 7.0 New Classes": Php/Php70NewClasses
"PHP 7.0 New Interfaces": Php/Php70NewInterfaces
"PHP 7.0 Removed Directives": Php/Php70RemovedDirective
"PHP 7.0 Removed Functions": Php/Php70RemovedFunctions
"PHP 7.0 Scalar Typehints": Php/PHP70scalartypehints
"PHP 7.1 Microseconds": Php/Php71microseconds

(continues on next page)

2272 Chapter 16. Reports

Exakat Documentation, Release 1

(continued from previous page)

"PHP 7.1 Removed Directives": Php/Php71RemovedDirective
"PHP 7.1 Scalar Typehints": Php/PHP71scalartypehints
"PHP 7.2 Deprecations": Php/Php72Deprecation
"PHP 7.2 Object Keyword": Php/Php72ObjectKeyword
"PHP 7.2 Removed Functions": Php/Php72RemovedFunctions
"PHP 7.2 Scalar Typehints": Php/PHP72scalartypehints
"PHP 7.3 Last Empty Argument": Php/PHP73LastEmptyArgument
"PHP 7.3 Removed Functions": Php/Php73RemovedFunctions
"PHP7 Dirname": Structures/PHP7Dirname
"Parent First": Classes/ParentFirst
"Parent, Static Or Self Outside Class": Classes/PssWithoutClass
"Parenthesis As Parameter": Php/ParenthesisAsParameter
"Pathinfo() Returns May Vary": Php/PathinfoReturns
"Php 7 Indirect Expression": Variables/

→˓Php7IndirectExpression
"Php 7.1 New Class": Php/Php71NewClasses
"Php 7.2 New Class": Php/Php72NewClasses
"Php7 Relaxed Keyword": Php/Php7RelaxedKeyword
"Phpinfo": Structures/PhpinfoUsage
"Possible Infinite Loop": Structures/

→˓PossibleInfiniteLoop
"Possible Missing Subpattern": Php/MissingSubpattern
"Preprocessable": Structures/ShouldPreprocess
"Print And Die": Structures/PrintAndDie
"Printf Number Of Arguments": Structures/PrintfArguments
"Property Could Be Local": Classes/

→˓PropertyCouldBeLocal
"Queries In Loops": Structures/QueriesInLoop
"Random Without Try": Structures/RandomWithoutTry
"Redeclared PHP Functions": Functions/

→˓RedeclaredPhpFunction
"Redefined Class Constants": Classes/RedefinedConstants
"Redefined Default": Classes/RedefinedDefault
"Redefined Private Property": Classes/

→˓RedefinedPrivateProperty
"Register Globals": Security/RegisterGlobals
"Repeated Interface": Interfaces/

→˓RepeatedInterface
"Repeated Regex": Structures/RepeatedRegex
"Repeated print()": Structures/RepeatedPrint
"Results May Be Missing": Structures/

→˓ResultMayBeMissing
"Rethrown Exceptions": Exceptions/Rethrown
"Return True False": Structures/ReturnTrueFalse
"Safe Curl Options": Security/CurlOptions
"Safe HTTP Headers": Security/SafeHttpHeaders
"Same Variables Foreach": Structures/AutoUnsetForeach
"Scalar Or Object Property": Classes/

→˓ScalarOrObjectProperty
"Self Using Trait": Traits/SelfUsingTrait
"Session Lazy Write": Security/SessionLazyWrite
"Set Cookie Safe Arguments": Security/SetCookieArgs

(continues on next page)

16.3. List of Reports 2273

Exakat Documentation, Release 1

(continued from previous page)

"Setlocale() Uses Constants": Structures/
→˓SetlocaleNeedsConstants

"Several Instructions On The Same Line": Structures/
→˓OneLineTwoInstructions

"Short Open Tags": Php/ShortOpenTagRequired
"Should Chain Exception": Structures/

→˓ShouldChainException
"Should Make Alias": Namespaces/ShouldMakeAlias
"Should Typecast": Type/ShouldTypecast
"Should Use Constants": Functions/

→˓ShouldUseConstants
"Should Use Prepared Statement": Security/

→˓ShouldUsePreparedStatement
"Should Use SetCookie()": Php/UseSetCookie
"Should Yield With Key": Functions/

→˓ShouldYieldWithKey
"Silently Cast Integer": Type/SilentlyCastInteger
"Sqlite3 Requires Single Quotes": Security/

→˓Sqlite3RequiresSingleQuotes
"Static Methods Can't Contain $this": Classes/StaticContainsThis
"Strange Name For Constants": Constants/StrangeName
"Strange Name For Variables": Variables/StrangeName
"String Initialization": Arrays/StringInitialization
"String May Hold A Variable": Type/StringHoldAVariable
"Strings With Strange Space": Type/StringWithStrangeSpace
"Strpos()-like Comparison": Structures/StrposCompare
"Strtr Arguments": Php/StrtrArguments
"Suspicious Comparison": Structures/

→˓SuspiciousComparison
"Switch Fallthrough": Structures/Fallthrough
"Switch To Switch": Structures/SwitchToSwitch
"Switch Without Default": Structures/

→˓SwitchWithoutDefault
"Ternary In Concat": Structures/TernaryInConcat
"Test Then Cast": Structures/TestThenCast
"Throw Functioncall": Exceptions/

→˓ThrowFunctioncall
"Throw In Destruct": Classes/ThrowInDestruct
"Throws An Assignement": Structures/ThrowsAndAssign
"Timestamp Difference": Structures/

→˓TimestampDifference
"Too Many Finds": Classes/TooManyFinds
"Too Many Native Calls": Php/TooManyNativeCalls
"Trailing Comma In Calls": Php/TrailingComma
"Traits/TraitNotFound": Traits/TraitNotFound
"Typehint Must Be Returned": Functions/

→˓TypehintMustBeReturned
"Typehinted References": Functions/

→˓TypehintedReferences
"Unchecked Resources": Structures/

→˓UncheckedResources
"Unconditional Break In Loop": Structures/

(continues on next page)

2274 Chapter 16. Reports

Exakat Documentation, Release 1

(continued from previous page)

→˓UnconditionLoopBreak
"Undeclared Static Property": Classes/

→˓UndeclaredStaticProperty
"Undefined Constants": Constants/

→˓UndefinedConstants
"Undefined Insteadof": Traits/UndefinedInsteadof
"Undefined static:: Or self::": Classes/UndefinedStaticMP
"Unicode Escape Syntax": Php/UnicodeEscapeSyntax
"Unknown Pcre2 Option": Php/UnknownPcre2Option
"Unkown Regex Options": Structures/

→˓UnknownPregOption
"Unpreprocessed Values": Structures/Unpreprocessed
"Unreachable Code": Structures/UnreachableCode
"Unset In Foreach": Structures/UnsetInForeach
"Unthrown Exception": Exceptions/Unthrown
"Unused Constants": Constants/UnusedConstants
"Unused Global": Structures/UnusedGlobal
"Unused Inherited Variable In Closure": Functions/

→˓UnusedInheritedVariable
"Unused Interfaces": Interfaces/UnusedInterfaces
"Unused Label": Structures/UnusedLabel
"Unused Private Methods": Classes/UnusedPrivateMethod
"Unused Private Properties": Classes/

→˓UnusedPrivateProperty
"Unused Returned Value": Functions/

→˓UnusedReturnedValue
"Upload Filename Injection": Security/

→˓UploadFilenameInjection
"Use Constant As Arguments": Functions/

→˓UseConstantAsArguments
"Use Constant": Structures/UseConstant
"Use Instanceof": Classes/UseInstanceof
"Use Nullable Type": Php/UseNullableType
"Use PHP Object API": Php/UseObjectApi
"Use Pathinfo": Php/UsePathinfo
"Use System Tmp": Structures/UseSystemTmp
"Use With Fully Qualified Name": Namespaces/

→˓UseWithFullyQualifiedNS
"Use const": Constants/ConstRecommended
"Use random_int()": Php/BetterRand
"Used Once Variables": Variables/VariableUsedOnce
"Useless Abstract Class": Classes/UselessAbstract
"Useless Alias": Traits/UselessAlias
"Useless Brackets": Structures/UselessBrackets
"Useless Casting": Structures/UselessCasting
"Useless Constructor": Classes/UselessConstructor
"Useless Final": Classes/UselessFinal
"Useless Global": Structures/UselessGlobal
"Useless Instructions": Structures/

→˓UselessInstruction
"Useless Interfaces": Interfaces/

→˓UselessInterfaces

(continues on next page)

16.3. List of Reports 2275

Exakat Documentation, Release 1

(continued from previous page)

"Useless Parenthesis": Structures/
→˓UselessParenthesis

"Useless Return": Functions/UselessReturn
"Useless Switch": Structures/UselessSwitch
"Useless Unset": Structures/UselessUnset
"Var Keyword": Classes/OldStyleVar
"Weak Typing": Classes/WeakType
"While(List() = Each())": Structures/WhileListEach
"Wrong Number Of Arguments": Functions/

→˓WrongNumberOfArguments
"Wrong Optional Parameter": Functions/

→˓WrongOptionalParameter
"Wrong Parameter Type": Php/InternalParameterType
"Wrong Range Check": Structures/WrongRange
"Wrong fopen() Mode": Php/FopenMode
"__DIR__ Then Slash": Structures/DirThenSlash
"__toString() Throws Exception": Structures/

→˓toStringThrowsException
"error_reporting() With Integers": Structures/

→˓ErrorReportingWithInteger
"eval() Without Try": Structures/EvalWithoutTry
"ext/ereg": Extensions/Extereg
"ext/mcrypt": Extensions/Extmcrypt
"filter_input() As A Source": Security/FilterInputSource
"func_get_arg() Modified": Functions/

→˓funcGetArgModified
"include_once() Usage": Structures/OnceUsage
"isset() With Constant": Structures/

→˓IssetWithConstant
"list() May Omit Variables": Structures/ListOmissions
"move_uploaded_file Instead Of copy": Security/MoveUploadedFile
"parse_str() Warning": Security/

→˓parseUrlWithoutParameters
"preg_replace With Option e": Structures/pregOptionE
"self, parent, static Outside Class": Classes/NoPSSOutsideClass
"set_exception_handler() Warning": Php/SetExceptionHandlerPHP7
"var_dump()... Usage": Structures/VardumpUsage

ruleset_1: # 1 errors found
"Constant Class": Classes/ConstantClass
"Could Be Abstract Class": Classes/

→˓CouldBeAbstractClass
"Dependant Trait": Traits/DependantTrait
"Double Instructions": Structures/

→˓DoubleInstruction
"Drop Else After Return": Structures/

→˓DropElseAfterReturn
"Empty Classes": Classes/EmptyClass
"Forgotten Thrown": Exceptions/ForgottenThrown
"Inconsistent Elseif": Structures/

→˓InconsistentElseif
"Instantiating Abstract Class": Classes/

→˓InstantiatingAbstractClass

(continues on next page)

2276 Chapter 16. Reports

Exakat Documentation, Release 1

(continued from previous page)

"List With Keys": Php/ListWithKeys
"Logical To in_array": Performances/

→˓LogicalToInArray
"No Need For Else": Structures/NoNeedForElse
"Same Conditions In Condition": Structures/SameConditions
"Should Use session_regenerateid()": Security/

→˓ShouldUseSessionRegenerateId
"Static Loop": Structures/StaticLoop
"Too Many Injections": Classes/TooManyInjections
"Undefined Caught Exceptions": Exceptions/

→˓CaughtButNotThrown
"Unresolved Catch": Classes/UnresolvedCatch
"Unserialize Second Arg": Security/

→˓UnserializeSecondArg
"Use Positive Condition": Structures/

→˓UsePositiveCondition
"Useless Catch": Exceptions/UselessCatch
"Useless Check": Structures/UselessCheck

ruleset_2: # 2 errors found
"Always Anchor Regex": Security/AnchorRegex
"Forgotten Interface": Interfaces/

→˓CouldUseInterface
"No Class As Typehint": Functions/NoClassAsTypehint
"No array_merge() In Loops": Performances/

→˓ArrayMergeInLoops
"Pre-increment": Performances/

→˓PrePostIncrement
"Randomly Sorted Arrays": Arrays/

→˓RandomlySortedLiterals
"Should Make Ternary": Structures/

→˓ShouldMakeTernary
"Should Use Coalesce": Php/ShouldUseCoalesce
"Use === null": Php/IsnullVsEqualNull

ruleset_3: # 3 errors found
"@ Operator": Structures/Noscream
"Indices Are Int Or String": Structures/

→˓IndicesAreIntOrString
"Modernize Empty With Expression": Structures/ModernEmpty
"Property Variable Confusion": Structures/

→˓PropertyVariableConfusion
"Too Many Local Variables": Functions/

→˓TooManyLocalVariables
"Unused Classes": Classes/UnusedClass
"Usort Sorting In PHP 7.0": Php/UsortSorting

ruleset_4: # 4 errors found
"Buried Assignation": Structures/

→˓BuriedAssignation
"Identical Consecutive Expression": Structures/

→˓IdenticalConsecutive
"Nested Ifthen": Structures/NestedIfthen
"No Boolean As Default": Functions/

→˓NoBooleanAsDefault

(continues on next page)

16.3. List of Reports 2277

Exakat Documentation, Release 1

(continued from previous page)

"Use Named Boolean In Argument Definition": Functions/
→˓AvoidBooleanArgument

ruleset_5: # 5 errors found
"Avoid Optional Properties": Classes/

→˓AvoidOptionalProperties
"Empty Function": Functions/EmptyFunction
"Relay Function": Functions/RelayFunction
"Strict Comparison With Booleans": Structures/

→˓BooleanStrictComparison
"Use Class Operator": Classes/UseClassOperator
"strpos() Too Much": Performances/StrposTooMuch

ruleset_6: # 6 errors found
"Used Once Property": Classes/UsedOnceProperty

ruleset_7: # 7 errors found
"No Class In Global": Php/NoClassInGlobal
"Uncaught Exceptions": Exceptions/

→˓UncaughtExceptions
"Unused Functions": Functions/UnusedFunctions
"Wrong Number Of Arguments In Methods": Functions/

→˓WrongNumberOfArgumentsMethods
ruleset_8: # 8 errors found

"Could Make A Function": Functions/CouldCentralize
"Insufficient Typehint": Functions/

→˓InsufficientTypehint
"Long Arguments": Structures/LongArguments
"Property Used In One Method Only": Classes/

→˓PropertyUsedInOneMethodOnly
"Static Methods Called From Object": Classes/

→˓StaticMethodsCalledFromObject
ruleset_9: # 9 errors found

"PHP Keywords As Names": Php/ReservedNames
"Undefined Trait": Traits/UndefinedTrait
"Written Only Variables": Variables/

→˓WrittenOnlyVariable
ruleset_10: # 10 errors found

"Bail Out Early": Structures/BailOutEarly
"Hardcoded Passwords": Functions/

→˓HardcodedPasswords
"Multiple Alias Definitions": Namespaces/

→˓MultipleAliasDefinitions
ruleset_11: # 11 errors found

"Variable Is Not A Condition": Structures/
→˓NoVariableIsACondition

ruleset_13: # 13 errors found
"Undefined Functions": Functions/

→˓UndefinedFunctions
"Unused Use": Namespaces/UnusedUse

ruleset_14: # 14 errors found
"Iffectations": Structures/Iffectation
"No Public Access": Classes/NoPublicAccess

ruleset_16: # 16 errors found
"Overwriting Variable": Variables/Overwriting

(continues on next page)

2278 Chapter 16. Reports

Exakat Documentation, Release 1

(continued from previous page)

ruleset_17: # 17 errors found
"No Net For Xml Load": Security/NoNetForXmlLoad
"Unresolved Instanceof": Classes/

→˓UnresolvedInstanceof
ruleset_21: # 21 errors found

"Undefined Class Constants": Classes/UndefinedConstants
ruleset_27: # 27 errors found

"Locally Unused Property": Classes/
→˓LocallyUnusedProperty

"Never Used Properties": Classes/PropertyNeverUsed
ruleset_35: # 35 errors found

"Useless Referenced Argument": Functions/
→˓UselessReferenceArgument

ruleset_38: # 38 errors found
"Uses Default Values": Functions/

→˓UsesDefaultArguments
ruleset_47: # 47 errors found

"Unused Arguments": Functions/UnusedArguments
ruleset_49: # 49 errors found

"Undefined Properties": Classes/UndefinedProperty
ruleset_77: # 77 errors found

"Undefined Parent": Classes/UndefinedParentMP
ruleset_78: # 78 errors found

"Undefined ::class": Classes/
→˓UndefinedStaticclass

ruleset_82: # 82 errors found
"Class Could Be Final": Classes/CouldBeFinal

ruleset_86: # 86 errors found
"Unused Protected Methods": Classes/

→˓UnusedProtectedMethods
ruleset_89: # 89 errors found

"Unresolved Classes": Classes/UnresolvedClasses
ruleset_94: # 94 errors found

"Used Once Variables (In Scope)": Variables/
→˓VariableUsedOnceByContext

ruleset_122: # 122 errors found
"Method Could Be Static": Classes/CouldBeStatic

ruleset_133: # 133 errors found
"Should Use Local Class": Classes/ShouldUseThis

ruleset_159: # 159 errors found
"Undefined Interfaces": Interfaces/

→˓UndefinedInterfaces
ruleset_160: # 160 errors found

"Unused Methods": Classes/UnusedMethods
ruleset_183: # 183 errors found

"Undefined Variable": Variables/UndefinedVariable
ruleset_337: # 337 errors found

"Unresolved Use": Namespaces/UnresolvedUse
ruleset_595: # 595 errors found

"Undefined Classes": Classes/UndefinedClasses

16.3. List of Reports 2279

Exakat Documentation, Release 1

Specs

Short name Exakatyaml
Rulesets Exakatyaml doesn’t depend on rulesets.
Type Yaml
Target This report is written in ‘.exakat.yaml’.
Available in Entreprise Edition

16.3.20 File dependendies

File dependendies

This reports displays the file dependencies, based on definition usages.

This report displays all dependencies between files. A file depends on another when it makes usage of one of its
definitions : constant, functions, classes, traits, interfaces.

For example, A.php depends on B.php, because A.php uses the function foo, which is defined in the B.php file. On the
other hand, B.php doesn’t depends on A.php, as a function may be defined, but not used.

This diagram shows which files may be used without others.

The resulting diagram is a DOT file, which is readable with [Graphviz](https://www.graphviz.org/about/). Those
viewers will display the diagram, and also convert it to other format, such as PNG, JPEG, PDF or others.

Another version of the same diagram is called Filedependencieshtml

Reference/images/report.filedependencies.png

Specs

Short name File dependendies
Rulesets This reports works with an arbitrary list of results.
Type DOT
Target This report is written in ‘dependencies.dot’.
Available in Entreprise Edition

2280 Chapter 16. Reports

https://www.exakat.io/entreprise-edition
https://www.graphviz.org/about/
https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

16.3.21 File dependendies HTML

File dependendies HTML

This reports displays the file dependencies, based on definition usages.

This report displays all dependencies between files. A file depends on another when it makes usage of one of its
definitions : constant, functions, classes, traits, interfaces.

For example, A.php depends on B.php, because A.php uses the function foo, which is defined in the B.php file. On the
other hand, B.php doesn’t depends on A.php, as a function may be defined, but not used.

This diagram shows which files may be used without others.

The resulting diagram is in HTML file, which is readable with most browsers, from a web server.

Warning : for browser security reasons, the report will NOT load as a local file. It needs to be served by an HTTP
server, so all resources are correctly located.

Warning : large applications (> 1000 files) will require a lot of resources to open.

Another version of the same diagram is called Filedependencies, and produces a DOT file

Reference/images/report.filedependencieshtml.png

Specs

Short name File dependendies HTML
Rulesets This reports works with an arbitrary list of results.
Type HTML
Target This report is written in ‘dependencies’.
Available in Entreprise Edition

16.3.22 History

History

The History report collects meta information between audits. It saves the values from the current audit into a separate
‘history.sqlite’ database.

The history tables are the same as the dump.sqlite tables, except for the extra ‘serial’ table. Each audit comes with 3
identifiers :

• ‘dump_timestamp’ : this is a timmestamp taken when the dump was build

• ‘dump_serial’ : this is a serial number, based on the previous audit, and incremented by one. This is handy to
keep the values in sequence

• ‘dump_id’ : this is a unique random id, which helps distinguish audits which may have inconsistency between
serial or timestamp.

This report provides a ‘history.sqlite’ database. The following tables are inventoried :

16.3. List of Reports 2281

https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

• hash

• resultsCounts

Specs

Short name History
Rulesets This reports works with an arbitrary list of results.
Type Sqlite
Target This report is written in ‘history.sqlite’.
Available in Entreprise Edition

16.3.23 Inventory

Inventory

The Inventory report collects literals and names trhoughout the code.

This report provides the value, the file and line where a type of value is present.

The following values and names are inventoried :

• Variables

• Incoming Variables

• Session Variables

• Global Variables

• Date formats

• Constants

• Functions

• Classes

• Interface names

• Trait names

• Namespaces

• Exceptions

• Regex

• SQL queries

• URL

• Unicode blocks

• Integers

• Reals numbers

• Literal Arrays

• Strings

2282 Chapter 16. Reports

https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

Every type of values is exported to a file. If no value of such type was found during the audit, the file only contains the
headers. It is always produced.

Name,File,Line
0,/features/bootstrap/FeatureContext.php,61
10000,/features/bootstrap/FeatureContext.php,61
777,/features/bootstrap/FeatureContext.php,63
20,/features/bootstrap/FeatureContext.php,73
0,/features/bootstrap/FeatureContext.php,334
0,/features/bootstrap/FeatureContext.php,339
0,/features/bootstrap/FeatureContext.php,344
0,/features/bootstrap/FeatureContext.php,362
0,/features/bootstrap/FeatureContext.php,366
0,/features/bootstrap/FeatureContext.php,368
0,/features/bootstrap/FeatureContext.php,372
777,/features/bootstrap/FeatureContext.php,423
777,/features/bootstrap/FeatureContext.php,431
0,/src/Behat/Behat/Context/ContextClass/SimpleClassGenerator.php,68
1,/src/Behat/Behat/Context/ContextClass/SimpleClassGenerator.php,69
0,/src/Behat/Behat/Context/Environment/InitializedContextEnvironment.php,84
0,/src/Behat/Behat/Context/Environment/InitializedContextEnvironment.php,150

Specs

Short name Inventory
Rulesets Inventories.
Type CSV
Target This report is written in ‘Internal’.
Available in Entreprise Edition

16.3.24 Json

Json

The JSON report exports in JSON format.

Simple Json format. It is a structured array with all results, described as object.

Filename => [
errors => count,
warning => count,
fixable => count,
filename => string,
message => [

line => [
type,
source,
severity,
fixable,
message

(continues on next page)

16.3. List of Reports 2283

https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

(continued from previous page)

]
]

]

{
"\/src\/Path\/To\/File.php":{

"errors":0,
"warnings":105,
"fixable":0,
"filename":"\/src\/Path\/To\/File.php",
"messages":{

"55":[
[

{
"type":"warning",
"source":"Php/EllipsisUsage",
"severity":"Major",
"fixable":"fixable",
"message":"... Usage"

}
]

],
}

}
}

Reference/images/report.json.png

Specs

Short name Json
Rulesets This reports works with an arbitrary list of results.
Type Json
Target This report is written in ‘exakat.json’.
Available in Entreprise Edition

2284 Chapter 16. Reports

https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

16.3.25 Marmelab

Marmelab

The Marmelab report format data to use with a GraphQL server.

Marmelab is a report format to build GraphQL server with exakat’s results. Export the results of the audit in this JSON
file, then use the json-graphql-server to have a GraphQL server with all the results.

You may also learn more about GraphQL at Introducing Json GraphQL Server.

php exakat.phar report -p -format Marmelab -file marmelab
cp projects/myproject/marmelab.json path/to/marmelab
json-graphql-server db.json

Specs

Short name Marmelab
Rulesets Analyze.
Type JSON
Target This report is written in ‘exakat.json’.
Available in Entreprise Edition

16.3.26 Meters

Meters

The Meters report export various dimensions of the audited code.

Exakat measures a large number of code dimensions, such as number of files, lines of code, tokens. All those are
collected in this report.

{
"loc": 95950,
"locTotal": 140260,
"files": 1824,
"tokens": 677213

}

Specs

Short name Meters
Rulesets None.
Type JSON
Target This report is written in ‘exakat.meters.json’.
Available in Entreprise Edition

16.3. List of Reports 2285

https://github.com/marmelab/json-graphql-server
https://marmelab.com/blog/2017/07/12/json-graphql-server.html
https://www.exakat.io/entreprise-edition
https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

16.3.27 Migration74

Migration74

The Migration74 is the report dedicated to migrating PHP code to version 7.4.

The Migration74 report runs the backward incompatibilities tests for PHP 7.4, from a PHP 7.3 compatible code.

Reference/images/report.migration74.png

Specs

Short name Migration74
Rulesets CompatibilityPHP73, Suggestions.
Type HTML
Target This report is written in ‘migration74’.
Available in Entreprise Edition

16.3.28 Migration80

Migration80

The Migration80 is the report dedicated to migrating PHP code to version 8.0.

The Migration 80 report runs the backward incompatibilities tests for PHP 8.0, from a PHP 7.4 compatible code.

Reference/images/report.migration80.png

Specs

Short name Migration80
Rulesets CompatibilityPHP80, Suggestions.
Type HTML
Target This report is written in ‘migration80’.
Available in Entreprise Edition

2286 Chapter 16. Reports

https://www.exakat.io/entreprise-edition
https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

16.3.29 Migration81

Migration81

The Migration81 is the report dedicated to migrating PHP code to version 8.1.

The Migration 81 report runs the backward incompatibilities tests for PHP 8.1, from a PHP 8.0 compatible code.

Reference/images/report.migration81.png

Specs

Short name Migration81
Rulesets CompatibilityPHP81, Suggestions.
Type HTML
Target This report is written in ‘migration81’.
Available in Entreprise Edition

16.3.30 Migration82

Migration82

The Migration82 is the report dedicated to migrating PHP code to version 8.2.

The Migration 82 report runs the backward incompatibilities tests for PHP 8.2, from a PHP 8.1 compatible code.

Reference/images/report.migration82.png

Specs

Short name Migration82
Rulesets CompatibilityPHP82, Suggestions.
Type HTML
Target This report is written in ‘migration82’.
Available in Entreprise Edition

16.3. List of Reports 2287

https://www.exakat.io/entreprise-edition
https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

16.3.31 Naming

Naming

The Naming report checks spelling with named element in the code.

The Naming report checks spelling with named element in the code.

Reference/images/report.naming.png

Specs

Short name Naming
Rulesets Naming doesn’t depend on rulesets.
Type html
Target This report is written in ‘naming.html’.
Available in Entreprise Edition

16.3.32 None

None

None is the empty report. It runs the report generating stack, but doesn’t produce any result.

None is a utility report, aimed to test exakat’s installation.

Specs

Short name None
Rulesets Any.
Type None
Target This report is written in ‘none’.
Available in Entreprise Edition, Community Edition

16.3.33 OneLiners

OneLiners

The One Liners report collects one liner usages, which makes using IDE hard.

The One Liners report is based on Andreas Möllers’s post Avoiding one-liners in PHP. It reports all the one liners from
that article.

2288 Chapter 16. Reports

https://www.exakat.io/entreprise-edition
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://localheinz.com/articles/2023/03/18/avoiding-one-liners-in-php/#content-throw-expressions

Exakat Documentation, Release 1

/app/Infra/functions.php:305 Php/Coalesce Coalesce $message ?: __('')
/app/Infra/functions.php:305 Php/ShortTernary Short Ternary $message ?: _
→˓_('')
/app/Infra/Model.php:797 Php/Coalesce Coalesce $fields ?: $options['field']
/app/Infra/Model.php:797 Php/Coalesce Coalesce $table ?: $this->
→˓getTableName()
/app/Infra/Model.php:797 Php/ShortTernary Short Ternary $fields ?: $options[
→˓'field']
/app/Infra/Model.php:797 Php/ShortTernary Short Ternary $table ?: $this->
→˓getTableName()
/app/Infra/Model.php:1581 Php/Coalesce Coalesce preg_replace('/[A-Z]/', '_\\0
→˓', $name) ?: ''
/app/Infra/Model.php:1581 Php/ShortTernary Short Ternary preg_replace('/[A-Z]/
→˓', '_\\0', $name) ?: ''
/app/Infra/Model.php:999 Php/Coalesce Coalesce $type ?: (!empty($data[$this-
→˓>getPk()]) ? self::MODEL_UPDATE : self::MODEL_INSERT)
/app/Infra/Model.php:999 Php/ShortTernary Short Ternary $type ?: (!empty(
→˓$data[$this->getPk()]) ? self::MODEL_UPDATE : self::MODEL_INSERT)
/app/Infra/Model.php:1326 Php/Coalesce Coalesce $fields ?: '*'
/app/Infra/Model.php:1326 Php/ShortTernary Short Ternary $fields ?: '*'
/app/Infra/Model.php:1578 Php/Coalesce Coalesce preg_replace_callback('/_([a-
→˓zA-Z])/', function ($match) { /**/ } , $name) ?: ''
/app/Infra/Model.php:1578 Php/ShortTernary Short Ternary preg_replace_
→˓callback('/_([a-zA-Z])/', function ($match) { /**/ } , $name) ?: ''
/app/Infra/Code.php:28 Php/Coalesce Coalesce Cache::get('captcha:' . $id)␣
→˓?: ''
/app/Infra/Code.php:28 Php/ShortTernary Short Ternary Cache::get('captcha:
→˓' . $id) ?: ''
/app/Infra/PermissionCache.php:27 Php/Coalesce Coalesce (array) Cache::get(
→˓'permission:' . $id) ?: ['static' => [], 'dynamic' => []]
/app/Infra/PermissionCache.php:27 Php/ShortTernary Short Ternary (array)␣
→˓Cache::get('permission:' . $id) ?: ['static' => [], 'dynamic' => []]
/app/Controller/Swagger/Index.php:39 Php/Coalesce Coalesce json_encode(
→˓$openApi) ?: ''
/app/Controller/Swagger/Index.php:39 Php/ShortTernary Short Ternary json_
→˓encode($openApi) ?: ''
/app/Domain/Service/Search/Search.php:45 Php/Coalesce Coalesce $subService ?
→˓: $v
/app/Domain/Service/Search/Search.php:45 Php/ShortTernary Short Ternary
→˓$subService ?: $v
/app/Infra/Repository/User/User.php:28 Functions/UseArrowFunctions Use Arrow␣
→˓Functions fn (Select $select) => $select->where('name', $name)
/app/Infra/Repository/User/User.php:41 Functions/UseArrowFunctions Use Arrow␣
→˓Functions fn (Select $select) => $select->where('id', $id)
/app/Infra/ModelTest.php:3472 Functions/UseArrowFunctions Use Arrow Functions ␣
→˓ fn () => $baseBrandModel->trans2(['first' => 'new1', 'second' => 'new2',])
/app/Infra/ModelTest.php:3500 Functions/UseArrowFunctions Use Arrow Functions ␣
→˓ fn () => $baseBrandModel->trans3(['first' => 'new1', 'second' => 'new2',])
/app/Domain/Service/User/User/Users.php:23 Functions/UseArrowFunctions Use Arrow␣
→˓Functions fn (Select $select) => $select->eager(['role'])
/app/Domain/Entity/Product/BaseBrandModel.php:237 Functions/UseArrowFunctions Use␣
→˓Arrow Functions fn () => $this->trans3($in)
/app/Domain/Entity/Product/BaseBrandModel.php:242 Functions/UseArrowFunctions Use␣

(continues on next page)

16.3. List of Reports 2289

Exakat Documentation, Release 1

(continued from previous page)

→˓Arrow Functions fn () => $this->trans3($in)
/app/Middleware/Filter.php:73 Functions/UseArrowFunctions Use Arrow Functions ␣
→˓ fn (mixed &$value, string $key) => $value = $this->transformValue($value, $key)

Specs

Short name OneLiners
Rulesets This reports works with an arbitrary list of results.
Type Text
Target This report is written in ‘oneliners’.
Available in Entreprise Edition

16.3.34 Owasp

Owasp

The OWASP report is a security report.

The OWASP report focuses on the OWASP top 10. It reports all the security analysis, distributed across the 10 cate-
gories of vulnerabilities.

Reference/images/report.owasp.png

Specs

Short name Owasp
Rulesets This reports works with an arbitrary list of results.
Type HTML
Target This report is written in ‘owasp’.
Available in Entreprise Edition

16.3.35 Perfile

Perfile

The Perfile report lays out the results file per file.

The Perfile report displays one result per line, grouped by file, and ordered by line number. Here is an example :

/path/from/project/root/to/file:line[space]name of analysis

This format is fast, and fitted for human review.

2290 Chapter 16. Reports

https://www.exakat.io/entreprise-edition
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

line /themes/Rozier/Controllers/LoginController.php

34 Multiple Alias Definitions
36 Unresolved Use
43 Multiple Alias Definitions
51 Class Could Be Final
58 Undefined Interfaces
81 Undefined Interfaces
81 Unused Arguments
81 Used Once Variables (In Scope)
91 Undefined Interfaces
91 Unused Arguments
91 Used Once Variables (In Scope)
101 Undefined Interfaces
103 Nested Ifthen
104 Unresolved Classes
106 Buried Assignation
106 Iffectations
106 Use Positive Condition
121 Uncaught Exceptions
121 Unresolved Classes
129 Uncaught Exceptions

Specs

Short name Perfile
Rulesets This reports works with an arbitrary list of results.
Type Text
Target This report is written in ‘stdout’.
Available in Entreprise Edition, Community Edition

16.3.36 Perfule

Perfule

The Perrule report lays out the results, rule by rue.

The Perrule report displays one result per line, grouped by rule, and ordered by file and line number. Here is an example
:

/path/from/project/root/to/file:line[space]name of analysis

This format is fast, and fitted for human review.

→˓-----------
Coalesce Equal (https://exakat.readthedocs.io/en/latest/Reference/Rules.html#php-
→˓coalesceequal)

(continues on next page)

16.3. List of Reports 2291

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition

Exakat Documentation, Release 1

(continued from previous page)

→˓-----------
/src/Bridges/Tracy/BlueScreenPanel.php:25 $blueScreen ??= Tracy\
→˓Debugger::getBlueScreen()
/src/Bridges/Tracy/LattePanel.php:32 $bar ??= Tracy\
→˓Debugger::getBar()
/src/Latte/Compiler/Lexer.php:371 $type ??= $this->
→˓defaultSyntax
/src/Latte/Compiler/Nodes/FragmentNode.php:38 $this->line ??= $node->line
/src/Latte/Compiler/Parser.php:723 $layer ??= $this->layer
/src/Latte/Compiler/PhpWriter.php:137 $uniq ??= '$' .␣
→˓bin2hex(random_bytes(5))
/src/Latte/Compiler/PhpWriter.php:194 $tokens ??= $this->tokens
/src/Latte/Extensions/Blueprint.php:83 $native ??= (PHP_VERSION_
→˓ID >= 70400)
/src/Latte/Extensions/Filters.php:52 $info->contentType ??=
→˓'html'
/src/Latte/Runtime/Template.php:340 $block ??= new Block
/src/Latte/Runtime/Template.php:399 $destId ??= $staticId

→˓-----------

→˓-----------
Const Visibility Usage (https://exakat.readthedocs.io/en/latest/Reference/Rules.html
→˓#classes-constvisibilityusage)

→˓-----------
/src/Latte/Compiler/Lexer.php:26 public const RE_STRING = '\
→˓'(?:\\\\.|[^\'\\\\])*+\'|"(?:\\\\.|[^"\\\\])*+"'
/src/Latte/Compiler/Lexer.php:29 public const RE_TAG_NAME =
→˓'[a-zA-Z][a-zA-Z0-9:_.-]*'
/src/Latte/Compiler/Lexer.php:30 public const RE_VALUE_NAME␣
→˓= '[^\p{C} "\'<>=`/{}]+'
/src/Latte/Compiler/Lexer.php:31 public const RE_INDENT =
→˓'((?<=\n|^)[\t]+)?'
/src/Latte/Compiler/Lexer.php:34 public const N_PREFIX = 'n:
→˓'
/src/Latte/Compiler/Lexer.php:37 public const STATE_PLAIN_
→˓TEXT = 'statePlain', STATE_HTML_TEXT = 'stateHtmlText'
/src/Latte/Compiler/MacroTokens.php:18 public const T_WHITESPACE␣
→˓= 1, T_COMMENT = 2, T_SYMBOL = 3, T_NUMBER = 4, T_VARIABLE = 5, T_STRING = 6, T_CAST =␣
→˓7, T_KEYWORD = 8, T_CHAR = 9
/src/Latte/Compiler/MacroTokens.php:29 public const SIGNIFICANT =␣
→˓[self::T_SYMBOL, self::T_NUMBER, self::T_VARIABLE, self::T_STRING, self::T_CAST,␣
→˓self::T_KEYWORD, self::T_CHAR], NON_SIGNIFICANT = [self::T_COMMENT, self::T_WHITESPACE]
/src/Latte/Compiler/NodeTraverser.php:15 public const DONT_TRAVERSE_
→˓CHILDREN = 1
/src/Latte/Compiler/NodeTraverser.php:16 public const STOP_
→˓TRAVERSAL = 2
/src/Latte/Compiler/Parser.php:30 public const LOCATION_HEAD␣

(continues on next page)

2292 Chapter 16. Reports

Exakat Documentation, Release 1

(continued from previous page)

→˓= 1, LOCATION_TEXT = 2, LOCATION_TAG = 3
/src/Latte/Compiler/Tag.php:25 public const PREFIX_INNER␣
→˓= 'inner', PREFIX_TAG = 'tag', PREFIX_NONE = ''
/src/Latte/Compiler/Token.php:20 public const TEXT = 'text'
/src/Latte/Compiler/Token.php:21 public const WHITESPACE =
→˓'whitespace'
/src/Latte/Compiler/Token.php:22 public const SLASH = 'slash
→˓'
/src/Latte/Compiler/Token.php:23 public const EQUALS =
→˓'equals'
/src/Latte/Compiler/Token.php:24 public const QUOTE = 'quote
→˓'
/src/Latte/Compiler/Token.php:26 public const LATTE_TAG_
→˓OPEN = 'latteTagOpen'
/src/Latte/Compiler/Token.php:27 public const LATTE_TAG_END␣
→˓= 'latteTagEnd'
/src/Latte/Compiler/Token.php:28 public const LATTE_NAME =
→˓'latteName'
/src/Latte/Compiler/Token.php:29 public const LATTE_ARGS =
→˓'latteArgs'
/src/Latte/Compiler/Token.php:30 public const LATTE_COMMENT_
→˓OPEN = 'latteCommentOpen'
/src/Latte/Compiler/Token.php:31 public const LATTE_COMMENT_
→˓CLOSE = 'latteCommentClose'
/src/Latte/Compiler/Token.php:33 public const HTML_TAG_OPEN␣
→˓= 'htmlTagOpen'
/src/Latte/Compiler/Token.php:34 public const HTML_TAG_
→˓CLOSE = 'htmlTagClose'
/src/Latte/Compiler/Token.php:35 public const HTML_COMMENT_
→˓OPEN = 'htmlCommentOpen'
/src/Latte/Compiler/Token.php:36 public const HTML_COMMENT_
→˓CLOSE = 'htmlCommentClose'
/src/Latte/Compiler/Token.php:37 public const HTML_BOGUS_
→˓TAG_OPEN = 'htmlBogusTagOpen'
/src/Latte/Compiler/Token.php:38 public const HTML_NAME =
→˓'htmlName'
/src/Latte/Compiler/Tokenizer.php:25 public const VALUE = 0,␣
→˓OFFSET = 1, TYPE = 2
/src/Latte/Context.php:19 public const TEXT = 'text',
→˓ HTML = 'html', XML = 'xml', JS = 'js', CSS = 'css', ICAL = 'ical'
/src/Latte/Context.php:27 public const HTML_TEXT =␣
→˓null, HTML_COMMENT = 'Comment', HTML_BOGUSTAG = 'Bogus', HTML_CSS = 'Css', HTML_JS =
→˓'Js', HTML_TAG = 'Tag', HTML_ATTRIBUTE = 'Attr', HTML_ATTRIBUTE_JS = 'AttrJs', HTML_
→˓ATTRIBUTE_CSS = 'AttrCss', HTML_ATTRIBUTE_URL = 'AttrUrl', HTML_ATTRIBUTE_UNQUOTED =
→˓'Unquoted'
/src/Latte/Context.php:40 public const XML_TEXT =␣
→˓null, XML_COMMENT = 'Comment', XML_BOGUSTAG = 'Bogus', XML_TAG = 'Tag', XML_ATTRIBUTE␣
→˓= 'Attr'
/src/Latte/Engine.php:20 public const VERSION = '3.
→˓0.0-dev'
/src/Latte/Engine.php:21 public const VERSION_ID =␣
→˓30000

(continues on next page)

16.3. List of Reports 2293

Exakat Documentation, Release 1

(continued from previous page)

/src/Latte/Engine.php:24 public const CONTENT_HTML␣
→˓= Context::HTML, CONTENT_XML = Context::XML, CONTENT_JS = Context::JS, CONTENT_CSS =␣
→˓Context::CSS, CONTENT_ICAL = Context::ICAL, CONTENT_TEXT = Context::TEXT
/src/Latte/Runtime/SnippetDriver.php:23 public const TYPE_STATIC =
→˓'static', TYPE_DYNAMIC = 'dynamic', TYPE_AREA = 'area'
/src/Latte/Runtime/Template.php:24 public const LAYER_TOP = 0,
→˓ LAYER_SNIPPET = 'snippet', LAYER_LOCAL = 'local'
/src/Latte/Runtime/Template.php:29 protected const CONTENT_
→˓TYPE = Latte\Context::HTML
/src/Latte/Runtime/Template.php:31 protected const BLOCKS = [␣
→˓]
/src/Latte/Sandbox/SecurityPolicy.php:22 public const ALL = ['*']
/src/Latte/exceptions.php:45 public const MESSAGES =␣
→˓[PREG_INTERNAL_ERROR => 'Internal error', PREG_BACKTRACK_LIMIT_ERROR => 'Backtrack␣
→˓limit was exhausted', PREG_RECURSION_LIMIT_ERROR => 'Recursion limit was exhausted',␣
→˓PREG_BAD_UTF8_ERROR => 'Malformed UTF-8 data', PREG_BAD_UTF8_OFFSET_ERROR => 'Offset␣
→˓didn\'t correspond to the begin of a valid UTF-8 code point', 6 => 'Failed due to␣
→˓limited JIT stack space',]

→˓-----------

→˓-----------
Generator Cannot Return (https://exakat.readthedocs.io/en/latest/Reference/Rules.html
→˓#functions-generatorcannotreturn)

→˓-----------
/src/Latte/Compiler/Lexer.php:321 private function␣
→˓match(string $re) : \Generator { /**/ }
/src/Latte/Compiler/Node.php:21 public function &
→˓getIterator() : \Generator { /**/ }
/src/Latte/Extensions/CoreExtension.php:229 public function␣
→˓parseSyntax(Tag $tag, Parser $parser) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/BlockNode.php:37 public static function␣
→˓parse(Tag $tag, Parser $parser) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/CaptureNode.php:33 public static function␣
→˓parse(Tag $tag) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/DefineNode.php:36 public static function␣
→˓parse(Tag $tag, Parser $parser) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/EmbedNode.php:38 public static function␣
→˓parse(Tag $tag, Parser $parser) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/FirstLastSepNode.php:36 public static function␣
→˓parse(Tag $tag) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/ForNode.php:31 public static function␣
→˓parse(Tag $tag) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/ForeachNode.php:37 public static function␣
→˓parse(Tag $tag) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/IfChangedNode.php:32 public static function␣
→˓parse(Tag $tag) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/IfContentNode.php:33 public static function␣
→˓parse(Tag $tag, Parser $parser) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/IfNode.php:40 public static function␣

(continues on next page)

2294 Chapter 16. Reports

Exakat Documentation, Release 1

(continued from previous page)

→˓parse(Tag $tag, Parser $parser) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/IterateWhileNode.php:34 public static function␣
→˓parse(Tag $tag) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/SnippetAreaNode.php:36 public static function␣
→˓parse(Tag $tag, Parser $parser) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/SnippetNode.php:41 public static function␣
→˓parse(Tag $tag, Parser $parser) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/SpacelessNode.php:30 public static function␣
→˓parse(Tag $tag) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/SwitchNode.php:32 public static function␣
→˓parse(Tag $tag) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/TranslateNode.php:34 public static function␣
→˓parse(Tag $tag, Parser $parser) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/TryNode.php:30 public static function␣
→˓parse(Tag $tag) : \Generator { /**/ }
/src/Latte/Extensions/Nodes/WhileNode.php:32 public static function␣
→˓parse(Tag $tag) : \Generator { /**/ }

→˓-----------

→˓-----------
List Short Syntax (https://exakat.readthedocs.io/en/latest/Reference/Rules.html#php-
→˓listshortsyntax)

→˓-----------
/src/Latte/Compiler/Parser.php:311 [$prevDepth, $this->
→˓htmlDepth]
/src/Latte/Compiler/Parser.php:644 [$gen, $line]
/src/Latte/Compiler/PhpHelpers.php:35 [$name, $token]
/src/Latte/Compiler/PhpWriter.php:85 [, $l, $source, $format,
→˓$cond, $r]
/src/Latte/Compiler/PhpWriter.php:865 [$contentType, $context,
→˓$flag]
/src/Latte/Compiler/PhpWriter.php:866 [$lq, $rq]
/src/Latte/Compiler/Tokenizer.php:76 [$line, $col]
/src/Latte/Extensions/CoreExtension.php:233 [$inner]
/src/Latte/Extensions/CoreExtension.php:247 [$name, $mod]
/src/Latte/Extensions/Nodes/BlockNode.php:40 [$name, $local]
/src/Latte/Extensions/Nodes/BlockNode.php:53 [$node->content]
/src/Latte/Extensions/Nodes/CaptureNode.php:42 [$node->content]
/src/Latte/Extensions/Nodes/DefineNode.php:39 [$name, $local]
/src/Latte/Extensions/Nodes/DefineNode.php:49 [$node->content]
/src/Latte/Extensions/Nodes/EmbedNode.php:43 [$node->name, $mode]
/src/Latte/Extensions/Nodes/EmbedNode.php:50 [$node->blocks]
/src/Latte/Extensions/Nodes/FirstLastSepNode.php:51 [$node->then, $nextTag]
/src/Latte/Extensions/Nodes/FirstLastSepNode.php:54 [$node->else]
/src/Latte/Extensions/Nodes/ForNode.php:36 [$node->content]
/src/Latte/Extensions/Nodes/ForeachNode.php:57 [$node->content, $nextTag]
/src/Latte/Extensions/Nodes/ForeachNode.php:60 [$node->else]
/src/Latte/Extensions/Nodes/IfChangedNode.php:43 [$node->then, $nextTag]

(continues on next page)

16.3. List of Reports 2295

Exakat Documentation, Release 1

(continued from previous page)

/src/Latte/Extensions/Nodes/IfChangedNode.php:46 [$node->else]
/src/Latte/Extensions/Nodes/IfContentNode.php:38 [$node->content]
/src/Latte/Extensions/Nodes/IfNode.php:158 [$name, $block]
/src/Latte/Extensions/Nodes/IfNode.php:54 [$node->then, $nextTag]
/src/Latte/Extensions/Nodes/IfNode.php:61 [$node->else, $nextTag]
/src/Latte/Extensions/Nodes/IncludeBlockNode.php:40 [$name]
/src/Latte/Extensions/Nodes/IncludeFileNode.php:37 [$node->file]
/src/Latte/Extensions/Nodes/IterateWhileNode.php:49 [$node->content, $nextTag]
/src/Latte/Extensions/Nodes/SnippetAreaNode.php:44 [$node->content]
/src/Latte/Extensions/Nodes/SnippetNode.php:85 [$node->content]
/src/Latte/Extensions/Nodes/SpacelessNode.php:34 [$node->content]
/src/Latte/Extensions/Nodes/SwitchNode.php:109 [&$case, &$stmt]
/src/Latte/Extensions/Nodes/SwitchNode.php:43 [$content, $nextTag]
/src/Latte/Extensions/Nodes/SwitchNode.php:55 [$content, $nextTag]
/src/Latte/Extensions/Nodes/SwitchNode.php:63 [$content, $nextTag]
/src/Latte/Extensions/Nodes/SwitchNode.php:82 [$condition, $stmt]
/src/Latte/Extensions/Nodes/TranslateNode.php:48 [$node->content]
/src/Latte/Extensions/Nodes/TryNode.php:40 [$node->try, $nextTag]
/src/Latte/Extensions/Nodes/TryNode.php:43 [$node->else]
/src/Latte/Extensions/Nodes/WhileNode.php:41 [$node->content, $nextTag]
/src/Latte/Runtime/FilterExecutor.php:119 [$callback, $aware]
/src/Latte/Runtime/FilterExecutor.php:67 [$callback, $aware]
/src/Latte/Runtime/SnippetDriver.php:76 [$name, $obStarted]
/src/Latte/Runtime/Template.php:402 [$method, $contentType]

→˓-----------

Specs

Short name Perfule
Rulesets This reports works with an arbitrary list of results.
Type Text
Target This report is written in ‘stdout’.
Available in Entreprise Edition

16.3.37 PhpCompilation

PhpCompilation

The PhpCompilation suggests a list of compilation directives when compiling the PHP binary, tailored for the code

PhpCompilation bases its selection on the code and its usage of features. PhpCompilation also recommends disabling
unused standard extensions : this helps reducing the footprint of the binary, and prevents unused features to be available
for intrusion. PhpCompilation is able to detects over 150 PHP extensions.

;;;;;;;;;;;;;;;;;;;;;;;;;;
; Suggestion for php.ini ;
;;;;;;;;;;;;;;;;;;;;;;;;;;

(continues on next page)

2296 Chapter 16. Reports

https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

(continued from previous page)

; The directives below are selected based on the code provided.
; They only cover the related directives that may have an impact on the code
;
; The list may not be exhaustive
; The suggested values are not recommendations, and should be reviewed and adapted
;

[date]
; It is not safe to rely on the system's timezone settings. Make sure the
; directive date.timezone is set in php.ini.
date.timezone = Europe/Amsterdam

[pcre]
; More information about pcre :
;http://php.net/manual/en/pcre.configuration.php

[standard]
; This sets the maximum amount of memory in bytes that a script is allowed to
; allocate. This helps prevent poorly written scripts for eating up all available
; memory on a server. It is recommended to set this as low as possible and avoid
; removing the limit.
memory_limit = 120

; This sets the maximum amount of time, in seconds, that a script is allowed to
; run. The lower the value, the better for the server, but also, the better has
; the script to be written. Avoid really large values that are only useful for
; admin, and set them per directory.
max_execution_time = 90

; Exposes to the world that PHP is installed on the server. For security reasons,
; it is better to keep this hidden.
expose_php = Off

; This determines whether errors should be printed to the screen as part of the
; output or if they should be hidden from the user.
display_errors = Off

; Set the error reporting level. Always set this high, so as to have the errors
; reported, and logged.
error_reporting = E_ALL

; Always log errors for future use
log_errors = On

; Name of the file where script errors should be logged.
error_log = Name of a writable file, suitable for logging.

(continues on next page)

16.3. List of Reports 2297

Exakat Documentation, Release 1

(continued from previous page)

; More information about standard :
;http://php.net/manual/en/info.configuration.php

; Name of the file where script errors should be logged.
disable_functions = curl_init,ftp_connect,ftp_ssl_connect,ldap_connect,mail,mysqli_
→˓connect,mysqli_pconnect,pg_connect,pg_pconnect,socket_create,socket_accept,socket_
→˓connect,socket_listen
disable_classes = mysqli

Specs

Short name PhpCompilation
Rulesets Appinfo.
Type Text
Target This report is written in ‘compilePHP.txt’.
Available in Entreprise Edition

16.3.38 PhpConfiguration

PhpConfiguration

The PhpConfiguration suggests a list of directives to check when setting up the hosting server, tailored for the code

PhpConfiguration bases its selection on the code, and classic recommendations. For example, memory_limit or ex-
pose_php are always reported, though they have little impact in the code. Extensions also get a short list of important
directive, and offer a link to the documentation for more documentation.

;;;;;;;;;;;;;;;;;;;;;;;;;;
; Suggestion for php.ini ;
;;;;;;;;;;;;;;;;;;;;;;;;;;

; The directives below are selected based on the code provided.
; They only cover the related directives that may have an impact on the code
;
; The list may not be exhaustive
; The suggested values are not recommendations, and should be reviewed and adapted
;

[date]
; It is not safe to rely on the system's timezone settings. Make sure the
; directive date.timezone is set in php.ini.
date.timezone = Europe/Amsterdam

[pcre]
; More information about pcre :
;http://php.net/manual/en/pcre.configuration.php

(continues on next page)

2298 Chapter 16. Reports

https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

(continued from previous page)

[standard]
; This sets the maximum amount of memory in bytes that a script is allowed to
; allocate. This helps prevent poorly written scripts for eating up all available
; memory on a server. It is recommended to set this as low as possible and avoid
; removing the limit.
memory_limit = 120

; This sets the maximum amount of time, in seconds, that a script is allowed to
; run. The lower the value, the better for the server, but also, the better has
; the script to be written. Avoid really large values that are only useful for
; admin, and set them per directory.
max_execution_time = 90

; Exposes to the world that PHP is installed on the server. For security reasons,
; it is better to keep this hidden.
expose_php = Off

; This determines whether errors should be printed to the screen as part of the
; output or if they should be hidden from the user.
display_errors = Off

; Set the error reporting level. Always set this high, so as to have the errors
; reported, and logged.
error_reporting = E_ALL

; Always log errors for future use
log_errors = On

; Name of the file where script errors should be logged.
error_log = Name of a writable file, suitable for logging.

; More information about standard :
;http://php.net/manual/en/info.configuration.php

; Name of the file where script errors should be logged.
disable_functions = curl_init,ftp_connect,ftp_ssl_connect,ldap_connect,mail,mysqli_
→˓connect,mysqli_pconnect,pg_connect,pg_pconnect,socket_create,socket_accept,socket_
→˓connect,socket_listen
disable_classes = mysqli

16.3. List of Reports 2299

Exakat Documentation, Release 1

Specs

Short name PhpConfiguration
Rulesets Appinfo.
Type Text
Target This report is written in ‘php.suggested.ini-dist’.
Available in Entreprise Edition

16.3.39 Phpcity

Phpcity

The Phpcity report represents your code as a city.

Phpcity is a code visualisation tool : it displays the source code as a city, with districts and buildings. Ther will be high
sky crappers, signaling large classes, entire districts of small blocks, large venues and isolated parks. Some imagination
is welcome too.

The original idea is Richard Wettel’s Code city, which has been adapted to many languages, including PHP. The PHP
version is based on the open source PHPcity project, which is itself build with JScity.

To use this tool, run an exakat audit, then generate the ‘PHPcity’ report : php exakat.phar report -p mycode -format
PHPcity -v

This generates the exakat.phpcity.json file, in the projects/mycode/ folder.

You may test your own report online, at Adrian Huna’s website, by uploading the results and seeing it live immediately.

Or, you can install the PHPcity application, and load it locally.

Reference/images/report.phpcity.png

Specs

Short name Phpcity
Rulesets Phpcity doesn’t depend on rulesets.
Type JSON
Target This report is written in ‘exakat.phpcity.json’.
Available in Entreprise Edition

2300 Chapter 16. Reports

https://www.exakat.io/entreprise-edition
https://wettel.github.io/codecity.html
https://github.com/adrianhuna/PHPCity
https://github.com/ASERG-UFMG/JSCity/wiki/JSCITY
https://github.com/adrianhuna
https://adrianhuna.github.io/PHPCity/
https://github.com/adrianhuna/PHPCity
https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

16.3.40 Phpcsfixer

Phpcsfixer

The Phpcsfixer report provides a configuration file for php-cs-fixer, that automatically fixes issues found in related
analysis in exakat.

This report builds a configuration file for php-cs-fixer.

• Use === null : is_null
• Else If Versus Elseif : elseif
• Multiple Unset() : combine_consecutive_unsets
• Classes/DontUnsetProperties: no_unset_on_property
• Use Constant Instead Of Function : function_to_constant
• PHP7 Dirname : combine_nested_dirname
• Could Use __DIR__ : dir_constant
• Isset Multiple Arguments : combine_consecutive_issets
• Logical Should Use Symbolic Operators : logical_operators
• Not Not : no_short_bool_cast

PHP-cs-fixer is a tool to automatically fix PHP Coding Standards issues. Some of the modifications are more than
purely coding standards, such has replacing dirname(dirname($path)) with dirname($path, 2).

Exakat builds a configuration file for php-cs-fixer, that will automatically fix a number of results from the audit. Here
is the process :

• Run exakat audit

• Get Phpcsfixer report from exakat : php exakat.phar report -p <project> -format Phpcsfixer

• Update the target repository in the generated code

• Save this new configuration in a file called ‘.php_cs’

• Run php-cs-fixer on your code : php php-cs-fixer.phar fix /path/to/code --dry-run

• Fixed your code with php-cs-fixer : php php-cs-fixer.phar fix /path/to/code

• Run a new exakat audit

This configuration file should be reviewed before being used. In particular, the target files should be updated with the
actual repository : this is the first part of the configuration.

It is also recommended to use the option ‘–dry-run’ with php-cs-fixer to check the first run.

Php-cs-fixer runs fixes for coding standards : this reports focuses on potential fixes. It is recommended to complete
this base report with extra coding conventions fixes. The building of a coding convention is outside the scope of this
report.

Exakat may find different issues than php-cs-fixer : using this report reduces the number of reported issues, but may
leave some issues unsolved. In that case, manual fixing is recommended.

16.3. List of Reports 2301

https://github.com/FriendsOfPHP/PHP-CS-Fixer

Exakat Documentation, Release 1

Specs

Short name Phpcsfixer
Rulesets php-cs-fixable.
Type JSON
Target This report is written in ‘phpcsfixer.exakat.php’.
Available in Entreprise Edition

16.3.41 PlantUml

PlantUml

The PlantUml export data structure to PlantUml format.

This report produces a .puml file, compatible with PlantUML.

PlantUML is an Open Source component that dislays class diagrams.

Reference/images/report.plantuml.png

Specs

Short name PlantUml
Rulesets PlantUml doesn’t depend on rulesets.
Type puml
Target This report is written in ‘exakat.puml’.
Available in Entreprise Edition

16.3.42 PublicAccess

PublicAccess

This report is a map on how to access private methods from public methods.

The Public Access report displays a map that show how to reach private methods by calling.

Public methods are in green, protected methods are in orange and private methods are in red.

When creating tests for a class, it is often difficult to find the various ways to hit a private method, and, as such, test it.

This map is built by find all internal calls within a class. Those calls are not systematically made, as conditions may
apply. Yet, the map show all possible ways to reach a method, starting from a public one.

2302 Chapter 16. Reports

https://www.exakat.io/entreprise-edition
http://plantuml.com/
https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

Reference/images/publicaccess.png

Specs

Short name PublicAccess
Rulesets PublicAccess doesn’t depend on rulesets.
Type Dot
Target This report is written in ‘exakat.publicaccess’.
Available in Entreprise Edition

16.3.43 RadwellCode

RadwellCode

The RadwellCode is a report based on Oliver Radwell’s [PHP Do And Don’t](https://blog.radwell.codes/2016/11/
php-dos-donts-aka-programmers-dont-like/).

Note that all rules are not implemented, especially the ‘coding conventions’ ones, as this is beyond the scope of this
tool.

/Phrozn/Vendor/Extra/scss.inc.php:594 Slow PHP built-in functions
/Phrozn/Vendor/Extra/scss.inc.php:2554 Too many nested if statements
/Phrozn/Vendor/Extra/scss.inc.php:1208 Long if-else blocks
/Phrozn/Vendor/Extra/scss.inc.php:1208 Too many nested if statements
/Phrozn/Vendor/Extra/scss.inc.php:3935 Wrong function / class name casing
/Phrozn/Vendor/Extra/scss.inc.php:3452 Too many nested if statements
/Phrozn/Site/View/OutputPath/Entry/Parametrized.php:58 Slow PHP built-in functions
/Phrozn/Runner/CommandLine/Callback/Init.php:82 Extra brackets and braces and quotes

Specs

Short name RadwellCode
Rulesets RadwellCodes.
Type Text
Target This report is written in ‘radwell.txt’.
Available in Entreprise Edition

16.3. List of Reports 2303

https://www.exakat.io/entreprise-edition
https://blog.radwell.codes/2016/11/php-dos-donts-aka-programmers-dont-like/
https://blog.radwell.codes/2016/11/php-dos-donts-aka-programmers-dont-like/
https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

16.3.44 Rector

Rector

Suggest configuration for Rector refactoring tool.

The Rector report is a helper report for Tomas Votruba’s Rector tool.

Some issues spotted by Exakat may be fixed automagically by Rector. Rector offers more than 550 (and counting)
rules, that may save countless hours of work.

For example, CombinedAssignRector, simplifies $value = $value + 5 into +$value += 5;. On Exakat, the rule
Structures/CouldUseShortAssignation spot those too.

Not all exakat rules are covered by Rector, and vice-versa. CompactToVariablesRector aims at skipping usage of
compact(), while Structures/CouldUseCompact suggest the contrary.

Rector and Exakat both use different approaches to code review. It is recommended to review the changes before
committing them.

Check RectorPHP website, its rector github repository, and Tomas Votruba account.

Add this to your rector.yaml file
At the root of the source to be analyzed
Generated on 2021-10-14 04:15:14, by Exakat (2.2.3- build 1255)

services:
Rector\CodeQuality\Rector\If_\ShortenElseIfR
Rector\CodeQuality\Rector\Concat\JoinStringConcatRector

Specs

Short name Rector
Rulesets Rector.
Type Text
Target This report is written in ‘rector.exakat.yaml’.
Available in Entreprise Edition

16.3.45 Sarb

Sarb

The Sarb report is a compatibility report with SARB

SARB is the Static Analysis Results Baseliner. SARB is used to create a baseline of these results. As work on the
project progresses SARB can takes the latest static analysis results, removes those issues in the baseline and report the
issues raised since the baseline. SARB does this, in conjunction with git, by tracking lines of code between commits.
SARB is the brainchild of Dave Liddament.

[
{

"type": "Classes\/NonPpp",
"file": "\/home\/exakat\/elation\/code\/include\/base_class.php",

(continues on next page)

2304 Chapter 16. Reports

https://twitter.com/VotrubaT
https://getrector.org/
https://github.com/rectorphp/rector/blob/master/docs/AllRectorsOverview.md#combinedassignrector
(https://exakat.readthedocs.io/en/latest/Rules.html#could-use-short-assignation
https://github.com/rectorphp/rector/blob/master/docs/AllRectorsOverview.md#compacttovariablesrector
https://exakat.readthedocs.io/en/latest/Rules.html#could-use-compact
https://getrector.org/
https://github.com/rectorphp/rector
https://twitter.com/VotrubaT
https://www.exakat.io/entreprise-edition
https://github.com/DaveLiddament/sarb
https://twitter.com/DaveLiddament

Exakat Documentation, Release 1

(continued from previous page)

"line": 37
},
{

"type": "Structures\/NoSubstrOne",
"file": "\/home\/exakat\/elation\/code\/include\/common_funcs.php",
"line": 890

},
{

"type": "Structures\/DropElseAfterReturn",
"file": "\/home\/exakat\/elation\/code\/include\/smarty\/SmartyValidate.class.php

→˓",
"line": 638

},
{

"type": "Variables\/UndefinedVariable",
"file": "\/home\/exakat\/elation\/code\/components\/ui\/ui.php",
"line": 174

},
{

"type": "Functions\/TooManyLocalVariables",
"file": "\/home\/exakat\/elation\/code\/include\/dependencymanager_class.php",
"line": 43

}
]

Specs

Short name Sarb
Rulesets This reports works with an arbitrary list of results.
Type Json
Target This report is written in ‘exakat.sarb.json’.
Available in Entreprise Edition

16.3.46 Sarif

Sarif

The SARIF report publishes the results in SARIF format.

Static Analysis Results Interchange Format (SARIF) a standard format for the output of static analysis tools. The format
is referred to as the “Static Analysis Results Interchange Format” and is abbreviated as SARIF.

SARIF is a flexible JSON format, that describes in details the rules, the issues and their context.

More details are available at sarifweb and SARIF support for code scanning at Github.

16.3. List of Reports 2305

https://www.exakat.io/entreprise-edition
https://docs.oasis-open.org/sarif/sarif/v2.0/sarif-v2.0.html
https://sarifweb.azurewebsites.net/
https://docs.github.com/en/github/finding-security-vulnerabilities-and-errors-in-your-code/sarif-support-for-code-scanning

Exakat Documentation, Release 1

Reference/images/report.sarif.png

Specs

Short name Sarif
Rulesets This reports works with an arbitrary list of results.
Type Json
Target This report is written in ‘exakat.json’.
Available in Entreprise Edition, Community Edition

16.3.47 SimpleTable

SimpleTable

The Simpletable is a simple table presentation.

Simpletable is suitable for any list of results provided by exakat. It is inspired from the Clang report. The result is a
HTML file, with Javascript and CSS.

Reference/images/report.simpletable.png

Specs

Short name SimpleTable
Rulesets SimpleTable doesn’t depend on rulesets.
Type HTML
Target This report is written in ‘table’.
Available in Entreprise Edition

2306 Chapter 16. Reports

https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

16.3.48 Sonarcube

Sonarcube

The SonarCube is a generic format of Sonar Cube.

Generic issue import format allows the upload of external analysis into Sonar Cube.

See also Importing third-party issues.

Reference/images/report.sonarcube.png

Specs

Short name Sonarcube
Rulesets This reports works with an arbitrary list of results.
Type Json
Target This report is written in ‘exakat.sonarcube’.
Available in Entreprise Edition

16.3.49 Stats

Stats

The Stats report collects various stats about the code.

Stats reports PHP structures definition, like class, interfaces, variables, and also features, like operator, control flow
instructions, etc.

{
"Summary": {

"Namespaces": 82,
"Classes": 59,
"Interfaces": 29,
"Trait": 0,
"Functions": 0,
"Variables": 4524,
"Constants": 0

},
"Classes": {

"Classes": 59,
"Class constants": 10,
"Properties": 140,
"Methods": 474

},
"Structures": {

"Ifthen": 568,
(continues on next page)

16.3. List of Reports 2307

https://docs.sonarqube.org/9.6/analyzing-source-code/importing-external-issues/generic-issue-import-format/
https://docs.sonarqube.org/9.6/analyzing-source-code/importing-external-issues/importing-third-party-issues/
https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

(continued from previous page)

"Else": 76,
"Switch": 15,
"Case": 62,
"Default": 9,
"Fallthrough": 0,
"For": 5,
"Foreach": 102,
"While": 21,
"Do..while": 0,
"New": 106,
"Clone": 0,
"Class constant call": 34,
"Method call": 1071,
"Static method call": 52,
"Properties usage": 0,
"Static property": 65,
"Throw": 35,
"Try": 12,
"Catch": 12,
"Finally": 0,
"Yield": 0,
"Yield From": 0,
"? :": 60,
"?: ": 2,
"Variables constants": 0,
"Variables variables": 7,
"Variables functions": 1,
"Variables classes": 5

}
}

Specs

Short name Stats
Rulesets Stats.
Type JSON
Target This report is written in ‘exakat.stat.json’.
Available in Entreprise Edition

16.3.50 Stubs

Stubs

Stubs produces a skeleton from the source code, with all defined structures : constants, functions, classes, interfaces,
traits and namespaces.

Stubs takes the original code, and export all defined structures (constants, functions, classes, interfaces, traits and
namespaces) in a single and compilable PHP file.

This is convenient for tools that requires documentations for completion, such as IDE.

2308 Chapter 16. Reports

https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

Constants are exported with their values, properties too. Methods hold their full signature.

The resulting report is in one file, called stubs.php.

Reference/images/report.stubs.png

Specs

Short name Stubs
Rulesets Stubs doesn’t depend on rulesets.
Type PHP
Target This report is written in ‘stubs.php’.
Available in Entreprise Edition

16.3.51 StubsJson

StubsJson

StubsJson produces a complete description of definitions from the code.

StubsJson produces a complete description of definitions from the code.

• Global variables

• Functions

• Constants

• Classes + constants + properties + methods

• Interfaces + constants + methods

• Traits + properties + methods

Reference/images/report.stubs.json.png

16.3. List of Reports 2309

https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

Specs

Short name StubsJson
Rulesets StubsJson doesn’t depend on rulesets.
Type JSON
Target This report is written in ‘stubs.ini’.
Available in Entreprise Edition

16.3.52 Text

Text

The Text report is a very simple text format.

The Text report displays one result per line, with the following format :

/path/from/project/root/to/file:line[space]name of analysis

This format is fast, and fitted for machine communications.

/classes/test.php:1002 Php/ShouldUseFunction Should Use Function array_
→˓values(array_unique(array_merge($classTags, $annotations['tags'])))
/classes/test.php:1002 Php/ShouldUseFunction Should Use Function array_merge(
→˓$classTags, $annotations['tags'])
/classes/test.php:1005 Structures/NoArrayUnique Avoid array_unique() ␣
→˓array_unique(array_merge($classTags, $this->testMethods[$testMethodName]['tags']))
/classes/test.php:1005 Performances/SlowFunctions Slow Functions array_
→˓unique(array_merge($classTags, $this->testMethods[$testMethodName]['tags']))

Specs

Short name Text
Rulesets This reports works with an arbitrary list of results.
Type Text
Target This report is written to the standard output.
Available in Entreprise Edition, Community Edition

16.3.53 Top10

Top10

The top 10 is the companion report for the ‘Top 10 classic PHP traps’ presentation.

The Top 10 report is based on the ‘Top 10 classic PHP traps’ presentation. You can run it on your code and check
immediately where those classic traps are waiting for you. Read the whole presentation online

2310 Chapter 16. Reports

https://www.exakat.io/entreprise-edition
https://www.exakat.io/entreprise-edition
https://www.exakat.io/community-edition
https://www.exakat.io/top-10-php-classic-traps/

Exakat Documentation, Release 1

Reference/images/report.top10.png

Reference/images/report.top10.png

Specs

Short name Top10
Rulesets Top10.
Type HTML
Target This report is written in ‘top10’.
Available in Entreprise Edition

16.3.54 Topology Order

Topology Order

This represents a topological order in the code.

Topology displays all dependencies between code structures. Such dependencies lead to a code hierarchy, which is
presented here.

There are currently two topology available:

• Typehint Order : it represents the order in which classes are organized, based on argument and return type.

• New Order : it represents the order in which classes are instantiated, with new.

Reference/images/report.topology.png

Reference/images/report.topology.typehints.png

16.3. List of Reports 2311

https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

Specs

Short name Topology Order
Rulesets Topology Order doesn’t depend on rulesets.
Type DOT
Target This report is written in ‘exakat.topology.dot’.
Available in Entreprise Edition

16.3.55 TypeChecks

TypeChecks

The TypeChecks report focuses on reviewing type usage.

The TypeChecks report focuses on usage and good usage of types.

It checks the presence of types, suggests possible types, and check the systemic organisation of the types.

Reference/images/report.typehint.png

Specs

Short name TypeChecks
Rulesets TypeChecks.
Type HTML
Target This report is written in ‘typechecks’.
Available in Entreprise Edition

16.3.56 TypeSuggestion

TypeSuggestion

The TypeSuggestion report provides suggestions to add typehints to methods and properties.

The TypeSuggestion offers suggestions to add typehints to methods and properties.

It provides its suggestion based on the way the code is implemented : by usage or by calling.

Type usage is the way a typed container is use later. For example, an argument that is used later with the array syntax
$x['a'] or as an object ``$x->b``will receive a suggestion for using array or object.

Type calling is the way the typed container is assigned. For example, a property may receive integer or boolean during
assignations : they will receive such suggestions.

Not all types can be guessed : for example, a property may simply hold a value, for later use, such as in a cache system.
In such situation, no type is suggested.

2312 Chapter 16. Reports

https://www.exakat.io/entreprise-edition
https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

mixed is not used as suggestion : rather a list of possible types is offered, and it may be upgraded to mixed.

This report is ready for PHP 8.0 : the suggestions may be combined together, and multiples suggestions are possible.

Reference/images/report.typesuggestion.png

Specs

Short name TypeSuggestion
Rulesets TypeChecks.
Type HTML
Target This report is written in ‘typehint.suggestion.html’.
Available in Entreprise Edition

16.3.57 Uml

Uml

The Uml exports data structure to UML format.

This report produces a dot file with a representation of the classes used in the repository.

Classes, interfaces and traits are represented, along with their constants, methods and properties.

.dot files are best seen with graphviz : they are easily convert into PNG or PDF.

Reference/images/report.uml.general.png

Reference/images/report.uml.detail.png

16.3. List of Reports 2313

https://www.exakat.io/entreprise-edition
http://www.graphviz.org/

Exakat Documentation, Release 1

Specs

Short name Uml
Rulesets This reports works with an arbitrary list of results.
Type dot
Target This report is written in ‘exakat.uml.dot’.
Available in Entreprise Edition

16.3.58 Unused

Unused

Unused lists unused pieces of code in the source.

The Unused report reports structures that are defined in the code, but never used.

• Constants

• Functions, methods, properties

• Classes, enumerations, traits and interfaces

• Return values and parameters

• Default values

• Never used

• Written only variables and properties

• Unreachable methods and constants

• Unreachable code

Reference/images/report.unused.png

Specs

Short name Unused
Rulesets Unused.
Type HTML
Target This report is written in ‘report’.
Available in Entreprise Edition

2314 Chapter 16. Reports

https://www.exakat.io/entreprise-edition
https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

16.3.59 Weekly

Weekly

Weekly report draw a selection of issues to check in your code, each week.

The weekly report draws issues from 5 rules, randomly or chosen specially for that week. The rules of a week are
stored on exakat.io, and everyone will work on the same errors. You can work on yours, and then, discuss then with
your colleagues, cousins and anyone in the community : they are the focus of the week.

The selections of the previous weeks, and, the next week are offered. Just be aware that next week’s selection may
change, without warning.

If your code is already immune to all this week’s rules : good job! You can share you experience with others!

Reference/images/report.weekly.png

Specs

Short name Weekly
Rulesets Analyze, Suggestions.
Type HTML
Target This report is written in ‘weekly’.
Available in Entreprise Edition

16.3.60 Xml

Xml

The Xml report exports in XML format.

XML version of the reports. It uses the same format than PHP Code Sniffer to output the results.

<?xml version="1.0" encoding="UTF-8"?>
<phpcs version="0.8.6">
<file name="/src/NlpTools/Stemmers/PorterStemmer.php" errors="0" warnings="105" fixable=
→˓"0">
<warning line="55" column="0" source="Php/EllipsisUsage" severity="Major" fixable="0">..
→˓. Usage</warning>

16.3. List of Reports 2315

https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

Specs

Short name Xml
Rulesets This reports works with an arbitrary list of results.
Type XML
Target This report is written in ‘exakat.xml’.
Available in Entreprise Edition

16.3.61 Yaml

Yaml

The Yaml report exports in Yaml format.

Simple Yaml format. It is a structured array with all results, described as object.

Filename => [
errors => count,
warning => count,
fixable => count,
filename => string,
message => [

line => [
type,
source,
severity,
fixable,
message

]
]

]

/src/Altax/Module/Task/Resource/RuntimeTask.php:
errors: 0
warnings: 22
fixable: 0
filename: /src/Altax/Module/Task/Resource/RuntimeTask.php
messages: { 77: [[{ type: warning, source: Structures/Iffectation, severity: Minor,␣

→˓fixable: fixable, message: Iffectations, fullcode: '$args = $this->getArguments()' }
→˓]], 67: [[{ type: warning, source: Structures/Iffectation, severity: Minor, fixable:␣
→˓fixable, message: Iffectations, fullcode: '$args = $this->input->getArgument(''args'')
→˓' }, { type: warning, source: Structures/BuriedAssignation, severity: Minor, fixable:␣
→˓fixable, message: 'Buried Assignation', fullcode: '$args = $this->input->getArgument('
→˓'args'')' }]], 114: [[{ type: warning, source: Variables/WrittenOnlyVariable,␣
→˓severity: Minor, fixable: fixable, message: 'Written Only Variables', fullcode: $input␣
→˓}, { type: warning, source: Variables/VariableUsedOnceByContext, severity: Minor,␣
→˓fixable: fixable, message: 'Used Once Variables (In Scope)', fullcode: $input }, {␣
→˓type: warning, source: Classes/UndefinedClasses, severity: Major, fixable: fixable,␣
→˓message: 'Undefined Classes', fullcode: 'new ArrayInput($arguments)' }]], 13: [[{␣
→˓type: warning, source: Structures/PropertyVariableConfusion, severity: Minor, fixable:␣
→˓fixable, message: 'Property Variable Confusion', fullcode: $input }]], 74: [[{ type:␣

(continues on next page)

2316 Chapter 16. Reports

https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

(continued from previous page)

→˓warning, source: Php/ReservedNames, severity: Major, fixable: fixable, message: 'PHP␣
→˓Keywords As Names', fullcode: $default }]], 61: [[{ type: warning, source: Php/
→˓ReservedNames, severity: Major, fixable: fixable, message: 'PHP Keywords As Names',␣
→˓fullcode: $string }]], 59: [[{ type: warning, source: Php/ReservedNames, severity:␣
→˓Major, fixable: fixable, message: 'PHP Keywords As Names', fullcode: $string }, {␣
→˓type: warning, source: Functions/RelayFunction, severity: Major, fixable: fixable,␣
→˓message: 'Relay Function', fullcode: 'public function write($string) { /**/ } ' }]],␣
→˓56: [[{ type: warning, source: Php/ReservedNames, severity: Major, fixable: fixable,␣
→˓message: 'PHP Keywords As Names', fullcode: $string }]], 54: [[{ type: warning,␣
→˓source: Php/ReservedNames, severity: Major, fixable: fixable, message: 'PHP Keywords␣
→˓As Names', fullcode: $string }, { type: warning, source: Functions/RelayFunction,␣
→˓severity: Major, fixable: fixable, message: 'Relay Function', fullcode: 'public␣
→˓function writeln($string) { /**/ } ' }]], 81: [[{ type: warning, source: Php/
→˓ReservedNames, severity: Major, fixable: fixable, message: 'PHP Keywords As Names',␣
→˓fullcode: $default }]], 84: [[{ type: warning, source: Php/ReservedNames, severity:␣
→˓Major, fixable: fixable, message: 'PHP Keywords As Names', fullcode: $default }]], 44:␣
→˓[[{ type: warning, source: Functions/RelayFunction, severity: Major, fixable: fixable,␣
→˓message: 'Relay Function', fullcode: 'public function getConfig() { /**/ } ' }]], 78:␣
→˓[[{ type: warning, source: Structures/ShouldMakeTernary, severity: Minor, fixable:␣
→˓fixable, message: 'Should Make Ternary', fullcode: 'if(isset($args[$index])) { /**/ }␣
→˓else { /**/ } ' }]], 108: [[{ type: warning, source: Structures/NoVariableIsACondition,
→˓ severity: Minor, fixable: fixable, message: 'Variable Is Not A Condition', fullcode:
→˓'!$command' }]], 109: [[{ type: warning, source: Exceptions/UncaughtExceptions,␣
→˓severity: Minor, fixable: fixable, message: 'Uncaught Exceptions', fullcode: 'throw␣
→˓new \RuntimeException("Not found a before task command ''$taskName''.")' }]], 95: [[{␣
→˓type: warning, source: Classes/UnusedMethods, severity: Minor, fixable: fixable,␣
→˓message: 'Unused Methods', fullcode: 'public function call($taskName, $arguments =␣
→˓array()) { /**/ } ' }]], 10: [[{ type: warning, source: Classes/CouldBeFinal,␣
→˓severity: Minor, fixable: fixable, message: 'Class Could Be Final', fullcode: 'class␣
→˓RuntimeTask { /**/ } ' }]] }

Specs

Short name Yaml
Rulesets This reports works with an arbitrary list of results.
Type Yaml
Target This report is written in ‘exakat.yaml’.
Available in Entreprise Edition

16.3. List of Reports 2317

https://www.exakat.io/entreprise-edition

Exakat Documentation, Release 1

2318 Chapter 16. Reports

CHAPTER

SEVENTEEN

COBBLERS

17.1 Introduction

Cobblers mend PHP code. They apply a transformation to it.

Cobblers are a complement to code analysis : the analysis spot code to be fixed, the cobbler mends the code. Later, the
analysis doesn’t find those issues anymore.

17.2 List of Cobblers

17.2.1 Add Brackets To Single Instructions

This cobbler adds curly brackets to single expression, with for(), foreach(), while(); and do. . .while() instructions.

No brackets are added to instructions that are already bracketed.

Before

<?php

if ($a)
$b = 1;

else {
$c = ;2

}

?>

After

<?php

if ($a) {
$b = 1;

} else {
$c = ;2

}
(continues on next page)

2319

Exakat Documentation, Release 1

(continued from previous page)

?>

Reverse Cobbler

• No anchor for Structures/RemoveBracketsAroundSingleInstruction.ini

Specs

Short Name Structures/AddBracketsToSingleInstructions
Exakat version 2.4.6
Available in Entreprise Edition, Exakat Cloud

17.2.2 Add Final Class

Adds final keyword to classes that can suppport it.

Before

<?php

class x {
// this class is not extended, so it might be final

}

?>

After

<?php

final class x {
}

?>

2320 Chapter 17. Cobblers

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggested Analysis

• Class Could Be Final

Related Cobblers

• No anchor for Classes/AddFinalConstant

Reverse Cobbler

• Remove Final

Specs

Short Name Classes/AddFinalClass
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.3 Add No Scream @

Adds the no scream operator @ to an expression.

Before

<?php
$a;

?>

After

<?php
@$a;

?>

Suggested Analysis

• No anchor for Utils/Selector

17.2. List of Cobblers 2321

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Reverse Cobbler

• Remove Noscream @

Specs

Short Name Structures/AddNoScream
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.4 Array To Bracket

This cobbler updates the array() syntax, and changes it to the bracket syntax.

Before

<?php
$a = array(1, 2, 3);
?>

After

<?php
$a = [1, 2, 3];
?>

Specs

Short Name Structures/ArrayToBracket
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.5 Change Class

This cobbler replaces a class by another one, and leave the original class intact.

This cobbler is useful for inserting new classes instead of native PHP or library related ones: the usage shall be changed,
but not the definition.

It might also be useful to update code, but keep older classes available for backward compatibility or fallback strategies.

2322 Chapter 17. Cobblers

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Before

<?php

class oldClass {}

$a = new oldClass;

?>

After

<?php

class oldClass {}

$a = new newClass;

?>

Parameters

Name Default Type Description
origin name The full namespace path name of the class to target.
newClass name The full namespace path name of the class to use.
destinationName name The name of the class to use. This may be used as an import alias

Related Cobblers

• Rename Class

Reverse Cobbler

• Change Class

Specs

Short Name Classes/ChangeClass
Exakat version 2.3.0
Available in

17.2. List of Cobblers 2323

Exakat Documentation, Release 1

17.2.6 Create Phpdoc

Create PHPdoc comments for classes, interfaces, traits, methods and functions.

Parameters and return types are collected, along with the name of the structure.

Before

<?php

class y {
function a1(string $error, R $r = null) : int|string
{

}
?>

After

<?php

/**
* Name : y
*/
class y {
/**
* Name : a1
*
* string $error
* null|R $r
* @return int|string
*
*/
function a1(string $error, R $r = null) : int|string
{

}
?>

Reverse Cobbler

• No anchor for Attributes/RemovePhpdoc

2324 Chapter 17. Cobblers

Exakat Documentation, Release 1

Specs

Short Name Attributes/CreatePhpdoc
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.7 Gather Use Expression

Move lone use expression to the beginning of the file.

Before

<?php
use A;
++$a;
use B;

?>

After

<?php
use A;
use B;
++$a;

?>

Suggested Analysis

• Hidden Use Expression

Specs

Short Name Namespaces/GatherUse
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2. List of Cobblers 2325

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

17.2.8 Logical To in_array()

This cobbler turns lists of or calls into a in_array() call. This is a faster and more readable expression.

Before

<?php

if ($a == 1 || $a == 2) {
// doSomething()

}

?>

After

<?php

if (in_array($a, [1, 2])) {
// doSomething()

}

?>

Suggested Analysis

• Logical To in_array

Specs

Short Name Structures/LogicalToInarray
Exakat version 2.6.1
Available in

17.2.9 Make Static Closures And Arrow Functions

Add the static option to closures and arrow functions. This prevents the defining environment to be included in the
closure.

2326 Chapter 17. Cobblers

Exakat Documentation, Release 1

Before

<?php
$a = function () { return 1; };
$b = fn () => 2;

?>

After

<?php
$a = static function () { return 1; };
$b = static fn () => 2;

?>

Suggested Analysis

• Could Be Static Closure

Reverse Cobbler

• No anchor for Functions/RemoveStaticFromFunction

Specs

Short Name Functions/MakeStaticFunction
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.10 Multiple cobbler

Allows to configure multiple cobbler in one file. The file is a YAML file, and must be located in the project’s folder.

The file containts a root object ‘cobbler’, filled with an array of cobblers, and their related configuration. Cobblers may
be repeated as often as necessary.

cobblers: - Functions/RenameParameter:

oldName: $a newName: $b method: foo

• Functions/RenameParameter:
oldName: $a2 newName: $b method: foo2

The order of the configuration file is the order of execution. Do not rely on it.

17.2. List of Cobblers 2327

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Before

After

Parameters

Name Default Type Description
configFile string The .yaml file in the project folder.

Specs

Short Name Utils/Multi
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.11 Plus One To Pre Plusplus

Transforms a + 1 or - 1 operation into a plus-plus (or minus-minus).

Before

<?php
$a = $a + 1;

?>

After

<?php
++$a;

?>

2328 Chapter 17. Cobblers

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short Name Structures/PlusOneToPre
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.12 Post to Pre Plusplus

Transforms a post plus-plus (or minus-minus) operator, into a pre plus-plus (or minus-minus) operator.

Before

<?php
$a++;

?>

After

<?php
++$a;

?>

Specs

Short Name Structures/PostToPre
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.13 Remove A Method In A Class

This removes a method in a class. The method name is provided with its fully qualified name : Name of the class::
name of the method.

The method’s name is a string.

Before

<?php

// removing method \x::method1
class x {

function method1() {}
function method2() {}

}
(continues on next page)

17.2. List of Cobblers 2329

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

(continued from previous page)

?>

After

<?php

// removed method \x::method1
class x {

function method2() {}
}

?>

Parameters

Name Default Type Description
name x::method1 string Fully qualified name of the method to remove. Only one allowed.

Specs

Short Name Classes/RemoveMethod
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.14 Remove Abstract

Remove the abstract option, from classes and methods.

Before

<?php
abstract class x {

function foo() {}

abstract function moo() ;
}
?>

2330 Chapter 17. Cobblers

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

After

<?php
class x {

function foo() {}

function moo() {}
}
?>

Specs

Short Name Classes/RemoveAbstract
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.15 Remove Brackets Around Single Instruction

This cobbler removes brackets when they are not compulsory. This applies to single instruction, on for(), foreach(),
while(), do. . .while() structures.

This also means that any refactoring that grows the instruction again to multiple instructions has to add the brackets
again.

There is no gain in speed or code lenght by removing those brackets.

Before

<?php
foreach($i = 0; $i < 10; ++$i) { $total += 1; }

?>

After

<?php
foreach($i = 0; $i < 10; ++$i) $total += 1;

?>

17.2. List of Cobblers 2331

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Reverse Cobbler

• Add Brackets To Single Instructions

Specs

Short Name Structures/RemoveBracketsAroundSingleInstruction
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.16 Remove Dollar Curly

This cobbler transforms the ```` structure into {$ }. It is assumed that the content of the curly braces are only a variable
name.

This update is important for PHP 8.2, where the syntax is deprecated.

Before

<?php

$a = "";

?>

After

<?php

$a = "{$b}";

?>

Specs

Short Name Structures/RemoveDollarCurly
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

2332 Chapter 17. Cobblers

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

17.2.17 Remove Final

This cobbler removes the final keyword on classes and methods.

Before

<?php

final class y {
final function foo() {}

}

?>

After

<?php

class y {
function foo() {}

}

?>

Related Cobblers

• Add Final Class

• No anchor for Classes/AddFinalMethod

Reverse Cobbler

• Add Final Class

• No anchor for Classes/AddFinalMethod

Specs

Short Name Classes/RemoveFinal
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2. List of Cobblers 2333

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

17.2.18 Remove Instructions

Removes atomic instructions from the code. The whole expression is removed, and the slot is closed.

This cobbler works with element of a block, and not with part of larger expression (like remove a condition in a if/then,
or remove the block expression of a while).

Before

<?php
$a = 1; // Code to be removed
foo(1);

do // can remove the while expression
++$a; // removing the block of the do...wihle will generate an compilation␣

→˓error
while ($a < 10);

?>

After

<?php
foo(1);

?>

Suggested Analysis

• Useless Instructions

Specs

Short Name Structures/RemoveCode
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.19 Remove Noscream @

Removes the @ operator.

2334 Chapter 17. Cobblers

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Before

<?php
@$a;

?>

After

<?php
$a;

?>

Suggested Analysis

• @ Operator

Reverse Cobbler

• This cobbler is its own reverse.

Specs

Short Name Structures/RemoveNoScream
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.20 Remove Parenthesis

Remove useless parenthesis from return expression.

Before

<?php
function foo() {

return (1);
}
?>

17.2. List of Cobblers 2335

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

After

<?php
function foo() {

return 1;
}
?>

Suggested Analysis

• No Parenthesis For Language Construct

Specs

Short Name Structures/RemoveParenthesis
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.21 Remove Readonly Option

Readonly is a property and class option. This cobbler removes it from both.

The readonly keyword is removed from property and class definitions, and from promoted properties.

Before

<?php

readonly class x {
private readonly string $x;

}

?>

After

<?php

class x {
private string $x;

}

?>

2336 Chapter 17. Cobblers

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggested Analysis

• Readonly Usage

• Class Could Be Readonly

Specs

Short Name Classes/RemoveReadonly
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.22 Remove Static From Closures And Arrow Functions

Removes the static option from closures and arrow functions.

Before

<?php
$a = static function () { return 1; };
$b = static fn () => 2;

?>

After

<?php
$a = function () { return 1; };
$b = fn () => 2;

?>

Suggested Analysis

• Cannot Use Static For Closure

Reverse Cobbler

• Make Static Closures And Arrow Functions

17.2. List of Cobblers 2337

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short Name Functions/RemoveStaticFromClosure
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.23 Remove The Attribute

Remove attributes from all supporting structures.

Attributes are located on functions, classes, class constants, properties, methods and arguments.

Before

<?php

#[Attribute]
function foo(#[AttributeArgument] $arg) {

}
?>

After

<?php

function foo($arg) {

}
?>

Specs

Short Name Attributes/RemoveAttribute
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

2338 Chapter 17. Cobblers

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

17.2.24 Remove Type

This cobbler remove the type mentions in the code. This might yield some speed when executing, since those tests will
be not conveyed at runtime.

Types from arguments, method returns and properties are all removed.

Before

<?php

class x {
private string $p;

function foo(D\E $arg) : void {

}
}

?>

After

<?php

class x {
private $p;

function foo($arg) {

}
}

?>

Parameters

Name De-
fault

Type Description

type_to_removeall data A comma separated list of types to remove. For example : never,string,ABC;. Use
‘All’ for everyt type.

17.2. List of Cobblers 2339

Exakat Documentation, Release 1

Suggested Analysis

• PHP 8.1 Typehints

Reverse Cobbler

• Set Typehints

Specs

Short Name Functions/RemoveTypes
Exakat version 2.2.5
Available in Entreprise Edition, Exakat Cloud

17.2.25 Remove Unused Use

Removes the unused use expression from the top of the file. Groupuse are not processed yet.

Before

<?php

use a\b;
use c\d;

new b();

?>

After

<?php

use a\b;

new b();

?>

2340 Chapter 17. Cobblers

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggested Analysis

• Unused Use

Specs

Short Name Namespaces/RemoveUse
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.26 Remove Visibility

Removes the visibility on constants, properties and methods.

For properties, the visibility is reset to public.

Before

<?php

class x {
private const x = 1;
private $p = 2;
private function foo() {}
private function __construct() {}

}
?>

After

<?php

class x {
const x = 1;
public $p = 2;
function foo() {}
function __construct() {}

}
?>

17.2. List of Cobblers 2341

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short Name Classes/RemoveVisibility
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.27 Remove Written Only Variable

This removes variables that are written only.

Before

<?php

function foo() {
$a = 1;
$a += 2; // No usage of $a

}

?>

After

<?php

function foo() {
}

?>

Suggested Analysis

• Written Only Variables

Specs

Short Name Structures/RemoveVariable
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

2342 Chapter 17. Cobblers

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

17.2.28 Rename A Function

Give a function with a new name.

This cobbler doesn’t update the name of the functioncalls.

This cobbler may be used with functions, and methods. Functions may be identified with their fully qualified name
(i.e. pathfoo) and methods with the extended fully qualified name (i.e. : pathaClass::methodName).

Before

<?php
function foo() {

}
?>

After

<?php
function bar() {

}
?>

Parameters

Name Default Type Description
name foo string The new name of the function.

Suggested Analysis

• No anchor for Utils/Selector

Related Cobblers

• Rename FunctionCalls

Reverse Cobbler

• This cobbler is its own reverse.

17.2. List of Cobblers 2343

Exakat Documentation, Release 1

Specs

Short Name Structures/RenameFunction
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.29 Rename A Function

This cobbler renames a function from a name A to a name B.

Before

<?php

function foo() {}
foo();

?>

After

<?php

function bar() {}
bar();

?>

Parameters

Name Default Type Description
origin string The function to rename
destination string The destination’s function name

Reverse Cobbler

• Rename A Function

2344 Chapter 17. Cobblers

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short Name Functions/RenameFunction
Exakat version 2.3.0
Available in

17.2.30 Rename A Namespace

Changes the name of a namespaces from A to B.

Make sure that the new namspace is distinct from the previous ones : merging namespaces is not recommended nor
checked. This cobbler is better suited a giving an unused name to a namespace.

Before

<?php
namespace A;

function foo() {}

?>

After

<?php
namespace B;

function foo() {}
?>

Parameters

Name Default Type Description
origin string The original namespace.
destination string The destination namespace.

Reverse Cobbler

• Rename A Namespace

17.2. List of Cobblers 2345

Exakat Documentation, Release 1

Specs

Short Name Rename/RenameNamespace
Exakat version 2.6.0
Available in

17.2.31 Rename Class

Rename a class into another one.

The rename applies the new name to the class, and its usage : static calls, types, extends and instanceof.

Before

<?php
class x {}

function foo(x $a) {}

?>

After

<?php
class Y {}

function foo(Y $a) {}

?>

Parameters

Name Default Type Description
origin string The class to rename
destination string The destination’s class name

Reverse Cobbler

• Rename Class

2346 Chapter 17. Cobblers

Exakat Documentation, Release 1

Specs

Short Name Classes/RenameClass
Exakat version 2.3.0
Available in

17.2.32 Rename Class

Rename a class into another one.

The rename applies the new name to the class, and its usage : static calls, types, extends and instanceof.

Before

<?php
class x {

function m() {}
}

(new x)->m();

?>

After

<?php
class x {

function newM() {}
}

(new x)->newM();

?>

Parameters

Name Default Type Description
origin string The method to rename, along with its parent class. Like theClass::Method
destination string The destination’s method name. Only the name.

17.2. List of Cobblers 2347

Exakat Documentation, Release 1

Reverse Cobbler

• Rename Class

Specs

Short Name Classes/RenameMethod
Exakat version 2.3.0
Available in

17.2.33 Rename Class

Rename a trait into another one.

The rename applies the new name to the trait, and its usage : use cases in classes and traits, static calls (PHP 8.0-).

Before

<?php
trait t {}

class x {
use t;

}

?>

After

<?php
trait newT {}

class x {
use newT;

}

?>

Parameters

Name Default Type Description
origin string The class to rename
destination string The destination’s class name

2348 Chapter 17. Cobblers

Exakat Documentation, Release 1

Specs

Short Name Traits/RenameTrait
Exakat version 2.3.0
Available in

17.2.34 Rename Class Constant

Rename a class constant into another one.

The rename applies the new name to the class constant, and its usage.

Before

<?php
class x {

const A = 1;
}

echo x::A;

?>

After

<?php
class x {

const B = 1;
}

echo x::B;

?>

Parameters

Name Default Type Description
origin string The class constant to rename, along with its class name. x::A
destination string The destination’s class constant name. B

17.2. List of Cobblers 2349

Exakat Documentation, Release 1

Reverse Cobbler

• Rename Class Constant

Specs

Short Name Classes/RenameConstant
Exakat version 2.3.0
Available in

17.2.35 Rename Constant

This cobbler renames a constant and replace it with another constant.

Before

<?php

const A = 1;

echo A;
echo \A;

?>

After

<?php

const B = 1;

echo B;
echo \B;

?>

Parameters

Name Default Type Description
origin string The constant to rename
destination string The destination’s constant name

2350 Chapter 17. Cobblers

Exakat Documentation, Release 1

Reverse Cobbler

• Rename Constant

Specs

Short Name Constants/RenameConstant
Exakat version 2.3.0
Available in

17.2.36 Rename Enums

Rename a class into another one.

The rename applies the new name to the class, and its usage : static calls, types, extends and instanceof.

Before

<?php
enum E {}

function foo(E $a) {}

?>

After

<?php
enum EFG {}

function foo(EFG $a) {}

?>

Parameters

Name Default Type Description
origin string The class to rename
destination string The destination’s class name

17.2. List of Cobblers 2351

Exakat Documentation, Release 1

Reverse Cobbler

• Rename Enums

Specs

Short Name Enums/RenameEnums
Exakat version 2.3.0
Available in

17.2.37 Rename FunctionCalls

Rename a function call to another function.

Before

<?php
foo(1, 2);

?>

After

<?php
bar(1, 2);

?>

Parameters

Name Default Type Description
origin strtolower string The function name to rename. It will be use lower-cased, and as a fully qualified

name.
destina-
tion

mb_strtolower string The function name to rename. It will be use as is. FQN is possible.

Suggested Analysis

• No anchor for Utils/Selector

2352 Chapter 17. Cobblers

Exakat Documentation, Release 1

Related Cobblers

• Rename A Function

• Rename Methodcall

Reverse Cobbler

• This cobbler is its own reverse.

Specs

Short Name Structures/RenameFunctionCall
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.38 Rename Interface

Rename an interface into another one.

The rename applies the new name to the class, and its usage : static constants, types, extends and instanceof.

Before

<?php
interface i {}

function foo(i $a) : j {}

?>

After

<?php
class j {}

function foo(j $a) : j {}

?>

17.2. List of Cobblers 2353

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Parameters

Name Default Type Description
origin string The class to rename
destination string The destination’s class name

Reverse Cobbler

• Rename Interface

Specs

Short Name Interfaces/RenameInterface
Exakat version 2.5.0
Available in

17.2.39 Rename Methodcall

Rename a method, in a methodcall, with a new name.

This cobbler doesn’t update the definition of the method. It works both on static and non-static methods.

Before

<?php
$o->method();

?>

After

<?php
$o->newName();

?>

Parameters

Name Default Type Description
origin strtolower string The function name to rename. It will be use lower-cased, and as a fully qualified

name.
destina-
tion

mb_strtolower string The function name to rename. It will be use as is. FQN is possible.

2354 Chapter 17. Cobblers

Exakat Documentation, Release 1

Suggested Analysis

• No anchor for Utils/Selector

Related Cobblers

• Rename FunctionCalls

• Rename A Function

Reverse Cobbler

• No anchor for Structures/RemoveMethodCall

Specs

Short Name Structures/RenameMethodcall
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.40 Rename Parameter

Change the name of a parameter to a new name.

The destination parameter name is a constant. Suggestions : rename all parameters from the top method (in classes)
rename parameters $a into $b (currently, no $a available)

Limits : this cobbler doesn’t check that another parameter is already using that name, nor if a local variable is also
using that name. This may lead to unexpected results.

Before

<?php

foo(a: 1);

function foo($a) {
return $a;

}

?>

17.2. List of Cobblers 2355

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

After

<?php

foo(b: 1);

function foo($b) {
return $b;

}

?>

Parameters

Name De-
fault

Type Description

old-
Name

$A string The original name of the parameter.

new-
Name

$B string The new name of the parameter.

method string The name of the target method. Use a full qualified name for a function, and the class
name::method for methods.

Specs

Short Name Functions/RenameParameter
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.41 Rename Property

Rename a property into another one.

The rename applies the new name to the property, and its usage : static calls, and normal calls.

Before

<?php
class x {

private $p = 1;

function m() {
$this->p = 2;

}
}

?>

2356 Chapter 17. Cobblers

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

After

<?php
class x {

private $newP = 1;

function m() {
$this->newP = 2;

}
}

?>

Parameters

Name Default Type Description
origin string The property to rename, along with its parent class. Like theClass::$property
destination string The destination’s property name. Only the name.

Specs

Short Name Classes/RenameProperty
Exakat version 2.3.0
Available in

17.2.42 Set Null Type

Adds a Null type to typehints when necessary.

This cobbler only adds a null type when there is already another type. It doesn’t add a null type when no type is set.

It works on methods, functions, closures and arrow functions. It doesn’t work on properties.

The null type is added as a question mark ? when the type is unique, and as null when the types are multiple.

Before

<?php

function foo() : int {
if (rand(0, 1)) {

return 1;
} else {

return null;
}

}

?>

17.2. List of Cobblers 2357

Exakat Documentation, Release 1

After

<?php

function foo() : ?int {
if (rand(0, 1)) {

return 1;
} else {

return null;
}

}

?>

Reverse Cobbler

• Remove Type

Specs

Short Name Functions/SetNullType
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.43 Set Type Void

Adds the void typehint to functions and methods, when possible.

Before

<?php

function foo() {
return;

}

?>

2358 Chapter 17. Cobblers

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

After

<?php

function foo() : void {
return;

}

?>

Suggested Analysis

• Could Be Void

Related Cobblers

• Set Typehints

• Set Null Type

Reverse Cobbler

• Remove Type

Specs

Short Name Functions/SetTypeVoid
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.44 Set Typehints

Automagically add scalar typehints to methods and properties. Arguments and return values are both supported.

When multiple possible types are identified, no typehint is added. If a typehint is already set, no typehint is added.

Magic methods, such as __get(), __set(), __construct(), __desctruct(), etc are not modified by this cobbler.

Methods which have parent’s methods (resp. children’s) are skipped for argument typing (resp return typing) : this
may introduce a incompatible definition. On the other hand, methods which have children’s methods (resp. parents’)
are modified for argument typing (resp return typing), thanks to covariance (resp. contravariance).

Void (as a scalar type) and Null types are processed in a separate cobbler.

By default, and in case of conflict, array is chosen over iterable and int is chosen over float. There are parameter to alter
this behavior.

17.2. List of Cobblers 2359

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Before

<?php

class x {
private int $p = 2;

function foo(int $a = 1) : int {
return intdiv($a, $this->p);

}
}
?>

After

<?php

class x {
private int $p = 2;

function foo(int $a = 1) : int {
return intdiv($a, $this->p);

}
}
?>

Parameters

Name De-
fault

Type Description

ar-
ray_or_iterable

array string When array and iterable are the only suggestions, choose ‘array’, ‘iterable’, or
‘omit’. By default, it is array.

int_or_float float string When int and float are the only suggestions, choose ‘int’, ‘float’, or ‘omit’. By
default, it is float.

2360 Chapter 17. Cobblers

Exakat Documentation, Release 1

Suggested Analysis

• Could Be Void

Related Cobblers

• Var To Public

• Split Property Definitions

• Set Null Type

• Set Type Void

Reverse Cobbler

• No anchor for Functions/RemoveTypehint

Specs

Short Name Functions/SetTypehints
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.45 Split Property Definitions

Split multiple properties definition into independent definitions.

This applies to classes and traits.

Before

<?php
class x {

private $x, $y, $z;
}

?>

After

<?php
class x {

private $x;
private $y;
private $z;

}
?>

17.2. List of Cobblers 2361

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggested Analysis

• Multiple Property Declaration On One Line

Specs

Short Name Classes/SplitPropertyDefinitions
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.46 Switch To Match

Transforms a switch() into a match() expression.

The switch() syntax must have each of the cases assigning the same variable (or similar). There should not be any other
operation, besides break;

Before

<?php
switch($a) {

case 1:
$b = '1';
break;

case 2:
$b = '3';
break;

default:
$b = '0';
break;

}
?>

After

<?php
$b = match($a) {

1 => '1',
2 => '3',
default => '0'

};
?>

2362 Chapter 17. Cobblers

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Suggested Analysis

• Could Use Match

Related Cobblers

• Post to Pre Plusplus

Reverse Cobbler

• Remove Instructions

Specs

Short Name Structures/SwitchToMatch
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.47 Use Available Alias

Apply systematically the use expression in the code.

Before

<?php
use A\B\C as D;
new A\B\C();

?>

After

<?php
use A\B\C as D;
new D();

?>

Suggested Analysis

• Could Use Alias

17.2. List of Cobblers 2363

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short Name Namespaces/UseAlias
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.48 Var To Public

Replace the var syntax with public keyword.

It is also possible to replace it with protected or private, with the parameter.

Before

<?php

class x {
var $y = 1;

}
?>

After

<?php

class x {
public $y = 1;

}
?>

Parameters

Name De-
fault

Type Description

var_to_visibility public string The destination visibility to be used. May be one of: public, protected or
private.

2364 Chapter 17. Cobblers

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Related Cobblers

• Set Typehints

Specs

Short Name Classes/VarToPublic
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

17.2.49 array_key_exists() Speedup

array_key_exists() is sped up when declared with a use expression.

Before

<?php

namespace A {
array_key_exists($a, $b);

}

?>

After

<?php

namespace A {
use function array_key_exists;

array_key_exists($a, $b);
}

?>

Suggested Analysis

• Always Use Function With array_key_exists()

• array_key_exists() Speedup

17.2. List of Cobblers 2365

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

Exakat Documentation, Release 1

Specs

Short Name Structures/ArrayKeysSpeedup
Exakat version 2.3.0
Available in Entreprise Edition, Exakat Cloud

2366 Chapter 17. Cobblers

https://www.exakat.io/entreprise-edition
https://www.exakat.io/exakat-cloud/

CHAPTER

EIGHTEEN

REAL CODE CASES

18.1 Introduction

All the examples in this section are real code, extracted from major PHP applications.

18.2 List of real code Cases

18.2.1 $this Belongs To Classes Or Traits

OpenEMR

$this Belongs To Classes Or Traits, in ccr/display.php:24.

$this is used to call the document_upload_download_log() method, although this piece of code is not part of a class,
nor is included in a class.

<?php
require_once(dirname(__FILE__) . /../interface/globals.php);

$type = $_GET['type'];
$document_id = $_GET['doc_id'];
$d = new Document($document_id);
$url = $d->get_url();
$storagemethod = $d->get_storagemethod();
$couch_docid = $d->get_couch_docid();
$couch_revid = $d->get_couch_revid();

if ($couch_docid && $couch_revid) {
$couch = new CouchDB();
$data = array($GLOBALS['couchdb_dbase'],$couch_docid);
$resp = $couch->retrieve_doc($data);
$xml = base64_decode($resp->data);
if ($content=='' && $GLOBALS['couchdb_log']==1) {

$log_content = date('Y-m-d H:i:s')." ==> Retrieving document\r\n";
$log_content = date('Y-m-d H:i:s')." ==> URL: ".$url."\r\n";
$log_content .= date('Y-m-d H:i:s')." ==> CouchDB Document Id: ".$couch_docid."\

→˓r\n";
$log_content .= date('Y-m-d H:i:s')." ==> CouchDB Revision Id: ".$couch_revid."\

→˓r\n";
(continues on next page)

2367

Exakat Documentation, Release 1

(continued from previous page)

$log_content .= date('Y-m-d H:i:s')." ==> Failed to fetch document content from␣
→˓CouchDB.\r\n";

//$log_content .= date('Y-m-d H:i:s')." ==> Will try to download file from␣
→˓HardDisk if exists.\r\n\r\n";

$this->document_upload_download_log($d->get_foreign_id(), $log_content);
die(xlt("File retrieval from CouchDB failed"));

}

18.2.2 ** For Exponent

Traq

** For Exponent, in src/views/layouts/_footer.phtm:5.

pow(1024, 2) could be (1023 ** 2), to convert bytes into Mb.

<?=round((microtime(true) - START_TIME), 2); ?>s, <?php echo round((memory_get_peak_
→˓usage() - START_MEM) / pow(1024, 2), 3)?>mb

TeamPass

** For Exponent, in includes/libraries/Authentication/phpseclib/Math/BigInteger.php:286.

pow(2, 62) could also be hard coded with 0x4000000000000000.

pow(2, 62)

18.2.3 @ Operator

Phinx

@ Operator, in src/Phinx/Util/Util.php:239.

fopen() may be tested for existence, readability before using it. Although, it actually emits some errors on Windows,
with network volumes.

$isReadable = @\fopen($filePath, 'r') !== false;

if (!$filePath || !$isReadable) {
throw new \Exception(sprintf(Cannot open file %s \n, $filename));

}

2368 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

PhpIPAM

@ Operator, in functions/classes/class.Log.php:322.

Variable and index existence should always be tested with isset() : it is faster than using @.

$_SESSION['ipamusername']

18.2.4 Abstract Or Implements

Zurmo

Abstract Or Implements, in app/protected/extensions/zurmoinc/framework/views/MassEditProgressView.php:30.

The class MassEditProgressView extends ProgressView, which is an abstract class. That class defines one abstract
method : abstract protected function headerLabelPrefixContent(). Yet, the class MassEditProgressView doesn’t imple-
ments this method. This means that the class can’t be instatiated, and indeed, it isn’t. The class MassEditProgressView
is subclassed, by the class MarketingListMembersMassSubscribeProgressView, which implements the method head-
erLabelPrefixContent(). As such, MassEditProgressView should be marked abstract, so as to prevent any instantiation
attempt.

class MassEditProgressView extends ProgressView {
/**/

}

18.2.5 Add Default Value

Zurmo

Add Default Value, in wp-admin/includes/misc.php:74.

Default values may be a literal (1, ‘abc’, . . .), or a constant : global or class. Here, MissionsListConfigura-
tionForm::LIST_TYPE_AVAILABLE may be used directly in the signature of the method

public function getMetadataFilteredByOption($option)
{

if ($option == null)
{

$option = MissionsListConfigurationForm::LIST_TYPE_AVAILABLE;
}

Typo3

Add Default Value, in typo3/sysext/indexed_search/Classes/FileContentParser.php:821.

$extension could get a default value to handle default situations : for example, a file is htm format by default, unless
better known. Also, the if/then structure could get a ‘else’ clause, to handle unknown situations : those are situations
where the extension is provided but not known, in particular when the icon is missing in the storage folder.

public function getIcon($extension)
{

if ($extension === 'htm') {
(continues on next page)

18.2. List of real code Cases 2369

Exakat Documentation, Release 1

(continued from previous page)

$extension = 'html';
} elseif ($extension === 'jpeg') {

$extension = 'jpg';
}
return 'EXT:indexed_search/Resources/Public/Icons/FileTypes/' . $extension . '.

→˓gif';
}

18.2.6 Adding Zero

Thelia

Adding Zero, in core/lib/Thelia/Model/Map/ProfileResourceTableMap.php:250.

This return statement is doing quite a lot, including a buried ‘0 + $offset’. This call is probably an echo to ‘1 + $offset’,
which is a little later in the expression.

return serialize(array((string) $row[TableMap::TYPE_NUM == $indexType ? 0 + $offset :␣
→˓static::translateFieldName('ProfileId', TableMap::TYPE_PHPNAME, $indexType)], (string)
→˓$row[TableMap::TYPE_NUM == $indexType ? 1 + $offset : static::translateFieldName(
→˓'ResourceId', TableMap::TYPE_PHPNAME, $indexType)]));

OpenEMR

Adding Zero, in interface/forms/fee_sheet/new.php:466:534.

$main_provid is filtered as an integer. $main_supid is then filtered twice : one with the sufficent (int) and then, added
with 0.

if (!$alertmsg && ($_POST['bn_save'] || $_POST['bn_save_close'] || $_POST['bn_save_stay
→˓'])) {

$main_provid = 0 + $_POST['ProviderID'];
$main_supid = 0 + (int)$_POST['SupervisorID'];
//.....

18.2.7 Already Parents Interface

WordPress

Already Parents Interface, in src/Phinx/Db/Adapter/AbstractAdapter.php:41.

SqlServerAdapter extends PdoAdapter, PdoAdapter extends AbstractAdapter. The first and the last both implements
AdapterInterface. Only one is needed.

/**
* Base Abstract Database Adapter.
*/
abstract class AbstractAdapter implements AdapterInterface
{

(continues on next page)

2370 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

/// In the src/src/Phinx/Db/Adapter/SqlServerAdapter.php, line 45
/**
* Phinx SqlServer Adapter.
*
*/
class SqlServerAdapter extends PdoAdapter implements AdapterInterface
{

Thelia

Already Parents Interface, in core/lib/Thelia/Core/Template/Loop/BaseSpecificModule.php:35.

PropelSearchLoopInterface is implemented by both BaseSpecificModule and Payment

abstract class BaseSpecificModule extends BaseI18nLoop implements␣
→˓PropelSearchLoopInterface

/* in file core/lib/Thelia/Core/Template/Loop/Payment.php, line 28 */

class Payment extends BaseSpecificModule implements PropelSearchLoopInterface

18.2.8 Altering Foreach Without Reference

Contao

Altering Foreach Without Reference, in core-bundle/src/Resources/contao/classes/Theme.php:613.

$tmp[$kk] is &$vv.

foreach ($tmp as $kk=>$vv)
{

// Do not use the␣
→˓FilesModel here – tables are locked!

$objFile = $this->
→˓Database->prepare("SELECT uuid FROM tl_files WHERE path=?")

␣
→˓ ->limit(1)

␣
→˓ ->execute($this->customizeUploadPath($vv));

$tmp[$kk] = $objFile-
→˓>uuid;

}

18.2. List of real code Cases 2371

Exakat Documentation, Release 1

WordPress

Altering Foreach Without Reference, in wp-admin/includes/misc.php:74.

$ids[$index] is &$rrid.

foreach($ids as $index => $rrid)
{

if($rrid == $this->Id)
{

$ids[$index] = $_id;
$write = true;
break;

}
}

18.2.9 Always Positive Comparison

Magento

Always Positive Comparison, in app/code/core/Mage/Dataflow/Model/Profile.php:85.

strlen(($actiosXML) will never be negative, and hence, is always false. This exception is never thrown.

if (strlen($actionsXML) < 0 &&
@simplexml_load_string('<data>' . $actionsXML . '</data>', null, LIBXML_NOERROR)␣

→˓=== false) {
Mage::throwException(Mage::helper('dataflow')->__(Actions XML is not valid.

→˓));
}

18.2.10 Ambiguous Array Index

PrestaShop

Ambiguous Array Index, in src/PrestaShopBundle/Install/Install.php:532.

Null, as a key, is actually the empty string.

$list = array(
'products' => _PS_PROD_IMG_DIR_,
'categories' => _PS_CAT_IMG_DIR_,
'manufacturers' => _PS_MANU_IMG_DIR_,
'suppliers' => _PS_SUPP_IMG_DIR_,
'stores' => _PS_STORE_IMG_DIR_,
null => _PS_IMG_DIR_.'l/', // Little trick to copy images in img/l/ path␣

→˓with all types
);

2372 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

Mautic

Ambiguous Array Index, in app/bundles/CoreBundle/Entity/CommonRepository.php:314.

True is turned into 1 (integer), and false is turned into 0 (integer).

foreach ($metadata->getAssociationMappings() as $field => $association) {
if (in_array($association['type'], [ClassMetadataInfo::ONE_TO_ONE,␣

→˓ClassMetadataInfo::MANY_TO_ONE])) {
$baseCols[true][$entityClass][] = $association['joinColumns

→˓'][0]['name'];
$baseCols[false][$entityClass][] = $field;

}
}

18.2.11 Ambiguous Visibilities

Typo3

Ambiguous Visibilities, in typo3/sysext/backend/Classes/Controller/NewRecordController.php:90.

$allowedNewTables is declared once protected and once public. $allowedNewTables is rare : 2 occurences. This may
lead to confusion about access to this property.

class NewRecordController
{
/.. many lines../

/**
* @var array
*/
protected $allowedNewTables;

class DatabaseRecordList
{
/..../

/**
* Used to indicate which tables (values in the array) that can have a
* create-new-record link. If the array is empty, all tables are allowed.
*
* @var string[]
*/
public $allowedNewTables = [];

18.2. List of real code Cases 2373

Exakat Documentation, Release 1

18.2.12 Argument Should Be Typehinted

Dolphin

Argument Should Be Typehinted, in Dolphin-v.7.3.5/plugins/intervention-image/Intervention/Image/Gd/Commands/WidenCommand.php:20.

This closures make immediate use of the $constraint argument, and calls its method aspectRatio. No check is made on
this argument, and it may easily be mistaken with another class, or a null. Adding a typehint here will ensure a more
verbose development error and help detect misuse of the closure.

$this->arguments[2] = function ($constraint) use ($additionalConstraints) {
$constraint->aspectRatio();
if(is_callable($additionalConstraints))

$additionalConstraints($constraint);
};

Mautic

Argument Should Be Typehinted, in app/bundles/PluginBundle/Helper/IntegrationHelper.php:374.

This piece of code inside a 275 lines method. Besides, there are 11 classes that offer a ‘getPriority’ method, although
$returnServices could help to semantically reduce the number of possible classes. Here, typehints on $a and $b help
using the wrong kind of object.

if (empty($alphabetical)) {
// Sort by priority
uasort($returnServices, function ($a, $b) {

$aP = (int) $a->getPriority();
$bP = (int) $b->getPriority();

if ($aP === $bP) {
return 0;

}

return ($aP < $bP) ? -1 : 1;
});

18.2.13 Assign And Lettered Logical Operator Precedence

xataface

Assign And Lettered Logical Operator Precedence, in Dataface/LanguageTool.php:265.

The usage of ‘and’ here is a workaround for PHP version that have no support for the coalesce. $autosubmit receives the
value of $params[‘autosubmit’] only if the latter is set. Yet, with = having higher precedence over ‘and’, $autosubmit
is mistaken with the existence of $params[‘autosubmit’] : its value is actually omitted.

$autosubmit = isset($params['autosubmit']) and $params['autosubmit'];

2374 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

18.2.14 Assign Default To Properties

LiveZilla

Assign Default To Properties, in livezilla/_lib/functions.external.inc.php:174.

Flags may default to array() in the class definition. Filled array(), with keys and values, are also possible.

class OverlayChat
{

public $Botmode;
public $Human;
public $HumanGeneral;
public $RepollRequired;
public $OperatorCount;
public $Flags;
public $LastMessageReceived;
public $LastPostReceived;
public $IsHumanChatAvailable;
public $IsChatAvailable;
public $ChatHTML;
public $OverlayHTML;
public $PostHTML;
public $FullLoad;
public $LanguageRequired = false;
public $LastPoster;
public $EyeCatcher;
public $GroupBuilder;
public $CurrentOperatorId;
public $BotTitle;
public $OperatorPostCount;
public $PlaySound;
public $SpeakingToHTML;
public $SpeakingToAdded;
public $Version = 1;

public static $MaxPosts = 50;
public static $Response;

function __construct()
{

$this->Flags = array();
VisitorChat::$Router = new ChatRouter();

}

18.2. List of real code Cases 2375

Exakat Documentation, Release 1

phpMyAdmin

Assign Default To Properties, in libraries/classes/Console.ph:55.

_isEnabled may default to true. It could also default to a class constant.

class Console
{

/**
* Whether to display anything
*
* @access private
* @var bool
*/
private $_isEnabled;

// some code ignored here
/**
* Creates a new class instance
*/
public function __construct()
{

$this->_isEnabled = true;

18.2.15 Avoid Concat In Loop

SuiteCrm

Avoid Concat In Loop, in include/export_utils.php:433.

$line is build in several steps, then then final version is added to $content. It would be much faster to make $content
an array, and implode it once after the loop.

foreach($records as $record)
{

$line = implode("\\ . getDelimiter() . "\"", $record);
$line = "\"" . $line;
$line .= ""\r\n";
$line = parseRelateFields($line, $record, $customRelateFields);
$content .= $line;

}

ThinkPHP

Avoid Concat In Loop, in ThinkPHP/Common/functions.php:720.

The foreach loop appends the $name and builds a fully qualified name.

if (!C('APP_USE_NAMESPACE')) {
$class = parse_name($name, 1);
import($module . '/' . $layer . '/' . $class . $layer);

} else {
(continues on next page)

2376 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

$class = $module . '\' . $layer;
foreach ($array as $name) {

$class .= '\' . parse_name($name, 1);
}
//
if ($extend) {

//
$class = $extend . '\' . $class;

}
}
return $class . $layer;

18.2.16 Avoid Optional Properties

ChurchCRM

Avoid Optional Properties, in src/ChurchCRM/BackupManager.php:401.

Backuptype is initialized with null, and yet, it isn’t checked for any invalid valid values, in particular in switch() struc-
tures.

// BackupType is initialized with null
class JobBase
{

/**
*
* @var BackupType
*/

protected $BackupType;

// In the child class BackupJob, BackupType may be of any type
class BackupJob extends JobBase
{

/**
*
* @param String $BaseName
* @param BackupType $BackupType
* @param Boolean $IncludeExtraneousFiles
*/
public function __construct($BaseName, $BackupType, $IncludeExtraneousFiles,

→˓$EncryptBackup, $BackupPassword)
{

$this->BackupType = $BackupType;

// Later, Backtype is not checked with all values :
try {

$this->DecryptBackup();
switch ($this->BackupType) {
case BackupType::SQL:
$this->RestoreSQLBackup($this->RestoreFile);

(continues on next page)

18.2. List of real code Cases 2377

Exakat Documentation, Release 1

(continued from previous page)

break;
case BackupType::GZSQL:

$this->RestoreGZSQL();
break;

case BackupType::FullBackup:
$this->RestoreFullBackup();
break;

// Note : no default case here
}

Dolibarr

Avoid Optional Properties, in htdocs/product/stock/class/productlot.class.php:149.

$this->fk_product is tested for value 11 times while being used in this class. All detected situations were checking the
presence of the property before usage.

class Productlot extends CommonObject
{
// more code

/**
* @var int ID
*/
public $fk_product;

// Checked usage of fk_product
// line 341

$sql .= ' fk_product = '.(isset($this->fk_product) ? $this->fk_product :
→˓"null").',';

18.2.17 Avoid Substr() One

ChurchCRM

Avoid Substr() One, in src/Login.php:141.

No need to call substr() to get only one char.

if (substr($LocationFromGet, 0, 1) == /) {
$LocationFromGet = substr($LocationFromGet, 1);

}

2378 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

LiveZilla

Avoid Substr() One, in livezilla/_lib/objects.global.inc.php:2243.

No need to call substr() to get only one char.

$_hex = str_replace(#, , $_hex);
if(strlen($_hex) == 3) {
$r = hexdec(substr($_hex,0,1).substr($_hex,0,1));
$g = hexdec(substr($_hex,1,1).substr($_hex,1,1));
$b = hexdec(substr($_hex,2,1).substr($_hex,2,1));

} else {
$r = hexdec(substr($_hex,0,2));
$g = hexdec(substr($_hex,2,2));
$b = hexdec(substr($_hex,4,2));

}
$rgb = array($r, $g, $b);
return $rgb;

18.2.18 Avoid glob() Usage

Phinx

Avoid glob() Usage, in src/Phinx/Migration/Manager.php:362.

glob() searches for a list of files in the migration folder. Those files are not known, but they have a format, as checked
later with the regex : a combinaison of FilesystemIterator and RegexIterator would do the trick too.

$phpFiles = glob($config->getMigrationPath() . DIRECTORY_SEPARATOR . '*.php');

// filter the files to only get the ones that match our naming scheme
$fileNames = array();
/** @var AbstractMigration[] $versions */
$versions = array();

foreach ($phpFiles as $filePath) {
if (preg_match('/([0-9]+)_([_a-z0-9]*).php/', basename($filePath))) {

NextCloud

Avoid glob() Usage, in lib/private/legacy/helper.php:185.

Recursive copy of folders, based on scandir(). DirectoryIterator and FilesystemIterator would do the same
without the recursion.

static function copyr($src, $dest) {
if (is_dir($src)) {

if (!is_dir($dest)) {
mkdir($dest);

}
$files = scandir($src);
foreach ($files as $file) {

(continues on next page)

18.2. List of real code Cases 2379

Exakat Documentation, Release 1

(continued from previous page)

if ($file != . && $file != ..) {
self::copyr($src/$file, $dest/$file);

}
}

} elseif (file_exists($src) && !\OC\Files\Filesystem::isFileBlacklisted(
→˓$src)) {

copy($src, $dest);
}

}

18.2.19 Avoid set_error_handler $context Argument

shopware

Avoid set_error_handler $context Argument, in engine/Shopware/Plugins/Default/Core/ErrorHandler/Bootstrap.php:162.

The registered handler is a local method, called errorHandler, which has 6 arguments, and relays those 6 arguments
to set_error_handler().

public function registerErrorHandler($errorLevel = E_ALL)
{

// Only register once. Avoids loop issues if it gets registered twice.
if (self::$_registeredErrorHandler) {

set_error_handler([$this, 'errorHandler'], $errorLevel);

return $this;
}

self::$_origErrorHandler = set_error_handler([$this, 'errorHandler'],
→˓$errorLevel);

self::$_registeredErrorHandler = true;

return $this;
}

Vanilla

Avoid set_error_handler $context Argument, in library/core/functions.error.php:747.

Gdn_ErrorHandler is a function that requires 6 arguments.

set_error_handler('Gdn_ErrorHandler', E_ALL & ~E_STRICT)

2380 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

18.2.20 Bad Constants Names

PrestaShop

Bad Constants Names, in src/PrestaShopBundle/Install/Upgrade.php:214.

INSTALL_PATH is a valid name for a constant. __PS_BASE_URI__ is not a valid name.

require_once(INSTALL_PATH . 'install_version.php');
// needed for upgrade before 1.5
if (!defined('__PS_BASE_URI__')) {

define('__PS_BASE_URI__', str_replace('//', '/', '/'.trim(preg_replace('
→˓#/(install(-dev)?/upgrade)$#', '/', str_replace('\', '/', dirname($_SERVER['REQUEST_URI
→˓']))), '/').'/'));

}

Zencart

Bad Constants Names, in zc_install/ajaxTestDBConnection.php:10.

A case where PHP needs help : if the PHP version is older than 5.3, then it is valid to compensate. Though, this
__DIR__ has a fixed value, wherever it is used, while the official __DIR__ change from dir to dir.

if (!defined('__DIR__')) define('__DIR__', dirname(__FILE__));

18.2.21 Bail Out Early

OpenEMR

Bail Out Early, in interface/modules/zend_modules/module/Carecoordination/src/Carecoordination/Controller/EncounterccdadispatchController.php:69.

This is a typical example of a function mostly controlled by one condition. It could be rewrite as ‘if($validResult !=
‘existingpatient’)’ then return. The ‘else’ clause is not used anymore, and the whole block of code is now the main
sequence of the method.

public function ccdaFetching($parameterArray = array())
{

$validResult = $this->getEncounterccdadispatchTable()->valid($parameterArray[0]);
// validate credentials
if ($validResult == 'existingpatient') {

/// Long bloc of code
} else {

return '<?xml version=1.0 encoding=UTF-8?>
<!-- Edited by XMLSpy -->
<note>

<heading>Authetication Failure</heading>
<body></body>

</note>
';

}

18.2. List of real code Cases 2381

Exakat Documentation, Release 1

opencfp

Bail Out Early, in chair/assign_auto_reviewers_weighted_topic_match.inc:105.

This long example illustrates two aspects : first, the shortcut to the end of the method may be the ‘then’ clause, not
necessarily the ‘else’. ‘!in_array($pid.’-‘.$rid, $conflictAR)’ leads to return, and the ‘else’ should be removed, while
keeping its content. Secondly, we can see 3 conditions that all lead to a premature end to the method. After refactoring
all of them, the method would end up with 1 level of indentation, instead of 3.

function oc_inConflict(&$conflictAR, $pid, $rid=null) {
if ($rid == null) {

$rid = $_SESSION[OCC_SESSION_VAR_NAME]['acreviewerid'];
}
if (!in_array($pid.'-'.$rid, $conflictAR)) {

return false; // not in conflict
} else {

$tempr = ocsql_query("SELECT COUNT(*) AS `count` FROM `" . OCC_TABLE_
→˓PAPERREVIEWER . "` WHERE `paperid`='" . safeSQLstr($pid) . "' AND `reviewerid`='" .␣
→˓safeSQLstr($rid) . "'");

if ((ocsql_num_rows($tempr) == 1)
&& ($templ = ocsql_fetch_assoc($tempr))
&& ($templ['count'] == 1)

) {
return false; // assigned as reviewer

} else {
$tempr = ocsql_query("SELECT COUNT(*) AS `count` FROM `" . OCC_TABLE_

→˓PAPERADVOCATE . "` WHERE `paperid`='" . safeSQLstr($pid) . "' AND `advocateid`='" .␣
→˓safeSQLstr($rid) . "'");

if ((ocsql_num_rows($tempr) == 1)
&& ($templ = ocsql_fetch_assoc($tempr))
&& ($templ['count'] == 1)

) {
return false; // assigned as advocate

}
}

}
return true;

}

18.2.22 Buried Assignation

XOOPS

Buried Assignation, in htdocs/image.php:170.

Classic iffectation : the condition also collects the needed value to process the drawing. This is very common in PHP,
and the Yoda condition, with its constant on the left, shows that extra steps were taken to strengthen that piece of code.

if (0 < ($radius = $radii[2] * $q)) { // left bottom
imagearc($workingImage, $radius - 1, $workingHeight - $radius, $radius * 2,

→˓$radius * 2, 90, 180, $alphaColor);
imagefilltoborder($workingImage, 0, $workingHeight - 1, $alphaColor,

(continues on next page)

2382 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

→˓$alphaColor);
}

Mautic

Buried Assignation, in app/bundles/CoreBundle/Controller/ThemeController.php:47.

The setting of the variable $cancelled is fairly hidden here, with its extra operator !. The operator is here for the
condition, as $cancelled needs the ‘cancellation’ state, while the condition needs the contrary. Note also that isset()
could be moved out of this condition, and made the result easier to read.

$form = $this->get('form.factory')->create('theme_upload', [], ['action' =>
→˓$action]);

if ($this->request->getMethod() == 'POST') {
if (isset($form) && !$cancelled = $this->isFormCancelled($form)) {

if ($this->isFormValid($form)) {
$fileData = $form['file']->getData();

18.2.23 Callback Function Needs Return

Contao

Callback Function Needs Return, in core-bundle/src/Resources/contao/modules/ModuleQuicklink.php:91.

The empty closure returns null. The array_flip() array has now all its values set to null, and reset, as intended. A better
alternative is to use the array_fill_keys() function, which set a default value to every element of an array, once provided
with the expected keys.

$arrPages = array_map(function () {}, array_flip($tmp));

Phpdocumentor

Callback Function Needs Return, in src/phpDocumentor/Plugin/ServiceProvider.php:24.

The array_walk() function is called on the plugin’s list. Each element is registered with the application, but is not used
directly : this is for later. The error mechanism is to throw an exception : this is the only expected feedback. As such,
no return is expected. May be a ‘foreach’ loop would be more appropriate here, but this is syntactic sugar.

array_walk(
$plugins,
function ($plugin) use ($app) {

/** @var Plugin $plugin */
$provider = (strpos($plugin->getClassName(), '\') === false)

? sprintf('phpDocumentor\Plugin\%s\ServiceProvider', $plugin->
→˓getClassName())

: $plugin->getClassName();
if (!class_exists($provider)) {

throw new \RuntimeException('Loading Service Provider for ' .
→˓$provider . ' failed.');

(continues on next page)

18.2. List of real code Cases 2383

Exakat Documentation, Release 1

(continued from previous page)

}

try {
$app->register(new $provider($plugin));

} catch (\InvalidArgumentException $e) {
throw new \RuntimeException($e->getMessage());

}
}

);

18.2.24 Can’t Instantiate Class

WordPress

Can’t Instantiate Class, in wp-admin/includes/misc.php:74.

This code actually loads the file, join it, then split it again. file() would be sufficient.

$markerdata = explode(\n, implode('', file($filename)));

18.2.25 Cast To Boolean

MediaWiki

Cast To Boolean, in includes/page/WikiPage.php:2274.

$options[‘changed’] and $options[‘created’] are documented and used as boolean. Yet, SiteStatsUpdate may require
integers, for correct storage in the database, hence the type casting. (int) (bool) may be an alternative here.

$edits = $options['changed'] ? 1 : 0;
$pages = $options['created'] ? 1 : 0;

DeferredUpdates::addUpdate(SiteStatsUpdate::factory(
['edits' => $edits, 'articles' => $good, 'pages' => $pages]

));

Dolibarr

Cast To Boolean, in htdocs/societe/class/societe.class.php:2777.

Several cases are built on the same pattern there. Each of the expression may be replaced by a cast to (bool).

case 3:
$ret=(!$conf->global->SOCIETE_IDPROF3_UNIQUE?false:true);
break;

2384 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

18.2.26 Catch Overwrite Variable

PhpIPAM

Catch Overwrite Variable, in app/subnets/scan/subnet-scan-snmp-route.php:58.

$e is used both as ‘local’ variable : it is local to the catch clause, and it is a blind variable in a foreach(). There is little
overlap between the two occurrences, but one reader may wonder why the caught exception is shown later on.

try {
$res = $Snmp->get_query(get_routing_table);
// remove those not in subnet
if (sizeof($res)>0) {
// save for debug
$debug[$d->hostname][$q] = $res;

// save result
$found[$d->id][$q] = $res;

}
} catch (Exception $e) {
// save for debug
$debug[$d->hostname][$q] = $res;
$errors[] = $e->getMessage();

}

// lots of code
// on line 132

// print errors
if (isset($errors)) {

print <hr>;
foreach ($errors as $e) {

print $Result->show (warning, $e, false, false, true);
}

}

SuiteCrm

Catch Overwrite Variable, in modules/Emails/EmailUIAjax.php:1082.

$e starts as an Email(), in the ‘getMultipleMessagesFromSugar’ case, while a few lines later, in ‘refreshSugarFolders’,
$e is now an exception. Breaks are in place, so both occurrences are separated, yet, one may wonder why an email is a
warning, or a mail is a warning.

// On line 900, $e is a Email
case getMultipleMessagesFromSugar:

$GLOBALS['log']->debug(********** EMAIL 2.0 - Asynchronous - at:␣
→˓getMultipleMessagesFromSugar);

if (isset($_REQUEST['uid']) && !empty($_REQUEST['uid'])) {
$exIds = explode(,, $_REQUEST['uid']);
$out = array();

foreach ($exIds as $id) {
$e = new Email();

(continues on next page)

18.2. List of real code Cases 2385

Exakat Documentation, Release 1

(continued from previous page)

$e->retrieve($id);
$e->description_html = from_html($e->description_html);
$ie->email = $e;
$out[] = $ie->displayOneEmail($id, $_REQUEST['mbox']);

}

echo $json->encode($out);
}

break;

// lots of code
// on line 1082

case refreshSugarFolders:
try {

$GLOBALS['log']->debug(********** EMAIL 2.0 - Asynchronous - at:␣
→˓refreshSugarFolders);

$rootNode = new ExtNode('', '');
$folderOpenState = $current_user->getPreference('folderOpenState',

→˓'Emails');
$folderOpenState = (empty($folderOpenState)) ? : $folderOpenState;
$ret = $email->et->folder->getUserFolders(

$rootNode,
sugar_unserialize($folderOpenState),
$current_user,
true

);
$out = $json->encode($ret);
echo $out;

} catch (SugarFolderEmptyException $e) {
$GLOBALS['log']->warn($e);
$out = $json->encode(array(

'message' => 'No folder selected warning message here...',
));
echo $out;

}
break;

18.2.27 Check All Types

Zend-Config

Check All Types, in src/Writer/Ini.php:122.

$value must be an array or a string here.

foreach ($config as $key => $value) {
$group = array_merge($parents, [$key]);

if (is_array($value)) {
(continues on next page)

2386 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

$iniString .= $this->addBranch($value, $group);
} else {

$iniString .= implode($this->nestSeparator, $group)
. ' = '
. $this->prepareValue($value)
. \n;

}
}

Vanilla

Check All Types, in library/core/class.form.php:2488.

When $this->_FormValues is not null, then it is an array or an object, as it may be used immediately with foreach(). A
check with is_array() would be a stronger option here.

public function formDataSet() {
if (is_null($this->_FormValues)) {

$this->formValues();
}

$result = [[]];
foreach ($this->_FormValues as $key => $value) {

18.2.28 Check JSON

Woocommerce

Check JSON , in includes/admin/helper/class-wc-helper-plugin-info.php:66.

In case the body is an empty string, this will be correctly decoded, but will yield an object with an empty-named
property.

$results = json_decode(wp_remote_retrieve_body($request), true);
if (! empty($results)) {

$response = (object) $results;
}

return $response;

18.2.29 Class, Interface, Enum Or Trait With Identical Names

shopware

Class, Interface, Enum Or Trait With Identical Names, in engine/Shopware/Components/Form/Interfaces/Element.php:30.

Most Element classes extends ModelEntity, which is an abstract class. There is also an interface, called Element, for
forms. And, last, one of the class Element extends JsonSerializable, which is a PHP native interface. Namespaces are
definitely crucial to understand which Element is which.

18.2. List of real code Cases 2387

Exakat Documentation, Release 1

interface Element { /**/ } // in engine/Shopware/Components/Form/Interfaces/Element.
→˓php:30

class Element implements \JsonSerializable { /**/ } // in engine/Shopware/Bundle/
→˓EmotionBundle/Struct/Element.php:29

class Element extends ModelEntity { /**/ } // in /engine/Shopware/Models/Document/
→˓Element.php:37

NextCloud

Class, Interface, Enum Or Trait With Identical Names, in lib/private/Files/Storage/Storage.php:33.

Interface Storage extends another Storage class. Here, the fully qualified name is used, so we can understand which
storage is which at read time : a ‘use’ alias would make this line more confusing.

interface Storage extends \OCP\Files\Storage { /**/ }

18.2.30 Closure Could Be A Callback

Tine20

Closure Could Be A Callback, in tine20/Tinebase/Convert/Json.php:318.

is_scalar() is sufficient here.

$value = array_filter($value, function ($val) { return is_scalar($val); });

NextCloud

Closure Could Be A Callback, in apps/files_sharing/lib/ShareBackend/Folder.php:114.

$qb is the object for the methodcall, passed via use. The closure may have been replaced with array($qb, ‘createNamed-
Parameter’).

$parents = array_map(function($parent) use ($qb) {
return $qb->createNamedParameter($parent);

}, $parents);

18.2.31 Common Alternatives

Dolibarr

Common Alternatives, in htdocs/admin/facture.php:531.

The opening an closing tag couldd be moved outside the if condition : they are compulsory in both cases.

2388 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

// Active
if (in_array($name, $def))
{

print '<td class=center>'.\n;
" print '<a href="'.$_SERVER["PHP_SELF"].'?action=del&
→˓value='.$name.'">';

print img_picto($langs->trans("Enabled"), 'switch_on
→˓');

print '';
print '</td>';

}
else
{

print '<td class="center">'."\n";
print '<a href="'.$_SERVER["PHP_SELF"].'?action=set&

→˓value='.$name.'&scan_dir='.$module->scandir.'&label='.urlencode($module->name).'">'.
→˓img_picto($langs->trans("SetAsDefault"), 'switch_off').'';

print "</td>";
}

NextCloud

Common Alternatives, in apps/encryption/lib/KeyManager.php:436.

$shareKey = $this->getShareKey($path, $uid); is common to all three alternatives. In fact, $uid = $this-
>getPublicShareKeyId(); is not common, and that shoul de reviewed, as $uid will be undefined.

if ($this->util->isMasterKeyEnabled()) {
$uid = $this->getMasterKeyId();
$shareKey = $this->getShareKey($path, $uid);
if ($publicAccess) {

$privateKey = $this->getSystemPrivateKey($uid);
$privateKey = $this->crypt->decryptPrivateKey($privateKey,

→˓$this->getMasterKeyPassword(), $uid);
} else {

// when logged in, the master key is already decrypted in␣
→˓the session

$privateKey = $this->session->getPrivateKey();
}

} else if ($publicAccess) {
// use public share key for public links
$uid = $this->getPublicShareKeyId();
$shareKey = $this->getShareKey($path, $uid);
$privateKey = $this->keyStorage->getSystemUserKey($this->

→˓publicShareKeyId . '.privateKey', Encryption::ID);
$privateKey = $this->crypt->decryptPrivateKey($privateKey);

} else {
$shareKey = $this->getShareKey($path, $uid);
$privateKey = $this->session->getPrivateKey();

}

18.2. List of real code Cases 2389

Exakat Documentation, Release 1

18.2.32 Compare Hash

Traq

Compare Hash, in src/Models/User.php:105.

This code should also avoid using SHA1.

sha1($password) == $this->password

LiveZilla

Compare Hash, in livezilla/_lib/objects.global.users.inc.php:1391.

This code is using the stronger SHA256 but compares it to another string. $_token may be non-empty, and still be
comparable to 0.

function IsValidToken($_token)
{

if(!empty($_token))
if(hash(sha256,$this->Token) == $_token)

return true;
return false;

}

18.2.33 Configure Extract

Zurmo

Configure Extract, in app/protected/modules/marketing/utils/GlobalMarketingFooterUtil.php:127.

This code intent to overwrite $hash and $preview : it is even literally in the code. The overwrite is intended too, and
could even skip the initialisation of the variables. Although the compact()/extract() combinaison is safe as now, it could
be safer to only relay the array index, instead of extracting the variables here.

public static function resolveManageSubscriptionsUrlByArray(array $queryStringArray,
→˓$preview = false)

{
$hash = $preview = null;
extract(static::resolvePreviewAndHashFromArray($queryStringArray));
return static::resolveManageSubscriptionsUrl($hash, $preview);

}

// Also with :
protected static function resolvePreviewAndHashFromArray(array $queryStringArray)
{

$preview = static::resolvePreviewFromArray($queryStringArray);
$hash = static::resolveHashByArray($queryStringArray);
return compact('hash', 'preview');

}

2390 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

Dolibarr

Configure Extract, in htdocs/includes/restler/framework/Luracast/Restler/Format/HtmlFormat.php:224.

The extract() has been cleverly set in a closure, with a limited scope. The potential overwrite may impact existing
variables, such as $_, $nav, $form, and $data itself. This may impact the following including. Using EXTR_SKIP
would give existing variables priority, and avoid interference.

$template = function ($view) use ($data, $path) {
$form = function () {

return call_user_func_array(
'Luracast\Restler\UI\Forms::get',
func_get_args()

);
};
if (!isset($data['form']))

$data['form'] = $form;
$nav = function () {

return call_user_func_array(
'Luracast\Restler\UI\Nav::get',
func_get_args()

);
};
if (!isset($data['nav']))

$data['nav'] = $nav;

$_ = function () use ($data, $path) {
extract($data);
$args = func_get_args();
$task = array_shift($args);
switch ($task) {

case 'require':
case 'include':

$file = $path . $args[0];
if (is_readable($file)) {

if (
isset($args[1]) &&
($arrays = Util::nestedValue($data, $args[1]))

) {
$str = '';
foreach ($arrays as $arr) {

extract($arr);
$str .= include $file;

}
return $str;

} else {
return include $file;

}
}
break;

case 'if':
if (count($args) < 2)

$args[1] = '';
if (count($args) < 3)

(continues on next page)

18.2. List of real code Cases 2391

Exakat Documentation, Release 1

(continued from previous page)

$args[2] = '';
return $args[0] ? $args[1] : $args[2];
break;

default:
if (isset($data[$task]) && is_callable($data[$task]))

return call_user_func_array($data[$task], $args);
}
return '';

};
extract($data);
return @include $view;

};

18.2.34 Continue Is For Loop

XOOPS

Continue Is For Loop, in htdocs/kernel/object.php:711.

break is used here for cases, unless the case includes a if/then structures, in which it becomes a continue. It really
should be a break.

foreach ($this->vars as $k => $v) {
$cleanv = $v['value'];
if (!$v['changed']) {
} else {

$cleanv = is_string($cleanv) ? trim($cleanv) : $cleanv;
switch ($v['data_type']) {

case XOBJ_DTYPE_TIMESTAMP:
$cleanv = !is_string($cleanv) && is_numeric($cleanv) ? date(_

→˓DBTIMESTAMPSTRING, $cleanv) : date(_DBTIMESTAMPSTRING, strtotime($cleanv));
break;

case XOBJ_DTYPE_TIME:
$cleanv = !is_string($cleanv) && is_numeric($cleanv) ? date(_

→˓DBTIMESTRING, $cleanv) : date(_DBTIMESTRING, strtotime($cleanv));
break;

case XOBJ_DTYPE_DATE:
$cleanv = !is_string($cleanv) && is_numeric($cleanv) ? date(_

→˓DBDATESTRING, $cleanv) : date(_DBDATESTRING, strtotime($cleanv));
break;

case XOBJ_DTYPE_TXTBOX:
if ($v['required'] && $cleanv != '0' && $cleanv == '') {

$this->setErrors(sprintf(_XOBJ_ERR_REQUIRED, $k));
continue 2;

}
if (isset($v['maxlength']) && strlen($cleanv) > (int)$v[

→˓'maxlength']) {
$this->setErrors(sprintf(_XOBJ_ERR_SHORTERTHAN, $k, (int)$v[

→˓'maxlength']));
continue 2;

}

2392 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

18.2.35 Could Be A Static Variable

Dolphin

Could Be A Static Variable, in inc/utils.inc.php:673.

Dolphin pro relies on HTMLPurifier to handle cleaning of values : it is used to prevent xss threat. In this method,
oHtmlPurifier is first checked, and if needed, created. Since creation is long and costly, it is only created once. Once
the object is created, it is stored as a global to be accessible at the next call of the method. In fact, oHtmlPurifier is
never used outside this method, so it could be turned into a ‘static’ variable, and prevent other methods to modify it.
This is a typical example of variable that could be static instead of global.

function clear_xss($val)
{

// HTML Purifier plugin
global $oHtmlPurifier;
if (!isset($oHtmlPurifier) && !$GLOBALS['logged']['admin']) {

require_once(BX_DIRECTORY_PATH_PLUGINS . 'htmlpurifier/HTMLPurifier.standalone.
→˓php');

/..../

$oHtmlPurifier = new HTMLPurifier($oConfig);
}

if (!$GLOBALS['logged']['admin']) {
$val = $oHtmlPurifier->purify($val);

}

$oZ = new BxDolAlerts('system', 'clear_xss', 0, 0,
array('oHtmlPurifier' => $oHtmlPurifier, 'return_data' => &$val));

$oZ->alert();

return $val;
}

Contao

Could Be A Static Variable, in system/helper/functions.php:184.

$arrScanCache is a typical cache variables. It is set as global for persistence between calls. If it contains an already
stored answer, it is returned immediately. If it is not set yet, it is then filled with a value, and later reused. This global
could be turned into static, and avoid pollution of global space.

function scan($strFolder, $blnUncached=false)
{

global $arrScanCache;

// Add a trailing slash
if (substr($strFolder, -1, 1) != '/')
{

$strFolder .= '/';
(continues on next page)

18.2. List of real code Cases 2393

Exakat Documentation, Release 1

(continued from previous page)

}

// Load from cache
if (!$blnUncached && isset($arrScanCache[$strFolder]))
{

return $arrScanCache[$strFolder];
}
$arrReturn = array();

// Scan directory
foreach (scandir($strFolder) as $strFile)
{

if ($strFile == '.' || $strFile == '..')
{

continue;
}

$arrReturn[] = $strFile;
}

// Cache the result
if (!$blnUncached)
{

$arrScanCache[$strFolder] = $arrReturn;
}

return $arrReturn;
}

18.2.36 Could Be Abstract Class

Edusoho

Could Be Abstract Class, in src/Biz/Task/Strategy/BaseStrategy.php:14.

BaseStrategy is extended by NormalStrategy, DefaultStrategy (Not shown here), but it is not instantiated itself.

class BaseStrategy {
// Class code

}

shopware

Could Be Abstract Class, in engine/Shopware/Plugins/Default/Core/PaymentMethods/Components/GenericPaymentMethod.php:31.

A ‘Generic’ class sounds like a class that could be ‘abstract’.

class GenericPaymentMethod extends BasePaymentMethod {
// More class code

}

2394 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

18.2.37 Could Be Else

SugarCrm

Could Be Else, in SugarCE-Full-6.5.26/modules/Emails/ListViewGroup.php:79.

The first condition makes different checks if ‘query’ is in $_REQUEST or not. The second only applies to $_RE-
QUEST[‘query’], as there is no else. There is also no visible sign that the first condition may change $_REQUEST or
not

if(!isset($_REQUEST['query'])){
//_pp('loading: '.$currentModule.'Group');
//_pp($current_user->user_preferences[$currentModule.'GroupQ']);
$storeQuery->loadQuery($currentModule.'Group');
$storeQuery->populateRequest();

} else {
//_pp($current_user->user_preferences[$currentModule.'GroupQ']);
//_pp('saving: '.$currentModule.'Group');
$storeQuery->saveFromGet($currentModule.'Group');

}

if(isset($_REQUEST['query'])) {
// we have a query
if(isset($_REQUEST['email_type'])) $email_type = $_

→˓REQUEST['email_type'];
if(isset($_REQUEST['assigned_to'])) $assigned_to = $_

→˓REQUEST['assigned_to'];
if(isset($_REQUEST['status'])) $status = $_REQUEST[

→˓'status'];
// More code

}

OpenEMR

Could Be Else, in library/log.inc:653.

Those two if structure may definitely merged into one single instruction.

$success = 1;
$checksum = ;
if ($outcome === false) {

$success = 0;
}

if ($outcome !== false) {
// Should use the $statement rather than the processed
// variables, which includes the binded stuff. If do
// indeed need the binded values, then will need
// to include this as a separate array.

//error_log(STATEMENT: .$statement,0);
//error_log(BINDS: .$processed_binds,0);
$checksum = sql_checksum_of_modified_row($statement);

(continues on next page)

18.2. List of real code Cases 2395

Exakat Documentation, Release 1

(continued from previous page)

//error_log(CHECKSUM: .$checksum,0);
}

18.2.38 Could Be Private Class Constant

Phinx

Could Be Private Class Constant, in src/Phinx/Db/Adapter/MysqlAdapter.php:46.

The code includes a fair number of class constants. The one listed here are only used to define TEXT columns in
MySQL, with their maximal size. Since they are only intented to be used by the MySQL driver, they may be private.

class MysqlAdapter extends PdoAdapter implements AdapterInterface
{

//.....
const TEXT_SMALL = 255;
const TEXT_REGULAR = 65535;
const TEXT_MEDIUM = 16777215;
const TEXT_LONG = 4294967295;

18.2.39 Could Be Static Closure

Piwigo

Could Be Static Closure, in include/ws_core.inc.php:620.

The closure function($m) makes no usage of the current object : using static prevents $this to be forwarded with the
closure.

/**
* WS reflection method implementation: lists all available methods
*/
static function ws_getMethodList($params, &$service)
{
$methods = array_filter($service->_methods,
function($m) { return empty($m[options][hidden]) || !$m[options][hidden];});

return array('methods' => new PwgNamedArray(array_keys($methods),'method'));
}

18.2.40 Could Be Typehinted Callable

Magento

Could Be Typehinted Callable, in wp-admin/includes/misc.php:74.

$objMethod argument is used to call a function, a method or a localmethod. The typehint would save the middle
condition, and make a better job than ‘is_array’ to check if $objMethod is callable. Yet, the final ‘else’ means that
$objMethod is also the name of a method, and PHP won’t validate this, unless there is a function with the same name.
Here, callable is not an option.

2396 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

public function each($objMethod, $args = [])
{

if ($objMethod instanceof \Closure) {
foreach ($this->getItems() as $item) {

$objMethod($item, ...$args);
}

} elseif (is_array($objMethod)) {
foreach ($this->getItems() as $item) {

call_user_func($objMethod, $item, ...$args);
}

} else {
foreach ($this->getItems() as $item) {

$item->$objMethod(...$args);
}

}
}

PrestaShop

Could Be Typehinted Callable, in controllers/admin/AdminImportController.php:1147.

$funcname is tested with is_callable() before being used as a method. Typehint callable would reduce the size of the
code.

public static function arrayWalk(&$array, $funcname, &$user_data = false)
{

if (!is_callable($funcname)) return false;

foreach ($array as $k => $row)
if (!call_user_func_array($funcname, array($row, $k, $user_data)))

return false;
return true;

}

18.2.41 Could Use Compact

WordPress

Could Use Compact, in wp-admin/includes/misc.php:74.

This code actually loads the file, join it, then split it again. file() would be sufficient.

$markerdata = explode(\n, implode('', file($filename)));

18.2. List of real code Cases 2397

Exakat Documentation, Release 1

18.2.42 Could Use Short Assignation

ChurchCRM

Could Use Short Assignation, in src/ChurchCRM/utils/GeoUtils.php:74.

Sometimes, the variable is on the other side of the operator.

$distance = 0.6213712 * $distance;

Thelia

Could Use Short Assignation, in local/modules/Tinymce/Resources/js/tinymce/filemanager/include/utils.php:70.

/= is rare, but it definitely could be used here.

$size = $size / 1024;

18.2.43 Could Use Try

Mautic

Could Use Try, in app/bundles/StageBundle/Controller/StageController.php:78.

$limit is read as a session variable or a default value. There are no check here that $limit is not null, before using it in
a division. It is easy to imagine this is done elsewhere, yet a try/catch could help intercept unwanted situations.

//set limits
$limit = $this->get('session')->get(

'mautic.stage.limit',
$this->coreParametersHelper->getParameter('default_pagelimit')

);
/... Code where $limit is read but not modified /

$count = count($stages);
if ($count && $count < ($start + 1)) {

$lastPage = ($count === 1) ? 1 : (ceil($count / $limit)) ?: 1;

18.2.44 Could Use __DIR__

Woocommerce

Could Use __DIR__, in includes/class-wc-api.php:162.

All the 120 occurrences use dirname(__FILE__), and could be upgraded to __DIR__ if backward compatibility to
PHP 5.2 is not critical.

private function rest_api_includes() {
// Exception handler.
include_once dirname(__FILE__) . '/api/class-wc-rest-exception.php';

// Authentication.
include_once dirname(__FILE__) . '/api/class-wc-rest-authentication.php';

2398 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

Piwigo

Could Use __DIR__, in include/random_compat/random.php:50.

dirname(__FILE__) is cached into $RandomCompatDIR, then reused three times. Using __DIR__ would save that
detour.

$RandomCompatDIR = dirname(__FILE__);

require_once $RandomCompatDIR.'/byte_safe_strings.php';
require_once $RandomCompatDIR.'/cast_to_int.php';
require_once $RandomCompatDIR.'/error_polyfill.php';

18.2.45 Could Use array_fill_keys

ChurchCRM

Could Use array_fill_keys, in src/ManageEnvelopes.php:107.

There are two initialisations at the same time here : that should make two call to array_fill_keys().

foreach ($familyArray as $fam_ID => $fam_Data) {
$envelopesByFamID[$fam_ID] = 0;
$envelopesToWrite[$fam_ID] = 0;

}

PhpIPAM

Could Use array_fill_keys, in functions/scripts/merge_databases.php:418.

Even when the initialization is mixed with other operations, it is a good idea to extract it from the loop and give it to
array_fill_keys().

$arr_new = array();
foreach ($arr as $type=>$objects) {

$arr_new[$type] = array();
if(sizeof($objects)>0) {

foreach($objects as $ok=>$object) {
$arr_new[$type][] = $highest_ids_

→˓append[$type] + $object;
}

}
}

18.2. List of real code Cases 2399

Exakat Documentation, Release 1

18.2.46 Could Use array_unique

Dolibarr

Could Use array_unique, in htdocs/includes/restler/framework/Luracast/Restler/Format/XmlFormat.php:250.

This loop has two distinct operations : the first collect keys and keep them unique. A combinaison of ar-
ray_keys() and array_unique() would do that job, while saving the in_array() lookup, and the configuration check
with ‘static::$importSettingsFromXml’. The second operation is distinct, and could be done with array_map().

$attributes = $xml->attributes();
foreach ($attributes as $key => $value) {

if (static::$importSettingsFromXml
&& !in_array($key, static::$attributeNames)

) {
static::$attributeNames[] = $key;

}
$r[$key] = static::setType((string)$value);

}

OpenEMR

Could Use array_unique, in gacl/gacl_api.class.php:441:441.

This loop is quite complex : it collects $aro_value in $acl_array[‘aro’][$aro_section_value], but also creates the array in
$acl_array[‘aro’][$aro_section_value], and report errors in the debug log. array_unique() could replace the collection,
while the debug would have to be done somewhere else.

foreach ($aro_value_array as $aro_value) {
if (count($acl_array['aro'][$aro_section_value]) !=␣

→˓0) {
if (!in_array($aro_value, $acl_array['aro'][

→˓$aro_section_value])) {
$this->debug_text("append_acl(): ARO␣

→˓Section Value: $aro_section_value ARO VALUE: $aro_value");
$acl_array['aro'][$aro_section_

→˓value][] = $aro_value;
$update=1;

} else {
$this->debug_text("append_acl():␣

→˓Duplicate ARO, ignoring... ");
}

} else { //Array is empty so add this aro value.
$acl_array['aro'][$aro_section_value][] =

→˓$aro_value;
$update = 1;

}
}

2400 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

18.2.47 Could Use self

WordPress

Could Use self , in wp-admin/includes/misc.php:74.

Securimage could be called self.

class Securimage
{
// Lots of code

Securimage::$_captchaId = $id;
}

LiveZilla

Could Use self , in livezilla/_lib/objects.global.users.inc.php:1599.

Using self makes it obvious that Operator::GetSystemId() is a local call, while Communication::GetParameter() is
external.

class Operator extends BaseUser
{

static function ReadParams()
{

if(!empty($_POST[POST_EXTERN_REQUESTED_INTERNID]))
return Communication::GetParameter(POST_EXTERN_REQUESTED_INTERNID,,$c,FILTER_

→˓SANITIZE_SPECIAL_CHARS,null,32);
else if(!empty($_GET[operator]))
{

$userid = Communication::GetParameter(operator,,$c,FILTER_SANITIZE_SPECIAL_
→˓CHARS,null,32,false,false);

$sysid = Operator::GetSystemId($userid);
}

18.2.48 Could Use str_repeat()

Zencart

Could Use str_repeat(), in includes/functions/functions_general.php:1234.

That’s a 45 repeat of

if ((!zen_browser_detect('MSIE')) && (zen_browser_detect('Mozilla/4'))) {
for ($i=0; $i<45; $i++) $pre .= ' ';

}

18.2. List of real code Cases 2401

Exakat Documentation, Release 1

18.2.49 Dangling Array References

Typo3

Dangling Array References, in typo3/sysext/impexp/Classes/ImportExport.php:322.

foreach() reads $lines into $r, and augment those lines. By the end, the $r variable is not unset. Yet, several
lines later, in the same method but with different conditions, another loop reuse the variable $r. If is_array($this-
>dat[‘header’][‘pagetree’] and is_array($this->remainHeader[‘records’]) are arrays at the same moment, then both
loops are called, and they share the same reference. Values of the latter array will end up in the formar.

if (is_array($this->dat['header']['pagetree'])) {
reset($this->dat['header']['pagetree']);
$lines = [];
$this->traversePageTree($this->dat['header']['pagetree'], $lines);

$viewData['dat'] = $this->dat;
$viewData['update'] = $this->update;
$viewData['showDiff'] = $this->showDiff;
if (!empty($lines)) {

foreach ($lines as &$r) {
$r['controls'] = $this->renderControls($r);
$r['fileSize'] = GeneralUtility::formatSize($r['size']);
$r['message'] = ($r['msg'] && !$this->doesImport ? '

→˓' . htmlspecialchars($r['msg']) . '' : '');
}
$viewData['pagetreeLines'] = $lines;

} else {
$viewData['pagetreeLines'] = [];

}
}
// Print remaining records that were not contained inside the page tree:
if (is_array($this->remainHeader['records'])) {

$lines = [];
if (is_array($this->remainHeader['records']['pages'])) {

$this->traversePageRecords($this->remainHeader['records']['pages'], $lines);
}
$this->traverseAllRecords($this->remainHeader['records'], $lines);
if (!empty($lines)) {

foreach ($lines as &$r) {
$r['controls'] = $this->renderControls($r);
$r['fileSize'] = GeneralUtility::formatSize($r['size']);
$r['message'] = ($r['msg'] && !$this->doesImport ? '

→˓' . htmlspecialchars($r['msg']) . '' : '');
}
$viewData['remainingRecords'] = $lines;

}
}

2402 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

SugarCrm

Dangling Array References, in SugarCE-Full-6.5.26/modules/Import/CsvAutoDetect.php:165.

There are two nested foreach here : they both have referenced blind variables. The second one uses $data, but never
changes it. Yet, it is reused the next round in the first loop, leading to pollution from the first rows of $this->_parser-
>data into the lasts. This may happen even if $data is not modified explicitly : in fact, it will be modified the next call
to foreach($row as . . .), for each element in $row.

foreach ($this->_parser->data as &$row) {
foreach ($row as &$data) {

$len = strlen($data);
// check if it begins and ends with single quotes
// if it does, then it double quotes may not be the enclosure
if ($len>=2 && $data[0] == " && $data[$len-1] == ") {

$beginEndWithSingle = true;
break;

}
}
if ($beginEndWithSingle) {

break;
}
$depth++;
if ($depth > $this->_max_depth) {

break;
}

}

18.2.50 Deep Definitions

Dolphin

Deep Definitions, in wp-admin/includes/misc.php:74.

The ConstructHiddenValues function builds the ConstructHiddenSubValues function. Thus, ConstructHiddenValues
can only be called once.

function ConstructHiddenValues($Values)
{

/**
* Recursive function, processes multidimensional arrays
*
* @param string $Name Full name of array, including all subarrays' names
*
* @param array $Value Array of values, can be multidimensional
*
* @return string Properly consctructed <input type=hidden...> tags
*/
function ConstructHiddenSubValues($Name, $Value)
{

if (is_array($Value)) {
$Result = ;
foreach ($Value as $KeyName => $SubValue) {

(continues on next page)

18.2. List of real code Cases 2403

Exakat Documentation, Release 1

(continued from previous page)

$Result .= ConstructHiddenSubValues({$Name}[{$KeyName}], $SubValue);
}

} else // Exit recurse
{

$Result = "<input type="hidden" name=\\ . htmlspecialchars($Name) . "\"␣
→˓value=\"" . htmlspecialchars($Value) . "\" />\n";

}

return $Result;
}

/* End of ConstructHiddenSubValues function */

$Result = '';
if (is_array($Values)) {

foreach ($Values as $KeyName => $Value) {
$Result .= ConstructHiddenSubValues($KeyName, $Value);

}
}

return $Result;
}

18.2.51 Dependant Trait

Zencart

Dependant Trait, in app/library/zencart/CheckoutFlow/src/AccountFormValidator.php:14.

Note that addressEntries is used, and is also expected to be an array or an object with ArrayAccess. $addressEntries is
only defined in a class called ‘Guest’ which is also the only one using that trait. Any other class using the AccountFor-
mValidator trait must define addressEntries.

trait AccountFormValidator
{

abstract protected function getAddressFieldValue($fieldName);

/**
* @return bool|int
*/
protected function errorProcessing()
{

$error = false;
foreach ($this->addressEntries as $fieldName => $fieldDetails) {

$this->addressEntries[$fieldName]['value'] = $this->getAddressFieldValue(
→˓$fieldName);

$fieldError = $this->processFieldValidator($fieldName, $fieldDetails);
$this->addressEntries[$fieldName]['error'] = $fieldError;
$error = $error | $fieldError;

}
(continues on next page)

2404 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

return $error;
}

18.2.52 Deprecated PHP Functions

Dolphin

Deprecated PHP Functions, in Dolphin-v.7.3.5/inc/classes/BxDolAdminSettings.php:270.

Split() was abandonned in PHP 7.0

split(',', $aItem['extra']);

18.2.53 Disconnected Classes

WordPress

Disconnected Classes, in wp-admin/includes/misc.php:74.

This code actually loads the file, join it, then split it again. file() would be sufficient.

$markerdata = explode(\n, implode('', file($filename)));

18.2.54 Don’t Echo Error

ChurchCRM

Don’t Echo Error, in wp-admin/includes/misc.php:74.

This is classic debugging code that should never reach production. mysqli_error() and mysqli_errno() provide valuable
information is case of an error, and may be exploited by intruders.

if (mysqli_error($cnInfoCentral) != '') {
echo gettext('An error occured: ').mysqli_errno($cnInfoCentral).'--'.mysqli_

→˓error($cnInfoCentral);
} else {

Phpdocumentor

Don’t Echo Error, in src/phpDocumentor/Plugin/Graphs/Writer/Graph.php:77.

Default development behavior : display the caught exception. Production behavior should not display that message,
but log it for later review. Also, the return in the catch should be moved to the main code sequence.

public function processClass(ProjectDescriptor $project, Transformation $transformation)
{

try {
$this->checkIfGraphVizIsInstalled();

} catch (\Exception $e) {
(continues on next page)

18.2. List of real code Cases 2405

Exakat Documentation, Release 1

(continued from previous page)

echo $e->getMessage();

return;
}

18.2.55 Don’t Loop On Yield

Dolibarr

Don’t Loop On Yield, in htdocs/includes/sabre/sabre/dav/lib/DAV/Server.php:912.

Yield from is a straight replacement here.

if (($newDepth === self::DEPTH_INFINITY || $newDepth >= 1) && $childNode instanceof␣
→˓ICollection) {
foreach ($this->generatePathNodes($subPropFind) as $subItem) {

yield $subItem;
}

}

Tikiwiki

Don’t Loop On Yield, in lib/goal/goallib.php:944.

The replacement with yield from``is not straigthforward here. Yield is only called when $user
hasn't been ``$done : this is a unicity check. So, the double loop may produce a fully merged array, that may be
reduced further by array_unique(). The final array, then, can be used with yield from.

$done = [];

foreach ($goal['eligible'] as $groupName) {
foreach ($userlib->get_group_users($groupName) as $user) {

if (! isset($done[$user])) {
yield ['user' => $user, 'group' => null];
$done[$user] = true;

}
}

}

18.2.56 Don’t Mix ++

Contao

Don’t Mix ++, in core-bundle/src/Resources/contao/drivers/DC_Table.php:1272.

Incrementing and multiplying at the same time.

$this->Database->prepare("UPDATE " . $this->strTable . " SET sorting=? WHERE id=?")
->execute(($count++ * 128), $objNewSorting->id);

2406 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

Typo3

Don’t Mix ++, in typo3/sysext/backend/Classes/Controller/SiteConfigurationController.php:74.

The post-increment is not readable at first glance.

foreach ($row['rootline'] as &$record) {
$record['margin'] = $i++ * 20;

}

18.2.57 Don’t Send $this In Constructor

Woocommerce

Don’t Send $this In Constructor, in includes/class-wc-cart.php:107.

WC_Cart_Session and WC_Cart_Fees receives $this, the current object, at a moment where it is not consistent : for
example, tax_display_cart hasn’t been set yet. Although it may be unexpected to have an object called WC_Cart being
called by the session or the fees, this is still a temporary inconsistence.

/**
* Constructor for the cart class. Loads options and hooks in the init method.
*/
public function __construct() {

$this->session = new WC_Cart_Session($this);
$this->fees_api = new WC_Cart_Fees($this);
$this->tax_display_cart = $this->is_tax_displayed();

// Register hooks for the objects.
$this->session->init();

Contao

Don’t Send $this In Constructor, in system/modules/core/library/Contao/Model.php:110.

$this is send to $objRegistry. $objRegistry is obtained with a factory, ModelRegistry::getInstance(). It is probably
fully prepared at that point. Yet, $objRegistry is called and used to fill $this properties with full values. At some point,
$objRegistry return values without having a handle on a fully designed object.

/**
* Load the relations and optionally process a result set
*
* @param \Database\Result $objResult An optional database result
*/
public function __construct(\Database\Result $objResult=null)
{

// Some code was removed
$objRegistry = \Model\Registry::getInstance();

$this->setRow($arrData); // see #5439
$objRegistry->register($this);

(continues on next page)

18.2. List of real code Cases 2407

Exakat Documentation, Release 1

(continued from previous page)

// More code below
// $this-> are set
// $objRegistry is called

}

18.2.58 Don’t Unset Properties

Vanilla

Don’t Unset Properties, in applications/dashboard/models/class.activitymodel.php:1073.

The _NotificationQueue property, in this class, is defined as an array. Here, it is destroyed, then recreated. The unset()
is too much, as the assignation is sufficient to reset the array

/**
* Clear notification queue.
*
* @since 2.0.17
* @access public
*/
public function clearNotificationQueue() {

unset($this->_NotificationQueue);
$this->_NotificationQueue = [];

}

Typo3

Don’t Unset Properties, in typo3/sysext/linkvalidator/Classes/Linktype/InternalLinktype.php:73.

The property errorParams is emptied by unsetting it. The property is actually defined in the above class, as an array.
Until the next error is added to this list, any access to the error list has to be checked with isset(), or yield an ‘Undefined’
warning.

public function checkLink($url, $softRefEntry, $reference)
{

$anchor = '';
$this->responseContent = true;
// Might already contain values - empty it
unset($this->errorParams);

//....

abstract class AbstractLinktype implements LinktypeInterface
{

/**
* Contains parameters needed for the rendering of the error message
*
* @var array
*/
protected $errorParams = [];

2408 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

18.2.59 Double array_flip()

NextCloud

Double array_flip(), in lib/public/AppFramework/Http/EmptyContentSecurityPolicy.php:372.

The array $allowedScriptDomains is flipped, to unset ‘self’, then, unflipped (or flipped again), to restore its initial state.
Using array_keys() or array_search() would yield the needed keys for unsetting, at a lower cost.

if(is_string($this->useJsNonce)) {
$policy .= '\'nonce-'.base64_encode($this->useJsNonce).'\'';
$allowedScriptDomains = array_flip($this->

→˓allowedScriptDomains);
unset($allowedScriptDomains['\'self\'']);
$this->allowedScriptDomains = array_flip(

→˓$allowedScriptDomains);
if(count($allowedScriptDomains) !== 0) {

$policy .= ' ';
}

}

18.2.60 Drop Substr Last Arg

SuiteCrm

Drop Substr Last Arg, in modules/UpgradeWizard/uw_utils.php:2422.

substr() is even trying to go beyond the end of the string.

substr($relativeFile, 1, strlen($relativeFile))

Tine20

Drop Substr Last Arg, in tine20/Calendar/Frontend/Cli.php:95.

Omitting the last character would yield the same result.

substr($opt, 18, strlen($opt))

18.2.61 Echo With Concat

Phpdocumentor

Echo With Concat, in src/phpDocumentor/Bootstrap.php:76.

Simply replace the dot by a comma.

echo 'PROFILING ENABLED' . PHP_EOL

18.2. List of real code Cases 2409

Exakat Documentation, Release 1

TeamPass

Echo With Concat, in includes/libraries/Authentication/Yubico/PEAR.php:162.

This is less obvious, but turning print to echo, and the double-quoted string to single quoted string will yield the same
optimisation.

print "PEAR constructor called, class=$classname\n";

18.2.62 Else If Versus Elseif

TeamPass

Else If Versus Elseif , in items.php:819.

This code could be turned into a switch() structure.

if ($field[3] === 'text') {
echo '

<input type=text id=edit_field_.$field[0]._.$elem[0]. class=edit_
→˓item_field input_text text ui-widget-content ui-corner-all size=40 data-field-type=.
→˓$field[3]. data-field-masked=.$field[4]. data-field-is-mandatory=.$field[5]. data-
→˓template-id=.$templateID.>';

} else if ($field[3] === 'textarea') {
echo '

<textarea id=edit_field_.$field[0]._.$elem[0]. class=edit_item_
→˓field input_text text ui-widget-content ui-corner-all colums=40 rows=5 data-field-
→˓type=.$field["3"]. data-field-masked=.$field[4]. data-field-is-mandatory=.$field[5].␣
→˓data-template-id=.$templateID.></textarea>';

}

Phpdocumentor

Else If Versus Elseif , in src/phpDocumentor/Plugin/Core/Transformer/Writer/Xsl.php:112.

The first then block is long and complex. The else block, on the other hand, only contains a single if/then/else. Both
conditions are distinct at first sight, so a if / elseif / then structure would be the best.

if ($transformation->getQuery() !== '') {
/** Long then block **/

} else {
if (substr($transformation->getArtifact(), 0, 1) == '$') {

// not a file, it must become a variable!
$variable_name = substr($transformation->getArtifact(), 1);
$this->xsl_variables[$variable_name] = $proc->transformToXml($structure);

} else {
$relativeFileName = substr($artifact, strlen($transformation->

→˓getTransformer()->getTarget()) + 1);
$proc->setParameter('', 'root', str_repeat('../', substr_count(

→˓$relativeFileName, '/')));

$this->writeToFile($artifact, $proc, $structure);
(continues on next page)

2410 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

}
}

18.2.63 Empty Blocks

Cleverstyle

Empty Blocks, in modules/Blogs/api/Controller.php:44.

Else is empty, but commented.

public static function posts_get ($Request) {
$id = $Request->route_ids(0);
if ($id) {

$post = Posts::instance()->get($id);
if (!$post) {

throw new ExitException(404);
}
return $post;

} else {
// TODO: implement latest posts

}
}

PhpIPAM

Empty Blocks, in wp-admin/includes/misc.php:74.

The then block is empty and commented : yet, it may have been clearer to make the condition != and omitted the
whole empty block.

/* checks */
if($_POST['action'] == delete) {

no cecks
}
else {

remove spaces
$_POST['name'] = trim($_POST['name']);

length > 4 and < 12
if((mb_strlen($_POST['name']) < 2) || (mb_strlen($_POST['name']) > 24)) {

→˓$errors[] = _('Name must be between 4 and 24 characters'); }

18.2. List of real code Cases 2411

Exakat Documentation, Release 1

18.2.64 Empty Classes

WordPress

Empty Classes, in wp-includes/SimplePie/Core.php:54.

Empty class, but documented as backward compatibility.

/**
* SimplePie class.
*
* Class for backward compatibility.
*
* @deprecated Use {@see SimplePie} directly
* @package SimplePie
* @subpackage API
*/
class SimplePie_Core extends SimplePie
{

}

18.2.65 Empty Function

Contao

Empty Function, in core-bundle/src/Resources/contao/modules/ModuleQuicklink.php:91.

The closure used with array_map() is empty : this means that the keys are all set to the returned value of the empty
closure, which is null. The actual effect is to reset the values to NULL. A better solution, without using the empty
closure, is to rely on array_fill_keys() to create an array with default values.

if (!empty($tmp) && \is_array($tmp))
{

$arrPages = array_map(function () {}, array_flip($tmp));
}

18.2.66 Empty Instructions

Zurmo

Empty Instructions, in app/protected/core/widgets/MentionInput.php:84.

There is no need for a semi-colon after a if/then structure.

public function run()
{

$id = $this->getId();
$additionalSettingsJs = showAvatars: . var_export($this->showAvatars, true) .

→˓ ,;
if ($this->classes)
{

(continues on next page)

2412 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

$additionalSettingsJs .= $this->classes . ',';
};
if ($this->templates)
{

$additionalSettingsJs .= $this->templates;
};

ThinkPHP

Empty Instructions, in ThinkPHP/Library/Vendor/Smarty/sysplugins/smarty_internal_configfileparser.php:83.

There is no need for a semi-colon after a class structure, unless it is an anonymous class.

class TPC_yyStackEntry
{

public $stateno; /* The state-number */
public $major; /* The major token value. This is the code

** number for the token at this stack level */
public $minor; /* The user-supplied minor token value. This

** is the value of the token */
};

18.2.67 Empty Try Catch

LiveZilla

Empty Try Catch, in livezilla/_lib/trdp/Zend/Mail/Protocol/Pop3.php:237.

This is an aptly commented empty try/catch : the emited exception is extra check for a Zend Mail Protocol Exception.
Hopefully, the Zend_Mail_Protocol_Exception only covers a already-closed situation. Anyhow, this should be logged
for later diagnostic.

public function logout()
{

if (!$this->_socket) {
return;

}

try {
$this->request('QUIT');

} catch (Zend_Mail_Protocol_Exception $e) {
// ignore error - we're closing the socket anyway

}

fclose($this->_socket);
$this->_socket = null;

}

18.2. List of real code Cases 2413

Exakat Documentation, Release 1

Mautic

Empty Try Catch, in app/bundles/ReportBundle/Model/ExportHandler.php:66.

Removing a file : if the file is not ‘deleted’ by the method call, but raises an error, it is hidden. When file destruction
is impossible because the file is already destroyed (or missing), this is well. If the file couldn’t be destroyed because of
missing writing privileges, hiding this error will have serious consequences.

/**
* @param string $fileName
*/
public function removeFile($fileName)
{

try {
$path = $this->getPath($fileName);
$this->filePathResolver->delete($path);

} catch (FileIOException $e) {
}

}

18.2.68 Empty With Expression

HuMo-Gen

Empty With Expression, in fanchart.php:297.

The test on $pid may be directly done on $treeid[$sosa][0]. The distance between the assignation and the empty()
makes it hard to spot.

$pid=$treeid[$sosa][0];
$birthyr=$treeid[$sosa][1];
$deathyr=$treeid[$sosa][4];
$fontpx=$fontsize;
if($sosa>=16 AND $fandeg==180) { $fontpx=$fontsize-1; }
if($sosa>=32 AND $fandeg!=180) { $fontpx=$fontsize-1; }
if (!empty($pid)) {

18.2.69 Encoded Simple Letters

Zurmo

Encoded Simple Letters, in yii/framework/web/CClientScript.php:783.

This actually decodes into a copyright notice.

‘function cleanAndSanitizeScriptHeader(& $output)
{

$requiredOne = “Copyright © Zurmo Inc., 2013. All rights reserved.”;. . . .’

eval(\x66\x75\x6e\x63\x74\x69\x6f\x6e\x20\x63\x6c\x65\x61\x6e\x41\x6e\x64\x53\x61\x6e\
→˓x69\x74\x69\x7a\x65\x53\x63\x72 .

\x69\x70\x74\x48\x65\x61\x64\x65\x72\x28\x26\x20\x24\x6f\x75\x74\x70\x75\x74\x29\
(continues on next page)

2414 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

→˓x0d\x0a\x20\x20\x20\x20\x20\x20 .
\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x7b\x0d\

→˓x0a\x20\x20\x20\x20\x20\x20\x20 .
\x20\

→˓x20\x24\x72\x65\x71\x75\x69\x72 .
// several more lines like that

18.2.70 Eval() Usage

XOOPS

Eval() Usage, in htdocs/modules/system/class/block.php:266.

eval() execute code that was arbitrarily stored in $this, in one of the properties. Then, it is sent to output, but collected
before reaching the browser, and put again in $content. May be the echo/ob_get_contents() could have been skipped.

ob_start();
echo eval($this->getVar('content', 'n'));
$content = ob_get_contents();
ob_end_clean();

Mautic

Eval() Usage, in app/bundles/InstallBundle/Configurator/Step/CheckStep.php:238.

create_function() is actually an eval() in disguise : replace it with a closure for code modernization

create_function('$cfgValue', 'return $cfgValue > 100;')

18.2.71 Exception Order

Woocommerce

Exception Order, in includes/api/v1/class-wc-rest-products-controller.php:787.

This try/catch expression is able to catch both WC_Data_Exception and WC_REST_Exception.

In another file, /includes/api/class-wc-rest-exception.php, we find that WC_REST_Exception extends
WC_Data_Exception (class WC_REST_Exception extends WC_Data_Exception {}). So WC_Data_Exception
is more general, and a WC_REST_Exception exception is caught with WC_Data_Exception Exception. The second
catch should be put in first.

This code actually loads the file, join it, then split it again. file() would be sufficient.

try {
$product_id = $this->save_product($request);
$post = get_post($product_id);
$this->update_additional_fields_for_object($post, $request);
$this->update_post_meta_fields($post, $request);

/**
(continues on next page)

18.2. List of real code Cases 2415

Exakat Documentation, Release 1

(continued from previous page)

* Fires after a single item is created or updated via the REST API.
*
* @param WP_Post $post Post data.
* @param WP_REST_Request $request Request object.
* @param boolean $creating True when creating item, false␣

→˓when updating.
*/

do_action('woocommerce_rest_insert_product', $post, $request, false␣
→˓);

$request->set_param('context', 'edit');
$response = $this->prepare_item_for_response($post, $request);

return rest_ensure_response($response);
} catch (WC_Data_Exception $e) {

return new WP_Error($e->getErrorCode(), $e->getMessage(), $e->
→˓getErrorData());

} catch (WC_REST_Exception $e) {
return new WP_Error($e->getErrorCode(), $e->getMessage(), array(

→˓'status' => $e->getCode()));
}

18.2.72 Exit() Usage

Traq

Exit() Usage, in src/Controllers/attachments.php:75.

This acts as a view. The final ‘exit’ is meant to ensure that no other piece of data is emitted, potentially polluting the
view. This also prevent any code cleaning to happen.

/**
* View attachment page
*
* @param integer $attachment_id
*/
public function action_view($attachment_id)
{

// Don't try to load a view
$this->render['view'] = false;

header(Content-type: {$this->attachment->type});
$content_type = explode('/', $this->attachment->type);

// Check what type of file we're dealing with.
if($content_type[0] == 'text' or $content_type[0] == 'image') {

// If the mime-type is text, we can just display it
// as plain text. I hate having to download files.
if ($content_type[0] == 'text') {

header(Content-type: text/plain);
}
header("Content-Disposition: filename=\"{$this->attachment->name}\"");

(continues on next page)

2416 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

}
// Anything else should be downloaded
else {

header("Content-Disposition: attachment; filename=\"{$this->attachment->name}
→˓\"");

}

// Decode the contents and display it
print(base64_decode($this->attachment->contents));
exit;

}

ThinkPHP

Exit() Usage, in ThinkPHP/Library/Vendor/EaseTemplate/template.core.php:60.

Here, exit is used as a rudimentary error management. When the version is not correctly provided via EaseTemplateVer,
the application stop totally.

$this->version = (trim($_GET['EaseTemplateVer']))?die('Ease Templae E3!'):'
→˓';

18.2.73 Failed Substr() Comparison

Zurmo

Failed Substr() Comparison, in app/protected/modules/zurmo/modules/SecurableModule.php:117.

filterAuditEvent compares a six char string with ‘AUDIT_EVENT_’ which contains 10 chars. This method returns
only FALSE. Although it is used only once, the whole block that calls this method is now dead code.

private static function filterAuditEvent($s)
{

return substr($s, 0, 6) == 'AUDIT_EVENT_';
}

MediaWiki

Failed Substr() Comparison, in includes/media/DjVu.php:263.

$metadata contains data that may be in different formats. When it is a pure XML file, it is ‘Old style’. The comment
helps understanding that this is not the modern way to go : the Old Style is actually never called, due to a failing
condition.

private function getUnserializedMetadata(File $file) {
$metadata = $file->getMetadata();
if (substr($metadata, 0, 3) === '<?xml') {

// Old style. Not serialized but instead just a raw string of XML.
return $metadata;

}

18.2. List of real code Cases 2417

Exakat Documentation, Release 1

18.2.74 Foreach Reference Is Not Modified

Dolibarr

Foreach Reference Is Not Modified, in htdocs/product/reassort.php:364.

$wh is an array, and is read for its index ‘id’, but it is not modified. The reference sign is too much.

if($nb_warehouse>1) {
foreach($warehouses_list as &$wh) {

print '<td class=right>';
print empty($product->stock_warehouse[$wh['id']]->real) ? '0' : $product->stock_

→˓warehouse[$wh['id']]->real;
print '</td>';

}
}

Vanilla

Foreach Reference Is Not Modified, in applications/vanilla/models/class.discussionmodel.php:944.

$discussion is also an object : it doesn’t need any reference to be modified. And, it is not modified, but only read.

foreach ($result as $key => &$discussion) {
if (isset($this->_AnnouncementIDs)) {

if (in_array($discussion->DiscussionID, $this->_AnnouncementIDs)) {
unset($result[$key]);
$unset = true;

}
} elseif ($discussion->Announce && $discussion->Dismissed == 0) {

// Unset discussions that are announced and not dismissed
unset($result[$key]);
$unset = true;

}
}

18.2.75 Forgotten Visibility

FuelCMS

Forgotten Visibility, in /fuel/modules/fuel/controllers/Module.php:713.

Missing visibility for the index() method,and all the methods in the Module class.

class Module extends Fuel_base_controller {

// --

/**
* Displays the list (table) view
*

(continues on next page)

2418 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

* @access public
* @return void
*/
function index()
{

$this->items();
}

LiveZilla

Forgotten Visibility, in livezilla/_lib/objects.global.users.inc.php:2516.

Static method that could be public.

class Visitor extends BaseUser
{
// Lots of code

static function CreateSPAMFilter($_userId,$_base64=true)
{

if(!empty(Server::$Configuration->File[gl_sfa]))
{

18.2.76 Function Subscripting, Old Style

OpenConf

Function Subscripting, Old Style, in openconf/include.php:1469.

Here, $advocateid may be directly read from ocsql_fetch_assoc(), although, checking for the existence of ‘advocateid’
before accessing it would make the code more robust

$advocateid = false;
if (isset($GLOBALS['OC_configAR']['OC_paperAdvocates']) && $GLOBALS['OC_configAR'][

→˓'OC_paperAdvocates']) {
$ar = ocsql_query(SELECT `advocateid` FROM ` . OCC_TABLE_PAPERADVOCATE . `␣

→˓WHERE `paperid`=' . safeSQLstr($pid) . ') or err('Unable to retrieve advocate');
if (ocsql_num_rows($ar) == 1) {

$al = ocsql_fetch_assoc($ar);
$advocateid = $al['advocateid'];

}
}

18.2. List of real code Cases 2419

Exakat Documentation, Release 1

18.2.77 Getting Last Element

Thelia

Getting Last Element, in /core/lib/Thelia/Core/Security/AccessManager.php:61.

This code extract the last element with array_slice (position -1) as an array, then get the element in the array with
current().

current(\array_slice(self::$accessPows, -1, 1, true))

18.2.78 Hidden Use Expression

Tikiwiki

Hidden Use Expression, in lib/core/Tiki/Command/DailyReportSendCommand.php:17.

Sneaky error_reporting, hidden among the use calls.

namespace Tiki\Command;

use Symfony\Component\Console\Command\Command;
use Symfony\Component\Console\Input\InputArgument;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Output\OutputInterface;
error_reporting(E_ALL);
use TikiLib;
use Reports_Factory;

OpenEMR

Hidden Use Expression, in interface/patient_file/summary/browse.php:23.

Use expression is only reached when the csrf token is checked. This probably save some CPU when no csrf is available,
but it breaks the readability of the file.

<?php
/**
* Patient selector for insurance gui
*
* @package OpenEMR
* @link http://www.open-emr.org
* @author Brady Miller <brady.g.miller@gmail.com>
* @copyright Copyright (c) 2018 Brady Miller <brady.g.miller@gmail.com>
* @license https://github.com/openemr/openemr/blob/master/LICENSE GNU General Public␣
→˓License 3
*/

require_once(../../globals.php);
require_once($srcdir/patient.inc);

(continues on next page)

2420 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

require_once($srcdir/options.inc.php);

if (!empty($_POST)) {
if (!verifyCsrfToken($_POST[csrf_token_form])) {

csrfNotVerified();
}

}

use OpenEMR\Core\Header;

18.2.79 Identical Conditions

WordPress

Identical Conditions, in wp-admin/theme-editor.php:247.

The condition checks first if $has_templates or $theme->parent(), and one of the two is sufficient to be valid. Then, it
checks again that $theme->parent() is activated with &&. This condition may be reduced by calling $theme->parent(),
as $has_template is unused here.

<?php if (($has_templates || $theme->parent()) && $theme->parent()) : ?>

Dolibarr

Identical Conditions, in htdocs/core/lib/files.lib.php:2052.

Better check twice that $modulepart is really ‘apercusupplier_invoice’.

$modulepart == 'apercusupplier_invoice' || $modulepart == 'apercusupplier_invoice'

18.2.80 Identical On Both Sides

phpMyAdmin

Identical On Both Sides, in libraries/classes/DatabaseInterface.php:323.

This code looks like ($options & DatabaseInterface::QUERY_STORE) ==
DatabaseInterface::QUERY_STORE, which would make sense. But PHP precedence is actually executing
$options & (DatabaseInterface::QUERY_STORE == DatabaseInterface::QUERY_STORE), which then
doesn’t depends on QUERY_STORE but only on $options.

if ($options & DatabaseInterface::QUERY_STORE == DatabaseInterface::QUERY_STORE) {
$tmp = $this->_extension->realQuery('

SHOW COUNT(*) WARNINGS', $this->_links[$link], DatabaseInterface::QUERY_STORE
);
$warnings = $this->fetchRow($tmp);

} else {
$warnings = 0;

}

18.2. List of real code Cases 2421

Exakat Documentation, Release 1

HuMo-Gen

Identical On Both Sides, in include/person_cls.php:73.

In that long logical expression, $personDb->pers_cal_date is tested twice

// *** Filter person's WITHOUT any date's ***
if ($user[group_filter_date]=='j'){

if ($personDb->pers_birth_date=='' AND $personDb->pers_bapt_
→˓date==''

AND $personDb->pers_death_date=='' AND $personDb->pers_
→˓buried_date==''

AND $personDb->pers_cal_date=='' AND $personDb->pers_cal_
→˓date==''

){
$privacy_person='';

}
}

18.2.81 If With Same Conditions

phpMyAdmin

If With Same Conditions, in libraries/classes/Response.php:345.

The first test on $this->_isSuccess settles the situation with _JSON. Then, a second check is made. Both could be
merged, also the second one is fairly long (not shown).

if ($this->_isSuccess) {
$this->_JSON['success'] = true;

} else {
$this->_JSON['success'] = false;
$this->_JSON['error'] = $this->_JSON['message'];
unset($this->_JSON['message']);

}

if ($this->_isSuccess) {

Phpdocumentor

If With Same Conditions, in src/phpDocumentor/Transformer/Command/Project/TransformCommand.php:239.

$templates is extracted from $input. If it is empty, a second source is polled. Finally, if nothing has worked, a default
value is used (‘clean’). In this case, each attempt is an alternative solution to the previous failing call. The second test
could be reported on $templatesFromConfig, and not $templates.

$templates = $input->getOption('template');
if (!$templates) {

/** @var Template[] $templatesFromConfig */
$templatesFromConfig = $configurationHelper->getConfigValueFromPath(

→˓'transformations/templates');
foreach ($templatesFromConfig as $template) {

(continues on next page)

2422 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

$templates[] = $template->getName();
}

}

if (!$templates) {
$templates = array('clean');

}

18.2.82 Illegal Name For Method

PrestaShop

Illegal Name For Method, in admin-dev/ajaxfilemanager/inc/class.pagination.php:200.

__getBaseUrl and __setBaseUrl shouldn’t be named like that.

/**
* get base url for pagination links aftr excluded those key
* identified on excluded query strings
*
*/
function __getBaseUrl()
{

if(empty($this->baseUrl))
{

$this->__setBaseUrl();
}
return $this->baseUrl;

}

Magento

Illegal Name For Method, in app/code/core/Mage/Core/Block/Abstract.php:1139.

public method, called ‘__’. Example : $this->__();

public function __()
{

$args = func_get_args();
$expr = new Mage_Core_Model_Translate_Expr(array_shift($args), $this->

→˓getModuleName());
array_unshift($args, $expr);
return $this->_getApp()->getTranslator()->translate($args);

}

18.2. List of real code Cases 2423

Exakat Documentation, Release 1

18.2.83 Incompatible Signature Methods

SuiteCrm

Incompatible Signature Methods, in modules/Home/Dashlets/RSSDashlet/RSSDashlet.php:138.

The class in the RSSDashlet.php file has an ‘array’ typehint which is not in the parent Dashlet class. While both files
compile separately, they yield a PHP warning when running : typehinting mismatch only yields a warning.

// File /modules/Home/Dashlets/RSSDashlet/RSSDashlet.php
public function saveOptions(

array $req
)

{

// File /include/Dashlets/Dashlets.php
public function saveOptions($req) {

18.2.84 Incompatible Signature Methods With Covariance

SuiteCrm

Incompatible Signature Methods With Covariance, in modules/Home/Dashlets/RSSDashlet/RSSDashlet.php:138.

The class in the RSSDashlet.php file has an ‘array’ typehint which is not in the parent Dashlet class. While both files
compile separately, they yield a PHP warning when running : typehinting mismatch only yields a warning.

// File /modules/Home/Dashlets/RSSDashlet/RSSDashlet.php
public function saveOptions(

array $req
)

{

// File /include/Dashlets/Dashlets.php
public function saveOptions($req) {

18.2.85 Incompilable Files

xataface

Incompilable Files, in lib/XML/Tree.php:289.

Compilation error with PHP 7.2 version.

syntax error, unexpected 'new' (T_NEW)

2424 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

18.2.86 Inconsistent Concatenation

FuelCMS

Inconsistent Concatenation, in wp-admin/includes/misc.php:74.

This code actually loads the file, join it, then split it again. file() would be sufficient.

$markerdata = explode(\n, implode('', file($filename)));

18.2.87 Inconsistent Variable Usage

WordPress

Inconsistent Variable Usage, in wp-includes/IXR/class-IXR-client.php:86.

$request is used successively as an object (IXR_Request), then as a string (The POST). Separatring both usage with
different names will help readability.

$request = new IXR_Request($method, $args);
$length = $request->getLength();
$xml = $request->getXml();
$r = \r\n;
$request = POST {$this->path} HTTP/1.0$r;

18.2.88 Indices Are Int Or String

Zencart

Indices Are Int Or String, in includes/modules/payment/paypaldp.php:2523.

All those strings ends up as integers.

// Build Currency format table
$curFormat = Array();
$curFormat[036]=2;
$curFormat[124]=2;
$curFormat[203]=2;
$curFormat[208]=2;
$curFormat[348]=2;
$curFormat[392]=0;
$curFormat[554]=2;
$curFormat[578]=2;
$curFormat[702]=2;
$curFormat[752]=2;
$curFormat[756]=2;
$curFormat[826]=2;
$curFormat[840]=2;
$curFormat[978]=2;
$curFormat[985]=2;

18.2. List of real code Cases 2425

Exakat Documentation, Release 1

Mautic

Indices Are Int Or String, in app/bundles/CoreBundle/Entity/CommonRepository.php:315.

$baseCols has 1 and 0 (respectively) for index.

foreach ($metadata->getAssociationMappings() as $field => $association) {
if (in_array($association['type'], [ClassMetadataInfo::ONE_TO_ONE,␣

→˓ClassMetadataInfo::MANY_TO_ONE])) {
$baseCols[true][$entityClass][] = $association['joinColumns

→˓'][0]['name'];
$baseCols[false][$entityClass][] = $field;

}
}

18.2.89 Invalid Constant Name

OpenEMR

Invalid Constant Name, in library/classes/InsuranceCompany.class.php:20.

Note the dash in the name. Either a copy/paste, or a generated definition file : the file contains 25 constants definition.
The constant is not found in the rest of the code.

define(INS_TYPE_OTHER_NON-FEDERAL_PROGRAMS, 10);

18.2.90 Invalid Regex

SugarCrm

Invalid Regex, in SugarCE-Full-6.5.26/include/utils/file_utils.php:513.

This yields an error at execution time : ``Compilation failed: invalid range in character class at offset 4 ``.

preg_replace('/[^\w-._]+/i', '', $name)

18.2.91 Is Actually Zero

Dolibarr

Is Actually Zero, in htdocs/compta/ajaxpayment.php:99.

Here, the $amountToBreakDown is either $currentRemain or $result.

$amountToBreakdown = ($result - $currentRemain >= 0 ?

→˓$currentRemain : //␣
→˓Remain can be fully paid

→˓$currentRemain + ($result - $currentRemain)); // Remain can only partially be paid

2426 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

SuiteCrm

Is Actually Zero, in modules/AOR_Charts/lib/pChart/class/pDraw.class.php:523.

$Xa may only amount to $iX2, though the expression looks weird.

if ($X > $iX2) { $Xa = $X-($X-$iX2); $Ya = $iY1+($X-$iX2); } else { $Xa = $X; $Ya =
→˓$iY1; }

18.2.92 Isset Multiple Arguments

ThinkPHP

Isset Multiple Arguments, in library/think/Request.php:1187.

This may be shortened with isset($sub), $array[$name][$sub])

isset($sub) && isset($array[$name][$sub])

LiveZilla

Isset Multiple Arguments, in livezilla/_lib/trdp/pchart/class/pDraw.class.php:3852.

This is the equivalent of !(isset($Data[Series][$SerieA][Data]) && isset($Data[Series][$SerieB][Data])), and then,
!(isset($Data[Series][$SerieA][Data], $Data[Series][$SerieB][Data]))

!isset($Data[Series][$SerieA][Data]) || !isset($Data[Series][$SerieB][Data])

18.2.93 Isset() On The Whole Array

Tine20

Isset() On The Whole Array, in tine20/Crm/Model/Lead.php:208.

Only the second call is necessary : it also includes the first one.

isset($relation['related_record']) && isset($relation['related_record']['n_fileas'])

ExpressionEngine

Isset() On The Whole Array, in system/ee/legacy/libraries/Form_validation.php:1487.

This is equivalent to isset($this->_field_data[$field], $this->_field_data[$field][‘postdata’]), and the second call may
be skipped.

!isset($this->_field_data[$field]) OR !isset($this->_field_data[$field]['postdata'])

18.2. List of real code Cases 2427

Exakat Documentation, Release 1

18.2.94 Joining file()

WordPress

Joining file(), in wp-admin/includes/misc.php:74.

This code actually loads the file, join it, then split it again. file() would be sufficient.

$markerdata = explode("\n", implode('', file($filename)));

SPIP

Joining file(), in ecrire/inc/install.php:109.

When the file is not accessible, file() returns null, and can’t be processed by join().

$s = @join('', file($file));

18.2.95 Logical Mistakes

Dolibarr

Logical Mistakes, in htdocs/core/lib/admin.lib.php:1165.

This expression is always true. When $nbtabsql is $nbtablib, the left part is true; When $nbtabsql is $nbtabsqlsort,
the right part is true; When any other value is provided, both operands are true.

$nbtablib != $nbtabsql || $nbtabsql != $nbtabsqlsort

Cleverstyle

Logical Mistakes, in modules/HybridAuth/Hybrid/Providers/DigitalOcean.php:123.

This expression is always false. When $data->account->email_verified is true, the right part is false; When $data-
>account->email_verified is $data->account->email, the right part is false; The only viable solution is to have `
$data->account->email`true : this is may be the intend it, though it is not easy to understand.

TRUE == $data->account->email_verified and $data->account->email == $data->account->
→˓email_verified

18.2.96 Logical Should Use Symbolic Operators

Cleverstyle

Logical Should Use Symbolic Operators, in modules/Uploader/Mime/Mime.php:171.

$extension is assigned with the results of pathinfo($reference_name, PATHINFO_EXTENSION) and ignores
static::hasExtension($extension). The same expression, placed in a condition (like an if), would assign a value to
$extension and use another for the condition itself. Here, this code is only an expression in the flow.

$extension = pathinfo($reference_name, PATHINFO_EXTENSION) and static::hasExtension(
→˓$extension);

2428 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

OpenConf

Logical Should Use Symbolic Operators, in chair/export.inc:143.

In this context, the priority of execution is used on purpose; $coreFile only collect the temporary name of the export
file, and when this name is empty, then the second operand of OR is executed, though never collected. Since this second
argument is a ‘die’, its return value is lost, but the initial assignation is never used anyway.

$coreFile = tempnam('/tmp/', 'ocexport') or die('could not generate Excel file (6)')

18.2.97 Logical To in_array

Zencart

Logical To in_array, in admin/users.php:32.

Long list of == are harder to read. Using an in_array() call gathers all the strings together, in an array. In turn, this
helps readability and possibility, reusability by making that list an constant.

// if needed, check that a valid user id has been passed
if (($action == 'update' || $action == 'reset') && isset($_POST['user']))
{
$user = $_POST['user'];

}
elseif (($action == 'edit' || $action == 'password' || $action == 'delete' || $action ==
→˓'delete_confirm') && $_GET['user'])
{
$user = $_GET['user'];

}
elseif(($action=='delete' || $action=='delete_confirm') && isset($_POST['user']))
{
$user = $_POST['user'];

}

18.2.98 Lone Blocks

ThinkPHP

Lone Blocks, in ThinkPHP/Library/Vendor/Hprose/HproseReader.php:163.

There is no need for block in a case/default clause. PHP executes all command in order, until a break or the end of
the switch. There is another occurrence of that situation in this code : it seems to be a coding convention, while only
applied to a few switch statements.

for ($i = 0; $i < $len; ++$i) {
switch (ord($this->stream->getc()) >> 4) {

case 0:
case 1:
case 2:
case 3:
case 4:
case 5:

(continues on next page)

18.2. List of real code Cases 2429

Exakat Documentation, Release 1

(continued from previous page)

case 6:
case 7: {

// 0xxx xxxx
$utf8len++;
break;

}
case 12:
case 13: {

// 110x xxxx 10xx xxxx
$this->stream->skip(1);
$utf8len += 2;
break;

}

Tine20

Lone Blocks, in tine20/Addressbook/Convert/Contact/VCard/Abstract.php:199.

A case of empty case, with empty blocks. This is useless code. Event the curly brackets with the final case are useless.

switch ($property['TYPE']) {
case 'JPG' : {}
case 'jpg' : {}
case 'Jpg' : {}
case 'Jpeg' : {}
case 'jpeg' : {}
case 'PNG' : {}
case 'png' : {}
case 'JPEG' : {

if (Tinebase_Core::isLogLevel(Zend_Log::DEBUG))
Tinebase_Core::getLogger()->warn(__METHOD__ . '::' . __

→˓LINE__ . ' Photo: passing on invalid ' . $property['TYPE'] . ' image as is (' . strlen(
→˓$property->getValue()) .')');

$jpegphoto = $property->getValue();
break;

}

18.2.99 Long Arguments

Cleverstyle

Long Arguments, in core/drivers/DB/MySQLi.php:40.

This query is not complex, but its length tend to push the end out of the view in the IDE. It could be rewritten as a
variable, on the previous line, with some formatting. The same formatting would help without the variable too, yet,
mixing the SQL syntax with the PHP methodcall adds a layer of confusion.

$this->instance->query("SET SESSION sql_mode='ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,NO_
→˓ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,NO_AUTO_CREATE_USER,NO_ENGINE_
→˓SUBSTITUTION'")

2430 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

Contao

Long Arguments, in core-bundle/src/Resources/contao/widgets/CheckBoxWizard.php:145.

This one-liner includes 9 members and 6 variables : some are formatted by sprintf, some are directly concatenated in
the string. Breaking this into two lines improves readbility and code review.

sprintf('<input type="checkbox" name="%s" id="opt_%s" class="tl_checkbox" value="%s
→˓"%s%s onfocus="Backend.getScrollOffset()"> %s<label for="opt_%s">%s</label>',
→˓$this->strName . ($this->multiple ? '[]' : ''), $this->strId . '_' . $i, ($this->
→˓multiple ? \StringUtil::specialchars($arrOption['value']) : 1), (((\is_array($this->
→˓varValue) && \in_array($arrOption['value'], $this->varValue)) || $this->varValue ==
→˓$arrOption['value']) ? ' checked="checked"' : ''), $this->getAttributes(),
→˓$strButtons, $this->strId . '_' . $i, $arrOption['label'])

18.2.100 Lost References

WordPress

Lost References, in wp-admin/includes/misc.php:74.

This code actually loads the file, join it, then split it again. file() would be sufficient.

$markerdata = explode(\n, implode('', file($filename)));

18.2.101 Make One Call With Array

HuMo-Gen

Make One Call With Array, in admin/include/kcfinder/lib/helper_text.php:47.

The three calls to str_replace() could be replaced by one, using array arguments. Nesting the calls doesn’t reduce the
number of calls.

static function jsValue($string) {
return

preg_replace('/\r?\n/', \n,
str_replace('"', "\"",
str_replace("'", "\'",
str_replace("\", "\",

$string))));
}

18.2. List of real code Cases 2431

Exakat Documentation, Release 1

Edusoho

Make One Call With Array, in src/AppBundle/Common/StringToolkit.php:55.

Since str_replace is already using an array, the second argument must also be an array, with repeated empty strings.
That syntax allows adding the ‘ ’ and ‘ ‘ to those arrays. Note also that trim() should be be called early, but since
some of the replacing may generate terminal spaces, it should be kept as is.

$text = strip_tags($text);

$text = str_replace(array(\n, \r, \t), '', $text);
$text = str_replace(' ', ' ', $text);
$text = trim($text);

18.2.102 Method Could Be Static

FuelCMS

Method Could Be Static, in fuel/modules/fuel/models/Fuel_assets_model.php:240.

This method makes no usage of $this : it only works on the incoming argument, $file. This may even be a function.

public function get_file($file)
{

// if no extension is provided, then we determine that it needs to be decoded
if (strpos($file, '.') === FALSE)
{

$file = uri_safe_decode($file);
}
return $file;

}

ExpressionEngine

Method Could Be Static, in system/ee/legacy/libraries/Upload.ph:859.

This method returns the list of mime type, by using a hidden global value : ee() is a functioncall that give access to the
external storage of values.

/**
* List of Mime Types
*
* This is a list of mime types. We use it to validate
* the allowed types set by the developer
*
* @param string
* @return string
*/
public function mimes_types($mime)
{

ee()->load->library('mime_type');
return ee()->mime_type->isSafeForUpload($mime);

}

2432 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

18.2.103 Mismatched Default Arguments

SPIP

Mismatched Default Arguments, in ecrire/inc/lien.php:160.

generer_url_entite() takes $connect in, with a default value of empty string. Later, generer_url_entite() receives that
value, but uses null as a default value. This forces the ternary test on $connect, to turn it into a null before shipping it
to the next function, and having it processed accordingly.

// http://code.spip.net/@traiter_lien_implicite
function traiter_lien_implicite($ref, $texte = '', $pour = 'url', $connect = '') {

// some code was edited here

if (is_array($url)) {
@list($type, $id) = $url;
$url = generer_url_entite($id, $type, $args, $ancre, $connect ? $connect :␣

→˓null);
}

18.2.104 Mismatched Ternary Alternatives

phpadsnew

Mismatched Ternary Alternatives, in phpAdsNew-2.0/admin/lib-misc-stats.inc.php:219.

This is an unusual way to apply a condition. $bgcolor is ‘#FFFFFF’ by default, and if $i % 2, then $bcolor is ‘#F6F6F6’;.
A more readable ternary option would be ‘$bgcolor = = $i % 2 ? #FFFFFF : #F6F6F6;’, and make a matched alternative
branches.

$bgcolor = #FFFFFF;
$i % 2 ? 0 : $bgcolor = #F6F6F6;

OpenEMR

Mismatched Ternary Alternatives, in portal/messaging/messages.php:132.

IS_DASHBOARD is defined as a boolean or a string. Later, it is tested as a boolean, and displayed as a integer, which
will be cast to string by echo. Lots of transtyping are happening here.

// In two distinct if/then branch
l:29) define('IS_DASHBOARD', false);
l:41) define('IS_DASHBOARD', $_SESSION['authUser']);

l:132) echo IS_DASHBOARD ? IS_DASHBOARD : 0;
?>

18.2. List of real code Cases 2433

Exakat Documentation, Release 1

18.2.105 Mismatched Typehint

WordPress

Mismatched Typehint, in wp-admin/includes/misc.php:74.

This code actually loads the file, join it, then split it again. file() would be sufficient.

$markerdata = explode(\n, implode('', file($filename)));

18.2.106 Missing Cases In Switch

Tikiwiki

Missing Cases In Switch, in lib/articles/artlib.php:1075.

This switch handles 3 cases, plus the default for all others. There are other switch structures which also handle the ‘’
case. There may be a missing case here. In particular, projects/tikiwiki/code//article_image.php host another switch
with the same case, plus another ‘topic’ case.

switch ($image_type) {
case 'article':

$image_cache_prefix = 'article';
break;

case 'submission':
$image_cache_prefix = 'article_submission';
break;

case 'preview':
$image_cache_prefix = 'article_preview';
break;

default:
return false;

}

18.2.107 Mixed Concat And Interpolation

SuiteCrm

Mixed Concat And Interpolation, in modules/AOW_Actions/actions/actionSendEmail.php:89.

How long did it take to spot the hidden $checked variable in this long concatenation ? Using a consistent method of
interpolation would help readability here.

"<input type='checkbox' id='aow_actions_param[" . $line . "][individual_email]' name=
→˓'aow_actions_param[" . $line . "][individual_email]' value='1' $checked></td>"

2434 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

Edusoho

Mixed Concat And Interpolation, in src/AppBundle/Controller/Admin/SiteSettingController.php:168.

Calling a method from a property of an object is possible inside a string, though it is rare. Setting the method outside
the string make it more readable.

"{$this->container->getParameter('topxia.upload.public_url_path')}/" . $parsed['path']

18.2.108 Mkdir Default

Mautic

Mkdir Default, in app/bundles/CoreBundle/Helper/AssetGenerationHelper.php:120.

This code is creating some directories for Javascript or CSS (from the directories names) : those require universal
reading access, but probably no execution nor writing access. 0711 would be sufficient in this case.

//combine the files into their corresponding name and put in the root media folder
if ($env == 'prod') {

$checkPaths = [
$assetsFullPath,
$assetsFullPath/css,
$assetsFullPath/js,

];
array_walk($checkPaths, function ($path) {

if (!file_exists($path)) {
mkdir($path);

}
});

OpenEMR

Mkdir Default, in interface/main/backuplog.php:27.

If $BACKUP_EVENTLOG_DIR is a backup for an event log, this should be stored out of the web server reach, with
low rights, beside the current user. This is part of a CLI PHP script.

mkdir($BACKUP_EVENTLOG_DIR)

18.2.109 Multiple Alias Definitions

ChurchCRM

Multiple Alias Definitions, in Various files:–.

It is actually surprising to find FamilyQuery defined as ChurchCRMBaseFamilyQuery only once, while all other refer-
ence are for ChurchCRMFamilyQuery. That lone use is actually useful in the code, so it is not a forgotten refactorisation.

18.2. List of real code Cases 2435

Exakat Documentation, Release 1

use ChurchCRM\Base\FamilyQuery // in /src/MapUsingGoogle.php:7

use ChurchCRM\FamilyQuery // in /src/ChurchCRM/Dashboard/EventsDashboardItem.php:8
// and 29 other files

Phinx

Multiple Alias Definitions, in Various files too:–.

One ‘Command’ is refering to a local Command class, while the other is refering to an imported class. They are all in
a similar name space ConsoleCommand.

use Phinx\Console\Command //in file /src/Phinx/Console/
→˓PhinxApplication.php:34
use Symfony\Component\Console\Command\Command //in file /src/Phinx/Console/Command/
→˓Init.php:31
use Symfony\Component\Console\Command\Command //in file /src/Phinx/Console/Command/
→˓AbstractCommand.php:32

18.2.110 Multiple Constant Definition

Dolibarr

Multiple Constant Definition, in htdocs/main.inc.php:914.

All is documented here : ‘Constants used to defined number of lines in textarea’. Constants are not changing during an
execution, and this allows the script to set values early in the process, and have them used later, in the templates. Yet,
building constants dynamically may lead to confusion, when developpers are not aware of the change.

// Constants used to defined number of lines in textarea
if (empty($conf->browser->firefox))
{

define('ROWS_1',1);
define('ROWS_2',2);
define('ROWS_3',3);
define('ROWS_4',4);
define('ROWS_5',5);
define('ROWS_6',6);
define('ROWS_7',7);
define('ROWS_8',8);
define('ROWS_9',9);

}
else
{

define('ROWS_1',0);
define('ROWS_2',1);
define('ROWS_3',2);
define('ROWS_4',3);
define('ROWS_5',4);
define('ROWS_6',5);
define('ROWS_7',6);

(continues on next page)

2436 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

define('ROWS_8',7);
define('ROWS_9',8);

}

OpenConf

Multiple Constant Definition, in modules/request.php:71.

The constant is build according to the situation, in the part of the script (file request.php). This hides the actual origin
of the value, but keeps the rest of the code simple. Just keep in mind that this constant may have different values.

0

18.2.111 Multiple Index Definition

Magento

Multiple Index Definition, in app/code/core/Mage/Adminhtml/Block/System/Convert/Gui/Grid.php:80.

‘type’ is defined twice. The first one, ‘options’ is overwritten.

$this->addColumn('store_id', array(
'header' => Mage::helper('adminhtml')->__('Store'),
'type' => 'options',
'align' => 'center',
'index' => 'store_id',
'type' => 'store',
'width' => '200px',

));

MediaWiki

Multiple Index Definition, in resources/Resources.php:223.

‘target’ is repeated, though with the same values. This is just dead code.

// inside a big array
'jquery.getAttrs' => [

'targets' => ['desktop', 'mobile'],
'scripts' => 'resources/src/jquery/jquery.getAttrs.js',
'targets' => ['desktop', 'mobile'],

],
// big array continues

18.2. List of real code Cases 2437

Exakat Documentation, Release 1

18.2.112 Multiple Type Variable

Typo3

Multiple Type Variable, in typo3/sysext/backend/Classes/Form/Element/InputDateTimeElement.php:270.

$fullElement is an array most of the time, but finally ends up being a string. Since the array is not the final state, it may
be interesting to make it a class, which collects the various variables, and export the final string. Such class would be
usefull in several places in this repository.

$fullElement = [];
$fullElement[] = '<div class=checkbox t3js-form-field-eval-null-placeholder-

→˓checkbox>';
$fullElement[] = '<label for= . $nullControlNameEscaped . >';
$fullElement[] = '<input type=hidden name= . $nullControlNameEscaped␣

→˓. value= . $fallbackValue . />';
$fullElement[] = '<input type=checkbox name= .

→˓$nullControlNameEscaped . id= . $nullControlNameEscaped . value=1' . $checked .
→˓$disabled . ' />';

$fullElement[] = $overrideLabel;
$fullElement[] = '</label>';
$fullElement[] = '</div>';
$fullElement[] = '<div class=t3js-formengine-placeholder-placeholder>';
$fullElement[] = '<div class=form-control-wrap style=max-width: . $width .

→˓ px>';
$fullElement[] = '<input type=text class=form-control␣

→˓disabled=disabled value= . $shortenedPlaceholder . />';
$fullElement[] = '</div>';
$fullElement[] = '</div>';
$fullElement[] = '<div class=t3js-formengine-placeholder-formfield>';
$fullElement[] = $expansionHtml;
$fullElement[] = '</div>';
$fullElement = implode(LF, $fullElement);

Vanilla

Multiple Type Variable, in library/core/functions.general.php:1427.

Here, $value may be of different type. The if() structures merges all the incoming format into one standard type (int).
This is actually the contrary of this analysis, and is a false positive.

if (is_array($value)) {
$value = count($value);

} elseif (stringEndsWith($field, 'UserID', true)) {
$value = 1;

}

2438 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

18.2.113 Multiple Usage Of Same Trait

NextCloud

Multiple Usage Of Same Trait, in build/integration/features/bootstrap/WebDav.php:41.

WebDav uses Sharing, and Sharing uses Webdav. Once using the other is sufficient.

trait WebDav {
use Sharing;

}
//Trait Sharing is in /build/integration/features/bootstrap/Sharing.php:36

18.2.114 Multiples Identical Case

SugarCrm

Multiples Identical Case, in modules/ModuleBuilder/MB/MBPackage.php:439.

It takes a while to find the double ‘required’ case, but the executed code is actually the same, so this is dead code at
worst.

switch ($col) {
case 'custom_module':

$installdefs['custom_fields'][$name]['module'] = $res;
break;

case 'required':
$installdefs['custom_fields'][$name]['require_option'] = $res;
break;

case 'vname':
$installdefs['custom_fields'][$name]['label'] = $res;
break;

case 'required':
$installdefs['custom_fields'][$name]['require_option'] = $res;
break;

case 'massupdate':
$installdefs['custom_fields'][$name]['mass_update'] = $res;
break;

case 'comments':
$installdefs['custom_fields'][$name]['comments'] = $res;
break;

case 'help':
$installdefs['custom_fields'][$name]['help'] = $res;
break;

case 'len':
$installdefs['custom_fields'][$name]['max_size'] = $res;
break;

default:
$installdefs['custom_fields'][$name][$col] = $res;

}//switch

18.2. List of real code Cases 2439

Exakat Documentation, Release 1

ExpressionEngine

Multiples Identical Case, in ExpressionEngine_Core2.9.2/system/expressionengine/controllers/cp/admin_content.php:577.

‘deft_status’ is doubled, with a fallthrough. This looks like some forgotten copy/paste.

switch ($key){
case 'cat_group':

//PHP code
break;

case 'status_group':
case 'field_group':

//PHP code
break;

case 'deft_status':
case 'deft_status':

//PHP code
break;

case 'search_excerpt':
//PHP code

break;
case 'deft_category':

//PHP code
break;

case 'blog_url':
case 'comment_url':
case 'search_results_url':
case 'rss_url':

//PHP code
break;

default :
//PHP code

break;
}

18.2.115 Multiply By One

SugarCrm

Multiply By One, in SugarCE-Full-6.5.26/modules/Relationships/views/view.editfields.php:74.

Here, ‘$count % 1’ is always true, after the first loop of the foreach. There is no need for % usage.

$count = 0;
foreach($this->fields as $def)
{

if (!empty($def['relationship_field'])) {
$label = !empty($def['vname']) ? $def['vname'] : $def['name'];
echo "<td>" . translate($label, $this->module) . ":</td>"

. "<td><input id='{$def['name']}' name='{$def['name']}'>";

if ($count%1)
echo "</tr><tr>";

(continues on next page)

2440 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

$count++;
}

}
echo "</tr></table></form>";

Edusoho

Multiply By One, in wp-admin/includes/misc.php:74.

1 is useless here, since 24 * 3600 is already an integer. And, of course, a day is not 24 * 3600. . . at least every day.

'yesterdayStart' => date('Y-m-d', strtotime(date('Y-m-d', time())) - 1 * 24 * 3600),

18.2.116 Named Regex

Phinx

Named Regex, in src/Phinx/Util/Util.php:127.

$matches[1] could be renamed by $matches[‘filename’], if the capturing subpattern was named ‘filename’.

const MIGRATION_FILE_NAME_PATTERN = '/^\d+_([\w_]+).php$/i';
//.... More code with class definition

public static function mapFileNameToClassName($fileName)
{

$matches = [];
if (preg_match(static::MIGRATION_FILE_NAME_PATTERN, $fileName, $matches)) {

$fileName = $matches[1];
}

return str_replace(' ', '', ucwords(str_replace('_', ' ', $fileName)));
}

shopware

Named Regex, in engine/Library/Enlight/Components/Snippet/Resource.php:207.

$_match[3] is actually extracted two preg_match() before : by the time we read its usage, the first regex has been
forgotten. A named subpattern would be useful here to remember what was captured.

if (!preg_match("!(.?)(name=)(.*?)(?=(\s|$))!", $_block_args, $_match) && empty($_block_
→˓default)) {

throw new SmartyException('"' . $_block_tag . '" missing name attribute
→˓');

}
$_block_force = (bool) preg_match('#[\s]force#', $_block_args);
$_block_json = (bool) preg_match('#[\s]json=["\']true["\']\W#', $_block_

→˓args);
$_block_name = !empty($_match[3]) ? trim($_match[3], '\'"') : $_block_

→˓default;

18.2. List of real code Cases 2441

Exakat Documentation, Release 1

18.2.117 Native Alias Functions Usage

Cleverstyle

Native Alias Functions Usage, in modules/HybridAuth/Hybrid/thirdparty/Vimeo/Vimeo.php:422.

is_writeable() should be written is_writable(). No extra ‘e’.

is_writeable($chunk_temp_dir)

phpMyAdmin

Native Alias Functions Usage, in libraries/classes/Server/Privileges.php:5064.

join() should be written implode()

join('`, `', $tmp_privs2['Update'])

18.2.118 Nested Ifthen

LiveZilla

Nested Ifthen, in livezilla/_lib/objects.global.inc.php:847.

The first condition is fairly complex, and could also return early. Then, the second nested if could be merged into one
: this would reduce the number of nesting, but make the condition higher.

if(isset(Server::$Configuration->File["gl_url_detect"]) && !Server::$Configuration->File[
→˓"gl_url_detect"] && isset(Server::$Configuration->File["gl_url"]) && !empty(Server::
→˓$Configuration->File["gl_url"]))

{
$url = Server::$Configuration->File["gl_url"];

}
else if(isset($_SERVER["HTTP_HOST"]) && !empty($_SERVER["HTTP_HOST"]))
{

$host = $_SERVER["HTTP_HOST"];
$path = $_SERVER["PHP_SELF"];

if(!empty($path) && !Str::EndsWith(strtolower($path),strtolower($_file)) &&␣
→˓strpos(strtolower($path),strtolower($_file)) !== false)

{
if(empty(Server::$Configuration->File["gl_kbmr"]))
{

Logging::DebugLog(serialize($_SERVER));
exit("err 888383; can't read $_SERVER["HTTP_HOST"] and $_SERVER["PHP_

→˓SELF"]");
}

}

define("LIVEZILLA_DOMAIN",Communication::GetScheme() . $host);
$url = LIVEZILLA_DOMAIN . str_replace($_file,"",htmlentities($path,ENT_

→˓QUOTES,"UTF-8"));
}

2442 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

MediaWiki

Nested Ifthen, in includes/Linker.php:1493.

There are 5 level of nesting here, from the beginning of the method, down to the last condition. All work on local
variables, as it is a static method. May be breaking this into smaller functions would help readability.

public static function normalizeSubpageLink($contextTitle, $target, &$text) {
$ret = $target; # default return value is no change

Some namespaces don't allow subpages,
so only perform processing if subpages are allowed
if (

$contextTitle && MediaWikiServices::getInstance()->
→˓getNamespaceInfo()->

hasSubpages($contextTitle->getNamespace())
) {

$hash = strpos($target, '#');
if ($hash !== false) {

$suffix = substr($target, $hash);
$target = substr($target, 0, $hash);

} else {
$suffix = '';

}
T9425
$target = trim($target);
$contextPrefixedText = MediaWikiServices::getInstance()->

→˓getTitleFormatter()->
getPrefixedText($contextTitle);

Look at the first character
if ($target != '' && $target[0] === '/') {

/ at end means we don't want the slash to be shown
$m = [];
$trailingSlashes = preg_match_all('%(/+)$%', $target, $m);
if ($trailingSlashes) {

$noslash = $target = substr($target, 1, -strlen(
→˓$m[0][0]));

} else {
$noslash = substr($target, 1);

}

$ret = $contextPrefixedText . '/' . trim($noslash) .
→˓$suffix;

if ($text === '') {
$text = $target . $suffix;

} # this might be changed for ugliness reasons
} else {

check for .. subpage backlinks
$dotdotcount = 0;
$nodotdot = $target;
while (strncmp($nodotdot, ../, 3) == 0) {

++$dotdotcount;
$nodotdot = substr($nodotdot, 3);

}
(continues on next page)

18.2. List of real code Cases 2443

Exakat Documentation, Release 1

(continued from previous page)

if ($dotdotcount > 0) {
$exploded = explode('/', $contextPrefixedText);
if (count($exploded) > $dotdotcount) { # not␣

→˓allowed to go below top level page
$ret = implode('/', array_slice($exploded,␣

→˓0, -$dotdotcount));
/ at the end means don't show full path
if (substr($nodotdot, -1, 1) === '/') {

$nodotdot = rtrim($nodotdot, '/');
if ($text === '') {

$text = $nodotdot . $suffix;
}

}
$nodotdot = trim($nodotdot);
if ($nodotdot != '') {

$ret .= '/' . $nodotdot;
}
$ret .= $suffix;

}
}

}
}

return $ret;
}

18.2.119 Nested Ternary

SPIP

Nested Ternary, in ecrire/inc/utils.php:2648.

Interesting usage of both if/then, for the flow control, and ternary, for data process. Even on multiple lines, nested
ternaries are quite hard to read.

// le script de l'espace prive
// Mettre a index.php si DirectoryIndex ne le fait pas ou pb connexes:
// les anciens IIS n'acceptent pas les POST sur ecrire/ (#419)
// meme pb sur thttpd cf. http://forum.spip.net/fr_184153.html
if (!defined('_SPIP_ECRIRE_SCRIPT')) {

define('_SPIP_ECRIRE_SCRIPT', (empty($_SERVER['SERVER_SOFTWARE']) ? '' :
preg_match(',IIS|thttpd,', $_SERVER['SERVER_SOFTWARE']) ?

'index.php' : ''));
}

2444 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

Zencart

Nested Ternary, in app/library/zencart/ListingQueryAndOutput/src/formatters/TabularProduct.php:143.

No more than one level of nesting for this ternary call, yet it feels a lot more, thanks to the usage of arrayed properties,
constants, and functioncalls.

$lc_text .= '
' . (zen_get_show_product_switch($listing->fields['products_id'],
→˓'ALWAYS_FREE_SHIPPING_IMAGE_SWITCH') ? (zen_get_product_is_always_free_shipping(
→˓$listing->fields['products_id']) ? TEXT_PRODUCT_FREE_SHIPPING_ICON . '
' : '') : '
→˓');

18.2.120 Never Called Parameter

Piwigo

Never Called Parameter, in include/functions_html.inc.php:329.

$alternate_url is never explicitly passed to bad_request() : this doesn’t show in this extract. It could be dropped from
this code.

function bad_request($msg, $alternate_url=null)
{
set_status_header(400);
if ($alternate_url==null)
$alternate_url = make_index_url();

redirect_html($alternate_url,
'<div style="text-align:left; margin-left:5em;margin-bottom:5em;">

<h1 style="text-align:left; font-size:36px;">'.l10n('Bad request').'</h1>
'
.$msg.'</div>',

5);
}

18.2.121 Never Used Properties

WordPress

Never Used Properties, in wp-admin/includes/misc.php:74.

This code actually loads the file, join it, then split it again. file() would be sufficient.

$markerdata = explode(\n, implode('', file($filename)));

18.2. List of real code Cases 2445

Exakat Documentation, Release 1

18.2.122 Next Month Trap

Contao

Next Month Trap, in system/modules/calendar/classes/Events.php:515.

This code is wrong on August 29,th 30th and 31rst : 6 months before is caculated here as February 31rst, so march 2.
Of course, this depends on the leap years.

case 'past_180':
return array(strtotime('-6 months'), time(), $GLOBALS['TL_

→˓LANG']['MSC']['cal_empty']);

Edusoho

Next Month Trap, in src/AppBundle/Controller/Admin/AnalysisController.php:1426.

The last month is wrong 8 times a year : on 31rst, and by the end of March.

'lastMonthStart' => date('Y-m-d', strtotime(date('Y-m', strtotime('-1 month')))),
'lastMonthEnd' => date('Y-m-d', strtotime(date('Y-m', time())) - 24 * 3600),
'lastThreeMonthsStart' => date('Y-m-d', strtotime(date('Y-m', strtotime('-2␣

→˓month')))),

18.2.123 No Boolean As Default

OpenConf

No Boolean As Default, in openconf/include.php:1264.

Why do we need a chair when printing a cell’s file ?

function oc_printFileCells(&$sub, $chair = false) { /**/ }

18.2.124 No Choice

NextCloud

No Choice, in build/integration/features/bootstrap/FilesDropContext.php:71.

Token is checked, but processed in the same way each time. This actual check is done twice, in the same class, in the
method droppingFileWith().

public function creatingFolderInDrop($folder) {
$client = new Client();
$options = [];
if (count($this->lastShareData->data->element) > 0){

$token = $this->lastShareData->data[0]->token;
} else {

$token = $this->lastShareData->data[0]->token;
}

(continues on next page)

2446 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

$base = substr($this->baseUrl, 0, -4);
$fullUrl = $base . '/public.php/webdav/' . $folder;

$options['auth'] = [$token, ''];

Zencart

No Choice, in admin/includes/functions/html_output.php:179.

At least, it always choose the most secure way : use SSL.

if ($usessl) {
$form .= zen_href_link($action, $parameters, 'NONSSL');

} else {
$form .= zen_href_link($action, $parameters, 'NONSSL');

}

18.2.125 No Class As Typehint

Vanilla

No Class As Typehint, in library/Vanilla/Formatting/Formats/RichFormat.php:51.

All three typehints are based on classes. When Parser or Renderer are changed, for testing, versioning or moduling
reasons, they must subclass the original class.

public function __construct(Quill\Parser $parser, Quill\Renderer $renderer, Quill\
→˓Filterer $filterer) {

$this->parser = $parser;
$this->renderer = $renderer;
$this->filterer = $filterer;

}

phpMyAdmin

No Class As Typehint, in libraries/classes/CreateAddField.php:29.

Although the class is named ‘DatabaseInterface’, it is a class.

public function __construct(DatabaseInterface $dbi)
{

$this->dbi = $dbi;
}

18.2. List of real code Cases 2447

Exakat Documentation, Release 1

18.2.126 No Class In Global

Dolphin

No Class In Global, in Dolphin-v.7.3.5/inc/classes/BxDolXml.php:10.

This class should be put away in a ‘dolphin’ or ‘boonex’ namespace.

class BxDolXml {
/* class BxDolXML code */

}

18.2.127 No Count With 0

Contao

No Count With 0, in system/modules/repository/classes/RepositoryManager.php:1148.

If $elist contains at least one element, then it is not empty().

$ext->found = count($elist)>0;

WordPress

No Count With 0, in wp-admin/includes/misc.php:74.

$build or $signature are empty at that point, no need to calculate their respective length.

// Check for zero length, although unlikely here
if (strlen($built) == 0 || strlen($signature) == 0) {
return false;

}

18.2.128 No Direct Usage

Edusoho

No Direct Usage, in edusoho/src/AppBundle/Controller/Admin/FinanceSettingController.php:107.

Glob() returns false, in case of error. It returns an empty array in case everything is fine, but nothing was found. In
case of error, array_map() will stop the script.

array_map('unlink', glob($dir.'/MP_verify_*.txt'));

2448 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

XOOPS

No Direct Usage, in htdocs/Frameworks/moduleclasses/moduleadmin/moduleadmin.php:585.

Although the file is readable, file() may return false in case of failure. On the other hand, implode doesn’t accept
boolean values.

$file = XOOPS_ROOT_PATH . /modules/{$module_dir}/docs/changelog.txt;
if (is_readable($file)) {

$ret .= implode('
', file($file)) . \n;
}

18.2.129 No Empty Regex

Tikiwiki

No Empty Regex, in lib/sheet/excel/writer/worksheet.php:1925.

The initial ‘s’ seems to be too much. May be a typo ?

// Strip URL type
$url = preg_replace('s[^internal:]', '', $url);

18.2.130 No Hardcoded Hash

shopware

No Hardcoded Hash, in engine/Shopware/Models/Document/Data/OrderData.php:254.

This is actually a hashed hardcoded password. As the file explains, this is a demo order, for populating the database
when in demo mode, so this is fine. We also learn that the password are securily sorted here. It may also be advised to
avoid hardcoding this password, as any demo shop has the same user credential : it is the first to be tried when a demo
installation is found.

'_userID' => '3',
'_user' => new ArrayObject([

'id' => '3',
'password' => '$2y$10$GAGAC6.1kMRvN4RRcLrYleDx.EfWhHcW./cmoOQg11sjFUY73SO.C',
'encoder' => 'bcrypt',
'email' => 'demo@shopware.com',
'customernumber' => '20005',

SugarCrm

No Hardcoded Hash, in SugarCE-Full-6.5.26/include/Smarty/Smarty.class.php:460.

The MD5(‘Smarty’) is hardcoded in the properties. This property is not used in the class, but in parts of the code,
when a unique delimiter is needed.

/**
* md5 checksum of the string 'Smarty'
*

(continues on next page)

18.2. List of real code Cases 2449

Exakat Documentation, Release 1

(continued from previous page)

* @var string
*/
var $_smarty_md5 = 'f8d698aea36fcbead2b9d5359ffca76f';

18.2.131 No Hardcoded Ip

OpenEMR

No Hardcoded Ip, in wp-admin/includes/misc.php:74.

Although they are commented just above, the values provided here are suspicious.

// FTP parameters that you must customize. If you are not sending
// then set $FTP_SERVER to an empty string.
//
$FTP_SERVER = 192.168.0.30;
$FTP_USER = openemr;
$FTP_PASS = secret;
$FTP_DIR = ;

NextCloud

No Hardcoded Ip, in config/config.sample.php:1561.

Although they are documented as empty array, 3 values are provided as examples. They do not responds, at the time
of writing, but they may.

/**
* List of trusted proxy servers
*
* You may set this to an array containing a combination of
* - IPv4 addresses, e.g. `192.168.2.123`
* - IPv4 ranges in CIDR notation, e.g. `192.168.2.0/24`
* - IPv6 addresses, e.g. `fd9e:21a7:a92c:2323::1`
*
* _(CIDR notation for IPv6 is currently work in progress and thus not
* available as of yet)_
*
* When an incoming request's `REMOTE_ADDR` matches any of the IP addresses
* specified here, it is assumed to be a proxy instead of a client. Thus, the
* client IP will be read from the HTTP header specified in
* `forwarded_for_headers` instead of from `REMOTE_ADDR`.
*
* So if you configure `trusted_proxies`, also consider setting
* `forwarded_for_headers` which otherwise defaults to `HTTP_X_FORWARDED_FOR`
* (the `X-Forwarded-For` header).
*
* Defaults to an empty array.
*/
'trusted_proxies' => array('203.0.113.45', '198.51.100.128', '192.168.2.0/24'),

2450 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

18.2.132 No Hardcoded Path

Tine20

No Hardcoded Path, in tine20/Tinebase/DummyController.php:28.

When this script is not run on a Linux system, the file save will fail.

file_put_contents('/var/run/tine20/DummyController.txt', 'success ' . $n)

Thelia

No Hardcoded Path, in local/modules/Tinymce/Resources/js/tinymce/filemanager/include/php_image_magician.php:2317.

The iptc.jpg file is written. It looks like the file may be written next to the php_image_magician.php file, but this is
deep in the source code and is unlikely. This means that the working directory has been set to some other place, though
we don’t read it immediately.

private function writeIPTC($dat, $value)
{

LIMIT TO JPG

$caption_block = $this->iptc_maketag(2, $dat, $value);
$image_string = iptcembed($caption_block, $this->fileName);
file_put_contents('iptc.jpg', $image_string);

}

18.2.133 No Hardcoded Port

WordPress

No Hardcoded Port, in wp-admin/includes/misc.php:74.

This code actually loads the file, join it, then split it again. file() would be sufficient.

$markerdata = explode(\n, implode('', file($filename)));

18.2.134 No Need For Else

Thelia

No Need For Else, in core/lib/Thelia/Core/Template/Loop/Address.php:92.

After checking that $currentCustomer is null, the method returns. The block with Else may be removed and its code
may be moved one level up.

if ($customer === 'current') {
$currentCustomer = $this->securityContext->getCustomerUser();
if ($currentCustomer === null) {

return null;
(continues on next page)

18.2. List of real code Cases 2451

Exakat Documentation, Release 1

(continued from previous page)

} else {
$search->filterByCustomerId($currentCustomer->getId(), Criteria::EQUAL);

}
} else {

$search->filterByCustomerId($customer, Criteria::EQUAL);
}

ThinkPHP

No Need For Else, in projects/thinkphp/code//ThinkPHP/Library/Org/Util/Rbac.class.php:187.

This code has both good and bad example. Good : no use of else, af-
ter $_SESSION[$accessGuid] check. Issue : else usage after usage of !is-
set($accessList[strtoupper($appName)][strtoupper(CONTROLLER_NAME)][strtoupper(ACTION_NAME)])

if (empty($_SESSION[C('ADMIN_AUTH_KEY')])) {
if (C('USER_AUTH_TYPE') == 2) {

//
//
$accessList = self::getAccessList($_SESSION[C('USER_AUTH_KEY')]);

} else {
//
if ($_SESSION[$accessGuid]) {

return true;
}
//
$accessList = $_SESSION['_ACCESS_LIST'];

}
//
if (!isset($accessList[strtoupper($appName)][strtoupper(CONTROLLER_

→˓NAME)][strtoupper(ACTION_NAME)])) {
$_SESSION[$accessGuid] = false;
return false;

} else {
$_SESSION[$accessGuid] = true;

}

18.2.135 No Parenthesis For Language Construct

Phpdocumentor

No Parenthesis For Language Construct, in src/Application/Renderer/Router/StandardRouter.php:55.

No need for parenthesis with require(). instanceof has a higher precedence than return anyway.

$this[] = new Rule(function ($node) { return ($node instanceof NamespaceDescriptor); },
→˓$namespaceGenerator);

2452 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

phpMyAdmin

No Parenthesis For Language Construct, in db_datadict.php:170.

Not only echo() doesn’t use any parenthesis, but this syntax gives the illusion that echo() only accepts one argument,
while it actually accepts an arbitrary number of argument.

echo (($row['Null'] == 'NO') ? __('No') : __('Yes'))

18.2.136 No Real Comparison

Magento

No Real Comparison, in app/code/core/Mage/XmlConnect/Block/Catalog/Product/Options/Configurable.php:74.

Compare prices and physical quantities with a difference, so as to avoid rounding errors.

if ((float)$option['price'] != 0.00) {
$valueNode->addAttribute('price', $option['price']);
$valueNode->addAttribute('formated_price', $option['formated_

→˓price']);
}

SPIP

No Real Comparison, in ecrire/maj/v017.php:37.

Here, the current version number is stored as a real number. With a string, though a longer value, it may be compared
using the version_compare() function.

$version_installee == 1.701

18.2.137 No Reference For Ternary

phpadsnew

No Reference For Ternary, in lib/OA/Admin/Menu/Section.php334:334.

The reference should be removed from the function definition. Either this method returns null, which is never a ref-
erence, or it returns $this, which is always a reference, or the results of a methodcall. The latter may or may not be a
reference, but the Ternary operator will drop it and return by value.

function &getParentOrSelf($type)
{

if ($this->type == $type) {
return $this;

}
else {

return $this->parentSection != null ? $this->parentSection->getParentOrSelf(
→˓$type) : null;

}
}

18.2. List of real code Cases 2453

Exakat Documentation, Release 1

18.2.138 No Return Used

SPIP

No Return Used, in ecrire/inc/utils.php:1067.

job_queue_remove() is called as an administration order, and the result is not checked. It is considered as a fire-and-
forget command.

function job_queue_remove($id_job) {
include_spip('inc/queue');

return queue_remove_job($id_job);
}

LiveZilla

No Return Used, in livezilla/_lib/trdp/Zend/Loader.php:114.

The loadFile method tries to load a file, aka as include. If the inclusion fails, a PHP error is emitted (an exception
would do the same), and there is not error management. Hence, the ‘return true;’, which is not tested later. It may be
dropped.

public static function loadFile($filename, $dirs = null, $once = false)
{

// A lot of code to check and include files

return true;
}

18.2.139 No array_merge() In Loops

Tine20

No array_merge() In Loops, in tine20/Tinebase/User/Ldap.php:670.

Classic example of array_merge() in loop : here, the attributures should be collected in a local variable, and then merged
in one operation, at the end. That includes the attributes provided before the loop, and the array provided after the loop.
Note that the order of merge will be the same when merging than when collecting the arrays.

$attributes = array_values($this->_rowNameMapping);
foreach ($this->_ldapPlugins as $plugin) {

$attributes = array_merge($attributes, $plugin->getSupportedAttributes());
}

$attributes = array_merge($attributes, $this->_additionalLdapAttributesToFetch);

2454 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

18.2.140 No isset() With empty()

XOOPS

No isset() With empty(), in htdocs/class/tree.php:297.

Too much vlaidation

isset($this->tree[$key]['child']) && !empty($this->tree[$key]['child']);

18.2.141 Non Ascii Variables

Magento

Non Ascii Variables, in dev/tests/functional/tests/app/Mage/Checkout/Test/Constraint/AssertOrderWithMultishippingSuccessPlacedMessage.php:52.

The initial C is actually a russian C.

$heckoutMultishippingSuccess

18.2.142 Non Static Methods Called In A Static

Dolphin

Non Static Methods Called In A Static, in Dolphin-v.7.3.5/xmlrpc/BxDolXMLRPCFriends.php:11.

getIdByNickname() is indeed defined in the class ‘BxDolXMLRPCUtil’ and it calls the database. The class relies on
functions (not methods) to query the database with the correct connexion.

class BxDolXMLRPCFriends
{

function getFriends($sUser, $sPwd, $sNick, $sLang)
{

$iIdProfile = BxDolXMLRPCUtil::getIdByNickname ($sNick);

Magento

Non Static Methods Called In A Static, in app/code/core/Mage/Paypal/Model/Payflowlink.php:143.

Mage_Payment_Model_Method_Abstract is an abstract class : this way, it is not possible to instantiate it and then,
access its methods. The class is extended, so it could be called from one of the objects. Although, the troubling part is
that isAvailable() uses $this, so it can’t be static.

Mage_Payment_Model_Method_Abstract::isAvailable($quote)

18.2. List of real code Cases 2455

Exakat Documentation, Release 1

18.2.143 Non-constant Index In Array

Dolibarr

Non-constant Index In Array, in htdocs/includes/OAuth/Common/Storage/DoliStorage.php:245.

The state constant in the $result array is coming from the SQL query. There is no need to make this a constant : making
it a string will remove some warnings in the logs.

public function hasAuthorizationState($service)
{

// get state from db
dol_syslog("get state from db");
$sql = "SELECT state FROM ".MAIN_DB_PREFIX."oauth_state";
$sql.= " WHERE service='".$this->db->escape($service)."'";
$resql = $this->db->query($sql);
$result = $this->db->fetch_array($resql);
$states[$service] = $result[state];
$this->states[$service] = $states[$service];

return is_array($states)
&& isset($states[$service])
&& null !== $states[$service];

}

Zencart

Non-constant Index In Array, in app/library/zencart/Services/src/LeadLanguagesRoutes.php:112.

The fields constant in the $tableEntry which holds a list of tables. It seems to be a SQL result, but it is conveniently
abstracted with $this->listener->getTableList(), so we can’t be sure.

public function updateLanguageTables($insertId)
{

$tableList = $this->listener->getTableList();
if (count($tableList) == 0) {

return;
}
foreach ($tableList as $tableEntry) {

$languageKeyField = issetorArray($tableEntry, 'languageKeyField', 'language_
→˓id');

$sql = " INSERT IGNORE INTO :table: (";
$sql = $this->dbConn->bindVars($sql, ':table:', $tableEntry ['table'],

→˓'noquotestring');
$sql .= $languageKeyField. ,;
$fieldNames = ;
foreach ($tableEntry[fields] as $fieldName => $fieldType) {

$fieldNames .= $fieldName . ,;
}

2456 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

18.2.144 Not Not

Cleverstyle

Not Not, in modules/OAuth2/OAuth2.php:190.

This double-call returns $results as a boolean, preventing a spill of data to the calling method. The (bool) operator
would be clearer here.

$result = $this->db_prime()->q(
[

DELETE FROM `[prefix]oauth2_clients`

Tine20

Not Not, in tine20/Calendar/Controller/MSEventFacade.php:392.

It seems that !! is almost superfluous, as a property called ‘is_deleted’ should already be a boolean.

foreach ($exceptions as $exception) {
$exception->assertAttendee($this->getCalendarUser());
$this->_prepareException($savedEvent, $exception);
$this->_preserveMetaData($savedEvent, $exception, true);
$this->_eventController->createRecurException($exception, !!$exception->

→˓is_deleted);
}

18.2.145 Objects Don’t Need References

Zencart

Objects Don’t Need References, in includes/library/illuminate/support/helpers.php:484.

No need for & operator when $class is only used for a method call.

/**
* @param $class
* @param $eventID
* @param array $paramsArray
*/
public function updateNotifyCheckoutflowFinishedManageSuccessOrderLinkEnd(&$class,

→˓$eventID, $paramsArray = array())
{

$class->getView()->getTplVarManager()->se('flag_show_order_link', false);
}

18.2. List of real code Cases 2457

Exakat Documentation, Release 1

XOOPS

Objects Don’t Need References, in htdocs/class/theme_blocks.phps:221.

Here, $template is modified, when its properties are modified. When only the properties are modified, or read, then &
is not necessary.

public function buildBlock($xobject, &$template)
{

// The lame type workaround will change
// bid is added temporarily as workaround for specific block manipulation
$block = array(

'id' => $xobject->getVar('bid'),
'module' => $xobject->getVar('dirname'),
'title' => $xobject->getVar('title'),
// 'name' => strtolower(preg_replace('/[^0-9a-zA-Z_]/', '', str_

→˓replace(' ', '_', $xobject->getVar('name')))),
'weight' => $xobject->getVar('weight'),
'lastmod' => $xobject->getVar('last_modified'));

$bcachetime = (int)$xobject->getVar('bcachetime');
if (empty($bcachetime)) {

$template->caching = 0;
} else {

$template->caching = 2;
$template->cache_lifetime = $bcachetime;

}
$template->setCompileId($xobject->getVar('dirname', 'n'));
$tplName = ($tplName = $xobject->getVar('template')) ? db:$tplName : 'db:system_

→˓block_dummy.tpl';
$cacheid = $this->generateCacheId('blk_' . $xobject->getVar('bid'));

// more code to the end of the method

18.2.146 Old Style __autoload()

Piwigo

Old Style __autoload(), in include/phpmailer/PHPMailerAutoload.php:45.

This code handles situations for PHP after 5.1.0 and older. Rare are the applications that are still using those versions
in 2019.

if (version_compare(PHP_VERSION, '5.1.2', '>=')) {
//SPL autoloading was introduced in PHP 5.1.2
if (version_compare(PHP_VERSION, '5.3.0', '>=')) {

spl_autoload_register('PHPMailerAutoload', true, true);
} else {

spl_autoload_register('PHPMailerAutoload');
}

} else {
/**
* Fall back to traditional autoload for old PHP versions
* @param string $classname The name of the class to load

(continues on next page)

2458 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

*/
function __autoload($classname)
{

PHPMailerAutoload($classname);
}

}

18.2.147 One If Is Sufficient

Tikiwiki

One If Is Sufficient, in lib/wiki-plugins/wikiplugin_trade.php:152.

empty($params[‘inputtitle’]) should have priority over $params[‘wanted’] == ‘n’.

if ($params['wanted'] == 'n') {
if (empty($params['inputtitle'])) {

$params['inputtitle'] = 'Payment of %0 %1 from user %2 to %3';
}

} else {
if (empty($params['inputtitle'])) {

$params['inputtitle'] = 'Request payment of %0 %1 to user %2 from %3';
}

}

18.2.148 One Letter Functions

ThinkPHP

One Letter Functions, in ThinkPHP/Mode/Api/functions.php:859.

There are also the functions C, E, G. . . The applications is written in a foreign language, which may be a base for
non-significant function names.

function F($name, $value = '', $path = DATA_PATH)

Cleverstyle

One Letter Functions, in core/drivers/DB/PostgreSQL.php:71.

There is also function f(). Those are actually overwritten methods. From the documentation, q() is for query, and f() is
for fetch. Those are short names for frequently used functions.

public function q ($query, ...$params) {

18.2. List of real code Cases 2459

Exakat Documentation, Release 1

18.2.149 One Variable String

Tikiwiki

One Variable String, in lib/wiki-plugins/wikiplugin_addtocart.php:228.

Double-quotes are not needed here. If casting to string is important, the (string) would be more explicit.

foreach ($plugininfo['params'] as $key => $param) {
$default[$key] = $param['default'];

}

NextCloud

One Variable String, in build/integration/features/bootstrap/BasicStructure.php:349.

Both concatenations could be merged, independently. If readability is important, why not put them inside curly brack-
ets?

public static function removeFile($path, $filename) {
if (file_exists($path . $filename)) {

unlink($path . $filename);
}

}

18.2.150 Only Variable Passed By Reference

Dolphin

Only Variable Passed By Reference, in administration/charts.json.php:89.

This is not possible, as array_slice() returns a new array, and not a reference. Minimally, the intermediate result must
be saved in a variable, then popped. Actually, this code extracts the element at key 1 in the $aData array, although this
also works with hash (non-numeric keys).

array_pop(array_slice($aData, 0, 1))

PhpIPAM

Only Variable Passed By Reference, in functions/classes/class.Thread.php:243.

This is sneaky bug : the assignation $status = 0 returns a value, and not a variable. This leads PHP to mistake the
initialized 0 with the variable $status and fails. It is not possible to initialize variable AND use them as argument.

pcntl_waitpid($this->pid, $status = 0)

2460 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

18.2.151 Or Die

Tine20

Or Die, in scripts/addgrant.php:34.

Typical error handling, which also displays the MySQL error message, and leaks informations about the system. One
may also note that mysql_connect is not supported anymore, and was replaced with mysqli and pdo : this may be a
backward compatibile file.

$link = mysql_connect($host, $user, $pass) or die("No connection: " . mysql_error())

OpenConf

Or Die, in openconf/chair/export.inc:143.

or die() is also applied to many situations, where a blocking situation arise. Here, with the creation of a temporary file.

$coreFile = tempnam('/tmp/', 'ocexport') or die('could not generate Excel file (6)')

18.2.152 Overwritten Source And Value

ChurchCRM

Overwritten Source And Value, in edusoho/vendor/symfony/symfony/src/Symfony/Component/VarDumper/Dumper/CliDumper.php:194.

$str is actually processed as an array (string of characters), and it is also modified along the way.

foreach ($str as $str) {
if ($i < $m) {

$str .= \n;
}
if (0 < $this->maxStringWidth && $this->maxStringWidth < $len = mb_

→˓strlen($str, 'UTF-8')) {
$str = mb_substr($str, 0, $this->maxStringWidth, 'UTF-8');
$lineCut = $len - $this->maxStringWidth;

}
//.... More code

ExpressionEngine

Overwritten Source And Value, in system/ee/EllisLab/ExpressionEngine/Service/Theme/ThemeInstaller.php:595.

Looping over $filename.

foreach (directory_map($to_dir) as $directory => $filename)
{

if (is_string($directory))
{

foreach ($filename as $filename)
{

unlink($to_dir.$directory.'/'.$filename);
(continues on next page)

18.2. List of real code Cases 2461

Exakat Documentation, Release 1

(continued from previous page)

}

@rmdir($to_dir.$directory);
}
else
{

unlink($to_dir.$filename);
}

}

18.2.153 PHP Keywords As Names

ChurchCRM

PHP Keywords As Names, in src/kiosk/index.php:42.

$false may be true or false (or else. . .). In fact, the variable is not even defined in this file, and the file do a lot of
inclusion.

if (!isset($_COOKIE['kioskCookie'])) {
if ($windowOpen) {

$guid = uniqid();
setcookie(kioskCookie, $guid, 2147483647);
$Kiosk = new \ChurchCRM\KioskDevice();
$Kiosk->setGUIDHash(hash('sha256', $guid));
$Kiosk->setAccepted($false);
$Kiosk->save();

} else {
header(HTTP/1.1 401 Unauthorized);
exit;

}
}

xataface

PHP Keywords As Names, in Dataface/Record.php:1278.

This one is documented, and in the end, makes a lot of sense.

function &getRelatedRecord($relationshipName, $index=0, $where=0, $sort=0){
if (isset($this->cache[__FUNCTION__][$relationshipName][$index][$where][

→˓$sort])){
return $this->cache[__FUNCTION__][$relationshipName][$index][$where][

→˓$sort];
}
$it = $this->getRelationshipIterator($relationshipName, $index, 1, $where,

→˓$sort);
if ($it->hasNext()){

$rec =& $it->next();
$this->cache[__FUNCTION__][$relationshipName][$index][$where][$sort]␣

→˓=& $rec;
(continues on next page)

2462 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

return $rec;
} else {

$null = null; // stupid hack because literal 'null' can't be␣
→˓returned by ref.

return $null;
}

}

18.2.154 PHP7 Dirname

OpenConf

PHP7 Dirname, in include.php:61.

Since PHP 7.0, dirname(, 2); does the job.

$OC_basepath = dirname(dirname($_SERVER['PHP_SELF']));

MediaWiki

PHP7 Dirname, in includes/installer/Installer.php:1173.

Since PHP 7.0, dirname(, 2); does the job.

protected function envPrepPath() {
global $IP;
$IP = dirname(dirname(__DIR__));
$this->setVar('IP', $IP);

}

18.2.155 Parent First

shopware

Parent First, in wp-admin/includes/misc.php:74.

Here, the parent is called last. Givent that $title is defined in the same class, it seems that $name may be defined in
the BaseContainer class. In fact, it is not, and BasecContainer and FieldSet are fairly independant classes. Thus, the
parent::__construct call could be first here, though more as a coding convention.

/**
* Class FieldSet
*/
class FieldSet extends BaseContainer
{

/**
* @var string
*/
protected $title;

(continues on next page)

18.2. List of real code Cases 2463

Exakat Documentation, Release 1

(continued from previous page)

/**
* @param string $name
* @param string $title
*/
public function __construct($name, $title)
{

$this->title = $title;
$this->name = $name;
parent::__construct();

}

PrestaShop

Parent First, in controllers/admin/AdminPatternsController.php:30.

A good number of properties are set in the current object even before the parent AdminController(Core) is called. ‘table’
and ‘lang’ acts as default values for the parent class, as it (the parent class) would set them to another default value.
Many properties are used, but not defined in the current class, nor its parent. This approach prevents the constructor
from requesting too many arguments. Yet, as such, it is difficult to follow which of the initial values are transmitted via
protected/public properties rather than using the __construct() call.

class AdminPatternsControllerCore extends AdminController
{

public $name = 'patterns';

public function __construct()
{

$this->bootstrap = true;
$this->show_toolbar = false;
$this->context = Context::getContext();

parent::__construct();
}

18.2.156 Pathinfo() Returns May Vary

NextCloud

Pathinfo() Returns May Vary, in lib/private/Preview/Office.php:56.

$absPath is build with the toTmpFile() method, which may return a boolean (false) in case of error. Error situations
include the inability to create the temporary file.

$absPath = $fileview->toTmpFile($path);

// More code

list($dirname, , , $filename) = array_values(pathinfo($absPath));
$pngPreview = $dirname . '/' . $filename . '.png';

2464 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

18.2.157 Phpinfo

Dolphin

Phpinfo, in Dolphin-v.7.3.5/install/exec.php:4.

An actual phpinfo(), available during installation. Note that the phpinfo() is actually triggered by a hidden POST
variable.

<?php

if (!empty($_POST['phpinfo']))
phpinfo();

elseif (!empty($_POST['gdinfo']))
echo '<pre>' . print_r(gd_info(), true) . '</pre>';

?>
<center>

<form method=post>
<input type=submit name=phpinfo value=PHP Info>

</form>
<form method=post>

<input type=submit name=gdinfo value=GD Info>
</form>

</center>

18.2.158 Possible Increment

Zurmo

Possible Increment, in app/protected/modules/workflows/utils/SavedWorkflowsUtil.php:196.

There are suspicious extra spaces around the +, that give the hint that there used to be something else, like a constant,
there. From the name of the methods, it seems that this code was refactored from an addition to a simple method call.

$timeStamp = + $workflow->getTimeTrigger()->resolveNewTimeStampForDuration(time());

MediaWiki

Possible Increment, in includes/filerepo/file/LocalFile.php:613.

That is a useless assignation, except for the transtyping to integer that PHP does silently. May be that should be a +=,
or completely dropped.

$decoded[$field] = +$decoded[$field]

18.2. List of real code Cases 2465

Exakat Documentation, Release 1

18.2.159 Possible Missing Subpattern

phpMyAdmin

Possible Missing Subpattern, in libraries/classes/Advisor.php:557.

The last capturing subpattern is (\[(.*)\])? and it is optional. Indeed, when the pattern succeed, the captured
values are stored in $match. Yet, the code checks for the existence of $match[3] before using it.

if (preg_match("/rule\s'(.*)'(\[(.*)\])?$/", $line, $match)) {
$ruleLine = 1;
$ruleNo++;
$rules[$ruleNo] = ['name' => $match[1]];
$lines[$ruleNo] = ['name' => $i + 1];
if (isset($match[3])) {

$rules[$ruleNo]['precondition'] = $match[3];
$lines[$ruleNo]['precondition'] = $i + 1;

}

SPIP

Possible Missing Subpattern, in ecrire/inc/filtres_dates.php:73.

This code avoid the PHP notice by padding the resulting array (see comment in French : eviter === avoid)

if (preg_match("#^([12][0-9]{3}[-/][01]?[0-9])([-/]00)?([-0-9:]+)?$#", $date, $regs)) {
$regs = array_pad($regs, 4, null); // eviter notice php
$date = preg_replace(@/@, -, $regs[1]) . -00 . $regs[3];

} else {
$date = date(Y-m-d H:i:s, strtotime($date));

}

18.2.160 Pre-increment

ExpressionEngine

Pre-increment, in system/ee/EllisLab/ExpressionEngine/Controller/Utilities/Communicate.php:650.

Using preincrement in for() loops is safe and straightforward.

for ($x = 0; $x < $number_to_send; $x++)
{

$email_address = array_shift($recipient_array);

if (! $this->deliverEmail($email, $email_address))
{

$email->delete();

$debug_msg = ee()->email->print_debugger(array());

show_error(lang('error_sending_email').BR.BR.$debug_msg);
}

(continues on next page)

2466 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

$email->total_sent++;
}

Traq

Pre-increment, in src/Controllers/Tickets.php:84.

$this->currentProject->next_ticket_id value is ignored by the code. It may be turned into a preincrement.

TimelineModel::newTicketEvent($this->currentUser, $ticket)->save();

$this->currentProject->next_ticket_id++;
$this->currentProject->save();

18.2.161 Preprocessable

phpadsnew

Preprocessable, in phpAdsNew-2.0/adview.php:302.

Each call to chr() may be done before. First, chr() may be replace with the hexadecimal sequence 0x3B; Secondly, 0x3b
is a rather long replacement for a simple semi-colon. The whole pragraph could be stored in a separate file, for easier
modifications.

echo chr(0x47).chr(0x49).chr(0x46).chr(0x38).chr(0x39).chr(0x61).chr(0x01).chr(0x00).
chr(0x01).chr(0x00).chr(0x80).chr(0x00).chr(0x00).chr(0x04).chr(0x02).

→˓chr(0x04).
chr(0x00).chr(0x00).chr(0x00).chr(0x21).chr(0xF9).chr(0x04).

→˓chr(0x01).chr(0x00).
chr(0x00).chr(0x00).chr(0x00).chr(0x2C).chr(0x00).chr(0x00).chr(0x00).

→˓chr(0x00).
chr(0x01).chr(0x00).chr(0x01).chr(0x00).chr(0x00).chr(0x02).chr(0x02).

→˓chr(0x44).
chr(0x01).chr(0x00).chr(0x3B);

18.2.162 Printf Number Of Arguments

PhpIPAM

Printf Number Of Arguments, in functions/classes/class.Common.php:1174.

16 will not be displayed.

sprintf('%032s', gmp_strval(gmp_init($ipv6long, 10), 16);

18.2. List of real code Cases 2467

Exakat Documentation, Release 1

18.2.163 Property Could Be Local

Mautic

Property Could Be Local, in app/bundles/EmailBundle/Model/SendEmailToContact.php:47.

$translator is a private property, provided at construction time. It is private, and only used in the processBadEmails()
method. $translator may be turned into a parameter for processBadEmails(), and make the class slimmer.

class SendEmailToContact
{

/**
* @var TranslatorInterface
*/
private $translator;

// Skipped code

/**
* SendEmailToContact constructor.
*
* @param MailHelper $mailer
* @param StatRepository $statRepository
* @param DoNotContact $dncModel
* @param TranslatorInterface $translator
*/
public function __construct(MailHelper $mailer, StatHelper $statHelper, DoNotContact

→˓$dncModel, TranslatorInterface $translator)
{

$this->mailer = $mailer;
$this->statHelper = $statHelper;
$this->dncModel = $dncModel;
$this->translator = $translator;

}

// Skipped code

/**
* Add DNC entries for bad emails to get them out of the queue permanently.
*/
protected function processBadEmails()
{

// Update bad emails as bounces
if (count($this->badEmails)) {

foreach ($this->badEmails as $contactId => $contactEmail) {
$this->dncModel->addDncForContact(

$contactId,
['email' => $this->emailEntityId],
DNC::BOUNCED,
$this->translator->trans('mautic.email.bounce.reason.bad_email'),
true,
false

);
}

(continues on next page)

2468 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

}
}

Typo3

Property Could Be Local, in typo3/sysext/install/Classes/Updates/MigrateUrlTypesInPagesUpdate.php:28.

$urltypes is a private property, with a list of protocols for communicationss. It acts as a constant, being only read in the
executeUpdate() method : constants may hold arrays. If this property has to evolve in the future, an accessor to update
it will be necessary. Until then, this list may be hardcoded in the method.

/**
* Merge URLs divided in pages.urltype and pages.url into pages.url
* @internal This class is only meant to be used within EXT:install and is not part of␣
→˓the TYPO3 Core API.
*/
class MigrateUrlTypesInPagesUpdate implements UpgradeWizardInterface
{

private $urltypes = ['', 'http://', 'ftp://', 'mailto:', 'https://'];

// Skipped code

/**
* Moves data from pages.urltype to pages.url
*
* @return bool
*/
public function executeUpdate(): bool
{

foreach ($this->databaseTables as $databaseTable) {
$connection = GeneralUtility::makeInstance(ConnectionPool::class)

->getConnectionForTable($databaseTable);

// Process records that have entries in pages.urltype
$queryBuilder = $connection->createQueryBuilder();
$queryBuilder->getRestrictions()->removeAll();
$statement = $queryBuilder->select('uid', 'urltype', 'url')

->from($databaseTable)
->where(

$queryBuilder->expr()->neq('urltype', 0),
$queryBuilder->expr()->neq('url', $queryBuilder->

→˓createPositionalParameter(''))
)
->execute();

while ($row = $statement->fetch()) {
$url = $this->urltypes[(int)$row['urltype']] . $row['url'];
$updateQueryBuilder = $connection->createQueryBuilder();
$updateQueryBuilder

->update($databaseTable)
->where(

(continues on next page)

18.2. List of real code Cases 2469

Exakat Documentation, Release 1

(continued from previous page)

$updateQueryBuilder->expr()->eq(
'uid',
$updateQueryBuilder->createNamedParameter($row['uid'], \

→˓PDO::PARAM_INT)
)

)
->set('url', $updateQueryBuilder->createNamedParameter($url), false)
->set('urltype', 0);

$updateQueryBuilder->execute();
}

}
return true;

}

18.2.164 Property Used In One Method Only

Contao

Property Used In One Method Only, in calendar-bundle/src/Resources/contao/modules/ModuleEventlist.php:38.

Date is protected property. It is used only in the compile() method, and it is not used by the parent class. As such, it
may be turned into a local variable.

class ModuleEventlist extends Events
{

/**
* Current date object
* @var Date
*/
protected $Date;

// Date is used in function compile() only

18.2.165 Property Variable Confusion

PhpIPAM

Property Variable Confusion, in functions/classes/class.Admin.php:16.

There is a property called ‘$users’. It is easy to mistake $this->users and $users. Also, it seems that $this->users may
be used as a cache system, yet it is not employed here.

/**
* (array of objects) to store users, user id is array index
*
* @var mixed
* @access public
*/
public $users;

(continues on next page)

2470 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

////////////

/**
* Fetches all users that are in group
*
* @access public
* @return array of user ids
*/
public function group_fetch_users ($group_id) {

$out = array ();
get all users
$users = $this->fetch_all_objects(users);
check if $gid in array
if($users!==false) {

foreach($users as $u) {
$group_array = json_decode($u->groups, true);
$group_array = $this->groups_parse($group_array);

if(sizeof($group_array)>0) {
foreach($group_array as $group) {

if(in_array($group_id, $group)) {
$out[] = $u->id;

}
}

}
}

}
return
return isset($out) ? $out : array();

}

18.2.166 Queries In Loops

TeamPass

Queries In Loops, in install/install.queries.php:551.

The value is SELECTed first in the database, and it is INSERTed if not. This may be done in one call in most databases.

foreach ($aMiscVal as $elem) {
//Check if exists before inserting
$tmp = mysqli_num_rows(

mysqli_query(
$dbTmp,
"SELECT * FROM `".$var['tbl_prefix']."misc`
WHERE type='".$elem[0]."' AND intitule='".$elem[1]."'"

)
);
if (intval($tmp) === 0) {

$queryRes = mysqli_query(
(continues on next page)

18.2. List of real code Cases 2471

Exakat Documentation, Release 1

(continued from previous page)

$dbTmp,
"INSERT INTO `".$var['tbl_prefix']."misc`
(`type`, `intitule`, `valeur`) VALUES
('".$elem[0]."', '".$elem[1]."', '".
str_replace("'", "", $elem[2])."');"

); // or die(mysqli_error($dbTmp))
}

// append new setting in config file
$config_text .= "'".$elem[1]."' => '".str_replace("'", "", $elem[2])."',";

}

OpenEMR

Queries In Loops, in contrib/util/deidentification/deidentification.php:287.

The value is SELECTed first in the database, and it is INSERTed if not. This may be done in one call in most databases.

$query = select * from facility;
$result = mysqli_query($con, $query);
while ($row = mysqli_fetch_array($result)) {

$string = update facility set

18.2.167 Randomly Sorted Arrays

Contao

Randomly Sorted Arrays, in system/modules/core/dca/tl_module.php:259.

The array array(‘maxlength’, ‘decodeEntities’, ‘tl_class’) is configured multiple times in this file. Most of them is in
the second form, but some are in the first form. (Multiple occurrences in this file).

array('maxlength' => 255, 'decodeEntities' => true, 'tl_class' => 'w50') // Line 246
array('decodeEntities' => true, 'maxlength' => 255, 'tl_class' => 'w50'); // ligne 378

Vanilla

Randomly Sorted Arrays, in applications/dashboard/models/class.activitymodel.php:308.

‘Photo’ moved from last to second. This array is used with a ‘Join’ key, and is the base for a SQL table JOIN. As such,
order is important. If this is the case, it seems unusual that the order is not the same for a join using the same tables. If
it is not the case, arrays may be reordered.

/* L 305 */ Gdn::userModel()->joinUsers(
$result->resultArray(),
['ActivityUserID', 'RegardingUserID'],
['Join' => ['Name', 'Email', 'Gender', 'Photo']]

);

// L 385
(continues on next page)

2472 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

Gdn::userModel()->joinUsers($result, ['ActivityUserID', 'RegardingUserID'], [
→˓'Join' => ['Name', 'Photo', 'Email', 'Gender']]);

18.2.168 Redefined Default

Piwigo

Redefined Default, in admin/include/updates.class.php:34.

default_themes is defined as an empty array, then filled with new values. Same for default_plugins. Both may be
defined as declaration time, and not during the constructor.

class updates
{
var $types = array();
var $plugins;
var $themes;
var $languages;
var $missing = array();
var $default_plugins = array();
var $default_themes = array();
var $default_languages = array();
var $merged_extensions = array();
var $merged_extension_url = 'http://piwigo.org/download/merged_extensions.txt';

function __construct($page='updates')
{
$this->types = array('plugins', 'themes', 'languages');

if (in_array($page, $this->types))
{
$this->types = array($page);

}
$this->default_themes = array('clear', 'dark', 'Sylvia', 'elegant', 'smartpocket');
$this->default_plugins = array('AdminTools', 'TakeATour', 'language_switch',

→˓'LocalFilesEditor');

18.2.169 Redefined Private Property

Zurmo

Redefined Private Property, in app/protected/modules/zurmo/models/OwnedCustomField.php:51.

The class OwnedCustomField is part of a large class tree : OwnedCustomField extends CustomField, CustomField
extends BaseCustomField, BaseCustomField extends RedBeanModel, RedBeanModel extends BeanModel.

Since $canHaveBean is distinct in BeanModel and in OwnedCustomField, the public method getCanHaveBean() also
had to be overloaded.

class OwnedCustomField extends CustomField
{

(continues on next page)

18.2. List of real code Cases 2473

Exakat Documentation, Release 1

(continued from previous page)

/**
* OwnedCustomField does not need to have a bean because it stores no attributes␣

→˓and has no relations
* @see RedBeanModel::canHaveBean();
* @var boolean
*/
private static $canHaveBean = false;

/..../

/**
* @see RedBeanModel::getHasBean()
*/
public static function getCanHaveBean()
{

if (get_called_class() == 'OwnedCustomField')
{

return self::$canHaveBean;
}
return parent::getCanHaveBean();

}

18.2.170 Register Globals

TeamPass

Register Globals, in api/index.php:25.

The API starts with security features, such as the whitelist(). The whitelist applies to IP addresses, so the query string
is not sanitized. Then, the QUERY_STRING is parsed, and creates a lot of new global variables.

teampass_whitelist();

parse_str($_SERVER['QUERY_STRING']);
$method = $_SERVER['REQUEST_METHOD'];
$request = explode(/, substr(@$_SERVER['PATH_INFO'], 1));

XOOPS

Register Globals, in htdocs/modules/system/admin/images/main.php:33:33.

This code only exports the POST variables as globals. And it does clean incoming variables, but not all of them.

// Check users rights
if (!is_object($xoopsUser) || !is_object($xoopsModule) || !$xoopsUser->isAdmin(
→˓$xoopsModule->mid())) {
exit(_NOPERM);

}

// Check is active
if (!xoops_getModuleOption('active_images', 'system')) {

(continues on next page)

2474 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

redirect_header('admin.php', 2, _AM_SYSTEM_NOTACTIVE);
}

if (isset($_POST)) {
foreach ($_POST as $k => $v) {

$\{$k\} = $v;
}

}

// Get Action type
$op = system_CleanVars($_REQUEST, 'op', 'list', 'string');

18.2.171 Relay Function

TeamPass

Relay Function, in includes/libraries/Goodby/CSV/Import/Standard/Interpreter.php:88.

This example puts actually a name on the events : this method ‘delegate’ and it does it in the smallest amount of possible
work, being given all the arguments.

/**
* delegate to observer
*
* @param $observer
* @param $line
*/
private function delegate($observer, $line)
{

call_user_func($observer, $line);
}

SPIP

Relay Function, in ecrire/inc/json.php:73.

var2js() acts as an alternative for json_encode(). Yet, it used to be directly called by the framework’s code and difficult
to change. With the advent of json_encode, the native function has been used, and even, a compatibility tool was set
up. Thus, the relay function.

if (!function_exists('json_encode')) {
function json_encode($v) {

return var2js($v);
}

}

18.2. List of real code Cases 2475

Exakat Documentation, Release 1

18.2.172 Repeated Regex

Vanilla

Repeated Regex, in library/core/class.pluginmanager.php:1200.

This regex is actually repeated 4 times across the Vanilla database, including this variation : ‘#^(https?:)?//#i’.

'`^https?://`'

Tikiwiki

Repeated Regex, in tiki-login.php:369.

This regex is use twice, identically, in the same file, with a few line of distance. It may be federated at the file level.

preg_match('/(tiki-register|tiki-login_validate|tiki-login_scr)\.php/', $url)

18.2.173 Repeated print()

Edusoho

Repeated print(), in app/check.php:71.

All echo may be merged into one : do this by turning the ; and . into ‘,’, and removing the superfluous echo. Also,
echo_style may be turned into a non-display function, returning the build style, rather than echoing it to the output.

echo PHP_EOL;
echo_style('title', 'Note');
echo ' The command console could use a different php.ini file'.PHP_EOL;
echo_style('title', '~~~~');
echo ' than the one used with your web server. To be on the'.PHP_EOL;
echo ' safe side, please check the requirements from your web'.PHP_EOL;
echo ' server using the ';
echo_style('yellow', 'web/config.php');
echo ' script.'.PHP_EOL;
echo PHP_EOL;

HuMo-Gen

Repeated print(), in menu.php:71.

Simply calling print once is better than three times. Here too, echo usage would reduce the amount of memory allocation
due to concatenation prior display.

print '<input type=text name=quicksearch value=.$quicksearch. size=10 '.$pattern.'␣
→˓title=.__(Minimum:).$min_chars.__(characters).>';

print ' <input type=submit value=.__(Search).>';
print </form>;

2476 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

18.2.174 Rethrown Exceptions

PrestaShop

Rethrown Exceptions, in classes/webservice/WebserviceOutputBuilder.php:731.

The setSpecificField method catches a WebserviceException, representing an issue with the call to the webservice.
However, that piece of information is lost, and the exception is rethrown immediately, without any action.

public function setSpecificField($object, $method, $field_name, $entity_name)
{

try {
$this->validateObjectAndMethod($object, $method);

} catch (WebserviceException $e) {
throw $e;

}

$this->specificFields[$field_name] = array('entity'=>$entity_name, 'object'␣
→˓=> $object, 'method' => $method, 'type' => gettype($object));

return $this;
}

18.2.175 Return True False

Mautic

Return True False, in app/bundles/LeadBundle/Model/ListModel.php:125.

$isNew could be a typecast.

$isNew = ($entity->getId()) ? false : true;

FuelCMS

Return True False, in fuel/modules/fuel/helpers/validator_helper.php:254.

If/then is a lot of code to produce a boolean.

function length_min($str, $limit = 1)
{

if (strlen(strval($str)) < $limit)
{

return FALSE;
}
else
{

return TRUE;
}

}

18.2. List of real code Cases 2477

Exakat Documentation, Release 1

18.2.176 Safe Curl Options

OpenConf

Safe Curl Options, in openconf/include.php:703.

The function that holds that code is only used to call openconf.com, over http, while openconf.com is hosted on https,
nowadays. This may be a sign of hard to access certificates.

$ch = curl_init();
curl_setopt($ch, CURLOPT_URL, $f);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
curl_setopt($ch, CURLOPT_FOLLOWLOCATION, true);
curl_setopt($ch, CURLOPT_AUTOREFERER, true);
curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, false);
curl_setopt($ch, CURLOPT_MAXREDIRS, 5);
curl_setopt($ch, CURLOPT_HEADER, false);
$s = curl_exec($ch);
curl_close($ch);
return($s);

18.2.177 Same Conditions In Condition

TeamPass

Same Conditions In Condition, in sources/identify.php:1096.

$result == 1 is use once in the main if/then, then again the second if/then/elseif structure. Both are incompatible, since,
in the else, $result will be different from 1.

if ($result == 1) {
$return = ;
$logError = ;
$proceedIdentification = true;
$userPasswordVerified = false;
unset($_SESSION['hedgeId']);
unset($_SESSION['flickercode']);

} else {
if ($result < -10) {

$logError = ERROR:.$result;
} elseif ($result == -4) {

$logError = "Wrong response code, no more tries left.";
} elseif ($result == -3) {

$logError = "Wrong response code, try to reenter.";
} elseif ($result == -2) {

$logError = "Timeout. The response code is not valid anymore.";
} elseif ($result == -1) {

$logError = "Security Error. Did you try to verify the response from␣
→˓a different computer?";

} elseif ($result == 1) {
$logError = "Authentication successful, response code correct.

Authentification Method for SecureBrowser updated!
→˓";

(continues on next page)

2478 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

// Add necessary code here for accessing your Business Application
}
$return = "agses_error";
echo '[{"value" : "'.$return.'", "user_admin":"',
isset($_SESSION['user_admin']) ? $_SESSION['user_admin'] : "",
'", "initial_url" : "'.@$_SESSION['initial_url'].'",
"error" : "'.$logError.'""}]';

exit();
}

Typo3

Same Conditions In Condition, in typo3/sysext/recordlist/Classes/RecordList/DatabaseRecordList.php:1696.

$table == ‘pages is caught initially, and if it fails, it is tested again in the final else. This won’t happen.

} elseif ($table === 'pages') {
$parameters = ['id' => $this->id, 'pagesOnly' => 1,

→˓'returnUrl' => GeneralUtility::getIndpEnv('REQUEST_URI')];
$href = (string)$uriBuilder->buildUriFromRoute('db_new',

→˓$parameters);
$icon = '<a class=btn btn-default href= .␣

→˓htmlspecialchars($href) . title= . htmlspecialchars($lang->getLL(new)) . >'
. $spriteIcon->render() . '';

} else {
$params = '&edit[' . $table . '][' . $this->id . ']=new';
if ($table === 'pages') {

$params .= '&overrideVals[pages][doktype]=' . (int)
→˓$this->pageRow['doktype'];

}
$icon = '<a class=btn btn-default href=# onclick= .␣

→˓htmlspecialchars(BackendUtility::editOnClick($params, , -1))
. title= . htmlspecialchars($lang->getLL(new)) . >'␣

→˓. $spriteIcon->render() . '';
}

18.2.178 Scalar Or Object Property

SugarCrm

Scalar Or Object Property, in SugarCE-Full-6.5.26/data/Link.php:54.

The _relationship property starts its life as a string, and becomes an object later.

class Link {

/* Private variables.*/
var $_log;
var $_relationship_name; //relationship this attribute is tied to.
var $_bean; //stores a copy of the bean.

(continues on next page)

18.2. List of real code Cases 2479

Exakat Documentation, Release 1

(continued from previous page)

var $_relationship= '';

/// More code.....

// line 92
$this->_relationship=new Relationship();

18.2.179 Several Instructions On The Same Line

Piwigo

Several Instructions On The Same Line, in tools/triggers_list.php:993.

There are two instructions on the line with the if(). Note that the condition is not followed by a bracketed block. When
reviewing, it really seems that echo ‘
’ and $f=0; are on the same block, but the second is indeed an unconditional
expression. This is very difficult to spot.

foreach ($trigger['files'] as $file)
{
if (!$f) echo '
'; $f=0;
echo preg_replace('#\((.+)\)#', '(<i>$1</i>)', $file);

}

Tine20

Several Instructions On The Same Line, in tine20/Calendar/Controller/Event.php:1594.

Here, $_event->attendee is saved in a local variable, then the property is destroyed. Same for $_event->notes; Strangely,
a few lines above, the properties are unset on their own line. Unsetting properties leads to surprise bugs, and hidding
the unset after ; makes it harder to spot.

$futurePersistentExceptionEvents->setRecurId($_event->getId());
unset($_event->recurid);
unset($_event->base_event_id);
foreach(array('attendee', 'notes', 'alarms') as $prop) {

if ($_event->{$prop} instanceof Tinebase_Record_RecordSet) {
$_event->{$prop}->setId(NULL);

}
}
$_event->exdate = $futureExdates;

$attendees = $_event->attendee; unset($_event->attendee);
$note = $_event->notes; unset($_event->notes);
$persistentExceptionEvent = $this->create($_event, $_checkBusyConflicts &

→˓& $dtStartHasDiff);

2480 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

18.2.180 Should Chain Exception

Magento

Should Chain Exception, in lib/Mage/Backup/Filesystem/Rollback/Ftp.php:81.

Instead of using the exception message as an argument, chaining the exception would send the whole exception, in-
cluding the message, and other interesting information like file and line.

protected function _initFtpClient()
{

try {
$this->_ftpClient = new Mage_System_Ftp();
$this->_ftpClient->connect($this->_snapshot->getFtpConnectString());

} catch (Exception $e) {
throw new Mage_Backup_Exception_FtpConnectionFailed($e->getMessage());

}
}

Tine20

Should Chain Exception, in tine20/Setup/Controller.php:81.

Here, the new exception gets an hardcoded message. More details about the reasons are already available in the $e
exception, but they are not logged, not chained for later processing.

try {
$dirIterator = new DirectoryIterator($this->_baseDir);

} catch (Exception $e) {
Setup_Core::getLogger()->warn(__METHOD__ . '::' . __LINE__ . ' Could not␣

→˓open base dir: ' . $this->_baseDir);
throw new Tinebase_Exception_AccessDenied('Could not open Tine 2.0 root␣

→˓directory.');
}

18.2.181 Should Preprocess Chr()

phpadsnew

Should Preprocess Chr(), in phpAdsNew-2.0/adview.php:302.

Each call to chr() may be done before. First, chr() may be replace with the hexadecimal sequence 0x3B; Secondly, 0x3b
is a rather long replacement for a simple semi-colon. The whole pragraph could be stored in a separate file, for easier
modifications.

echo chr(0x47).chr(0x49).chr(0x46).chr(0x38).chr(0x39).chr(0x61).chr(0x01).chr(0x00).
chr(0x01).chr(0x00).chr(0x80).chr(0x00).chr(0x00).chr(0x04).chr(0x02).

→˓chr(0x04).
chr(0x00).chr(0x00).chr(0x00).chr(0x21).chr(0xF9).chr(0x04).

→˓chr(0x01).chr(0x00).
chr(0x00).chr(0x00).chr(0x00).chr(0x2C).chr(0x00).chr(0x00).chr(0x00).

→˓chr(0x00).
(continues on next page)

18.2. List of real code Cases 2481

Exakat Documentation, Release 1

(continued from previous page)

chr(0x01).chr(0x00).chr(0x01).chr(0x00).chr(0x00).chr(0x02).chr(0x02).
→˓chr(0x44).

chr(0x01).chr(0x00).chr(0x3B);

18.2.182 Should Typecast

xataface

Should Typecast, in Dataface/Relationship.php:1612.

This is an exact example. A little further, the same applies to intval($max))

intval($min);

OpenConf

Should Typecast, in author/upload.php:62.

This is another exact example.

intval($_POST['pid']);

18.2.183 Should Use Coalesce

ChurchCRM

Should Use Coalesce, in src/ChurchCRM/Service/FinancialService.php:597.

ChurchCRM features 5 old style ternary operators, which are all in this SQL query. ChurchCRM requires PHP 7.0, so
a simple code review could remove them all.

$sSQL = "INSERT INTO pledge_plg
(plg_famID,
plg_FYID,
plg_date,
plg_amount,
plg_schedule,
plg_method,
plg_comment,
plg_DateLastEdited,
plg_EditedBy,
plg_PledgeOrPayment,
plg_fundID,
plg_depID,
plg_CheckNo,
plg_scanString,
plg_aut_ID,
plg_NonDeductible,
plg_GroupKey)
VALUES ('".

(continues on next page)

2482 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

$payment->FamilyID."','".
$payment->FYID."','".
$payment->Date."','".
$Fund->Amount."','".
(isset($payment->schedule) ? $payment->schedule : 'NULL')."','".
$payment->iMethod."','".
$Fund->Comment."','".
date('YmdHis')."',".
$_SESSION['user']->getId().",'".
$payment->type."',".
$Fund->FundID.','.
$payment->DepositID.','.
(isset($payment->iCheckNo) ? $payment->iCheckNo : 'NULL').",'".
(isset($payment->tScanString) ? $payment->tScanString : 'NULL')."','".
(isset($payment->iAutID) ? $payment->iAutID : 'NULL')."','".
(isset($Fund->NonDeductible) ? $Fund->NonDeductible : 'NULL')."','".
$sGroupKey."')";

Cleverstyle

Should Use Coalesce, in modules/Feedback/index.php:37.

Cleverstyle nests ternary operators when selecting default values. Here, moving some of them to ?? will reduce the
code complexity and make it more readable. Cleverstyle requires PHP 7.0 or more recent.

$Page->content(
h::{'cs-form form'}(

h::{'section.cs-feedback-form article'}(
h::{'header h2.cs-text-center'}($L->Feedback).
h::{'table.cs-table[center] tr| td'}(

[
h::{'cs-input-text input[name=name][required]'}(

[
'placeholder' => $L->feedback_name,
'value' => $User->user() ?

→˓$User->username() : (isset($_POST['name']) ? $_POST['name'] : '')
]

),
h::{'cs-input-text␣

→˓input[type=email][name=email][required]'}(
[

'placeholder' => $L->feedback_email,
'value' => $User->user() ?

→˓$User->email : (isset($_POST['email']) ? $_POST['email'] : '')
]

),
h::{'cs-textarea[autosize]␣

→˓textarea[name=text][required]'}(
[

'placeholder' => $L->feedback_text,
'value' => isset($_POST['text

(continues on next page)

18.2. List of real code Cases 2483

Exakat Documentation, Release 1

(continued from previous page)

→˓']) ? $_POST['text'] : ''
]

),
h::{'cs-button button[type=submit]'}($L->feedback_

→˓send)
]

)
)

)
);

18.2.184 Should Use Existing Constants

Tine20

Should Use Existing Constants, in tine20/Sales/Controller/Invoice.php:560.

True should be replaced by COUNT_RECURSIVE. The default one is COUNT_NORMAL.

count($billables, true)

18.2.185 Should Use Foreach

ExpressionEngine

Should Use Foreach, in system/ee/EllisLab/ExpressionEngine/Service/Model/Query/Builder.php:241.

This code could turn the string into an array, with the explode() function, and use foreach(), instead of calculating the
length() initially, and then building the loop.

$length = strlen($str);
$words = array();

$word = '';
$quote = '';
$quoted = FALSE;

for ($i = 0; $i < $length; $i++)
{

$char = $str[$i];

if (($quoted == FALSE && $char == ' ') || ($quoted == TRUE && $char␣
→˓== $quote))

{
if (strlen($word) > 2)
{

$words[] = $word;
}

$quoted = FALSE;
(continues on next page)

2484 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

$quote = '';
$word = '';

continue;
}

if ($quoted == FALSE && ($char == ' || $char == ") && ($word === ''␣
→˓|| $word == '-'))

{
$quoted = TRUE;
$quote = $char;
continue;

}

$word .= $char;
}

Woocommerce

Should Use Foreach, in includes/libraries/class-wc-eval-math.php:84.

This loops reviews the ‘stack’ and updates its elements. The same loop may leverage foreach and references for more
efficient code.

$stack_size = count($stack);
for ($i = 0; $i < $stack_size; $i++) { // freeze the state␣

→˓of the non-argument variables
$token = $stack[$i];
if (preg_match('/^[a-z]\w*$/', $token) and ! in_

→˓array($token, $args)) {
if (array_key_exists($token, self::$v)) {

$stack[$i] = self::$v[$token];
} else {

return self::trigger(undefined␣
→˓variable $token in function definition);

}
}

}

18.2.186 Should Use Math

OpenEMR

Should Use Math, in controllers/C_Prescription.class.php:638.

$pdf->ez[‘leftMargin’] is now 0.

function multiprint_body(& $pdf, $p)
{

$pdf->ez['leftMargin'] += $pdf->ez['leftMargin'];
$pdf->ez['rightMargin'] += $pdf->ez['rightMargin'];

(continues on next page)

18.2. List of real code Cases 2485

Exakat Documentation, Release 1

(continued from previous page)

$d = $this->get_prescription_body_text($p);
if ($pdf->ezText($d, 10, array(), 1)) {

$pdf->ez['leftMargin'] -= $pdf->ez['leftMargin'];
$pdf->ez['rightMargin'] -= $pdf->ez['rightMargin'];
$this->multiprint_footer($pdf);
$pdf->ezNewPage();
$this->multiprint_header($pdf, $p);

18.2.187 Should Use Operator

Zencart

Should Use Operator, in includes/modules/payment/paypal/paypal_curl.php:378.

Here, $options is merged with $values if it is an array. If it is not an array, it is probably a null value, and may be
ignored. Adding a ‘array’ type will strengthen the code an catch situations where TransactionSearch() is called with a
string, leading to clearer code.

function TransactionSearch($startdate, $txnID = '', $email = '', $options) {
// several lines of code, no mention of $options
if (is_array($options)) $values = array_merge($values, $options);

}
return $this->_request($values, 'TransactionSearch');

}

SugarCrm

Should Use Operator, in include/utils.php:2093:464.

$override should an an array : if not, it is actually set by default to empty array. Here, a type with a default value of
‘array()’ would offset the parameter validation to the calling method.

function sugar_config_union($default, $override){
// a little different then array_merge and array_merge_recursive. we want
// the second array to override the first array if the same value exists,
// otherwise merge the unique keys. it handles arrays of arrays recursively
// might be suitable for a generic array_union
if(!is_array($override)){

$override = array();
}
foreach($default as $key => $value){

if(!array_key_exists($key, $override)){
$override[$key] = $value;

}
else if(is_array($key)){

$override[$key] = sugar_config_union($value, $override[$key]);
}

}
return($override);

}

2486 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

18.2.188 Should Use Prepared Statement

Dolibarr

Should Use Prepared Statement, in htdocs/product/admin/price_rules.php:76.

This code is well escaped, as the integer type cast will prevent any special chars to be used. Here, a prepared statement
would apply a modern approach to securing this query.

$db->query("DELETE FROM " . MAIN_DB_PREFIX . "product_pricerules WHERE level = " . (int)
→˓$i)

18.2.189 Should Use Ternary Operator

ChurchCRM

Should Use Ternary Operator, in src/CartToFamily.php:57.

$sState could be the receiving part of a ternary operator.

if ($sCountry == 'United States' || $sCountry == 'Canada') {
$sState = InputUtils::LegacyFilterInput($_POST['State']);

} else {
$sState = InputUtils::LegacyFilterInput($_POST['StateTextbox']);

}

18.2.190 Should Use array_filter()

xataface

Should Use array_filter(), in actions/manage_build_index.php:38.

This selection process has three tests : the two first are exclusive, and the third is inclusive. They could fit in one or
several closures.

$indexable = array();
foreach ($tables as $key=>$table){

if (preg_match('/^dataface__/', $table)){
continue;

}
if (preg_match('/^_/', $table)){

continue;
}

if ($index->isTableIndexable($table)){
$indexable[] = $table;
//unset($tables[$key]);

}

}

18.2. List of real code Cases 2487

Exakat Documentation, Release 1

shopware

Should Use array_filter(), in engine/Shopware/Bundle/StoreFrontBundle/Service/Core/VariantCoverService.php:71.

Closure would be the best here, since $covers has to be injected in the array_filter callback.

$covers = $this->variantMediaGateway->getCovers(
$products,
$context

);

$fallback = [];
foreach ($products as $product) {

if (!array_key_exists($product->getNumber(), $covers)) {
$fallback[] = $product;

}
}

18.2.191 Silently Cast Integer

MediaWiki

Silently Cast Integer, in includes/debug/logger/monolog/AvroFormatter.php:167.

Too many ff in the masks.

private function encodeLong($id) {
$high = ($id & 0xffffffff00000000) >> 32;
$low = $id & 0x00000000ffffffff;
return pack('NN', $high, $low);

}

18.2.192 Simplify Regex

Zurmo

Simplify Regex, in app/protected/core/components/Browser.php:73.

Here, strpos() or stripos() is a valid replacement.

preg_match('/opera/', $userAgent)

OpenConf

Simplify Regex, in openconf/include.php:964.

%e is not a special char for PCRE regex, although it look like it. It is a special char for date() or printf(). This
preg_replace() may be upgraded to str_replace()

$conv = iconv($cp, 'utf-8', strftime(preg_replace(/\%e/, '%#d', $format), $time));

2488 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

18.2.193 Slice Arrays First

WordPress

Slice Arrays First, in modules/InboundEmail/InboundEmail.php:1080.

Instead of reading ALL the keys, and then, keeping only the first fifty, why not read the 50 first items from the array,
and then extract the keys?

$results = array_slice(array_keys($diff), 0 ,50);

18.2.194 Slow Functions

ChurchCRM

Slow Functions, in src/Reports/PrintDeposit.php:35.

You may replace this with a isset() : $_POST can’t contain a NULL value, unless it was set by the script itself.

array_key_exists(report_type, $_POST);

SuiteCrm

Slow Functions, in include/json_config.php:242.

This is a equivalent for nl2br()

preg_replace(/\r\n/,
, $focus->$field)

18.2.195 Static Methods Can’t Contain $this

xataface

Static Methods Can’t Contain $this, in Dataface/LanguageTool.php:48.

$this is hidden in the arguments of the static call to the method.

public static function loadRealm($name){
return self::getInstance($this->app->_conf['default_language'])->loadRealm(

→˓$name);
}

18.2. List of real code Cases 2489

Exakat Documentation, Release 1

SugarCrm

Static Methods Can’t Contain $this, in SugarCE-Full-6.5.26/modules/ACLActions/ACLAction.php:332.

Notice how $this is tested for existence before using it. It seems strange, at first, but we have to remember that if $this
is never set when calling a static method, a static method may be called with $this. Confusingly, this static method may
be called in two ways.

static function hasAccess($is_owner=false, $access = 0){

if($access != 0 && $access == ACL_ALLOW_ALL || ($is_owner && $access == ACL_
→˓ALLOW_OWNER))return true;

//if this exists, then this function is not static, so check the aclaccess␣
→˓parameter

if(isset($this) && isset($this->aclaccess)){
if($this->aclaccess == ACL_ALLOW_ALL || ($is_owner && $this->aclaccess ==␣

→˓ACL_ALLOW_OWNER))
return true;

}
return false;

}

18.2.196 Strange Name For Variables

FuelCMS

Strange Name For Variables, in fuel/modules/fuel/libraries/parser/dwoo/Dwoo/Adapters/CakePHP/dwoo.php:86.

Three _ is quite a lot for variables. Would they not be parameters but global variables, that would still be quite a lot.

public function _render($___viewFn, $___data_for_view, $___play_safe = true,
→˓$loadHelpers = true) {
/**/

}

PhpIPAM

Strange Name For Variables, in app/admin/sections/edit-result.php:56.

$sss is the end-result of a progression, from $subsections (3s) to $ss to $sss. Although it is understandable from the
code, a fuller name, like $subsection_subnet or $one_subsection_subnet would make this more readable.

//fetch subsection subnets
foreach($subsections as $ss) {

$subsection_subnets = $Subnets->fetch_section_subnets($ss->id); //
→˓fetch all subnets in subsection

if(sizeof($subsection_subnets)>0) {
foreach($subsection_subnets as $sss) {

$out[] = $sss;
}

}
$num_subnets = $num_subnets + sizeof($subsection_subnets);

(continues on next page)

2490 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

//count all addresses that will be deleted!
$ipcnt = $Addresses->count_addresses_in_multiple_subnets($out);

}

18.2.197 Strict Comparison With Booleans

Phinx

Strict Comparison With Booleans, in src/Phinx/Db/Adapter/MysqlAdapter.php:1131.

ìsNull()` always returns a boolean : it may be only be true or false. Until typed properties or return type are used,
isNull() may return anything else.

$column->isNull() == false

Typo3

Strict Comparison With Booleans, in typo3/sysext/lowlevel/Classes/Command/FilesWithMultipleReferencesCommand.php:90.

When dry-run is not defined, the getOption() method actually returns a null value. So, comparing the result of
getOption() to false is actually wrong : using a constant to prevent values to be inconsistent is recommended here.

$input->getOption('dry-run') != false

18.2.198 Strings With Strange Space

OpenEMR

Strings With Strange Space, in library/globals.inc.php:3270.

The name of the contry contains both an unsecable space (the first, after Tonga), and a normal space (between Tonga
and Islands). Translations are stored in a database, which preserves the unbreakable spaces. This also means that fixing
the translation must be applied to every piece of data at the same time. The xl() function, which handles the translations,
is also a good place to clean the spaces before searching for the right translation.

'to' => xl('Tonga (Tonga Islands)'),

Thelia

Strings With Strange Space, in templates/backOffice/default/I18n/fr_FR.php:647.

This is another example with a translation sentence. Here, the unbreakable space is before the question mark : this is
a typography rule, that is common to many language. This would be a false positive, unless typography is handled by
another part of the software.

'Mot de passe oublié ?'

18.2. List of real code Cases 2491

Exakat Documentation, Release 1

18.2.199 Strpos()-like Comparison

Piwigo

Strpos()-like Comparison, in admin/include/functions.php:2585.

preg_match may return 0 if not found, and null if the $pattern is erroneous. While hardcoded regex may be checked
at compile time, dynamically built regex may fail at execution time. This is particularly important here, since the
function may be called with incoming data for maintenance : ‘clear_derivative_cache($_GET[‘type’]);’ is in the /ad-
min/maintenance.php.

function clear_derivative_cache_rec($path, $pattern)
{
$rmdir = true;
$rm_index = false;

if ($contents = opendir($path))
{
while (($node = readdir($contents)) !== false)
{
if ($node == '.' or $node == '..')
continue;

if (is_dir($path.'/'.$node))
{
$rmdir &= clear_derivative_cache_rec($path.'/'.$node, $pattern);

}
else
{
if (preg_match($pattern, $node))

Thelia

Strpos()-like Comparison, in core/lib/Thelia/Controller/Admin/FileController.php:198.

preg_match is used here to identify files with a forbidden extension. The actual list of extension is provided to the
method via the parameter $extBlackList, which is an array. In case of mis-configuration by the user of this array,
preg_match may fail : for example, when regex special characters are provided. At that point, the whole filter becomes
invalid, and can’t distinguish good files (returning false) and other files (returning NULL). It is safe to use === false in
this situation.

if (!empty($extBlackList)) {
$regex = "#^(.+)\.(".implode("|", $extBlackList).")$#i";

if (preg_match($regex, $realFileName)) {
$message = $this->getTranslator()

->trans(
'Files with the following extension are not allowed: %extension,␣

→˓please do an archive of the file if you want to upload it',
[

'%extension' => $fileBeingUploaded->
→˓getClientOriginalExtension(),

]
);

(continues on next page)

2492 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

}
}

18.2.200 Strtr Arguments

SuiteCrm

Strtr Arguments, in includes/vCard.php:221.

This code prepares incoming ‘$values’ for extraction. The keys are cleaned then split with explode(). The ‘=’ sign
would stay, as strtr() can’t remove it. This means that such keys won’t be recognized later in the code, and gets omitted.

$values = explode(';', $value);
$key = strtoupper($keyvalue[0]);
$key = strtr($key, '=', '');
$key = strtr($key, ',', ';');
$keys = explode(';', $key);

18.2.201 Substring First

SPIP

Substring First, in ecrire/inc/filtres.php:1694.

The code first makes everything uppercase, including the leading and trailing spaces, and then, removes them : it would
be best to swap those operations. Note that spip_substr() is not considered in this analysis, but with SPIP knowledge,
it could be moved inside the calls.

function filtre_initiale($nom) {
return spip_substr(trim(strtoupper(extraire_multi($nom))), 0, 1);

}

PrestaShop

Substring First, in admin-dev/filemanager/include/utils.php:197.

dirname() reduces the string (or at least, keeps it the same size), so it more efficient to have it first.

dirname(str_replace(' ', '~', $str))

18.2. List of real code Cases 2493

Exakat Documentation, Release 1

18.2.202 Suspicious Comparison

PhpIPAM

Suspicious Comparison, in app/tools/vrf/index.php:110.

if $subnet[‘description’] is a string, the comparison with 0 turn it into a boolean. false’s length is 0, and true length is
1. PHP saves the day.

$subnet['description'] = strlen($subnet['description']==0) ? / : $subnet['description'];

ExpressionEngine

Suspicious Comparison, in ExpressionEngine_Core2.9.2/system/expressionengine/libraries/simplepie/SimplePie/Misc.php:1925.

If trim($attribs[‘’][‘mode’]) === ‘base64’, then it is set to lowercase (although it is already), and added to the &&
logical test. If it is ‘BASE64’, this fails.

if (isset($attribs['']['mode']) && strtolower(trim($attribs['']['mode']) === 'base64'))

18.2.203 Switch To Switch

Thelia

Switch To Switch, in core/lib/Thelia/Controller/Admin/TranslationsController.php:100.

The two first comparison may be turned into a case, and the last one could be default, or default with a check on empty().

if($modulePart == 'core') { /**/ } elseif($modulePart == 'admin-includes') { /**/ }␣
→˓elseif(!empty($modulePart)) { /**/ }

XOOPS

Switch To Switch, in htdocs/search.php:74.

Here, converting this structure to switch requires to drop the === usage. Also, no default usage here.

if($action === 'results') { /**/ } elseif($action === 'showall') { /**/ } elseif(
→˓$action === 'showallbyuser') { /**/ }

18.2.204 Switch Without Default

Zencart

Switch Without Default, in admin/tax_rates.php:15.

The ‘action’ is collected from $_GET and then, compared with various strings to handle the different actions to be
taken. The default behavior is implicit here : if no ‘action’, display the initial form for taxes to be changed. This has to
be understood as a general philosophy of ZenCart project, or by reading the rest of the HTML code. Adding a ‘default’
case here would help understand what happens in case ‘action’ is absent or unrecognized.

2494 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

$action = (isset($_GET['action']) ? $_GET['action'] : '');

if (zen_not_null($action)) {
switch ($action) {
case 'insert':
// PHP code
break;

case 'save':
// PHP code
break;

case 'deleteconfirm':
// PHP code
break;

}
}

?> HTML code

Traq

Switch Without Default, in src/Helpers/Ticketlist.php:311.

The default case is actually processed after the switch, by the next if/then structure. The structure deals with the
customFields, while the else deals with any unknown situations. This if/then could be wrapped in the ‘default’ case of
switch, for consistent processing. The if/then condition would be hard to use as a ‘case’ (possible, though).

public static function dataFor($column, $ticket)
{

switch ($column) {
// Ticket ID column
case 'ticket_id':

return $ticket['ticket_id'];
break;

// Status column
case 'status':
case 'type':
case 'component':
case 'priority':
case 'severity':

return $ticket[{$column}_name];
break;

// Votes
case 'votes':

return $ticket['votes'];
break;

}

// If we're still here, it may be a custom field
if ($value = $ticket->customFieldValue($column)) {

return $value->value;
}

(continues on next page)

18.2. List of real code Cases 2495

Exakat Documentation, Release 1

(continued from previous page)

// Nothing!
return '';

}

18.2.205 Ternary In Concat

TeamPass

Ternary In Concat, in includes/libraries/protect/AntiXSS/UTF8.php:5409.

The concatenations in the initial comparison are disguised casting. When $str2 is empty too, the ternary operator yields
a 0, leading to a systematic failure.

$str1 . '' === $str2 . '' ? 0 : strnatcmp(self::strtonatfold($str1), self::strtonatfold(
→˓$str2))

18.2.206 Test Then Cast

Dolphin

Test Then Cast, in wp-admin/includes/misc.php:74.

$aLimits[‘per_page’] is tested for existence and not false. Later, it is cast from string to int : yet, a ‘0.1’ string value
would pass the test, and end up filling $aLimits[‘per_page’] with 0.

if (isset($aLimits['per_page']) && $aLimits['per_page'] !== false)
$this->aCurrent['paginate']['perPage'] = (int)$aLimits['per_page'];

SuiteCrm

Test Then Cast, in modules/jjwg_Maps/controller.php:1035.

$marker[‘lat’] is compared to the string ‘0’, which actually transtype it to integer, then it is cast to string for
map_marker_data_points() needs and finally, it is cast to float, in case of a correction. It would be safer to test it
in its string type, since floats are not used as array indices.

if ($marker['lat'] != '0' && $marker['lng'] != '0') {

// Check to see if marker point already exists and apply offset if needed
// This often occurs when an address is only defined by city, state, zip.
$i = 0;
while (isset($this->map_marker_data_points[(string) $marker['lat']][(string)

→˓$marker['lng']]) &&
$i < $this->settings['map_markers_limit']) {

$marker['lat'] = (float) $marker['lat'] + (float) $this->settings['map_
→˓duplicate_marker_adjustment'];

$marker['lng'] = (float) $marker['lng'] + (float) $this->settings['map_
→˓duplicate_marker_adjustment'];

(continues on next page)

2496 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

$i++;
}

18.2.207 Throw Functioncall

SugarCrm

Throw Functioncall, in include/externalAPI/cmis_repository_wrapper.php:918.

SugarCRM uses exceptions to fill work in progress. Here, we recognize a forgotten ‘new’ that makes throw call a
function named ‘Exception’. This fails with a Fatal Error, and doesn’t issue the right messsage. The same error had
propgated in the code by copy and paste : it is available 17 times in that same file.

function getContentChanges()
{

throw Exception(Not Implemented);
}

Zurmo

Throw Functioncall, in app/protected/modules/gamification/rules/collections/GameCollectionRules.php:66.

Other part of the code actually instantiate the exception before throwing it.

abstract class GameCollectionRules
{

/**
* @return string
* @throws NotImplementedException - Implement in children classes
*/
public static function getType()
{

throw NotImplementedException();
}

18.2.208 Timestamp Difference

Zurmo

Timestamp Difference, in app/protected/modules/import/jobs/ImportCleanupJob.php:73.

This is wrong twice a year, in countries that has day-ligth saving time. One of the weeks will be too short, and the other
will be too long.

/**
* Get all imports where the modifiedDateTime was more than 1 week ago. Then
* delete the imports.
* (non-PHPdoc)
* @see BaseJob::run()
*/

(continues on next page)

18.2. List of real code Cases 2497

Exakat Documentation, Release 1

(continued from previous page)

public function run()
{

$oneWeekAgoTimeStamp =␣
→˓DateTimeUtil::convertTimestampToDbFormatDateTime(time() - 60 * 60 *24 * 7);

shopware

Timestamp Difference, in engine/Shopware/Controllers/Backend/Newsletter.php:150.

When daylight saving strike, the email may suddenly be locked for 1 hour minus 30 seconds ago. The lock will be set
for the rest of the hour, until the server catch up.

// Check lock time. Add a buffer of 30 seconds to the lock time (default request time)
if (!empty($mailing['locked']) && strtotime($mailing['locked']) > time() -␣

→˓30) {
echo Current mail: " . $subjectCurrentMailing . "\n;
echo Wait . (strtotime($mailing['locked']) + 30 - time()) . seconds ...\

→˓n;
return;

}

18.2.209 Too Many Children

Typo3

Too Many Children, in typo3/sysext/backend/Classes/Form/AbstractNode.php:26.

More than 15 children for this class : 15 is the default configuration.

abstract class AbstractNode implements NodeInterface, LoggerAwareInterface {

Woocommerce

Too Many Children, in includes/abstracts/abstract-wc-rest-controller.php:30.

This class is extended 22 times, more than the default configuration of 15.

class WC_REST_Controller extends WP_REST_Controller {

18.2.210 Too Many Injections

NextCloud

Too Many Injections, in lib/private/Share20/Manager.php:130.

Well documented Manager class. Quite a lot of injections though, it must take a long time to prepare it.

2498 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

/**
* Manager constructor.
*
* @param ILogger $logger
* @param IConfig $config
* @param ISecureRandom $secureRandom
* @param IHasher $hasher
* @param IMountManager $mountManager
* @param IGroupManager $groupManager
* @param IL10N $l
* @param IFactory $l10nFactory
* @param IProviderFactory $factory
* @param IUserManager $userManager
* @param IRootFolder $rootFolder
* @param EventDispatcher $eventDispatcher
* @param IMailer $mailer
* @param IURLGenerator $urlGenerator
* @param \OC_Defaults $defaults
*/
public function __construct(

ILogger $logger,
IConfig $config,
ISecureRandom $secureRandom,
IHasher $hasher,
IMountManager $mountManager,
IGroupManager $groupManager,
IL10N $l,
IFactory $l10nFactory,
IProviderFactory $factory,
IUserManager $userManager,
IRootFolder $rootFolder,
EventDispatcher $eventDispatcher,
IMailer $mailer,
IURLGenerator $urlGenerator,
\OC_Defaults $defaults

) {
$this->logger = $logger;
$this->config = $config;
$this->secureRandom = $secureRandom;
$this->hasher = $hasher;
$this->mountManager = $mountManager;
$this->groupManager = $groupManager;
$this->l = $l;
$this->l10nFactory = $l10nFactory;
$this->factory = $factory;
$this->userManager = $userManager;
$this->rootFolder = $rootFolder;
$this->eventDispatcher = $eventDispatcher;
$this->sharingDisabledForUsersCache = new CappedMemoryCache();
$this->legacyHooks = new LegacyHooks($this->eventDispatcher);
$this->mailer = $mailer;
$this->urlGenerator = $urlGenerator;
$this->defaults = $defaults;

(continues on next page)

18.2. List of real code Cases 2499

Exakat Documentation, Release 1

(continued from previous page)

}

Thelia

Too Many Injections, in core/lib/Thelia/Core/Event/Delivery/DeliveryPostageEvent.php:58.

Classic address class, with every details. May be even shorter than expected.

//class DeliveryPostageEvent extends ActionEvent
public function __construct(

DeliveryModuleInterface $module,
Cart $cart,
Address $address = null,
Country $country = null,
State $state = null

) {
$this->module = $module;
$this->cart = $cart;
$this->address = $address;
$this->country = $country;
$this->state = $state;

}

18.2.211 Too Many Local Variables

HuMo-Gen

Too Many Local Variables, in relations.php:813.

15 local variables pieces of code are hard to find in a compact form. This function shows one classic trait of such issue
: a large ifthen is at the core of the function, and each time, it collects some values and build a larger string. This should
probably be split between different methods in a class.

function calculate_nephews($generX) { // handed generations x is removed from common␣
→˓ancestor
global $db_functions, $reltext, $sexe, $sexe2, $language, $spantext, $selected_language,
→˓$foundX_nr, $rel_arrayX, $rel_arrayspouseX, $spouse;
global $reltext_nor, $reltext_nor2; // for Norwegian and Danish

if($selected_language==es){
if($sexe==m) { $neph=__('nephew'); $span_postfix=o; $grson='nieto'; }
else { $neph=__('niece'); $span_postfix=a; $grson='nieta'; }
//$gendiff = abs($generX - $generY); // FOUT
$gendiff = abs($generX - $generY) - 1;
$gennr=$gendiff-1;
$degree=$grson..$gennr.$span_postfix;
if($gendiff ==1) { $reltext=$neph.__(' of ');}
elseif($gendiff > 1 AND $gendiff < 27) {

spanish_degrees($gendiff,$grson);
$reltext=$neph..$spantext.__(' of ');

}
(continues on next page)

2500 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

else { $reltext=$neph..$degree; }
} elseif ($selected_language==he){

if($sexe=='m') { $nephniece = __('nephew'); }
///............

18.2.212 Too Many Native Calls

SPIP

Too Many Native Calls, in /ecrire/xml/analyser_dtd.php:58.

This expression counts 4 usages of count(), which is more than the default level of 3 PHP calls in one expression.

spip_log("Analyser DTD $avail $grammaire (" . spip_timer('dtd') . ") " . count($dtc->
→˓macros) . ' macros, ' . count($dtc->elements) . ' elements, ' . count($dtc->attributs)␣
→˓. " listes d'attributs, " . count($dtc->entites) . " entites")

18.2.213 Too Many Parameters

WordPress

Too Many Parameters, in wp-admin/includes/misc.php:74.

11 parameters is a lot for a function. Note that it is more than the default configuration, and reported there. This may
be configured.

/**
* [identifyUserRights description]
* @param string $groupesVisiblesUser [description]
* @param string $groupesInterditsUser [description]
* @param string $isAdmin [description]
* @param string $idFonctions [description]
* @return string [description]
*/
function identifyUserRights(

$groupesVisiblesUser,
$groupesInterditsUser,
$isAdmin,
$idFonctions,
$server,
$user,
$pass,
$database,
$port,
$encoding,
$SETTINGS

) {

18.2. List of real code Cases 2501

Exakat Documentation, Release 1

ChurchCRM

Too Many Parameters, in src/Reports/ReminderReport.php:192.

10 parameters is a lot for a function. Here, we may also identify a family (ID, Name), and a full address (Address1,
Address2, State, Zip, Country), which may be turned into an object.

public function StartNewPage($fam_ID, $fam_Name, $fam_Address1, $fam_Address2, $fam_City,
→˓ $fam_State, $fam_Zip, $fam_Country, $fundOnlyString, $iFYID)
{

18.2.214 Unconditional Break In Loop

LiveZilla

Unconditional Break In Loop, in wp-admin/includes/misc.php:74.

Only one row is read from the DBManager, and the rest is ignored. The result has no more than one result, basedd on
the LIMIT 1 clause in the SQL. The while loop may be removed.

$result = DBManager::Execute(true, "SELECT * FROM `" . DB_PREFIX . DATABASE_STATS_AGGS .
→˓"` WHERE `month`>0 AND ((`year`='" . DBManager::RealEscape(date("Y")) . "' AND `month`<
→˓'" . DBManager::RealEscape(date("n")) . "') OR (`year`<'" . DBManager::RealEscape(date(
→˓"Y")) . "')) AND (`aggregated`=0 OR `aggregated`>" . (time() - 300) . ") AND `day`=0␣
→˓ORDER BY `year` ASC,`month` ASC LIMIT 1;");

if ($result)
while ($row = DBManager::FetchArray($result)) {

if (empty($row["aggregated"])) {
DBManager::Execute(true, "UPDATE `" . DB_PREFIX . DATABASE_STATS_

→˓AGGS . "` SET `aggregated`=" . time() . " WHERE `year`=" . $row["year"] . " AND␣
→˓`month`=" . $row["month"] . " AND `day`=0 LIMIT 1;");

$this->AggregateMonth($row["year"], $row["month"]);
}
return false;

}

MediaWiki

Unconditional Break In Loop, in includes/htmlform/HTMLFormField.php:138.

The final break is useless : the execution has already reached the end of the loop.

for ($i = count($thisKeys) - 1; $i >= 0; $i--) {
$keys = array_merge(array_slice($thisKeys, 0, $i), $nameKeys);
$data = $alldata;
foreach ($keys as $key) {

if (!is_array($data) || !array_key_exists($key, $data)␣
→˓) {

continue 2;
}
$data = $data[$key];

}
(continues on next page)

2502 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

$testValue = (string)$data;
break;

}

18.2.215 Undefined Interfaces

xataface

Undefined Interfaces, in Dataface/Error.php:112.

Exception seems to be a typo, and leads to an always-true expression.

public static function isError($obj){
if (!PEAR::isError($obj) and !($obj instanceof Exception_)) return false;
return ($obj->getCode() >= DATAFACE_E_ERROR);

}

18.2.216 Undefined Properties

WordPress

Undefined Properties, in wp-admin/includes/misc.php:74.

Properties are not defined, but they are thoroughly initialized when the XML document is parsed. All those definition
should be in a property definition, for clear documentation.

$this->DeliveryLine1 = '';
$this->DeliveryLine2 = '';
$this->City = '';
$this->State = '';
$this->ZipAddon = '';

MediaWiki

Undefined Properties, in includes/logging/LogFormatter.php:561.

parsedParametersDeleteLog is an undefined property. Defining the property with a null default value is important here,
to keep the code running.

protected function getMessageParameters() {
if (isset($this->parsedParametersDeleteLog)) {

return $this->parsedParametersDeleteLog;
}

18.2. List of real code Cases 2503

Exakat Documentation, Release 1

18.2.217 Undefined static:: Or self::

xataface

Undefined static:: Or self::, in actions/forgot_password.php:194.

This is probably a typo, since the property called public static $EX_NO_USERS_WITH_EMAIL = 501; is defined in
that class.

if (!$user) throw new Exception(df_translate('actions.forgot_password.null_user',
→˓"Cannot send email for null user"), self::$EX_NO_USERS_FOUND_WITH_EMAIL);

SugarCrm

Undefined static:: Or self::, in code/SugarCE-Full-6.5.26/include/SugarDateTime.php:574.

self::$sugar_strptime_long_mon refers to the current class, which extends DateTime. No static property was defined
at either of them, with the name ‘$sugar_strptime_long_mon’. This has been a Fatal error at execution time since PHP
5.3, at least.

if (isset($regexp['positions']['F']) && !empty($dateparts[$regexp['positions']['F']])) {
// FIXME: locale?

$mon = $dateparts[$regexp['positions']['F']];
if(isset(self::$sugar_strptime_long_mon[$mon])) {

$data[tm_mon] = self::$sugar_strptime_long_mon[$mon];
} else {

return false;
}

}

18.2.218 Unitialized Properties

SPIP

Unitialized Properties, in ecrire/public/interfaces.php:584.

The class Critere (Criteria) has no method at all. When using a class as an array, to capture values, one of the advantage
of the class is in the default values for the properties. In particular, the last property here, called $not, should be
initialized with a false.

/**
* Description d'un critère de boucle
*
* Sous-noeud de Boucle
*
* @package SPIP\Core\Compilateur\AST
**/
class Critere {

/**
* Type de noeud
*
* @var string

(continues on next page)

2504 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

*/
public $type = 'critere';

/**
* Opérateur (>, <, >=, IN, ...)
*
* @var null|string
*/
public $op;

/**
* Présence d'une négation (truc !op valeur)
*
* @var null|string
*/
public $not;

18.2.219 Unpreprocessed Values

Zurmo

Unpreprocessed Values, in app/protected/core/utils/ZurmoTranslationServerUtil.php:79.

It seems that a simple concatenation could be used here. There is another call to this expression in the code, and a third
that uses ‘PATCH_VERSION’ on top of the two others.

join('.', array(MAJOR_VERSION, MINOR_VERSION))

Piwigo

Unpreprocessed Values, in include/random_compat/random.php:34.

PHP_VERSION is actually build with PHP_MAJOR_VERSION, PHP_MINOR_VERSION and
PHP_RELEASE_VERSION. There is also a compact version : PHP_VERSION_ID

explode('.', PHP_VERSION);

18.2.220 Unresolved Instanceof

WordPress

Unresolved Instanceof , in wp-admin/includes/misc.php:74.

This code actually loads the file, join it, then split it again. file() would be sufficient.

private function resolveTag($match)
{

$tagReflector = $this->createLinkOrSeeTagFromRegexMatch($match);
if (!$tagReflector instanceof Tag\SeeTag && !$tagReflector instanceof Tag\

→˓LinkTag) {
(continues on next page)

18.2. List of real code Cases 2505

Exakat Documentation, Release 1

(continued from previous page)

return $match;
}

18.2.221 Unserialize Second Arg

Piwigo

Unserialize Second Arg, in admin/configuration.php:491.

unserialize() extracts information from the $conf variable : this variable is read from a configuration file. It is later
tested to be an array, whose index may not be all set (@$disabled[$type];). It would be safer to make $disabled an
object, add the class to unserialize, and set default values to the needed properties/index.

$disabled = @unserialize(@$conf['disabled_derivatives']);

LiveZilla

Unserialize Second Arg, in livezilla/_lib/objects.global.inc.php:2600.

unserialize() only extract a non-empty value here. But its content is not checked. It is later used as an array, with
multiple index.

$this->Customs = (!empty($_row[customs])) ? @unserialize($_row[customs]) : array();

18.2.222 Unused Functions

Woocommerce

Unused Functions, in includes/wc-core-functions.php:2124.

wc_is_external_resource() is unused. This is not obvious immediately, since there is a call from wc_get_relative_url().
Yet since wc_get_relative_url() itself is never used, then it is a dead function. As such, since wc_is_external_resource()
is only called by this first function, it also dies, even though it is called in the code.

/**
* Make a URL relative, if possible.
*
* @since 3.2.0
* @param string $url URL to make relative.
* @return string
*/
function wc_get_relative_url($url) {

return wc_is_external_resource($url) ? $url : str_replace(array('http://',
→˓'https://'), '//', $url);
}

/**
* See if a resource is remote.
*
* @since 3.2.0

(continues on next page)

2506 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

* @param string $url URL to check.
* @return bool
*/
function wc_is_external_resource($url) {

$wp_base = str_replace(array('http://', 'https://'), '//', get_home_url(null, '/
→˓', 'http'));

return strstr($url, '://') && ! strstr($url, $wp_base);
}

Piwigo

Unused Functions, in admin/include/functions.php:2167.

get_user_access_level_html_options() is unused and can’t be find in the code.

/**
* Returns access levels as array used on template with html_options functions.
*
* @param int $MinLevelAccess
* @param int $MaxLevelAccess
* @return array
*/
function get_user_access_level_html_options($MinLevelAccess = ACCESS_FREE,
→˓$MaxLevelAccess = ACCESS_CLOSED)
{
$tpl_options = array();
for ($level = $MinLevelAccess; $level <= $MaxLevelAccess; $level++)
{
$tpl_options[$level] = l10n(sprintf('ACCESS_%d', $level));

}
return $tpl_options;

}

18.2.223 Unused Global

Dolphin

Unused Global, in Dolphin-v.7.3.5/modules/boonex/forum/classes/DbForum.php:548.

$gConf is not used in this method, and may be safely avoided.

function getUserPostsList ($user, $sort, $limit = 10)
{

global $gConf;

switch ($sort) {
case 'top':

$order_by = t1.`votes` DESC;
break;

case 'rnd':
(continues on next page)

18.2. List of real code Cases 2507

Exakat Documentation, Release 1

(continued from previous page)

$order_by = " RAND() ";
break;

default:
$order_by = " t1.`when` DESC ";

}

$sql = "
SELECT t1.`forum_id`, t1.`topic_id`, t2.`topic_uri`, t2.`topic_title`, t1.`post_

→˓id`, t1.`user`, `post_text`, t1.`when`
FROM " . TF_FORUM_POST . " AS t1

INNER JOIN " . TF_FORUM_TOPIC . " AS t2
ON (t1.`topic_id` = t2.`topic_id`)

WHERE t1.`user` = '$user' AND `t2`.`topic_hidden` = '0'
ORDER BY " . $order_by . "
LIMIT $limit";

$a = $this->getAll ($sql);
$this->_cutPostText($a);
return $a;

}

18.2.224 Unused Inherited Variable In Closure

shopware

Unused Inherited Variable In Closure, in recovery/update/src/app.php:129.

In the first closuree, $containere is used as the root for the method calls, but $app is not used. It may be dropped. In
fact, some of the following calls to $app->map() only request one inherited, $container.

$app->map('/applyMigrations', function () use ($app, $container) {
$container->get('controller.batch')->applyMigrations();

})->via('GET', 'POST')->name('applyMigrations');

$app->map('/importSnippets', function () use ($container) {
$container->get('controller.batch')->importSnippets();

})->via('GET', 'POST')->name('importSnippets');

Mautic

Unused Inherited Variable In Closure, in MauticCrmBundle/Tests/Integration/SalesforceIntegrationTest.php:1202.

$max is relayed to getLeadsToCreate(), while $restart is omitted. It may be dropped, along with its reference.

function () use (&$restart, $max) {
$args = func_get_args();

if (false === $args[2]) {
return $max;

}

(continues on next page)

2508 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

$createLeads = $this->getLeadsToCreate($args[2], $max);

// determine whether to return a count or records
if (false === $args[2]) {

return count($createLeads);
}

return $createLeads;
}

18.2.225 Unused Interfaces

Tine20

Unused Interfaces, in tine20/Tinebase/User/LdapPlugin/Interface.php:20.

Tinebase_User_LdapPlugin_Interface is mentioned as a type for a property, in a php doc document. Typed properties
are available since PHP 7.4

interface Tinebase_User_LdapPlugin_Interface {

//----------
// in tine20/Tinebase/User/ActiveDirectory.php
/** @var Tinebase_User_LdapPlugin_Interface $plugin */

18.2.226 Unused Parameter

ThinkPHP

Unused Parameter, in ThinkPHP/Library/Behavior/AgentCheckBehavior.class.php:18.

$params are requested, but never used. The method is not overloading another one, as the class doesn’t extends anything.
$params is unused.

class AgentCheckBehavior
{

public function run(&$params)
{

//
$limitProxyVisit = C('LIMIT_PROXY_VISIT', null, true);
if ($limitProxyVisit && ($_SERVER['HTTP_X_FORWARDED_FOR'] || $_SERVER['HTTP_VIA

→˓'] || $_SERVER['HTTP_PROXY_CONNECTION'] || $_SERVER['HTTP_USER_AGENT_VIA'])) {
//
exit('Access Denied');

}
}

}

18.2. List of real code Cases 2509

Exakat Documentation, Release 1

phpMyAdmin

Unused Parameter, in libraries/classes/Display/Results.php:1985.

Although $column_index is documented, it is not found in the rest of the (long) body of the function. It might have
been refactored into $sorted_column_index.

/**
* Prepare parameters and html for sorted table header fields
*
* @param array $sort_expression sort expression
* @param array $sort_expression_nodirection sort expression without direction
* @param string $sort_tbl The name of the table to which
* the current column belongs to
* @param string $name_to_use_in_sort The current column under
* consideration
* @param array $sort_direction sort direction
* @param stdClass $fields_meta set of field properties
* @param integer $column_index The index number to current column
*
* @return array 3 element array - $single_sort_order, $sort_order, $order_img
*
* @access private
*
* @see _getOrderLinkAndSortedHeaderHtml()
*/
private function _getSingleAndMultiSortUrls(

array $sort_expression,
array $sort_expression_nodirection,
$sort_tbl,
$name_to_use_in_sort,
array $sort_direction,
$fields_meta,
$column_index

) {
/**/

// find the sorted column index in row result
// (this might be a multi-table query)
$sorted_column_index = false;

/**/
}

18.2.227 Unused Private Properties

OpenEMR

Unused Private Properties, in entities/User.php:46.

This class has a long list of private properties. It also has an equally long (minus one) list of accessors, and a __toString()
method which exposes all of them. $oNotes is the only one never mentionned anywhere.

class User
{

(continues on next page)

2510 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

/**
* @Column(name=id, type=integer)
* @GeneratedValue(strategy=AUTO)
*/
private $id;

/**
* @OneToMany(targetEntity=ONote, mappedBy=user)
*/
private $oNotes;

phpadsnew

Unused Private Properties, in lib/OA/Admin/UI/component/Form.php:23.

$dispatcher is never used anywhere.

class OA_Admin_UI_Component_Form
extends HTML_QuickForm

{
private $dispatcher;

18.2.228 Use ::Class Operator

Typo3

Use ::Class Operator, in typo3/sysext/install/Configuration/ExtensionScanner/Php/ConstructorArgumentMatcher.php:4.

TYPO3\CMS\Core\Package\PackageManager could be TYPO3\CMS\Core\Package\PackageManager::class.

return [
'TYPO3\CMS\Core\Package\PackageManager' => [

'required' => [
'numberOfMandatoryArguments' => 1,
'maximumNumberOfArguments' => 1,

18.2.229 Use Basename Suffix

NextCloud

Use Basename Suffix, in lib/private/URLGenerator.php:176.

This code removes the 4 last letters from the images. It may be ‘png’, ‘jpg’ or ‘txt’.

substr(basename($image), 0, -4)

18.2. List of real code Cases 2511

Exakat Documentation, Release 1

Dolibarr

Use Basename Suffix, in htdocs/core/website.inc.php:42.

The extension ‘.tpl.php’ is dropped from the file name, unless it appears somewhere else in the $websitepagefile vari-
able.

str_replace(array('.tpl.php', 'page'), array('', ''), basename($websitepagefile))

18.2.230 Use Constant As Arguments

Tikiwiki

Use Constant As Arguments, in lib/language/Language.php:112.

E_WARNING is a valid value, but PHP documentation for trigger_error() explains that E_USER constants should be
used.

trigger_error(Octal or hexadecimal string " . $match[1] . " not supported, E_WARNING)

shopware

Use Constant As Arguments, in engine/Shopware/Plugins/Default/Core/Debug/Components/EventCollector.php:106.

One example where code review reports errors where unit tests don’t : array_multisort actually requires sort order
first (SORT_ASC or SORT_DESC), then sort flags (such as SORT_NUMERIC). Here, with SORT_DESC = 3 and
SORT_NUMERIC = 1, PHP understands it as the coders expects it. The same error is repeated six times in the code.

array_multisort($order, SORT_NUMERIC, SORT_DESC, $this->results)

18.2.231 Use Instanceof

TeamPass

Use Instanceof , in includes/libraries/Database/Meekrodb/db.class.php:506.

In this code, is_object() and instanceof have the same basic : they both check that $ts is an object. In fact,
instanceof is more precise, and give more information about the variable.

protected function parseTS($ts) {
if (is_string($ts)) return date('Y-m-d H:i:s', strtotime($ts));
else if (is_object($ts) && ($ts instanceof DateTime)) return $ts->format('Y-m-d H:i:s

→˓');
}

2512 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

Zencart

Use Instanceof , in includes/modules/payment/firstdata_hco.php:104.

In this code, is_object() is used to check the status of the order. Possibly, $order is false or null in case of incom-
patible status. Yet, when $object is an object, and in particular being a global that may be assigned anywhere else in
the code, it seems that the method ‘update_status’ is magically always available. Here, using instance of to make sure
that $order is an ‘paypal’ class, or a ‘storepickup’ or any of the payment class.

function __construct() {
global $order;

// more lines, no mention of $order
if (is_object($order)) $this->update_status();

// more code
}

18.2.232 Use List With Foreach

MediaWiki

Use List With Foreach, in includes/parser/LinkHolderArray.php:372.

This foreach reads each element from $entries into entry. $entry, in turn, is written into $pdbk, $title and $displayText
for easier reuse. 5 elements are read from $entry, and they could be set in their respective variable in the foreach() with
a list call. The only on that can’t be set is ‘query’ which has to be tested.

foreach ($entries as $index => $entry) {
$pdbk = $entry['pdbk'];
$title = $entry['title'];
$query = isset($entry['query']) ? $entry['query'] : [];
$key = $ns:$index;
$searchkey = "<!--LINK'\" $key-->";
$displayText = $entry['text'];
if (isset($entry['selflink'])) {

$replacePairs[$searchkey] = Linker::makeSelfLinkObj(
→˓$title, $displayText, $query);

continue;
}
if ($displayText === '') {

$displayText = null;
} else {

$displayText = new HtmlArmor($displayText);
}
if (!isset($colours[$pdbk])) {

$colours[$pdbk] = 'new';
}
$attribs = [];
if ($colours[$pdbk] == 'new') {

$linkCache->addBadLinkObj($title);
$output->addLink($title, 0);
$link = $linkRenderer->makeBrokenLink(

(continues on next page)

18.2. List of real code Cases 2513

Exakat Documentation, Release 1

(continued from previous page)

$title, $displayText, $attribs, $query
);

} else {
$link = $linkRenderer->makePreloadedLink(

$title, $displayText, $colours[$pdbk],
→˓$attribs, $query

);
}

$replacePairs[$searchkey] = $link;
}

18.2.233 Use Named Boolean In Argument Definition

phpMyAdmin

Use Named Boolean In Argument Definition, in /libraries/classes/Util.php:1929.

$request is an option to checkParameters, although it is not visibile with is its actual role.

public static function checkParameters($params, $request = false) {
/**/

}

Cleverstyle

Use Named Boolean In Argument Definition, in /core/classes/Response.php:129.

$httponly is an option to cookie, and true/false makes it readable. There may be other situations, like fallback, or
forcedd usage, so the boolean may be misleading. Note also the $expire = 0, which may be a date, or a special value.
We need to read the documentation to understand this.

public function cookie($name, $value, $expire = 0, $httponly = false) { /**/ } {
/**/

}

18.2.234 Use PHP Object API

WordPress

Use PHP Object API , in wp-includes/functions.php:2558.

Finfo has also a class, with the same name.

finfo_open(FILEINFO_MIME_TYPE)

2514 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

PrestaShop

Use PHP Object API , in admin-dev/filemanager/include/utils.php:174.

transliterator_transliterate() has also a class named Transliterator

transliterator_transliterate('Accents-Any', $str)

18.2.235 Use Pathinfo

SuiteCrm

Use Pathinfo, in include/utils/file_utils.php:441.

Looking for the extension ? Use pathinfo() and PATHINFO_EXTENSION

$exp = explode('.', $filename);

18.2.236 Use Positive Condition

SPIP

Use Positive Condition, in ecrire/inc/utils.php:925.

if (isset($time[$t])) { } else { } would put the important case in first place, and be more readable.

if (!isset($time[$t])) {
$time[$t] = $a + $b;

} else {
$p = ($a + $b - $time[$t]) * 1000;
unset($time[$t]);

echo $p;exit;
if ($raw) {

return $p;
}
if ($p < 1000) {

$s = '';
} else {

$s = sprintf(%d, $x = floor($p / 1000));
$p -= ($x * 1000);

}

return $s . sprintf($s ? %07.3f ms : %.3f ms, $p);
}

18.2. List of real code Cases 2515

Exakat Documentation, Release 1

ExpressionEngine

Use Positive Condition, in system/ee/EllisLab/Addons/forum/mod.forum_core.php:9138.

Let’s be positive, and start processing the presence of $topic first. And let’s call it empty(), not == ‘’.

if ($topic != '')
{

$sql .= '('.substr($topic, 0, -3).')␣
→˓OR ';

$sql .= '('.substr($tbody, 0, -3).')
→˓';

}
else
{

$sql = substr($sql, 0, -3);
}

18.2.237 Use Recursive count()

WordPress

Use Recursive count(), in wp-admin/includes/misc.php:74.

This code actually loads the file, join it, then split it again. file() would be sufficient.

$markerdata = explode(\n, implode('', file($filename)));

PrestaShop

Use Recursive count(), in controllers/admin/AdminSearchController.php:342.

This could be improved with count() recursive and a array_filter call, to remove empty $list.

$nb_results = 0;
foreach ($this->_list as $list) {

if ($list != false) {
$nb_results += count($list);

}
}

18.2.238 Use const

phpMyAdmin

Use const, in error_report.php:17.

This may be turned into a const call, with a static expression.

define('ROOT_PATH', __DIR__ . DIRECTORY_SEPARATOR)

2516 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

Piwigo

Use const, in include/functions_plugins.inc.php:32.

Const works efficiently with literal

define('EVENT_HANDLER_PRIORITY_NEUTRAL', 50)

18.2.239 Use pathinfo() Arguments

Zend-Config

Use pathinfo() Arguments, in src/Factory.php:74:90.

The $filepath is broken into pieces, and then, only the ‘extension’ part is used. With the PATHINFO_EXTENSION
constant used as a second argument, only this value could be returned.

$pathinfo = pathinfo($filepath);

if (! isset($pathinfo['extension'])) {
throw new Exception\RuntimeException(sprintf(

'Filename %s is missing an extension and cannot be auto-detected',
$filename

));
}

$extension = strtolower($pathinfo['extension']);
// Only $extension is used beyond that point

ThinkPHP

Use pathinfo() Arguments, in ThinkPHP/Extend/Library/ORG/Net/UploadFile.class.php:508.

Without any other check, pathinfo() could be used with PATHINFO_EXTENSION.

private function getExt($filename) {
$pathinfo = pathinfo($filename);
return $pathinfo['extension'];

}

18.2.240 Use random_int()

Thelia

Use random_int(), in core/lib/Thelia/Tools/TokenProvider.php:151.

The whole function may be replaced by random_int(), as it generates random tokens. This needs an extra layer of
hashing, to get a long and string results.

/**
* @return string
*/

(continues on next page)

18.2. List of real code Cases 2517

Exakat Documentation, Release 1

(continued from previous page)

protected static function getComplexRandom()
{

$firstValue = (float) (mt_rand(1, 0xFFFF) * rand(1, 0x10001));
$secondValues = (float) (rand(1, 0xFFFF) * mt_rand(1, 0x10001));

return microtime() . ceil($firstValue / $secondValues) . uniqid();
}

FuelCMS

Use random_int(), in fuel/modules/fuel/libraries/Fuel.php:235.

Security tokens should be build with a CSPRNG source. uniqid() is based on time, and though it changes anytime (sic),
it is easy to guess. Those days, it looks like ‘5b1262e74dbb9’;

$this->installer->change_config('config', '$config[\'encryption_key\'] = \'\';', '
→˓$config[\'encryption_key\'] = \''.md5(uniqid()).'\';');

18.2.241 Use session_start() Options

WordPress

Use session_start() Options, in wp-admin/includes/misc.php:74.

This code actually loads the file, join it, then split it again. file() would be sufficient.

$markerdata = explode(\n, implode('', file($filename)));

18.2.242 Used Once Variables

shopware

Used Once Variables, in _sql/migrations/438-add-email-template-header-footer-fields.php:115.

In the updateEmailTemplate method, $generatedQueries collects all the generated SQL queries. $generatedQueries is
not initialized, and never used after initialization.

private function updateEmailTemplate($name, $content, $contentHtml = null)
{

$sql = <<<SQL
UPDATE `s_core_config_mails` SET `content` = $content WHERE `name` = $name AND dirty = 0
SQL;

$this->addSql($sql);

if ($contentHtml != null) {
$sql = <<<SQL

UPDATE `s_core_config_mails` SET `content` = $content, `contentHTML` = $contentHtml␣
→˓WHERE `name` = $name AND dirty = 0
SQL;

$generatedQueries[] = $sql;
(continues on next page)

2518 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

}

$this->addSql($sql);
}

Vanilla

Used Once Variables, in library/core/class.configuration.php:1461.

In this code, $cachedConfigData is collected after storing date in the cache. Gdn::cache()->store() does actual work,
so its calling is necessary. The result, collected after execution, is not reused in the rest of the method (long method,
not all is shown here). Removing such variable is a needed clean up after development and debug, but also prevents
pollution of the variable namespace.

// Save to cache if we're into that sort of thing
$fileKey = sprintf(Gdn_Configuration::CONFIG_FILE_CACHE_KEY, $this->

→˓Source);
if ($this->Configuration && $this->Configuration->caching() &&␣

→˓Gdn::cache()->type() == Gdn_Cache::CACHE_TYPE_MEMORY && Gdn::cache()->activeEnabled())
→˓{

$cachedConfigData = Gdn::cache()->store($fileKey, $data, [
Gdn_Cache::FEATURE_NOPREFIX => true,
Gdn_Cache::FEATURE_EXPIRY => 3600

]);
}

18.2.243 Used Once Variables (In Scope)

shopware

Used Once Variables (In Scope), in _sql/migrations/438-add-email-template-header-footer-fields.php:115.

In the updateEmailTemplate method, $generatedQueries collects all the generated SQL queries. $generatedQueries is
not initialized, and never used after initialization.

private function updateEmailTemplate($name, $content, $contentHtml = null)
{

$sql = <<<SQL
UPDATE `s_core_config_mails` SET `content` = $content WHERE `name` = $name AND dirty = 0
SQL;

$this->addSql($sql);

if ($contentHtml != null) {
$sql = <<<SQL

UPDATE `s_core_config_mails` SET `content` = $content, `contentHTML` = $contentHtml␣
→˓WHERE `name` = $name AND dirty = 0
SQL;

$generatedQueries[] = $sql;
}

(continues on next page)

18.2. List of real code Cases 2519

Exakat Documentation, Release 1

(continued from previous page)

$this->addSql($sql);
}

18.2.244 Useless Brackets

ChurchCRM

Useless Brackets, in src/Menu.php:72.

Difficut to guess what was before the block here. It doesn’t have any usage for control flow.

$new_row = false;
$count_people = 0;

{
foreach ($peopleWithBirthDays as $peopleWithBirthDay) {

if ($new_row == false) {
?>

<div class=row>
<?php

$new_row = true;
} ?>
<div class=col-sm-3>

Piwigo

Useless Brackets, in picture.php:342.

There is no need for block braces with case. In fact, it does give a false sense of break, while the case will still fall over
to the next one.

case 'rate' :
{
include_once(PHPWG_ROOT_PATH.'include/functions_rate.inc.php');
rate_picture($page['image_id'], $_POST['rate']);
redirect($url_self);

}

18.2.245 Useless Catch

Zurmo

Useless Catch, in app/protected/modules/workflows/forms/attributes/ExplicitReadWriteModelPermissionsWorkflowActionAttributeForm.php:99.

Catch the exception, then return. At least, the comment is honest.

try
{

$group = Group::getById((int)$this->type);
(continues on next page)

2520 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

$explicitReadWriteModelPermissions->addReadWritePermitable($group);
}
catch (NotFoundException $e)
{

//todo: handle exception better
return;

}

PrestaShop

Useless Catch, in src/Core/Addon/Module/ModuleManagerBuilder.php:170.

Here, the catch clause will intercept a IO problem while writing element on the disk, and will return false. Since this
is a constructor, the returned value will be ignored and the object will be left in a wrong state, since it was not totally
inited.

private function __construct()
{
// More code......

try {
$filesystem = new Filesystem();
$filesystem->dumpFile($phpConfigFile, '<?php return ' . var_export(

→˓$config, true) . ';' . \n);
} catch (IOException $e) {

return false;
}

}

18.2.246 Useless Check

Magento

Useless Check, in wp-admin/includes/misc.php:74.

This code assumes that $delete is an array, then checks if it empty. Foreach will take care of the empty check.

if (!empty($delete)) {
foreach ($delete as $categoryId) {

$where = array(
'product_id = ?' => (int)$object->getId(),
'category_id = ?' => (int)$categoryId,

);

$write->delete($this->_productCategoryTable, $where);
}

}

18.2. List of real code Cases 2521

Exakat Documentation, Release 1

Phinx

Useless Check, in src/Phinx/Migration/Manager.php:828.

If $dependencies is not empty, foreach() skips the loops.

private function getSeedDependenciesInstances(AbstractSeed $seed)
{

$dependenciesInstances = [];
$dependencies = $seed->getDependencies();
if (!empty($dependencies)) {

foreach ($dependencies as $dependency) {
foreach ($this->seeds as $seed) {

if (get_class($seed) === $dependency) {
$dependenciesInstances[get_class($seed)] = $seed;

}
}

}
}

return $dependenciesInstances;
}

18.2.247 Useless Global

Zencart

Useless Global, in admin/includes/modules/newsletters/newsletter.php:25.

$_GET is always a global variable. There is no need to declare it global in any scope.

function choose_audience() {
global $_GET;

HuMo-Gen

Useless Global, in relations.php:332.

It is hard to spot that $generY is useless, but this is the only occurrence where $generY is refered to as a global. It is not
accessed anywhere else as a global (there are occurrences of $generY being an argument), and it is not even assigned
within that function.

function calculate_ancestor($pers) {
global $db_functions, $reltext, $sexe, $sexe2, $spouse, $special_spouseY, $language,

→˓$ancestortext, $dutchtext, $selected_language, $spantext, $generY, $foundY_nr, $rel_
→˓arrayY;

2522 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

18.2.248 Useless Interfaces

Woocommerce

Useless Interfaces, in includes/interfaces/class-wc-order-item-data-store-interface.php:20.

WC_Order_Item_Data_Store_Interface is used to structure the class WC_Order_Item_Data_Store. It is not used any-
where else.

interface WC_Order_Item_Data_Store_Interface {

////////
//includes/data-stores/class-wc-order-item-data-store.php

class WC_Order_Item_Data_Store implements WC_Order_Item_Data_Store_Interface {

18.2.249 Useless Parenthesis

Mautic

Useless Parenthesis, in code/app/bundles/EmailBundle/Controller/AjaxController.php:85.

Parenthesis are useless around $progress[1], and around the division too.

$dataArray['percent'] = ($progress[1]) ? ceil(($progress[0] / $progress[1]) * 100) : 100;

Woocommerce

Useless Parenthesis, in includes/class-wc-coupon.php:437.

Parenthesis are useless for calculating $discount_percent, as it is a divisition. Moreover, it is not needed with $discount,
(float) applies to the next element, but it does make the expression more readable.

if (wc_prices_include_tax()) {
$discount_percent = (wc_get_price_including_tax($cart_item['data']) * $cart_item_

→˓qty) / WC()->cart->subtotal;
} else {

$discount_percent = (wc_get_price_excluding_tax($cart_item['data']) * $cart_item_
→˓qty) / WC()->cart->subtotal_ex_tax;
}
$discount = ((float) $this->get_amount() * $discount_percent) / $cart_item_qty;

18.2. List of real code Cases 2523

Exakat Documentation, Release 1

18.2.250 Useless Referenced Argument

Woocommerce

Useless Referenced Argument, in includes/data-stores/class-wc-product-variation-data-store-cpt.php:414.

$product is defined with a reference in the method signature, but it is also used as an object with a dynamical property.
As such, the reference in the argument definition is too much.

public function update_post_meta(&$product, $force = false) {
$meta_key_to_props = array(

'_variation_description' => 'description',
);

$props_to_update = $force ? $meta_key_to_props : $this->get_props_to_update(
→˓$product, $meta_key_to_props);

foreach ($props_to_update as $meta_key => $prop) {
$value = $product->{get_$prop}('edit');
$updated = update_post_meta($product->get_id(),

→˓$meta_key, $value);
if ($updated) {

$this->updated_props[] = $prop;
}

}

parent::update_post_meta($product, $force);

Magento

Useless Referenced Argument, in setup/src/Magento/Setup/Module/Di/Compiler/Config/Chain/PreferencesResolving.php:63.

$value is defined with a reference. In the following code, it is only read and never written : for index search, or by
itself. In fact, $preferences is also only read, and never written. As such, both could be removed.

private function resolvePreferenceRecursive(&$value, &$preferences)
{

return isset($preferences[$value])
? $this->resolvePreferenceRecursive($preferences[$value], $preferences)
: $value;

}

18.2.251 Useless Return

ThinkPHP

Useless Return, in library/think/Request.php:2121.

__set() doesn’t need a return, unlike __get().

public function __set($name, $value)
{

(continues on next page)

2524 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

return $this->param[$name] = $value;
}

Vanilla

Useless Return, in applications/dashboard/views/attachments/attachment.php:14.

The final ‘return’ is useless : return void (here, return without argument), is the same as returning null, unless the ‘void’
return type is used. The other return, is in the two conditions, is important to skip the end of the functioncall.

function writeAttachment($attachment) {

$customMethod = AttachmentModel::getWriteAttachmentMethodName($attachment['Type
→˓']);

if (function_exists($customMethod)) {
if (val('Error', $attachment)) {

writeErrorAttachment($attachment);
return;

}
$customMethod($attachment);

} else {
trace($customMethod, 'Write Attachment method not found');
trace($attachment, 'Attachment');

}
return;

}

18.2.252 Useless Switch

Phpdocumentor

Useless Switch, in fuel/modules/fuel/libraries/Inspection.php:349.

This method parses comments. In fact, comments are represented by other tokens, which may be added or removed at
time while coding.

public function parse_comments($code)
{

$comments = array();
$tokens = token_get_all($code);

foreach($tokens as $token)
{

switch($token[0])
{

case T_DOC_COMMENT:
$comments[] = $token[1];
break;

}
}
return $comments;

(continues on next page)

18.2. List of real code Cases 2525

Exakat Documentation, Release 1

(continued from previous page)

}

Dolphin

Useless Switch, in Dolphin-v.7.3.5/inc/classes/BxDolModuleDb.php:34.

$aParams is an argument : this code looks like the switch is reserved for future use.

function getModulesBy($aParams = array())
{

$sMethod = 'getAll';
$sPostfix = $sWhereClause = ;

$sOrderClause = ORDER BY `title`;
switch($aParams['type']) {

case 'path':
$sMethod = 'getRow';

$sPostfix .= '_path';
$sWhereClause .= "AND `path`='" . $aParams['value'] . "'";
break;

}

18.2.253 Useless Type Casting

FuelCMS

Useless Type Casting, in fuel/codeigniter/core/URI.php:214.

substr() always returns a string, so there is no need to enforce this.

if (isset($_SERVER['SCRIPT_NAME'][0]))
{

if (strpos($uri, $_SERVER['SCRIPT_NAME']) === 0)
{

$uri = (string) substr($uri, strlen($_SERVER['SCRIPT_NAME
→˓']));

}
elseif (strpos($uri, dirname($_SERVER['SCRIPT_NAME'])) === 0)
{

$uri = (string) substr($uri, strlen(dirname($_SERVER['SCRIPT_
→˓NAME'])));

}
}

2526 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

ThinkPHP

Useless Type Casting, in ThinkPHP/Library/Think/Db/Driver/Sqlsrv.class.php:67.

A comparison always returns a boolean, except for the spaceship operator.

foreach ($result as $key => $val) {
$info[$val['column_name']] = array(

'name' => $val['column_name'],
'type' => $val['data_type'],
'notnull' => (bool) ('' === $val['is_nullable']), // not null is␣

→˓empty, null is yes
'default' => $val['column_default'],
'primary' => false,
'autoinc' => false,

);
}

18.2.254 Useless Unset

Tine20

Useless Unset, in tine20/Felamimail/Controller/Message.php:542.

$_rawContent is unset after being sent to the stream. The variable is a parameter, and will be freed at the end of the
call of the method. No need to do it explicitly.

protected function _createMimePart($_rawContent, $_partStructure)
{

if (Tinebase_Core::isLogLevel(Zend_Log::TRACE)) Tinebase_Core::getLogger()->
→˓trace(__METHOD__ . '::' . __LINE__ . ' Content: ' . $_rawContent);

$stream = fopen(php://temp, 'r+');
fputs($stream, $_rawContent);
rewind($stream);

unset($_rawContent);
//..... More code, no usage of $_rawContent

}

Typo3

Useless Unset, in typo3/sysext/frontend/Classes/Page/PageRepository.php:708.

$row is unset under certain conditions : here, we can read it in the comments. Eventually, the $row will be returned,
and turned into a NULL, by default. This will also create a notice in the logs. Here, the best would be to set a null
value, instead of unsetting the variable.

public function getRecordOverlay($table, $row, $sys_language_content, $OLmode = '')
{

//.... a lot more code, with usage of $row, and several unset($row)
//...... Reduced for simplicity

(continues on next page)

18.2. List of real code Cases 2527

Exakat Documentation, Release 1

(continued from previous page)

} else {
// When default language is displayed, we never want to return a␣

→˓record carrying
// another language!
if ($row[$GLOBALS['TCA'][$table]['ctrl']['languageField']] > 0) {

unset($row);
}

}
}

}
}
foreach ($GLOBALS['TYPO3_CONF_VARS']['SC_OPTIONS']['t3lib/class.t3lib_page.php'][

→˓'getRecordOverlay'] ?? [] as $className) {
$hookObject = GeneralUtility::makeInstance($className);
if (!$hookObject instanceof PageRepositoryGetRecordOverlayHookInterface) {

throw new \UnexpectedValueException($className . ' must implement␣
→˓interface ' . PageRepositoryGetRecordOverlayHookInterface::class, 1269881659);

}
$hookObject->getRecordOverlay_postProcess($table, $row, $sys_language_

→˓content, $OLmode, $this);
}
return $row;

}

18.2.255 Var Keyword

xataface

Var Keyword, in SQL/Parser/wrapper.php:24.

With the usage of var and a first method bearing the name of the class, this is PHP 4 code that is still in use.

class SQL_Parser_wrapper {

var $_data;
var $_tableLookup;
var $_parser;

function SQL_Parser_wrapper(&$data, $dialect='MySQL'){

18.2.256 Weak Typing

TeamPass

Weak Typing, in includes/libraries/Tree/NestedTree/NestedTree.php:100.

The is_null() test detects a special situation, that requires usage of default values. The ‘else’ handles every other
situations, including when the $node is an object, or anything else. $this->getNode() will gain from having typehints :
it may be NULL, or the results of mysqli_fetch_object() : a stdClass object. The expected properties of nleft and nright
are not certain to be available.

2528 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

public function getDescendants($id = 0, $includeSelf = false, $childrenOnly = false,
→˓$unique_id_list = false)

{
global $link;
$idField = $this->fields['id'];

$node = $this->getNode($id);
if (is_null($node)) {

$nleft = 0;
$nright = 0;
$parent_id = 0;
$personal_folder = 0;

} else {
$nleft = $node->nleft;
$nright = $node->nright;
$parent_id = $node->$idField;
$personal_folder = $node->personal_folder;

}

18.2.257 While(List() = Each())

OpenEMR

While(List() = Each()), in library/report.inc:153.

The first while() is needed, to read the arbitrary long list returned by the SQL query. The second list may be upgraded
with a foreach, to read both the key and the value. This is certainly faster to execute and to read.

function getInsuranceReport($pid, $type = primary)
{

$sql = select * from insurance_data where pid=? and type=? order by date ASC;
$res = sqlStatement($sql, array($pid, $type));
while ($list = sqlFetchArray($res)) {

while (list($key, $value) = each($list)) {
if ($ret[$key]['content'] != $value && $ret[$key]['date'] < $list['date']) {

$ret[$key]['content'] = $value;
$ret[$key]['date'] = $list['date'];

}
}

}

return $ret;
}

18.2. List of real code Cases 2529

Exakat Documentation, Release 1

Dolphin

While(List() = Each()), in Dolphin-v.7.3.5/modules/boonex/forum/classes/Forum.php:1875.

This clever use of while() and list() is actually a foreach($a as $r) (the keys are ignored)

function getRssUpdatedTopics ()
{

global $gConf;

$this->_rssPrepareConf ();

$a = $this->fdb->getRecentTopics (0);

$items = '';
$lastBuildDate = '';
$ui = array();
reset ($a);
while (list (,$r) = each ($a)) {

// acquire user info
if (!isset($ui[$r['last_post_user']]) && ($aa = $this->_

→˓getUserInfoReadyArray ($r['last_post_user'], false)))
$ui[$r['last_post_user']] = $aa;

$td = orca_mb_replace('/#/', $r['count_posts'], '[L[# posts]]') . ' · '␣
→˓. orca_mb_replace('/#/', $ui[$r['last_post_user']]['title'], '[L[last reply by #]]') .
→˓' · ' . $r['cat_name'] . ' » ' . $r['forum_title'];

18.2.258 Written Only Variables

Dolibarr

Written Only Variables, in htdocs/ecm/class/ecmdirectory.class.php:692.

$val is only written, as only the keys are used. $val may be skipped by applying the foreach to array_keys($this->cats),
instead of the whole array.

// We add properties fullxxx to all elements
foreach($this->cats as $key => $val)
{

if (isset($motherof[$key])) continue;
$this->build_path_from_id_categ($key, 0);

}

2530 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

SuiteCrm

Written Only Variables, in modules/Campaigns/utils.php:820.

$email_health is used later in the method; while $email_components is only set, and never used.

//run query for mail boxes of type 'bounce'
$email_health = 0;
$email_components = 2;
$mbox_qry = "select * from inbound_email where deleted ='0' and mailbox_type =

→˓'bounce'";
$mbox_res = $focus->db->query($mbox_qry);

$mbox = array();
while ($mbox_row = $focus->db->fetchByAssoc($mbox_res)) {

$mbox[] = $mbox_row;
}

18.2.259 Wrong Access Style to Property

HuMo-Gen

Wrong Access Style to Property, in wp-admin/includes/misc.php:74.

lame_binary_path is a static property, but it is accessed as a normal property in the exception call, while it is checked
with a valid syntax.

protected function wavToMp3($data)
{

if (!file_exists(self::$lame_binary_path) || !is_executable(self::$lame_binary_
→˓path)) {

throw new Exception('Lame binary . $this->lame_binary_path . does not␣
→˓exist or is not executable');

}

18.2.260 Wrong Class Name Case

WordPress

Wrong Class Name Case, in wp-admin/includes/misc.php:74.

This code actually loads the file, join it, then split it again. file() would be sufficient.

$markerdata = explode(\n, implode('', file($filename)));

18.2. List of real code Cases 2531

Exakat Documentation, Release 1

18.2.261 Wrong Number Of Arguments

xataface

Wrong Number Of Arguments, in actions/existing_related_record.php:130.

df_display() actually requires only 2 arguments, while three are provided. The last argument is completely ignored.
df_display() is called in a total of 9 places : this now looks like an API change that left many calls untouched.

df_display($context, $template, true);

// in public-api.php :
function df_display($context, $template_name){

import('Dataface/SkinTool.php');
$st = Dataface_SkinTool::getInstance();

return $st->display($context, $template_name);
}

18.2.262 Wrong Optional Parameter

FuelCMS

Wrong Optional Parameter, in fuel/modules/fuel/helpers/validator_helper.php:78.

The $regex parameter should really be first, as it is compulsory. Though, if this is a legacy function, it may be better to
give regex a default value, such as empty string or null, and test it before using it.

if (!function_exists('regex'))
{

function regex($var = null, $regex)
{

return preg_match('#'.$regex.'#', $var);
}

}

Vanilla

Wrong Optional Parameter, in applications/dashboard/modules/class.navmodule.php:99.

Note the second parameter, $dropdown, which has no default value. It is relayed to the addDropdown method, which
as no default value too. Since both methods are documented, we can see that they should be an addDropdown : null is
probably a good idea, coupled with an explicit check on the actual value.

/**
* Add a dropdown to the items array if it satisfies the $isAllowed condition.
*
* @param bool|string|array $isAllowed Either a boolean to indicate whether to␣

→˓actually add the item
* or a permission string or array of permission strings (full match) to check.
* @param DropdownModule $dropdown The dropdown menu to add.
* @param string $key The item's key (for sorting and CSS targeting).

(continues on next page)

2532 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

(continued from previous page)

* @param string $cssClass The dropdown wrapper's CSS class.
* @param array|int $sort Either a numeric sort position or and array in the style:␣

→˓array('before|after', 'key').
* @return NavModule $this The calling object.
*/
public function addDropdownIf($isAllowed = true, $dropdown, $key = '', $cssClass = '

→˓', $sort = []) {
if (!$this->isAllowed($isAllowed)) {

return $this;
} else {

return $this->addDropdown($dropdown, $key, $cssClass, $sort);
}

}

18.2.263 Wrong Parameter Type

Zencart

Wrong Parameter Type, in admin/includes/header.php:180.

setlocale() may be called with null or ‘’ (empty string), and will set values from the environment. When called with 0
(the string), it only reports the current setting. Using an integer is probably undocumented behavior, and falls back to
the zero string.

$loc = setlocale(LC_TIME, 0);
if ($loc !== FALSE) echo ' - ' . $loc; //what is the locale in use?

18.2.264 Wrong Range Check

Dolibarr

Wrong Range Check, in htdocs/includes/phpoffice/PhpSpreadsheet/Spreadsheet.php:1484.

When $tabRatio is 1001, then the condition is valid, and the ratio accepted. The right part of the condition is not
executed.

public function setTabRatio($tabRatio)
{

if ($tabRatio >= 0 || $tabRatio <= 1000) {
$this->tabRatio = (int) $tabRatio;

} else {
throw new Exception('Tab ratio must be between 0 and 1000.');

}
}

18.2. List of real code Cases 2533

Exakat Documentation, Release 1

WordPress

Wrong Range Check, in wp-includes/formatting.php:3634.

This condition may be easier to read as $diff >= WEEK_IN_SECONDS && $diff < MONTH_IN_SECONDS. When
testing for outside this interval, using not is also more readable : !($diff >= WEEK_IN_SECONDS && $diff <
MONTH_IN_SECONDS).

} elseif ($diff < MONTH_IN_SECONDS && $diff >= WEEK_IN_SECONDS) {
$weeks = round($diff / WEEK_IN_SECONDS);
if ($weeks <= 1) {

$weeks = 1;
}
/* translators: Time difference between two dates, in weeks. %s: Number of␣

→˓weeks */
$since = sprintf(_n('%s week', '%s weeks', $weeks), $weeks);

18.2.265 Wrong fopen() Mode

Tikiwiki

Wrong fopen() Mode, in lib/tikilib.php:6777.

This fopen() mode doesn’t exists. Use ‘w’ instead.

fopen('php://temp', 'rw');

HuMo-Gen

Wrong fopen() Mode, in include/phprtflite/lib/PHPRtfLite/StreamOutput.php:77.

This fopen() mode doesn’t exists. Use ‘w’ instead.

fopen($this->_filename, 'wr', false)

18.2.266 __DIR__ Then Slash

Traq

__DIR__ Then Slash, in src/Kernel.php:60.

When executed in a path ‘/a/b/c’, this code will require ‘/a../../vendor/autoload.php.

static::$loader = require __DIR__.'../../vendor/autoload.php';

2534 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

18.2.267 __debugInfo() Usage

Dolibarr

__debugInfo() Usage, in htdocs/includes/stripe/lib/StripeObject.php:108.

_values is a private property from the Stripe Class. The class contains other objects, but only _values are displayed
with var_dump.

// Magic method for var_dump output. Only works with PHP >= 5.6
public function __debugInfo()
{

return $this->_values;
}

18.2.268 error_reporting() With Integers

SugarCrm

error_reporting() With Integers, in modules/UpgradeWizard/silentUpgrade_step1.php:436.

This only displays E_ERROR, the highest level of error reporting. It should be checked, as it happens in the ‘silentUp-
grade’ script.

ini_set('error_reporting', 1);

18.2.269 eval() Without Try

FuelCMS

eval() Without Try, in fuel/modules/fuel/controllers/Blocks.php:268.

The @ will prevent any error, while the try/catch allows the processing of certain types of error, namely the Fatal ones.

@eval($_name_var_eval)

ExpressionEngine

eval() Without Try, in system/ee/EllisLab/Addons/member/mod.member_memberlist.php:637.

$cond is build from values extracted from the $fields array. Although it is probably reasonably safe, a try/catch here
will collect any unexpected situation cleaningly.

elseif (isset($fields[$val['3']]))
{

if (array_key_exists('m_field_id_'.$fields[
→˓$val['3']], $row))

{
$v = $row['m_field_id_'.$fields[$val[

→˓'3']]];

(continues on next page)

18.2. List of real code Cases 2535

Exakat Documentation, Release 1

(continued from previous page)

$lcond = str_replace($val['3'], $v,
→˓$lcond);

$cond = $lcond.' '.$rcond;
$cond = str_replace("|", "|", $cond);

eval("$result = ".$cond.";");

18.2.270 include_once() Usage

XOOPS

include_once() Usage, in /htdocs/xoops_lib/modules/protector/admin/center.php:5.

Loading() classes should be down with autoload(). autload() may be build in several distinct functions, using
spl_autoload_register().

require_once dirname(__DIR__) . 'class/gtickets.php'

Tikiwiki

include_once() Usage, in tiki-mytiki_shared.php :140.

Turn the code from tiki-mytiki_shared.php into a function or a method, and call it when needed.

include_once('tiki-mytiki_shared.php');

18.2.271 list() May Omit Variables

OpenConf

list() May Omit Variables, in openconf/author/privacy.php:29.

The first variable in the list(), $none, isn’t reused anywhere in the script. In fact, its name convey the meaning that is it
useless, but is in the array nonetheless.

list($none, $OC_privacy_policy) = oc_getTemplate('privacy_policy');

FuelCMS

list() May Omit Variables, in wp-admin/includes/misc.php:74.

$a is never reused again. $b, on the other hand is. Not assigning any value to $a saves some memory, and avoid
polluting the local variable space.

list($b, $a) = array(reset($params->me), key($params->me));

2536 Chapter 18. Real Code Cases

Exakat Documentation, Release 1

18.2.272 preg_match_all() Flag

FuelCMS

preg_match_all() Flag, in fuel/modules/fuel/helpers/MY_array_helper.php:205.

Using PREG_SET_ORDER will remove the usage of the ``$key``variable.

function parse_string_to_array($str)
{

preg_match_all('#(\w+)=([\'"])(.*)\2#U', $str, $matches);
$params = array();
foreach($matches[1] as $key => $val)
{

if (!empty($matches[3]))
{

$params[$val] = $matches[3][$key];
}

}
return $params;

}

18.2.273 preg_replace With Option e

Edusoho

preg_replace With Option e, in vendor_user/uc_client/lib/uccode.class.php:32.

This call extract text between [code] tags, then process it with $this->codedisp() and nest it again in the original string.
preg_replace_callback() is a drop-in replacement for this piece of code.

$message = preg_replace("/\s*\[code\](.+?)\[\/code\]\s*/ies", "$this->codedisp('\1')",
→˓$message);

18.2.274 strpos() Too Much

WordPress

strpos() Too Much, in core/traits/Request/Server.php:127.

Instead of searching for HTTP_, it is faster to compare the first 5 chars to the literal HTTP_. In case of absence, this
solution returns faster.

if (strpos($header, 'HTTP_') === 0) {
$header = substr($header, 5);

} elseif (strpos($header, 'CONTENT_') !== 0) {
continue;

}

18.2. List of real code Cases 2537

Exakat Documentation, Release 1

18.2.275 time() Vs strtotime()

Woocommerce

time() Vs strtotime(), in includes/class-wc-webhook.php:384.

time() would be faster here, as an entropy generator. Yet, it would still be better to use an actual secure entropy generator,
like random_byte or random_int. In case of older version, microtime() would yield better entropy.

public function get_new_delivery_id() {
// Since we no longer use comments to store delivery logs, we generate a␣

→˓unique hash instead based on current time and webhook ID.
return wp_hash($this->get_id() . strtotime('now'));

}

18.2.276 var_dump(). . . Usage

Tine20

var_dump(). . . Usage, in tine20/library/Ajam/Connection.php:122.

Two usage of var_dump(). They are protected by configuration, since the debug property must be set to ‘true’. Yet, it
is safer to avoid them altogether, and log the information to an external file.

if($this->debug === true) {
var_dump($this->getLastRequest());
var_dump($response);

}

Piwigo

var_dump(). . . Usage, in include/ws_core.inc.php:273.

This is a hidden debug system : when the response format is not available, the whole object is dumped in the output.

function run()
{
if (is_null($this->_responseEncoder))
{
set_status_header(400);
@header("Content-Type: text/plain");
echo ("Cannot process your request. Unknown response format.

Request format: ".@$this->_requestFormat." Response format: ".@$this->_responseFormat."\n
→˓");

var_export($this);
die(0);

}

2538 Chapter 18. Real Code Cases

CHAPTER

NINETEEN

INSTALLATION

19.1 Summary

• Requirements

• Download exakat.phar

• Installation with exakat.phar

• Installation on OSX

• Installation on Debian/Ubuntu

• Installation guide with Composer

• Installation guide with Docker

19.2 Requirements

Here are the requirements to run Exakat.

Basic requirements :

• exakat.phar, the main code.

• Gremlin server : exakat uses this graph database and the Gremlin 3 traversal language. Currently, only Gremlin
Server is supported, with the tinkergraph and neo4j storage engine. Version 3.7.x is the recommended version,
while version 3.6.x is still supported. Gremlin versions 3.5.# and older are not supported anymore.

• Java 11.x. Java 8.x is still supported, and Java 17 will be supported when Gremlin Server does.

• PHP 8.3 to run. PHP 8.2 is recommended, and PHP 7.4 or older are possible but unsupported. This version
requires the PHP extensions curl, openssl, hash, phar, sqlite3, tokenizer, mbstring and json.

Optional requirements :

• PHP 5.2 to 8.4-dev for analysis purposes. Those versions only require the ext/tokenizer extension.

• VCS (Version Control Software), such as Git, SVN, bazaar, Mercurial. They all are optional, though git is
recommended, and used as the default VCS.

• Archives, such as zip, tgz, tbz2 may also be opened with optional helpers (See `Installation guide for optional
tools`_).

OS requirements :

• Exakat has beed tested on OSX, Alpine, Debian and Ubuntu (up to 22.04).

2539

http://tinkerpop.apache.org/
https://www.php.net/

Exakat Documentation, Release 1

• Exakat should work on Linux distributions, may be with little work.

• Exakat hasn’t been tested on Windows, and is unsupported at the moment.

For installation, curl or wget, and zip are needed.

19.3 Download exakat.phar

Download exakat directly from https://www.exakat.io/versions.

This server also provides older versions of Exakat. It is recommended to always download the last version, which is
available directly with https://www.exakat.io/versions/index.php?file=latest.

For each version, MD5 and SHA256 signatures are available. The downloaded MD5 must match the one in the related
.md5 file. The .md5 also has the version number, for extra check.

Here is a bash script to download and check the archive.

curl -O -J 'https://www.exakat.io/versions/index.php?file=latest'

curl -O -J 'https://www.exakat.io/versions/index.php?file=latest.md5'
//9c77eb52c11ee45a93654edd22cf6af8 exakat-2.6.0.phar
md5sum -c exakat-*.md5
// Example :
// exakat-2.6.0.phar: OK

curl -O -J 'https://www.exakat.io/versions/index.php?file=latest.sha256'
//adaa20a0ff1de4caf6484cc1e57079f916ae4b96dac39aa04b9615f4117b5742 exakat-2.6.0.phar
sha256sum -c exakat-*.sha256
// Example :
// exakat-2.6.0.phar: OK

rm exakat-*.md5
rm exakat-*.sha256
mv exakat*.phar exakat.phar
php exakat.phar version // quick check

19.4 Installation with exakat.phar

Exakat.phar includes its own installation script, as long as PHP is available. Exakat checks different pre-requisites, and
proceed to install the last elements.

Exakat checks for Java and Zip installations. Then, it downloads tinkergraph and the Neo4j plugin from exakat.io and
runs the doctor command.

The install script is the one displayed on the next section.

You can use the install command this way:

php exakat.phar install -v

After this step, you can go to the tutorials section.

2540 Chapter 19. Installation

https://www.exakat.io/versions
https://www.exakat.io/versions/index.php?file=latest

Exakat Documentation, Release 1

19.5 Installation on OSX

Paste the following commands in a terminal prompt. It downloads Exakat, and installs tinkerpop version 3.7.0. PHP
8.0 or more recent, curl, homebrew are required.

19.5.1 OSX installation with tinkergraph 3.7.0

This is the installation script for Exakat and tinkergraph 3.4.11.

mkdir exakat
cd exakat
curl -o exakat.phar 'https://www.exakat.io/versions/index.php?file=latest'
curl -o apache-tinkerpop-gremlin-server-3.7.0-bin.zip 'https://www.exakat.io/versions/
→˓externals/apache-tinkerpop-gremlin-server-3.7.0-bin.zip'
unzip apache-tinkerpop-gremlin-server-3.7.0-bin.zip
mv apache-tinkerpop-gremlin-server-3.7.0 tinkergraph
rm -rf apache-tinkerpop-gremlin-server-3.7.0-bin.zip

Optional : install neo4j engine.
cd tinkergraph
./bin/gremlin-server.sh install org.apache.tinkerpop neo4j-gremlin 3.7.0
cd ..

php exakat.phar doctor

19.5.2 OSX installation troubleshooting

It has be reported that installation fails on OSX 10.11 and 10.12, with error similar to ‘Error grabbing Grapes’. To fix
this, use the following in command line :

rm -r ~/.groovy/grapes/
rm -r ~/.m2/

They remove some files for grapes, that it will rebuild later. Then, try again the optional install instructions.

19.6 Installation on Alpine

19.6.1 Alpine installation with Tinkergraph 3.7.0

Paste the following commands in a terminal prompt. It installs Exakat most recent version with Tinkergraph 3.7.0.

Pre-requisite: wget, java (default-jre), php8 (mbstring, sqlite3, curl, phar, tokenizer), unzip. Make sure that
memory_limit=-1 in the php.ini file, or using ‘-d memory_limit=-1’ in the command line.

mkdir exakat
cd exakat
wget -O exakat.phar https://www.exakat.io/versions/index.php?file=latest
wget -O apache-tinkerpop-gremlin-server-3.7.0-bin.zip 'https://www.exakat.io/versions/
→˓externals/apache-tinkerpop-gremlin-server-3.7.0-bin.zip'

(continues on next page)

19.5. Installation on OSX 2541

Exakat Documentation, Release 1

(continued from previous page)

unzip apache-tinkerpop-gremlin-server-3.7.0-bin.zip
mv apache-tinkerpop-gremlin-server-3.7.0 tinkergraph
rm -rf apache-tinkerpop-gremlin-server-3.7.0-bin.zip

Optional : install neo4j engine.
cd tinkergraph
./bin/gremlin-server.sh install org.apache.tinkerpop neo4j-gremlin 3.7.0
cd ..

php exakat.phar doctor

19.7 Installation on Debian/Ubuntu

19.7.1 Debian/Ubuntu installation with Tinkergraph 3.7.0

Paste the following commands in a terminal prompt. It installs Exakat most recent version with Tinkergraph 3.7.0.

Pre-requisite: wget, java (default-jre), php8 (mbstring, sqlite3, curl), unzip.

mkdir exakat
cd exakat
wget -O exakat.phar https://www.exakat.io/versions/index.php?file=latest
wget -O apache-tinkerpop-gremlin-server-3.7.0-bin.zip 'https://www.exakat.io/versions/
→˓externals/apache-tinkerpop-gremlin-server-3.7.0-bin.zip'
unzip apache-tinkerpop-gremlin-server-3.7.0-bin.zip
mv apache-tinkerpop-gremlin-server-3.7.0 tinkergraph
rm -rf apache-tinkerpop-gremlin-server-3.7.0-bin.zip

Optional : install neo4j engine.
cd tinkergraph
./bin/gremlin-server.sh install org.apache.tinkerpop neo4j-gremlin 3.7.0
cd ..

php exakat.phar doctor

19.8 Installation guide with Composer

19.8.1 Composer installation first run

To install Exakat with composer, you can use the following commands:

mkdir exakat
cd exakat
echo '{}' > composer.json
composer require exakat/exakat:2.6.1 --dev
php vendor/bin/exakat install -v

The final command checks for the presence of Java and unZip utility. Then, it installs a local copy of a Gremlin server.
This is needed to run Exakat.

2542 Chapter 19. Installation

http://tinkerpop.apache.org/

Exakat Documentation, Release 1

Now, refer to the tutorial to run exakat.

19.9 Installation guide with Docker

There are several ways to use exakat with Docker. There is an image with the exakat installation, which run with a
traditional installation, or inside the audited code.

image:: images/exakat-and-docker.png

19.9.1 Docker image for Exakat with projects folder

Currently, Docker installation only ships with one PHP version (8.2), and with support for git, and zip (downloads).

• Install Docker

• Start Docker

• Pull exakat/exakat:latest

The official docker page is exakat/exakat.

docker pull exakat/exakat:latest

Check-run exakat :

mkdir exakat
cd exakat
docker run -it -v $(pwd)/projects:/usr/src/exakat/projects --rm --name my-exakat exakat/
→˓exakat exakat version
docker run -it -v $(pwd)/projects:/usr/src/exakat/projects --rm --name my-exakat exakat/
→˓exakat exakat doctor

After the last command, there should be an empty ‘projects’ folder in the ‘exakat’ folder. With the Docker install, it is
possible to analyse code directly inside the code, or with the separate ‘projects’ folder.

Follow up with the Tutorials.

19.9. Installation guide with Docker 2543

http://www.docker.com/
https://hub.docker.com/r/exakat/exakat/

Exakat Documentation, Release 1

2544 Chapter 19. Installation

CHAPTER

TWENTY

UPGRADING

20.1 Upgrading

Upgrade exakat with the upgrade command.

php exakat.phar upgrade

Exakat returns the current status :

This needs some updating (Current : 0.9.7c, Latest: 2.1.9)

To make exakat update itself, runs the same command, with the -u option. Exakat will then download the file, check
the sums, and replace itself.

20.2 Upgrading manually

Exakat is a PHP phar archive. Download the latest version from www.exakat.io and replace it.

20.3 Upgrading gremlin-server

Exakat installs the last version of gremlin at installation time. Usually, there is no need to upgrade the database when
upgrading : changing the phar file is sufficient.

However, to enjoy the new features, or keep up to date, it is recommended to upgrade the gremlin server.

To upgrade gremlin-server, remove the old ‘tinkergraph’ folder from your installation. If exakat was installed following
the installation instruction, this folder is located next to exakat.phar.

Then, run again the installation instruction, only for gremlin.

2545

https://www.exakat.io/versions/

Exakat Documentation, Release 1

2546 Chapter 20. Upgrading

CHAPTER

TWENTYONE

CONFIGURATION

21.1 Common Behavior

21.1.1 General Philosophy

Exakat tries to avoid configuration as much as possible, so as to focus on working out of the box, rather than spend
time on pre-requisite.

As such, it probably does more work, but that may be dismissed later, at reading time.

More configuration options appear with the evolution of the engine.

21.1.2 Reminder of precedences

The exakat engine read directives from six places, with the following precedence :

1. The command line options

2. The .exakat.ini or .exakat.yaml file at the root of the code

3. The environment variables

4. The config.ini file in the project directory

5. The exakat.ini file in the config directory

6. The default values in the code

The precedence of the directives is the same as the list above.

Some of the directives are only available in some specific configuration locations : they may not have usefulness in
every places. See Option availability.

21.1.3 Common Options

All options are the same, whatever the command provided to exakat. -f always means files, and -q always means quick.

Any option that a command doesn’t understand is ignored.

Any option that is not recognized is ignored and reported (with visibility).

2547

Exakat Documentation, Release 1

21.2 Engine configuration

Engine configuration is were the exakat engine general configuration are stored. For example, the php binaries or the
neo4j folder are there. Engine configurations affect all projects.

21.2.1 Configuration File

The Exakat engine is configured in the ‘config/exakat.ini’ file.

This file is created with the ‘doctor’ command, or simply by copying another such file from another installation.

php exakat.phar doctor

When the doctor can’t find the ‘config/config.ini’ file, it attempts to create one, with reasonable values. It is recom-
mended to use this to create the exakat.ini skeleton, and later, modify it.

21.2.2 Available Options

Here are the currently available options in Exakat’s configuration file : config/config.ini

graphdb

The graph database to use. Currently, it may be gsneo4jv3, or tinkergraphv3.

gsneo4j_host

The host to connect to reach the graph database, when using gsneo4j driver. The default value is ‘localhost’

gsneo4j_host

The port to use on the host to reach the graph database, when using gsneo4j driver.. The default value is ‘8182’

gsneo4j_folder

The folder where the code for the graph database resides, when using gsneo4j driver. The default value is ‘tinkergraph’,
and is located near exakat.phar

tinkergraph_host

The host to connect to reach the graph database, when using tinkergraph driver. The default value is ‘localhost’

2548 Chapter 21. Configuration

Exakat Documentation, Release 1

tinkergraph_port

The port to use on the host to reach the graph database, when using tinkergraph driver. The default value is ‘8182’

tinkergraph_folder

The folder where the code for the graph database resides, when using tinkergraph driver. The default value is ‘tinker-
graph’, and is located near exakat.phar

gsneo4jv3_host

The host to connect to reach the graph database, when using gsneo4jv3 driver. The default value is ‘localhost’

gsneo4jv3_port

The host to connect to reach the graph database, when using gsneo4jv3 driver. The default value is ‘8182’

gsneo4jv3_folder

The folder where the code for the graph database resides, when using gsneo4jv3 driver. The default value is ‘tinker-
graph’, and is located near exakat.phar

tinkergraphv3_host

The host to connect to reach the graph database, when using tinkergraphv3 driver. The default value is ‘localhost’

tinkergraphv3_port

The host to connect to reach the graph database, when using tinkergraphv3 driver. The default value is ‘8182’

tinkergraphv3_folder

The folder where the code for the graph database resides, when using tinkergraphv3 driver. The default value is ‘tin-
kergraph’, and is located near exakat.phar

project_rulesets

List of rulesets to be run. The list may include extra rulesets that are not requested by the individual reports. That way,
they will be available for the generic reports.

project_rulesets[] = ‘Security’

21.2. Engine configuration 2549

Exakat Documentation, Release 1

project_reports

The list of reports that produced when running ‘project’ command, without the -format option. This list may automat-
ically add extra rulesets if a report requires them. For example, the ‘Ambassador’ report requires ‘Security’ ruleset,
while ‘Text’ has no pre-requisite.

project_reports contains ‘Diplomat’, by default.

token_limit

Maximum size of the analyzed project, in number of PHP tokens (excluding whitespace). Use this to avoid running a
really long analyze without knowing it.

Default is 1 million (1000000).

php

Link to the PHP binary. This binary is the one that runs Exakat. It is recommended to use PHP 8.0, or 8.1. The same
binary may be used with the following options.

php82

Path to the PHP 8.2.x binary. This binary is needed to test the compilation with the 8.2 series or if the analyze should
be run with this version (see project’s config.ini).

Comment it out if you don’t want this version tested. It is not recommended to use this version for the analyze

php81

Path to the PHP 8.1.x binary. This binary is needed to test the compilation with the 8.1 series or if the analyze should
be run with this version (see project’s config.ini).

Comment it out if you don’t want this version tested. It is not recommended to use this version for the analyze

php80

Path to the PHP 8.0.x binary. This binary is needed to test the compilation with the 8.0 series or if the analyze should
be run with this version (see project’s config.ini).

Comment it out if you don’t want this version tested. It is not recommended to use this version for the analyze

php74

Path to the PHP 7.4.x binary. This binary is needed to test the compilation with the 7.4 series or if the analyze should
be run with this version (see project’s config.ini).

Comment it out if you don’t want this version tested. It is not recommended to use this version for the analyze

2550 Chapter 21. Configuration

Exakat Documentation, Release 1

php73

Path to the PHP 7.3.x binary. This binary is needed to test the compilation with the 7.3 series or if the analyze should
be run with this version (see project’s config.ini).

Comment it out if you don’t want this version tested. It is not recommended to use this version for the analyze

php72

Path to the PHP 7.2.x binary. This binary is needed to test the compilation with the 7.2 series or if the analyze should
be run with this version (see project’s config.ini).

Comment it out if you don’t want this version tested. It is not recommended to use this version for the analyze

php71

Path to the PHP 7.1.x binary. This binary is needed to test the compilation with the 7.1 series or if the analyze should
be run with this version (see project’s config.ini).

Comment it out if you don’t want this version tested. It is not recommended to use this version for the analyze

php70

Path to the PHP 7.0.x binary. This binary is needed to test the compilation with the 7.0 series or if the analyze should
be run with this version (see project’s config.ini).

Comment it out if you don’t want this version tested. It is not recommended to use this version for the analyze

php56

Path to the PHP 5.6.x binary. This binary is needed to test the compilation with the 5.6 series or if the analyze should
be run with this version (see project’s config.ini).

Comment it out if you don’t want this version tested. It is not recommended to use this version for the analyze

php55

Path to the PHP 5.5.x binary. This binary is needed to test the compilation with the 5.5 series or if the analyze should
be run with this version (see project’s config.ini).

Comment it out if you don’t want this version tested. It is not recommended to use this version for the analyze

php54

Path to the PHP 5.4.x binary. This binary is needed to test the compilation with the 5.4 series or if the analyze should
be run with this version (see project’s config.ini).

Comment it out if you don’t want this version tested. It is not recommended to use this version for the analyze

21.2. Engine configuration 2551

Exakat Documentation, Release 1

php53

Path to the PHP 5.3.x binary. This binary is needed to test the compilation with the 5.3 series or if the analyze should
be run with this version (see project’s config.ini).

Comment it out if you don’t want this version tested. It is not recommended to use this version for the analyze

php52

Path to the PHP 5.2.x binary. This binary is needed to test the compilation with the 5.2 series or if the analyze should
be run with this version (see project’s config.ini).

Comment it out if you don’t want this version tested. It is not recommended to use this version for the analyze

php_extensions

List of PHP extensions to use when spotting functions, methods, constants, classes, etc.

Default to ‘all’, which are all the extensions in the exakat installation. Can be set to ‘none’ to skip any the detection.
Use this directive for pecl or external installation.

Write them as an array, to specify more than one value. php_extensions[] = “ast”; php_extensions[] = “xdebug”;
php_extensions[] = “apc”;

When an extension is not recognized, it is ignored.

php_core

List of PHP standard extensions to use when spotting functions, methods, constants, classes, etc.

Default to ‘all’, which are all the extensions in the exakat installation. That list is related to the extensions available in
PHP’s default installation.

Write them as an array, to specify more than one value. php_core[] = “mysqli”; php_core[] = “pcre”; php_core[] =
“bcmath”;

When an extension is not recognized, it is ignored.

stubs

List of components, to use when spotting functions, methods, constants, classes, etc.

Default to ‘’ (empty), which are all the none. The current list of

Write them as an array, to specify more than one value. stubs[] = “monolog/monolog”; php_core[] = “bolt”;
php_core[] = “composer/composer”;

When an extension is not recognized, it is searched on exakat.io, and eventually, ignored.

Note : php** configuration may be either a valid PHP binary path, or a valid Docker image. The path on the system
may be /usr/bin/php, /usr/sbin/php80, or /usr/local/Cellar/php71/7.1.30/bin/php. The Docker configuration must have
the form abc/def:tag. The image’s name may be any value, as long as Exakat manage to run it, and get the valid PHP
signature, with php -v. When using Docker, the docker server must be running.

2552 Chapter 21. Configuration

Exakat Documentation, Release 1

21.2.3 Custom rulesets

Create custom rulesets by creating a ‘config/rulesets.ini’ directive files.

This file is a .INI file, build with multiple sections. Each section is the name of a ruleset : for example, ‘mine’ is the
name for the ruleset below.

There may be several sections, as long as the names are distinct.

It is recommended to use all low-case names for custom rulesets. Exakat uses names with a first capital letter, which
prevents conflicts. Behavior is undefined if a custom ruleset has the same name as a default ruleset.

['mine']
analyzer[] = 'Structures/AddZero';
analyzer[] = 'Performances/ArrayMergeInLoops';

The list of analyzer in the ruleset is based on the ‘analyzer’ array. The analyzer is identified by its ‘shortname’. Analyzer
shortname may be found in the documentation (Rules or within the Ambassador report). Analyzers names have a ‘A/B’
structure.

The list of available rulesets, including the custom ones, is listed with the doctor command.

21.3 Check Install

Once the prerequisite are installed, it is advised to run to check if all is found :

php exakat.phar doctor

After this run, you may edit ‘config/config.ini’ to change some of the default values. Most of the time, the default
values will be OK for a quick start.

21.3. Check Install 2553

Exakat Documentation, Release 1

2554 Chapter 21. Configuration

CHAPTER

TWENTYTWO

COMMANDS

22.1 List of commands :

• anonymize

• baseline

• catalog

• clean

• cleandb

• cobble

• doctor

• help

• init

• project

• report

• remove

• show

• update

• upgrade

• install

22.2 anonymize

Read files, directory or projects, and produce a anonymized version of the code. Consistence between variables and
names is preserved ($a is always replaced with the same name). PHP language structures, such as eval, isset or unset
are preserved, though other native functions are not.

File structure is not preserved : all files are renamed, and the hiearchy is flattented in one folder. As such, code is
probably un-runnable if it relies on inclusions.

Non-PHP files, non-lintable or files that produces one PHP token are ignored.

2555

Exakat Documentation, Release 1

22.2.1 Command

exakat anonymize -p <project>
exakat anonymize -d <directory>
exakat anonymize -file <filename>

22.2.2 Options

Op-
tion

Req Description

-p No Project name. Should be filesystem compatible (avoid /, : or) This takes into account <project>
configuration

-d No Directory to anonymize. Results aree in <directory>.anon
-file No File to anonymize. Results are in <file>.anon
-v No Verbose mode

22.2.3 Tips

• -R is not compulsory : you may omit it, then, provide PHP files in the projects/<name>/code folder by the mean
you want.

22.3 baseline

Baseline manage previous audits that may be used as a baseline for new audits.

A Baseline is a previous audit, that has already reviewed the code. It has identified issues and code. Later, after some
code modification, a new audit is run. When we want to know the new issues, or the removed ones, it has to be compared
to a baseline.

This is a help command, to help find the available values for various options.

22.3.1 Commands

Command Description
list List all available baselines. Default action
remove Removes a baseline, using its name or its auto-id
save Save the current audit, when it exists, as the last base, with the provided name.

2556 Chapter 22. Commands

Exakat Documentation, Release 1

22.4 catalog

Catalog list available rules, rulesets, and reports with the current exakat.

This is a help command, to help find the available values for various options.

22.4.1 Options

Option Req Description
-json No Returns the catalog as JSON, for further processing.
-yaml No Returns the catalog as YAML, for further processing.

22.5 clean

Cleans the provided project of everything except the config.ini and the code.

This is a maintenance command, that removes all produced files and folder, and restores a project to its initial state.

22.5.1 Options

Option Req Description
-p Yes Project name. Should be an existing project.
-v No Verbose mode

22.6 cleandb

Cleans the graph database.

This is a maintenance command, that removes all produced data and scripts, and restores the exakat database to its
empty state.

By default, the database is cleaned with graph commands, letting the server do the cleaning.

The -Q option makes the same cleaning with a full restart of the server. This is cleaner, and faster if the database was
big or in some instable state.

22.6.1 Options

Option Req Description
-Q No Cleans the database by restarting it, and removing files.
-stop No Stops gremlin server
-start No Starts gremlin server, without removing files.
-restart No Restarts gremlin server, without removing files.
-v No Verbose mode

22.4. catalog 2557

Exakat Documentation, Release 1

22.7 cobble

Runs a cobbler on the source code. A cobbler is a set of modifications, to fix or improve the source code.

22.7.1 Options

Option Req Description
-P Yes The name of the cobbler to run.
-branch Yes The name of the branch where the modified code will be written.

22.8 doctor

Check the current installation of Exakat.

22.8.1 Command

exakat doctor

22.8.2 Results

PHP :
version : 7.0.1
curl : Yes
sqlite3 : Yes
tokenizer : Yes

java :
installed : Yes
type : Java(TM) SE Runtime Environment (build 1.8.0_40-b25)
version : 1.8.0_40
$JAVA_HOME : /Library/Java/JavaVirtualMachines/jdk1.8.0_40.jdk/Contents/

→˓Home

neo4j :
version : Neo4j 2.2.6
port : 7474
authentication : Not enabled (Please, enable it)
gremlinPlugin : Configured.
gremlinJar : neo4j/plugins/gremlin-plugin/gremlin-java-2.7.0-SNAPSHOT.jar
scriptFolder : Yes
pid : 20895
running : Yes
running here : Yes
gremlin : Yes
$NEO4J_HOME : /Users/famille/Desktop/analyze/neo4j

(continues on next page)

2558 Chapter 22. Commands

Exakat Documentation, Release 1

(continued from previous page)

folders :
config-folder : Yes
config.ini : Yes
projects folder : Yes
progress : Yes
in : Yes
out : Yes
projects/test : Yes
projects/default : Yes
projects/onepage : Yes

PHP 5.2 :
configured : No

PHP 5.3 :
configured : Yes
installed : Yes
version : 5.3.29
short_open_tags : Off
timezone : Europe/Amsterdam
tokenizer : Yes
memory_limit : -1

PHP 5.4 :
configured : Yes
installed : Yes
version : 5.4.45
short_open_tags : Off
timezone : Europe/Amsterdam
tokenizer : Yes
memory_limit : 384M

PHP 5.5 :
configured : Yes
installed : Yes
version : 5.5.30
short_open_tags : Off
timezone : Europe/Amsterdam
tokenizer : Yes
memory_limit : -1

PHP 5.6 :
configured : /usr/local/sbin/php56
installed : Yes
version : 5.6.16
short_open_tags : Off
timezone : Europe/Amsterdam
tokenizer : Yes
memory_limit : -1

PHP 7.0 :

(continues on next page)

22.8. doctor 2559

Exakat Documentation, Release 1

(continued from previous page)

configured : Yes
version : 7.0.1
short_open_tags : Off
timezone :
tokenizer : Yes
memory_limit : -1

PHP 7.1 :
configured : Yes
version : 7.1.0-dev
short_open_tags : Off
timezone :
tokenizer : Yes
memory_limit : 128M

git :
installed : Yes
version : 2.7.0

hg :
installed : Yes
version : 3.6.3

svn :
installed : Yes
version : 1.9.3

bzr :
installed : No
optional : Yes

composer :
installed : Yes
version : 1.0.0-alpha11

wget :
installed : Yes
version : GNU Wget 1.17.1 built on darwin15.2.0.

zip :
installed : Yes
version : 3.0

Tips

• The PHP section is the PHP binary used to run Exakat.

• The PHP x.y sections are the PHP binaries used to check the code.

• Optional installations (such as svn, zip, etc.) are not necessarily reported if they are not installed.

2560 Chapter 22. Commands

Exakat Documentation, Release 1

22.8.3 Options

Op-
tion

Req Description

-p No Displays the project-specific configuration. Otherwise, only displays general configuration.
-json No Displays the project-specific configuration in json format, to stdout
-v No Verbose mode : include helpers configurations
-q No Quiet mode : runs doctor, and install checks, but displays nothing. This is useful to automate instal-

lation finalization

22.9 help

Displays the help section.

php exakat.phar help

22.9.1 Results

This displays :

[Usage] : php exakat.phar init -p <Project name> -R <Repository>
php exakat.phar project -p <Project name>
php exakat.phar doctor
php exakat.phar version

22.10 init

Initialize a new project.

22.10.1 Command

exakat init -p <project> [-R vcs_url] [-git|-svn|-bzr|-hg|-composer|-symlink|-copy|-tgz|-
→˓7z|-zip] [-v] [-D]

22.9. help 2561

Exakat Documentation, Release 1

22.10.2 Options

Option Req Description
-p Yes Project name. Should be filesystem compatible (avoid /, : or)
-R No URL to the VCS repository. Anything compatible with the expected VCS.
-git No Use git client (also, default value if no clue is given in the VCS URL)
-svn No Use SVN client
-bzr No Use Bazar client
-hg No Use Mercurial (hg) client
-composer No Use Composer client
-symlink No -R path is symlinked. Directory is never accessed for writing.
-copy No -R path is recursively copied.
-zip No -R is a ZIP archive, local or remote
-tgz No -R is a .tar.gzip archive, local or remote
-tbz No -R is a .tar.bz2 archive, local or remote
-rar No -R is a .rar archive, local or remote
-7z No -R is a .7z archive, local or remote
-v No Verbose mode
-D No First erase any pre-existing project with the same name

22.10.3 Tips

• -R is not compulsory : you may omit it, then, provide PHP files in the projects/<name>/code folder by the mean
you want.

• Default VCS used is git.

• -D removes any previous project before doing the init.

• Archives (zip, tar.gz, tar.bz, 7z, rar, etc.) depends on external tools to unpack them. They depends on PHP to
reach the file, locally or remotely.

22.10.4 Examples

Clone Exakat with Git
php exakat.phar init -p exakat -R https://github.com/exakat/exakat.git

Download Spip with Zip
php exakat init -p spip2 -zip -R http://files.spip.org/spip/stable/spip-3.1.zip

Download PHPMyadmin,
php exakat.phar init -p pma2 -tgz -R https://files.phpmyadmin.net/phpMyAdmin/4.6.4/
→˓phpMyAdmin-4.6.4-all-languages.tar.gz

Make a local copy of PHPMyadmin,
php exakat.phar init -p copyProject -copy -R projects/phpmyadmin/code/

Make a local symlink with the local webserver,
php exakat.phar init -p symlinkProject -symlink -R /var/www/public_html

2562 Chapter 22. Commands

Exakat Documentation, Release 1

22.11 project

Runs a new analyze on a project.

The results of the analysis are available in the projects/<name>/ folder. report and faceted are two HTML reports.

22.11.1 Command

exakat project -p <project> [-v]

22.11.2 Options

Option Req Description
-p Yes Project name. Should be filesystem compatible (avoid /, : or)
-v No Verbose mode

22.12 remove

Destroy a project. All code source, configuration and any results from exakat are destroyed.

22.12.1 Command

exakat remove -p <project> [-v]

22.12.2 Options

Option Req Description
-p Yes Project name. Should be filesystem compatible (avoid /, : or)
-v No Verbose mode

22.13 show

Displays the the full command line to create an exakat project.

22.11. project 2563

Exakat Documentation, Release 1

22.13.1 Command

exakat show -p <project>

22.13.2 Options

Option Req Description
-p Yes Project name. Should be filesystem compatible (avoid /, : or)

22.14 report

Produce a report for a project.

Reports may be produced as soon as exakat has reach the phase of ‘analysis’. If the analysis phase hasn’t finished, then
some results may be unavailable. Run report again later to get the full report. For example, the ‘Uml’ report may be
run fully as soon as exakat is in analysis phase.

It is possible to extract a report even after the graph database has been cleaned. This allows running several projects
one after each other, yet have access to several reports.

22.14.1 Command

exakat report -p <project> -format <Format> [-file <file>] [-v]

22.14.2 Options

Op-
tion

Req Description

-p Yes Project name. Should be filesystem compatible (avoid /, : or)
-v No Verbose mode
-
format

No Which format to extract. Available formats : Devoops, Faceted, FacetedJson, Json, OnepageJson, Text,
Uml, Xml Default is ‘Text’

-
file

No File or directory name for the report. Adapted file extension is added. Report is located in the
projects/<project>/ folder Default is ‘stdout’, but varies with format.

-T No Ruleset’s results. All the analyses in this ruleset are reported. Note that the report format may override
this configuration : for example Ambassador manage its own list of analyses. Uses this with Text
format. Has priority over the -P option

-P No Analyzer’s results. Only one analysis’s is reported. Note that the report format may override this
configuration : for example Ambassador manage its own list of analyses. Uses this with Text format.
Has lower priority than the -T option

2564 Chapter 22. Commands

Exakat Documentation, Release 1

22.14.3 Report formats

All reports are detailed in the ref:Reports <reports> section.

Report Description
Amabassador HTML format, with all available reports in one compact format.
Devoops HTML format, deprecated.
Json JSON format.
Text Text format. One issue per line, with description, file, line.
Codesniffer Text format, similar to Codesniffer report style.
Uml Dot format. All classes/interfaces/traits hierarchies, and grouped by name- spaces.
Xml XML format.
All All availble format, using default naming

22.15 update

Update the code base of a project.

22.15.1 Command

exakat update -p <project> [-v]

22.15.2 Options

Option Req Description
-p Yes Project name. Should be filesystem compatible (avoid /, : or)
-v No Verbose mode

22.16 upgrade

Upgrade exakat itself. By default, this command only checks for the availability of a new version : it doesn’t upgrade
immediately.

Use -u option to actually replace the current phar archive.

Use -version option to downgrade or upgrade to a specific version.

In case the upgrade command file, you may also download manually the .phar from the exakat.io website :
www.exakat.io. Then replace the current version with the new one.

22.15. update 2565

https://www.exakat.io/versions/

Exakat Documentation, Release 1

22.16.1 Command

exakat upgrade

22.16.2 Options

Op-
tion

Req Description

-u Yes Actually upgrades exakat. Without it, it is a dry run.
-
version

No Select a specific Exakat version and update to it. By default, it upgrades to the latest version, as
published on the https://www.exakat.io/ site. Example value : 1.8.8

22.17 Install

Install exakat’s graph dependency. This command is an integrated installation script, and it is only accessible once the
.phar is downloaded locally.

22.17.1 Command

mkdir exakat
cd exakat

// Download exakat.phar, like this, or any other valid means
curl -o exakat.phar https://www.exakat.io/versions/index.php?file=latest
exakat.phar upgrade

22.17.2 Options

Op-
tion

Req Description

-u Yes Actually upgrades exakat. Without it, it is a dry run.
-
version

No Select a specific Exakat version and update to it. By default, it upgrades to the latest version, as
published on the https://www.exakat.io/ site. Example value : 1.8.8

2566 Chapter 22. Commands

https://www.exakat.io/
https://www.exakat.io/

CHAPTER

TWENTYTHREE

FREQUENTLY ASKED QUESTIONS

23.1 Summary

• I need special command to get my code

• Can I checkout that branch?

• Can I clone with my ssh keys?

• After init, my project has no code!

• The project is too big

• The report XXX is not available

• Java Out Of Memory Error

• How can I run a very large project?

• Does exakat runs on Java 8?

• Where can I find the report

• Exakat only produces the default report

• Can I run exakat on local code?

• Can I run exakat on local code, without git or VCS?

• Can I ignore a dir or a file?

• Can I audit only one folder in vendor?

• Can I run Exakat with PHP 5?

• I get the error ‘The executable ‘ansible-playbook’ Vagrant is trying to run was not found’

• Can I run exakat on Windows?

• Does exakat send my code to a central server?

• “cat: write error: Broken pipe” : is it bad?

• Require a [gremlin]Argument

2567

Exakat Documentation, Release 1

23.2 I need special command to get my code

If Exakat has no documented method to reach your code, you may use this process :

php exakat.phar init -p <your project name>
cd ./projects/<your project name>
mkdir code
// here, do whatever it takes to put all your code in 'code' folder
cd -
php exakat.phar project -p <your project name>

Send a message on Github.com/exakat/exakat to mention your specific method.

23.3 Can I checkout that branch?

Currently (Version 0.12.2), there is no way to request a tag or a branche or a revision when cloning the code.

The best way is to reach the ‘code’ folder, and make the change there. Unless with ‘init’ or ‘update’, exakat doesn’t
make any change to the code.

php exakat.phar init -p myProject -R url://my/git/repository
cd ./projects/myProject/code
git branch notMasterBranch
cd -
php exakat.phar project -p myProject

23.4 Can I clone with my ssh keys?

When using git, or any vcs, the current shell user’s SSH keys may be used to access the repository. When using a
remote installation, or a docker image, the keys won’t be accessible.

The fallback solution is to init an empty project, clone the code from the Shell (with the keys), and then run project.

php exakat.phar init -p myProject
cd ./projects/myProject
git clone url://myprivate/git/repository code
cd -
php exakat.phar project -p myProject

23.5 After init, my project has no code!

Check in the projects/<name>/config.ini file : if values were provided, you’ll find them there.

In case the code was not found during init, then do the following :

cd projects/<name>/
git clone ssh://project/URL code
cd -
php exakat.phar files -p <name>

2568 Chapter 23. Frequently Asked Questions

Exakat Documentation, Release 1

If you’re using some other method than git, then just collect the code in a ‘code’ folder in the <name> project and run
the ‘files’ command.

The ‘init’ command doesn’t overwrite an existing project : if the code folder is missing, you should add it manually, or
remove the project with remove command, and use init again.

23.6 The project is too big

There is a soft limit in config/exakat.ini, called ‘token_limit’ that initially prevents analysis of projects over 1 million
tokens. That’s roughly 125k LOC, more than most code source.

If you need to run exakat on larger sources, you may change this value to make it as large as possible. Then, the physical
capacities of the machine, specially RAM, will be the actual limit.

It may be interesting to ‘ignore_dir[]’, from projects/<name>/config.ini.

23.7 The report XXX is not available

Some reports are available in the community edition, and others are in the cloud/enterprise editions.

The list of available reports are accessible via the command ‘catalog’, along with the Rules and Rulesets.

php exakat catalog

23.8 Java Out Of Memory Error

By default, java is allowed to run with 512mb of RAM. That may be too little for the code being studied.

Set the environment variable $JAVA_OPTIONS to give larger quantities of RAM. For example : ‘export
JAVA_OPTIONS=’-Xms1024m -Xmx6096m’; or ‘setenv JAVA_OPTIONS=’-Xms1024m -Xmx6096m’

Xms is the memory allocation at start, and Xmx is the maximum allocation. With some experimentation, 6G handles
the largest

23.9 How can I run a very large project?

Here are a few steps you can try when running exakat on a very large project.

• Update project/<name>/config.ini, and use ignore_dirs[] and include_dirs[] to exclude as much code as possible.
Notably, frameworks, data in PHP files, tests, cache, translations, etc.

• Set environment variable $JAVA_OPTIONS to large quantities of RAM : JAVA_OPTIONS=’-Xms1024m -
Xmx6096m’;

• Check that your installation is running with ‘gsneo4j’ and not ‘tinkergraph’, in config/exakat.ini.

23.6. The project is too big 2569

Exakat Documentation, Release 1

23.10 Does exakat runs on Java 8?

Exakat itself runs with PHP 7.0+. Exakat runs with a gremlin database : gremlin-server 3.2.x is supported, which runs
on Java 8.

Java 9 is experimental, and is being tested. Java 7 used to be working, but is not supported anymore : it may still work,
though.

23.11 Where can I find the report

Reports are available after running at least the following commands :

php exakat.phar init -p <your project name> -R <code source repo>
php exakat.phar project -p <your project name>

The default report is the HTML report, called Ambassador. You’ll find it in ./projects/<your project name>/report.

Other reports, build with ‘report’ command, will also be saved there, with different names.

23.12 Exakat only produces the default report

After a default installation, Exakat builds the Ambassador report. If you want another report, for example Migration80,
you have to request it.

php exakat.phar report -p <your project name> --format Migration80 -v

You may also access other reports, such as Text, which are always available after an audit.

The ‘report’ command aborts the report build when insufficient rules have been run. At that point, you must configure
the report or the rules, in the projects or the server, and run the audit again.

23.13 Can I run exakat on local code?

There are several ways to do that : use symbolic links, make a copy of the source.

php exakat.phar init -p <your project name> -R <path/to/the/code> -symlink
php exakat.phar init -p <your project name> -R <path/to/the/code> -copy
php exakat.phar init -p <your project name> -R <path/to/the/code> -git

Symlink will branch exakat directly into the code; -copy makes a copy of the code (this means the code will never be
updated without manual intervention); git (or other vcs) may also be used with local repositories.

Exakat do not modify any existing source code : it only access it for reading purpose, then works on a separated
database. As a defensive security measure, we suggest that exakat should work on a read-only copy of the code.

2570 Chapter 23. Frequently Asked Questions

https://exakat.readthedocs.io/en/latest/Reports.html#ambassador
https://exakat.readthedocs.io/en/latest/Reports.html#ambassador
https://exakat.readthedocs.io/en/latest/Reports.html#migration80
https://exakat.readthedocs.io/en/latest/Reports.html#text

Exakat Documentation, Release 1

23.14 Can I run exakat on local code, without git or VCS?

There are several ways to do that : use symbolic links, make a copy of the source.

php exakat.phar init -p <your project name> -R <path/to/the/code> -symlink
php exakat.phar init -p <your project name> -R <path/to/the/code> -copy

Symlink will branch exakat directly into the code; -copy makes a copy of the code (this means the code will never be
updated without manual intervention); git (or other vcs) may also be used with local repositories.

Exakat do not modify any existing source code : it only access it for reading purpose, then works on a separated
database. As a defensive security measure, we suggest that exakat should work on a read-only copy of the code.

23.15 Can I ignore a dir or a file?

Yes. After initing a project, open the projects/<project name>/config.ini file, and update the ignore_dir line. For
example, to ignore a behat test folder, and to ignore any file called ‘license’ :

ignore_dirs[] = '/behat/';
ignore_dirs[] = 'license';

You may also include files, by using the include_dir[] line. Including files is processed after ignoring them, so you may
include files in folders that were previously ignored.

23.16 Can I audit only one folder in vendor?

You can use ignore_dirs to exclude everything in the source tree, then use include_dirs to include specific folders.

exclude everything
ignore_dirs[] = '/';

include intended folder
include_dirs[] = '/vendor/exakat';

23.17 Can I run Exakat with PHP 5?

It is recommended to run exakat with PHP 7.4 or even 8.0. PHP 7.3 is still possible, though not supported. PHP 7.2
and below won’t work (we checked).

Note that you may test your code on PHP 5.x, while running Exakat on PHP 7.4. There are 2 distinct configuration
options in Exakat. ‘php’ is the path to the PHP binary that runs Exakat : this one should be PHP 7.0+. ‘phpxx’ are
the path to the PHP helpers, that are used to tokenized and lint the target PHP code. This is where PHP 5.x may be
configured.

; where and which PHP executable are available
php = /usr/local/sbin/php74

php52 =
php53 = /usr/local/sbin/php53

(continues on next page)

23.14. Can I run exakat on local code, without git or VCS? 2571

Exakat Documentation, Release 1

(continued from previous page)

php54 =
php55 =
php56 =
php70 =
php71 =
php72 =
php73 =
php74 =
php80 =
php81 =

Above is an example of a exakat configuration file, where Exakat is run with PHP 7.1 and process code with PHP 5.3.

23.18 I get the error ‘The executable ‘ansible-playbook’ Vagrant is try-
ing to run was not found’

This error is displayed when the host machine doesn’t have Ansible installed. Install ansible, and try again to provision.

23.19 Can I run exakat on Windows?

Currently, Windows is not supported, though it might be some day.

Until then, you may run Exakat with Vagrant, or with Docker.

23.20 Does exakat send my code to a central server?

When run from the sources, Exakat has everything it needs to fulfill its mission. There is no central server that does
the job, and requires the transmission of the code.

When running an audit on the Saas service of Exakat, the code is processed on our servers.

23.21 “cat: write error: Broken pipe” : is it bad?

Exakat currently runs some piped commands, with xargs so as to make some operations parallel. When the following
command ends up before the reading all the data from the first command, such a warning is emitted.

It has no impact on exakat’s processing of the code.

See also cat: write error: Broken pipe.

2572 Chapter 23. Frequently Asked Questions

https://askubuntu.com/questions/421663/cat-write-error-broken-pipe

Exakat Documentation, Release 1

23.22 Require a [gremlin]Argument

Running an audit (project command) leads to an error message such as this one :

2/2 [==>] 100.00%␣
→˓00:00:00

Error : The request message was parseable, but the arguments supplied in the message␣
→˓were in conflict or incomplete. Check the message format and retry the request. : A␣
→˓message with an [eval] op code requires a [gremlin] argument.

=================== SERVER TRACE =========================
array (
)
==

on file phar:///exakat-2.1.9/exakat.phar/vendor/brightzone/gremlin-php/src/Connection.
→˓php on line 847

This happens when exakat couldn’t stop the gremlin database. You should take it down manually, then restart the audit.
No version update necessary.

Get the process ID with the following command, and then, kill it.

ps aux | grep gsneo4jv3.3.4
ps aux | grep gremlin

23.22. Require a [gremlin]Argument 2573

Exakat Documentation, Release 1

2574 Chapter 23. Frequently Asked Questions

CHAPTER

TWENTYFOUR

GLOSSARY

Here is a list of words, commonly used when using Exakat, with their definitions and their synonyms.

• A

Analysis
An Analysis is a pattern that may be detected in the code. The analysis has a human-redable description,
and a specific implementation.

AST
The Abstract Syntax Tree : a representation of the PHP code as a graph. The AST is the first consisten
organisation of the PHP tokens, after tokenization.

Audit
An Audit is the result of a set of Rules being run on a piece of code. The shape of the audit is the
Report.

• B

Bug
A bug is a software malfunction, which leads to undesirable output, including the halt of the execution
without results.

• C

CIT
Acronym for Class-Interface-Trait. Sometimes, this includes also Enum, as CITE. All those structures
share the same namespace.

CITE
Acronym for Class-Interface-Trait-Enum. Sometimes, this excludes also Enum, as CIT.

Cobbler
The Exakat command to modify a piece of code.

CPM
Acronym for Constant-Property-Method.

• D

Directive
A configuration option.

Dump
The phase of execution, which prepare the results from the graph database to the data storage for
reports.

• I

2575

Exakat Documentation, Release 1

Initialisation
Set up of a data space by giving it a preset value.

Inventory
The collections of all the different values of a specific type of data, observed or measured. For example,
variable names, functioncall frequency, or methods’s length.

Issue
The result of an analysis, when an analysis is applied to a code.

• L

Load
The phase of execution, which loads the source code into the central database.

Lint
The PHP execution phase, where the text file is read, and turned into tokens and checked for consis-
tency.

• N

Nullsafe
A nullsafe operator is able to carry a function or fail graciously. In particular, it won’t stop the execution
with a fatal error. For example, the null-safe operator ?-> or coalesce ??

• R

Report
A set of issues, gathered into a consistent format, after running the analysis on the code. A report may
include multiple rulesets, and use various format, such as HTML, JSON or Text.

Rule
A synonym for Analysis. This may be more descriptive, and less related to implementation.

Ruleset
A consistent group of analysis, recognizable with a specific name.

• S

Stubs
Stubs are a set of PHP files which provide the methods, classes and interfaces signature for a library
or component. The actual code is not provided, as the important information lies in the signature.

• T

Token
The atomic element of information in a PHP script. The PHP code is broken down into tokens, such
as 123 or ‘if’ and then organized in a consisten AST before execution.

2576 Chapter 24. Glossary

CHAPTER

TWENTYFIVE

ANNEX

• Credits

• Contribute

• External links

25.1 Credits

The following people helped in the making of Exakat : installing, coding, suggesting, using, documenting, reporting
bugs, pushing us to be better.

• (Buck / Leon)

• (Jent / Jean)

• Gérard Ernaelsten

• Philippe Gamache

• Cyrille Granval

• Eshin Kunishima

• Alexis Van Glasow

25.2 Contribute

Exakat is an Open Source project. It is also organized to collect common knowledge and encode it in its databases.

Here are some suggestions of help you may provide to enhance your own usage of Exakat :

• Suggest PHP extensions that are missing in the list of supported extensions (see Annex)

• Suggest new analysis, with examples of target code, and examples of good code

• Suggest missing external services

• Suggest reference article for the documentation, in the section ‘See also’

• Suggestion application that may be added to the corpus of codes that we use to validate the analysis

• Provide new names and adjectives for the audit names. We like to include any first name of community members,
and non-derogatory adjectives.

• Report installation or usage problems

• Report ambiguity in reports and their documentation

2577

Exakat Documentation, Release 1

• Suggest interesting Coding reference, like Object Calisthenics, PSR, East-Oriented Programming, etc.

• Translate the documentation into other languages

• Suport Exakat on Windows or other OS

• Recommend article for code conception to be added in the docs

• Suggest public code source for review

Visit us on the [github repository](https://github.com/exakat/php-static-analysis-tools), or the [slack channel](https:
//www.exakat.io/slack-invitation/).

25.3 External links

List of external links mentioned in this documentation.

• [HttpFoundation] Make sessions secure and lazy #24523

• Ambassador

• Aronduby Dump

• Atif Shahab Qureshi

• Benoit Burnichon

• Bohuslav Šimek

• Brandon Savage

• Carbon

• Carnage

• cat: write error: Broken pipe

• Data structures

• DCDFLIB

• Deprecate and remove INTL_IDNA_VARIANT_2003

• Docker

• Docker image

• download

• Enchant spelling library

• Exakat

• Exakat Cloud

• Exakat SAS

• exakat/exakat

• ext/hash extension

• FAM

• Frederic Bouchery

• George Peter Banyard

• Github.com/exakat/exakat

2578 Chapter 25. Annex

https://github.com/exakat/php-static-analysis-tools
https://www.exakat.io/slack-invitation/
https://www.exakat.io/slack-invitation/
https://github.com/symfony/symfony/pull/24523
https://exakat.readthedocs.io/en/latest/Reports.html#ambassador
https://github.com/aronduby/dump
https://twitter.com/Atif__Shahab
https://twitter.com/BenoitBurnichon
https://twitter.com/BohuslavSimek
https://twitter.com/BrandonSavage
https://carbon.nesbot.com/docs/
https://twitter.com/giveupalready
https://askubuntu.com/questions/421663/cat-write-error-broken-pipe
http://docs.php.net/manual/en/book.ds.php
https://people.sc.fsu.edu/~jburkardt/c_src/cdflib/cdflib.html
https://wiki.php.net/rfc/deprecate-and-remove-intl_idna_variant_2003
http://www.docker.com/
https://hub.docker.com/r/exakat/exakat/
https://www.exakat.io/download-exakat/
https://www.php.net/manual/en/book.enchant.php
http://www.exakat.io/
https://www.exakat.io/exakat-cloud/
https://www.exakat.io/get-php-expertise/
https://hub.docker.com/r/exakat/exakat/
http://www.php.net/manual/en/book.hash.php
http://oss.sgi.com/projects/fam/
https://twitter.com/FredBouchery/
https://twitter.com/Girgias
https://github.com/exakat/exakat

Exakat Documentation, Release 1

• global namespace

• graphviz

• Gremlin server

• Holger Woltersdorf

• https://www.exakat.io/versions

• https://www.exakat.io/versions/index.php?file=latest

• ICU

• IERS

• Installing Exakat to monitor several projects []=>

• Internal Constructor Behavior

• Isset Ternary

• Jordi Boggiano

• Judy C library

• libeio

• libmongoc

• Marco Pivetta tweet

• Migration80

• MongoDB driver

• mysqli

• Optimize array_unique()

• original idea

• PHP

• PHP Tags

• plantuml

• PMB

• Povilas Korop

• Prepare for PHP migration with Exakat []=>

• PSR-3

• RabbitMQ AMQP client library

• Refactoring code

• RFC 7159

• RFC 7230

• RFC 822 (MIME)

• RFC 959

• Specification pattern

• Text

25.3. External links 2579

https://www.php.net/manual/en/language.namespaces.global.php
http://www.graphviz.org/
http://tinkerpop.apache.org/
https://twitter.com/hollodotme
https://www.exakat.io/versions
https://www.exakat.io/versions/index.php?file=latest
http://site.icu-project.org/
https://www.iers.org/IERS/EN/Home/home_node.html
https://www.exakat.io/installing-exakat-to-monitor-several-projects/
https://wiki.php.net/rfc/internal_constructor_behaviour
https://wiki.php.net/rfc/isset_ternary
https://twitter.com/seldaek
http://judy.sourceforge.net/
http://software.schmorp.de/pkg/libeio.html
https://github.com/mongodb/mongo-c-driver
https://twitter.com/Ocramius/status/811504929357660160
https://exakat.readthedocs.io/en/latest/Reports.html#migration80
https://www.php.net/mongo
https://www.php.net/manual/en/book.mysqli.php
https://github.com/php/php-src/commit/6c2c7a023da4223e41fea0225c51a417fc8eb10d
https://twitter.com/b_viguier/status/940173951908700161
https://www.php.net/
https://www.php.net/manual/en/language.basic-syntax.phptags.php
http://plantuml.com/
https://www.sigb.net/
https://twitter.com/PovilasKorop
https://www.exakat.io/prepare-for-php-migration-with-exakat/
https://www.php-fig.org/psr/psr-3
https://github.com/alanxz/rabbitmq-c
https://www.jetbrains.com/help/phpstorm/refactoring-source-code.html
http://www.faqs.org/rfcs/rfc7159
https://tools.ietf.org/html/rfc7230
http://www.faqs.org/rfcs/rfc822.html
http://www.faqs.org/rfcs/rfc959
https://en.wikipedia.org/wiki/Specification_pattern
https://exakat.readthedocs.io/en/latest/Reports.html#text

Exakat Documentation, Release 1

• Tutorial 1: Let’s learn by example

• V8 Javascript Engine

• Vagrant file

• Vladimir Reznichenko

• www.exakat.io

• YAML Ain’t Markup Language

25.4 Training Database

A number of applications are regularly scanned in order to find real life examples of patterns. They are listed here :

• ChurchCRM

• Cleverstyle

• Contao

• Dolibarr

• Dolphin

• Edusoho

• ExpressionEngine

• FuelCMS

• HuMo-Gen

• LiveZilla

• Magento

• Mautic

• MediaWiki

• NextCloud

• OpenConf

• OpenEMR

• Phinx

• PhpIPAM

• Phpdocumentor

• Piwigo

• PrestaShop

• SPIP

• SugarCrm

• SuiteCrm

• TeamPass

• Thelia

2580 Chapter 25. Annex

https://docs.phalconphp.com/en/latest/reference/tutorial.html
https://bugs.chromium.org/p/v8/issues/list
https://github.com/exakat/exakat-vagrant
https://twitter.com/kalessil
https://www.exakat.io/versions/
http://www.yaml.org/
http://churchcrm.io/
https://cleverstyle.org/en
https://contao.org/en/
https://www.dolibarr.org/
https://www.boonex.com/
https://www.edusoho.com/en
https://expressionengine.com/
https://www.getfuelcms.com/
http://humogen.com/
https://www.livezilla.net/home/en/
https://magento.com/
https://www.mautic.org/
https://www.mediawiki.org/
https://nextcloud.com/
https://www.openconf.com/
https://www.open-emr.org/
https://phinx.org/
https://phpipam.net/download/
https://www.phpdoc.org/
https://www.piwigo.org/
https://prestashop.com/
https://www.spip.net/
https://www.sugarcrm.com/
https://suitecrm.com/
https://teampass.net/
https://thelia.net/

Exakat Documentation, Release 1

• ThinkPHP

• Tikiwiki

• Tine20

• Traq

• Typo3

• Vanilla

• Woocommerce

• WordPress

• XOOPS

• Zencart

• Zend-Config

• Zurmo

• opencfp

• phpMyAdmin

• phpadsnew

• shopware

• xataface

25.4. Training Database 2581

http://www.thinkphp.cn/
https://tiki.org/
https://www.tine20.com/
https://traq.io/
https://typo3.org/
https://open.vanillaforums.com/
https://woocommerce.com/
https://www.wordpress.org/
https://xoops.org/
https://www.zen-cart.com/
https://docs.zendframework.com/zend-config/
http://zurmo.org/
https://github.com/opencfp/opencfp
https://www.phpmyadmin.net/
http://freshmeat.sourceforge.net/projects/phpadsnew
https://www.shopware.com/
http://xataface.com/

	Introduction
	What is Exakat ?
	Use Cases
	Code quality
	PHP version migration
	Framework code quality
	PHP configurations
	Security, performances, testability
	Feature inventories

	Exakat compared to others
	Code sniffer
	Phan, PHPstan, PHP
	PHP7mar, PHP7cc
	PHP-ci, Jenkins, Grumphp

	Platforms
	Architecture

	Release Note
	Standard installation
	Standard install, with projects folder
	Installation
	Initialization
	Execution
	More reports
	New run

	Bare metal install, within the code
	Installation
	Initialization
	Execution
	More reports
	New run

	Docker installation
	Docker container, with projects folder
	Initialization
	Execution
	More reports
	New run

	Docker container, within the code folder
	Installation
	Initialization
	Execution
	More reports
	New run

	Tutorials
	First audit with Exakat
	Init a project
	Run exakat

	First audit with Exakat (Docker)
	Init a project
	Run exakat

	First audit within the code (Local)
	Init the project

	::
	Run exakat

	First audit within the code (Docker)
	Init the project

	::
	Run exakat

	Overview
	Summary
	1650 analyzers
	Compatible with PHP 5.2 to 8.2
	Migration guidew from 5.2 to 8.2
	Modernize your code
	Detect code smells or bugs that impact the code
	appinfo(): the list of PHP features
	List of significant PHP directives
	Framework and application support
	Hierarchy Diagrams
	Code visualizations

	PHP Version
	Compatible with PHP 5.2 to 8.0-dev

	Library & Framework Support
	Summary
	External Library Support
	External Services Support
	Supported PHP Extensions

	Configuration
	Summary
	Common Behavior
	General Philosophy
	Precedence
	Common Options
	Option placements
	Option availability

	Project Configuration
	Available Options
	phpversion
	include_dirs
	ignore_dirs
	file_extensions
	project_name
	project_url
	project_vcs
	project_description
	project_packagist

	In-code Configuration
	Exakat in-code YAML example
	Exakat in-code INI example
	Exakat in-code skeleton
	Exakat in project’s config.ini file
	Available Options
	include_dirs
	ignore_dirs
	ignore_rules
	include_rules
	file_extensions
	project_name
	project_url
	project_vcs
	project_description
	project_description
	project_packagist
	project_rulesets
	project_reports
	rulesets

	Rule-level Configuration
	namespaces
	ignore_dirs
	include_dirs
	file_extensions
	Configuration in .yaml file

	Commandline Configuration
	Specific analysis configurations
	Check Install

	Scoping analysis
	Summary
	Scoping files
	Scoping rules
	Scoping reports
	Required rulesets
	Report-needed rulesets
	Late reports
	Recommendations
	Example

	Predefined config files
	All
	All for INI
	All for .exakat.yaml

	Analyze
	Analyze for INI
	Analyze for .exakat.yaml

	Appinfo
	Appinfo for INI
	Appinfo for .exakat.yaml

	Attributes
	Attributes for INI
	Attributes for .exakat.yaml

	CE
	CE for INI
	CE for .exakat.yaml

	CI-checks
	CI-checks for INI
	CI-checks for .exakat.yaml

	Changed Behavior
	Changed Behavior for INI
	Changed Behavior for .exakat.yaml

	Class Review
	Class Review for INI
	Class Review for .exakat.yaml

	Classdependencies
	Classdependencies for INI
	Classdependencies for .exakat.yaml

	Coding conventions
	Coding conventions for INI
	Coding conventions for .exakat.yaml

	CompatibilityPHP53
	CompatibilityPHP53 for INI
	CompatibilityPHP53 for .exakat.yaml

	CompatibilityPHP54
	CompatibilityPHP54 for INI
	CompatibilityPHP54 for .exakat.yaml

	CompatibilityPHP55
	CompatibilityPHP55 for INI
	CompatibilityPHP55 for .exakat.yaml

	CompatibilityPHP56
	CompatibilityPHP56 for INI
	CompatibilityPHP56 for .exakat.yaml

	CompatibilityPHP70
	CompatibilityPHP70 for INI
	CompatibilityPHP70 for .exakat.yaml

	CompatibilityPHP71
	CompatibilityPHP71 for INI
	CompatibilityPHP71 for .exakat.yaml

	CompatibilityPHP72
	CompatibilityPHP72 for INI
	CompatibilityPHP72 for .exakat.yaml

	CompatibilityPHP73
	CompatibilityPHP73 for INI
	CompatibilityPHP73 for .exakat.yaml

	CompatibilityPHP74
	CompatibilityPHP74 for INI
	CompatibilityPHP74 for .exakat.yaml

	CompatibilityPHP80
	CompatibilityPHP80 for INI
	CompatibilityPHP80 for .exakat.yaml

	CompatibilityPHP81
	CompatibilityPHP81 for INI
	CompatibilityPHP81 for .exakat.yaml

	CompatibilityPHP82
	CompatibilityPHP82 for INI
	CompatibilityPHP82 for .exakat.yaml

	CompatibilityPHP83
	CompatibilityPHP83 for INI
	CompatibilityPHP83 for .exakat.yaml

	Dead code
	Dead code for INI
	Dead code for .exakat.yaml

	Deprecated
	Deprecated for INI
	Deprecated for .exakat.yaml

	Dump
	Dump for INI
	Dump for .exakat.yaml

	First
	First for INI
	First for .exakat.yaml

	Inventory
	Inventory for INI
	Inventory for .exakat.yaml

	IsExt
	IsExt for INI
	IsExt for .exakat.yaml

	IsPHP
	IsPHP for INI
	IsPHP for .exakat.yaml

	IsStub
	IsStub for INI
	IsStub for .exakat.yaml

	LintButWontExec
	LintButWontExec for INI
	LintButWontExec for .exakat.yaml

	NoDoc
	NoDoc for INI
	NoDoc for .exakat.yaml

	One Liners
	One Liners for INI
	One Liners for .exakat.yaml

	PHP recommendations
	PHP recommendations for INI
	PHP recommendations for .exakat.yaml

	Performances
	Performances for INI
	Performances for .exakat.yaml

	Preferences
	Preferences for INI
	Preferences for .exakat.yaml

	Rector
	Rector for INI
	Rector for .exakat.yaml

	Security
	Security for INI
	Security for .exakat.yaml

	Semantics
	Semantics for INI
	Semantics for .exakat.yaml

	Suggestions
	Suggestions for INI
	Suggestions for .exakat.yaml

	Surprising
	Surprising for INI
	Surprising for .exakat.yaml

	Top10
	Top10 for INI
	Top10 for .exakat.yaml

	Typechecks
	Typechecks for INI
	Typechecks for .exakat.yaml

	php-cs-fixable
	php-cs-fixable for INI
	php-cs-fixable for .exakat.yaml

	Rule
	Rules
	Rulesets

	Report
	Configuring a report before the audit
	Generating a report after the audit
	Common behavior

	Cobbler
	What are cobblers
	Cobbler command
	Analysis and Cobblers
	One analysis, one cobbler
	One analysis, multiple cobblers
	Multiple analysis, one cobbler
	Cobbler configuration
	INI configuration example:
	Cobbler tutorial
	Pre-requisite

	Rules
	Introduction
	List of Rules
	$FILES full_path
	Specs

	$GLOBALS Or global
	Specs

	$HTTP_RAW_POST_DATA Usage
	Suggestions
	Specs

	$php_errormsg Usage
	Suggestions
	Specs

	$this Belongs To Classes Or Traits
	Suggestions
	Specs

	$this Is Not An Array
	Suggestions
	Specs

	$this Is Not For Static Methods
	Suggestions
	Specs

	** For Exponent
	Suggestions
	Specs

	::class
	Suggestions
	Specs

	@ Operator
	Suggestions
	Specs

	Abstract Away
	Suggestions
	Specs

	Abstract Class Constants
	Suggestions
	Specs

	Abstract Class Usage
	Specs

	Abstract Methods Usage
	Specs

	Abstract Or Implements
	Suggestions
	Specs

	Abstract Static Methods
	Suggestions
	Specs

	Access Protected Structures
	Suggestions
	Specs

	Accessing Private
	Specs

	Add Default Value
	Suggestions
	Specs

	Add Return Typehint
	Specs

	Adding Zero
	Suggestions
	Specs

	Aliases
	Specs

	All Uppercase Variables
	Specs

	All strings
	Specs

	Already Parents Interface
	Suggestions
	Specs

	Already Parents Trait
	Suggestions
	Specs

	Altering Foreach Without Reference
	Suggestions
	Specs

	Alternative Syntax Consistence
	Specs

	Always Anchor Regex
	Suggestions
	Specs

	Always Positive Comparison
	Suggestions
	Specs

	Always Use Function With array_key_exists()
	Suggestions
	Specs

	Ambiguous Array Index
	Suggestions
	Specs

	Ambiguous Static
	Specs

	Ambiguous Types With Variables
	Specs

	Ambiguous Visibilities
	Suggestions
	Specs

	An OOP Factory
	Specs

	Anonymous Classes
	Specs

	Append And Assign Arrays
	Specs

	Argon2 Usage
	Specs

	Argument Counts Per Calls
	Specs

	Argument Should Be Typehinted
	Suggestions
	Specs

	Array Access On Literal Array
	Specs

	Array Addition
	Specs

	Array Index
	Specs

	Array With String Initialization
	Suggestions
	Specs

	Array() / [] Consistence
	Suggestions
	Specs

	Array_Fill() With Objects
	Suggestions
	Specs

	Array_Map() Passes By Value
	Suggestions
	Specs

	Array_merge Needs Array Of Arrays
	Suggestions
	Specs

	Assert Function Is Reserved
	Suggestions
	Specs

	Assertions
	Specs

	Assign And Compare
	Suggestions
	Specs

	Assign And Lettered Logical Operator Precedence
	Suggestions
	Specs

	Assign Default To Properties
	Suggestions
	Specs

	Assigned In One Branch
	Suggestions
	Specs

	Assigned Twice
	Suggestions
	Specs

	Assumptions
	Suggestions
	Specs

	Autoappend
	Suggestions
	Specs

	Autoloading
	Specs

	Avoid Compare Typed Boolean
	Suggestions
	Specs

	Avoid Concat In Loop
	Suggestions
	Specs

	Avoid Large Array Assignation
	Suggestions
	Specs

	Avoid Optional Properties
	Suggestions
	Specs

	Avoid Parenthesis With Language Construct
	Suggestions
	Specs

	Avoid Real
	Suggestions
	Specs

	Avoid Self In Interface
	Suggestions
	Specs

	Avoid Substr() One
	Suggestions
	Specs

	Avoid Those Hash Functions
	Suggestions
	Specs

	Avoid Using stdClass
	Suggestions
	Specs

	Avoid array_push()
	Suggestions
	Specs

	Avoid array_unique()
	Suggestions
	Specs

	Avoid get_class()
	Suggestions
	Specs

	Avoid get_object_vars()
	Suggestions
	Specs

	Avoid glob() Usage
	Suggestions
	Specs

	Avoid mb_dectect_encoding()
	Suggestions
	Specs

	Avoid option arrays in constructors
	Suggestions
	Specs

	Avoid set_error_handler $context Argument
	Suggestions
	Specs

	Avoid sleep()/usleep()
	Suggestions
	Specs

	Bad Constants Names
	Suggestions
	Specs

	Bad Type Relay
	Suggestions
	Specs

	Bail Out Early
	Suggestions
	Specs

	Binary Glossary
	Specs

	Blind Variable Used Beyond Loop
	Specs

	Blind Variables
	Specs

	Bracketless Blocks
	Suggestions
	Specs

	Break Outside Loop
	Specs

	Break With 0
	Suggestions
	Specs

	Break With Non Integer
	Suggestions
	Specs

	Buried Assignation
	Suggestions
	Specs

	Cache Variable Outside Loop
	Suggestions
	Specs

	Call Order
	Specs

	Callback Function Needs Return
	Suggestions
	Specs

	Calling Static Trait Method
	Suggestions
	Specs

	Calltime Pass By Reference
	Suggestions
	Specs

	Can’t Call Generator
	Specs

	Can’t Count Non-Countable
	Suggestions
	Specs

	Can’t Disable Class
	Specs

	Can’t Disable Function
	Specs

	Can’t Extend Final
	Suggestions
	Specs

	Can’t Implement Traversable
	Suggestions
	Specs

	Can’t Instantiate Class
	Suggestions
	Specs

	Can’t Overwrite Final Constant
	Suggestions
	Specs

	Can’t Overwrite Final Method
	Suggestions
	Specs

	Can’t Throw Throwable
	Suggestions
	Specs

	Cancel Common Method
	Suggestions
	Specs

	Cancelled Parameter
	Suggestions
	Specs

	Cannot Call Static Trait Method Directly
	Suggestions
	Specs

	Cannot Use Append For Reading
	Suggestions
	Specs

	Cannot Use Static For Closure
	Suggestions
	Specs

	Cant Inherit Abstract Method
	Suggestions
	Specs

	Cant Instantiate Non Class
	Specs

	Cant Overload Constants
	Suggestions
	Specs

	Cant Use Return Value In Write Context
	Specs

	Case Insensitive Constants
	Specs

	Cast To Boolean
	Suggestions
	Specs

	Cast Unset Usage
	Suggestions
	Specs

	Cast Usage
	Specs

	Casting Ternary
	Suggestions
	Specs

	Catch Overwrite Variable
	Suggestions
	Specs

	Catch With Undefined Variable
	Suggestions
	Specs

	Caught Exceptions
	Specs

	Caught Expressions
	Specs

	Caught Variable
	Suggestions
	Specs

	Check After Null Safe Operator
	Suggestions
	Specs

	Check All Types
	Suggestions
	Specs

	Check Crypto Key Length
	Suggestions
	Specs

	Check Division By Zero
	Specs

	Check JSON
	Suggestions
	Specs

	Check On __Call Usage
	Suggestions
	Specs

	Checks Property Existence
	Specs

	Child Class Removes Typehint
	Specs

	Class Const With Array
	Suggestions
	Specs

	Class Could Be Final
	Suggestions
	Specs

	Class Could Be Readonly
	Suggestions
	Specs

	Class Function Confusion
	Suggestions
	Specs

	Class Has Fluent Interface
	Specs

	Class Injection Count
	Specs

	Class Invasion
	Specs

	Class Overreach
	Suggestions
	Specs

	Class Should Be Final By Ocramius
	Specs

	Class Usage
	Specs

	Class Without Parent
	Suggestions
	Specs

	Class, Interface, Enum Or Trait With Identical Names
	Suggestions
	Specs

	Class-typed References
	Suggestions
	Specs

	Classes Mutually Extending Each Other
	Specs

	Classes Names
	Specs

	Clone Constant
	Specs

	Clone Usage
	Specs

	Clone With Non-Object
	Suggestions
	Specs

	Close Tags Consistency
	Specs

	Closing Tags
	Suggestions
	Specs

	Closure Could Be A Callback
	Suggestions
	Specs

	Closure May Use $this
	Specs

	Closures Glossary
	Specs

	Coalesce
	Specs

	Coalesce And Concat
	Suggestions
	Specs

	Coalesce And Ternary Operators Order
	Suggestions
	Specs

	Coalesce Equal
	Suggestions
	Specs

	Codeigniter usage
	Specs

	Collect Atom Counts
	Specs

	Collect Block Size
	Specs

	Collect Calls
	Specs

	Collect Catch Calls
	Specs

	Collect Class Children Count
	Specs

	Collect Class Constant Counts
	Specs

	Collect Class Depth
	Specs

	Collect Class Interface Counts
	Specs

	Collect Class Traits Counts
	Specs

	Collect Classes Dependencies
	Specs

	Collect Compared Literals
	Specs

	Collect Definitions Statistics
	Specs

	Collect Dependency Extension
	Specs

	Collect Files Dependencies
	Specs

	Collect Global Variables
	Specs

	Collect Graph Triplets
	Specs

	Collect Literals
	Specs

	Collect Local Variable Counts
	Specs

	Collect Mbstring Encodings
	Specs

	Collect Method Counts
	Specs

	Collect Methods Throwing Exceptions
	Specs

	Collect Native Calls Per Expressions
	Specs

	Collect Parameter Counts
	Specs

	Collect Parameter Names
	Specs

	Collect Php Structures
	Specs

	Collect Property Counts
	Specs

	Collect Property Usage
	Specs

	Collect Readability
	Specs

	Collect SetLocale
	Specs

	Collect Static Class Changes
	Specs

	Collect Structures
	Specs

	Collect Stub Structures
	Specs

	Collect Throw Calls
	Specs

	Collect Use Counts
	Specs

	Collect Vendor Structures
	Specs

	Collects Names
	Specs

	Collects Variables
	Specs

	Combined Calls
	Specs

	Common Alternatives
	Suggestions
	Specs

	Compare Hash
	Suggestions
	Specs

	Compared But Not Assigned Strings
	Specs

	Compared Comparison
	Specs

	Comparison Is Always The Same
	Suggestions
	Specs

	Comparison On Different Types
	Suggestions
	Specs

	Comparisons Orientation
	Specs

	Complex Dynamic Names
	Suggestions
	Specs

	Composer Usage
	Specs

	Composer’s autoload
	Specs

	Concat And Addition
	Suggestions
	Specs

	Concat Empty String
	Suggestions
	Specs

	Concatenation Interpolation Consistence
	Specs

	Concrete5 usage
	Specs

	Conditional Structures
	Suggestions
	Specs

	Conditioned Constants
	Specs

	Conditioned Function
	Specs

	Configure Extract
	Suggestions
	Specs

	Confusing Names
	Suggestions
	Specs

	Const Or Define
	Specs

	Const Or Define Preference
	Specs

	Const Visibility Usage
	Suggestions
	Specs

	Const With Array
	Specs

	Constant : With Or Without Use
	Specs

	Constant Case Preference
	Specs

	Constant Class
	Suggestions
	Specs

	Constant Comparison
	Specs

	Constant Conditions
	Specs

	Constant Definition
	Specs

	Constant Dynamic Creation
	Specs

	Constant Order
	Specs

	Constant Scalar Expression
	Suggestions
	Specs

	Constant Scalar Expressions
	Specs

	Constant Typo Looks Like A Variable
	Suggestions
	Specs

	Constant Used Below
	Specs

	Constant Used Only Once
	Suggestions
	Specs

	Constants Created Outside Its Namespace
	Suggestions
	Specs

	Constants In Traits
	Specs

	Constants Names
	Specs

	Constants Usage
	Specs

	Constants With Strange Names
	Suggestions
	Specs

	Constants/RelayConstant
	Specs

	Constructors
	Specs

	Continents
	Specs

	Continue Is For Loop
	Suggestions
	Specs

	Converted Exceptions
	Specs

	Cookies Variables
	Specs

	Could Be A Constant
	Suggestions
	Specs

	Could Be A Static Variable
	Specs

	Could Be Abstract Class
	Suggestions
	Specs

	Could Be Abstract Method
	Suggestions
	Specs

	Could Be Array Typehint
	Suggestions
	Specs

	Could Be Boolean
	Suggestions
	Specs

	Could Be CIT
	Suggestions
	Specs

	Could Be Callable
	Suggestions
	Specs

	Could Be Class Constant
	Suggestions
	Specs

	Could Be Constant
	Suggestions
	Specs

	Could Be Else
	Suggestions
	Specs

	Could Be Enumeration
	Specs

	Could Be Float
	Suggestions
	Specs

	Could Be Generator
	Suggestions
	Specs

	Could Be Null
	Suggestions
	Specs

	Could Be Parent
	Suggestions
	Specs

	Could Be Parent Method
	Suggestions
	Specs

	Could Be Private Class Constant
	Specs

	Could Be Protected Class Constant
	Suggestions
	Specs

	Could Be Protected Method
	Suggestions
	Specs

	Could Be Protected Property
	Suggestions
	Specs

	Could Be Readonly Property
	Suggestions
	Specs

	Could Be Self
	Suggestions
	Specs

	Could Be Spaceship
	Suggestions
	Specs

	Could Be Static Closure
	Suggestions
	Specs

	Could Be String
	Suggestions
	Specs

	Could Be Stringable
	Suggestions
	Specs

	Could Be Ternary
	Suggestions
	Specs

	Could Be Type
	Specs

	Could Be Typehinted Callable
	Suggestions
	Specs

	Could Be Void
	Suggestions
	Specs

	Could Be array_combine()
	Suggestions
	Specs

	Could Cast To Array
	Suggestions
	Specs

	Could Drop Variable
	Suggestions
	Specs

	Could Inject Parameter
	Suggestions
	Specs

	Could Make A Function
	Suggestions
	Specs

	Could Not Type
	Specs

	Could Set Property Default
	Suggestions
	Specs

	Could Type With Array
	Suggestions
	Specs

	Could Type With Boolean
	Suggestions
	Specs

	Could Type With Int
	Suggestions
	Specs

	Could Type With Iterable
	Suggestions
	Specs

	Could Type With String
	Suggestions
	Specs

	Could Typehint
	Suggestions
	Specs

	Could Use Alias
	Suggestions
	Specs

	Could Use Class Operator
	Suggestions
	Specs

	Could Use Compact
	Suggestions
	Specs

	Could Use Existing Constant
	Suggestions
	Specs

	Could Use Match
	Suggestions
	Specs

	Could Use Namespace Magic Constant
	Suggestions
	Specs

	Could Use Null-Safe Object Operator
	Suggestions
	Specs

	Could Use Promoted Properties
	Suggestions
	Specs

	Could Use Short Assignation
	Suggestions
	Specs

	Could Use Trait
	Suggestions
	Specs

	Could Use Try
	Suggestions
	Specs

	Could Use Yield From
	Suggestions
	Specs

	Could Use __DIR__
	Suggestions
	Specs

	Could Use array_fill_keys
	Suggestions
	Specs

	Could Use array_sum()
	Suggestions
	Specs

	Could Use array_unique
	Suggestions
	Specs

	Could Use self
	Suggestions
	Specs

	Could Use str_repeat()
	Suggestions
	Specs

	Could Use strcontains()
	Suggestions
	Specs

	Count() Is Not Negative
	Specs

	Count() To Array Append
	Suggestions
	Specs

	Courier Anti-Pattern
	Specs

	Crc32() Might Be Negative
	Specs

	Create Compact Variables
	Specs

	Create Default Values
	Specs

	Create Foreach Default
	Specs

	Create Magic Method
	Specs

	Create Magic Property
	Specs

	Crypto Usage
	Specs

	Custom Class Usage
	Specs

	Custom Constant Usage
	Specs

	Cyclic References
	Suggestions
	Specs

	Cyclomatic Complexity
	Specs

	DI Cyclic Dependencies
	Specs

	Dangling Array References
	Suggestions
	Specs

	Date Formats
	Specs

	DateTimeImmutable Is Not Immutable
	Suggestions
	Specs

	Declare Global Early
	Suggestions
	Specs

	Declare Static Once
	Suggestions
	Specs

	Declare strict_types Usage
	Specs

	Deep Definitions
	Suggestions
	Specs

	Default Then Discard
	Suggestions
	Specs

	Define Constants With Array
	Specs

	Defined Class Constants
	Specs

	Defined Exceptions
	Specs

	Defined Parent MP
	Specs

	Defined Properties
	Specs

	Defined static:: Or self::
	Specs

	Definitions Only
	Specs

	Dependant Abstract Classes
	Suggestions
	Specs

	Dependant Trait
	Suggestions
	Specs

	Dependency Injection
	Specs

	Deprecated Attribute
	Suggestions
	Specs

	Deprecated Callable
	Suggestions
	Specs

	Deprecated Mb_string Encodings
	Suggestions
	Specs

	Deprecated PHP Functions
	Suggestions
	Specs

	Dereferencing Levels
	Specs

	Dereferencing String And Arrays
	Specs

	Detect Current Class
	Suggestions
	Specs

	Die Exit Consistence
	Suggestions
	Specs

	Difference Consistence
	Specs

	Different Argument Counts
	Suggestions
	Specs

	Different Constructors
	Suggestions
	Specs

	Direct Call To __clone()
	Suggestions
	Specs

	Direct Injection
	Suggestions
	Specs

	Directives Usage
	Specs

	Directly Use File
	Suggestions
	Specs

	Disconnected Classes
	Suggestions
	Specs

	Displays Text
	Specs

	Dl() Usage
	Specs

	Do In Base
	Suggestions
	Specs

	Do Not Cast To Int
	Suggestions
	Specs

	Dollar Curly Interpolation Is Deprecated
	Suggestions
	Specs

	Don’t Add Seconds
	Specs

	Don’t Be Too Manual
	Suggestions
	Specs

	Don’t Change Incomings
	Suggestions
	Specs

	Don’t Change The Blind Var
	Specs

	Don’t Collect Void
	Suggestions
	Specs

	Don’t Echo Error
	Suggestions
	Specs

	Don’t Loop On Yield
	Suggestions
	Specs

	Don’t Mix ++
	Suggestions
	Specs

	Don’t Pollute Global Space
	Suggestions
	Specs

	Don’t Read And Write In One Expression
	Suggestions
	Specs

	Don’t Reuse Foreach Source
	Suggestions
	Specs

	Don’t Send $this In Constructor
	Suggestions
	Specs

	Don’t Unset Properties
	Suggestions
	Specs

	Don’t Use The Type As Variable Name
	Suggestions
	Specs

	Double Assignation
	Specs

	Double Checks
	Suggestions
	Specs

	Double Instructions
	Suggestions
	Specs

	Double Object Assignation
	Suggestions
	Specs

	Double array_flip()
	Suggestions
	Specs

	Drop Else After Return
	Suggestions
	Specs

	Drop Substr Last Arg
	Suggestions
	Specs

	Drupal Usage
	Specs

	Duplicate Calls
	Specs

	Duplicate Literal
	Suggestions
	Specs

	Duplicate Named Parameter
	Suggestions
	Specs

	Dynamic Calls
	Specs

	Dynamic Class Constant
	Specs

	Dynamic Classes
	Specs

	Dynamic Code
	Specs

	Dynamic Function Call
	Specs

	Dynamic Library Loading
	Suggestions
	Specs

	Dynamic Methodcall
	Specs

	Dynamic New
	Specs

	Dynamic Property
	Specs

	Dynamic Self Calls
	Specs

	Dynamically Called Classes
	Specs

	Echo Or Print
	Specs

	Echo With Concat
	Suggestions
	Specs

	Ellipsis Merge
	Suggestions
	Specs

	Ellipsis Usage
	Specs

	Else If Versus Elseif
	Suggestions
	Specs

	Else Usage
	Specs

	Email Addresses
	Specs

	Empty Array Detection
	Specs

	Empty Blocks
	Suggestions
	Specs

	Empty Classes
	Suggestions
	Specs

	Empty Final Element In Array
	Specs

	Empty Function
	Suggestions
	Specs

	Empty Instructions
	Suggestions
	Specs

	Empty Interfaces
	Suggestions
	Specs

	Empty Json Error
	Specs

	Empty List
	Suggestions
	Specs

	Empty Loop
	Suggestions
	Specs

	Empty Namespace
	Suggestions
	Specs

	Empty Slots In Arrays
	Specs

	Empty Traits
	Suggestions
	Specs

	Empty Try Catch
	Suggestions
	Specs

	Empty With Expression
	Suggestions
	Specs

	Encoded Simple Letters
	Suggestions
	Specs

	Encoding Usage
	Specs

	Enum Case Values
	Specs

	Enum Usage
	Specs

	Environment Variable Usage
	Specs

	Environment Variables
	Specs

	Environment Variables
	Specs

	Error Messages
	Specs

	Error_Log() Usage
	Specs

	Eval() Usage
	Suggestions
	Specs

	Exceeding Typehint
	Suggestions
	Specs

	Exception Order
	Suggestions
	Specs

	Excimer
	Specs

	Exit Without Argument
	Specs

	Exit() Usage
	Suggestions
	Specs

	Exit-like Methods
	Specs

	Exponent Usage
	Suggestions
	Specs

	Extended Typehints
	Specs

	Extends stdClass
	Specs

	Extensions yar
	Specs

	Extensions/Exttaint
	Specs

	External Config Files
	Specs

	Ez cms usage
	Specs

	Failed Substr() Comparison
	Suggestions
	Specs

	Failing Analysis
	Specs

	Fallback Function
	Specs

	False To Array Conversion
	Suggestions
	Specs

	Favorite Casting Method
	Suggestions
	Specs

	Feast usage
	Specs

	Fetch One Row Format
	Suggestions
	Specs

	File Is Component
	Specs

	File Is Not Definitions Only
	Suggestions
	Specs

	File Uploads
	Specs

	File Usage
	Specs

	File_Put_Contents Using Array Argument
	Specs

	Filter Not Raw
	Suggestions
	Specs

	Filter To add_slashes()
	Suggestions
	Specs

	Final Class Usage
	Specs

	Final Constant
	Specs

	Final Methods Usage
	Specs

	Final Private Methods
	Suggestions
	Specs

	Final Traits Are Final
	Specs

	Find Key Directly
	Suggestions
	Specs

	First Class Callable
	Specs

	Flexible Heredoc
	Specs

	Float Conversion As Index
	Specs

	Fn Argument Variable Confusion
	Suggestions
	Specs

	Follow Closure Definition
	Specs

	Fopen Binary Mode
	Suggestions
	Specs

	For Using Functioncall
	Suggestions
	Specs

	Foreach Don’t Change Pointer
	Suggestions
	Specs

	Foreach Needs Reference Array
	Suggestions
	Specs

	Foreach On Object
	Specs

	Foreach Reference Is Not Modified
	Suggestions
	Specs

	Foreach With list()
	Specs

	Foreach() Favorite
	Specs

	Forgotten Interface
	Suggestions
	Specs

	Forgotten Thrown
	Suggestions
	Specs

	Forgotten Visibility
	Suggestions
	Specs

	Forgotten Whitespace
	Suggestions
	Specs

	Fossilized Method
	Specs

	Fossilized Methods List
	Specs

	Friend Attribute
	Suggestions
	Specs

	Fuel PHP Usage
	Specs

	Fully Qualified Constants
	Suggestions
	Specs

	Function Called With Other Case Than Defined
	Suggestions
	Specs

	Function Subscripting
	Specs

	Function Subscripting, Old Style
	Suggestions
	Specs

	Function With Dynamic Code
	Specs

	Functioncall Is Global
	Specs

	Functions Glossary
	Specs

	Functions In Loop Calls
	Suggestions
	Specs

	Functions Removed In PHP 5.4
	Specs

	Functions Removed In PHP 5.5
	Suggestions
	Specs

	Functions Using Reference
	Specs

	GLOB_BRACE Usage
	Suggestions
	Specs

	GPRC Aliases
	Specs

	Generator Cannot Return
	Suggestions
	Specs

	Geospatial
	Specs

	Getter And Setter
	Specs

	Getting Last Element
	Suggestions
	Specs

	Global Code Only
	Specs

	Global Definitions
	Specs

	Global Import
	Specs

	Global In Global
	Specs

	Global Inside Loop
	Suggestions
	Specs

	Global Usage
	Specs

	Globals
	Specs

	Goto Names
	Specs

	Group Use Declaration
	Specs

	Group Use Trailing Comma
	Specs

	HTTP Status Code
	Specs

	Handle Arrays With Callback
	Specs

	Hardcoded Passwords
	Suggestions
	Specs

	Has Magic Method
	Specs

	Has Variable Arguments
	Specs

	Hash Algorithms
	Suggestions
	Specs

	Hash Algorithms Incompatible With PHP 5.3
	Specs

	Hash Algorithms Incompatible With PHP 5.4/5.5
	Specs

	Hash Algorithms Incompatible With PHP 7.1-
	Specs

	Hash Algorithms Incompatible With PHP 7.4-
	Specs

	Hash Will Use Objects
	Specs

	Heredoc Delimiter
	Specs

	Heredoc Delimiter Glossary
	Specs

	Hexadecimal Glossary
	Specs

	Hexadecimal In String
	Specs

	Hidden Use Expression
	Suggestions
	Specs

	Htmlentities Calls
	Suggestions
	Specs

	Htmlentities Using Default Flag
	Suggestions
	Specs

	Http Headers
	Specs

	Ice framework
	Specs

	Iconv With Translit
	Suggestions
	Specs

	Identical Case In Switch
	Suggestions
	Specs

	Identical Conditions
	Suggestions
	Specs

	Identical Consecutive Expression
	Suggestions
	Specs

	Identical Elseif
	Suggestions
	Specs

	Identical Methods
	Suggestions
	Specs

	Identical On Both Sides
	Suggestions
	Specs

	Identical Variables In Foreach
	Suggestions
	Specs

	Identity
	Specs

	If Then Return Favorite
	Specs

	If With Same Conditions
	Suggestions
	Specs

	Iffectations
	Suggestions
	Specs

	Illegal Name For Method
	Suggestions
	Specs

	Immutable Signature
	Specs

	Implemented Methods Must Be Public
	Suggestions
	Specs

	Implements Is For Interface
	Suggestions
	Specs

	Implicit Conversion To Int
	Suggestions
	Specs

	Implicit Global
	Specs

	Implicit Nullable Type
	Suggestions
	Specs

	Implied If
	Suggestions
	Specs

	Implode One Arg
	Suggestions
	Specs

	Implode() Arguments Order
	Suggestions
	Specs

	Include Variables
	Specs

	Inclusion Wrong Case
	Suggestions
	Specs

	Inclusions
	Specs

	Inclusions
	Specs

	Incoming Date Formats
	Specs

	Incoming Values
	Specs

	Incoming Variable Index Inventory
	Specs

	Incoming Variables
	Specs

	Incompatible Property Between Class And Trait
	Suggestions
	Specs

	Incompatible Signature Methods
	Suggestions
	Specs

	Incompatible Signature Methods With Covariance
	Suggestions
	Specs

	Incompatible Types With Incoming Values
	Suggestions
	Specs

	Incompilable Files
	Suggestions
	Specs

	Inconsistent Concatenation
	Specs

	Inconsistent Elseif
	Specs

	Inconsistent Variable Usage
	Suggestions
	Specs

	Indentation Levels
	Specs

	Indices Are Int Or String
	Suggestions
	Specs

	Indirect Injection
	Suggestions
	Specs

	Infinite Recursion
	Suggestions
	Specs

	Inherited Class Constant Visibility
	Suggestions
	Specs

	Inherited Property Type Must Match
	Suggestions
	Specs

	Inherited Static Variable
	Suggestions
	Specs

	Init Then Update
	Specs

	Injectable Version
	Specs

	Insecure Integer Validation
	Suggestions
	Specs

	Instantiating Abstract Class
	Suggestions
	Specs

	Insufficient Property Typehint
	Suggestions
	Specs

	Insufficient Typehint
	Suggestions
	Specs

	Integer As Property
	Suggestions
	Specs

	Interface Arguments
	Specs

	Interface Methods
	Specs

	Interfaces Don’t Ensure Properties
	Suggestions
	Specs

	Interfaces Is Not Implemented
	Suggestions
	Specs

	Interfaces Names
	Specs

	Interfaces Usage
	Specs

	Internally Used Properties
	Specs

	Internet Domains
	Specs

	Internet Ports
	Specs

	Interpolation
	Specs

	Intersection Typehint
	Specs

	Invalid Cast
	Specs

	Invalid Constant Name
	Suggestions
	Specs

	Invalid Date Scanning Format
	Suggestions
	Specs

	Invalid Octal In String
	Suggestions
	Specs

	Invalid Pack Format
	Suggestions
	Specs

	Invalid Regex
	Suggestions
	Specs

	Ip
	Specs

	Is A Magic Property
	Specs

	Is Actually Zero
	Suggestions
	Specs

	Is An Extension Class
	Specs

	Is An Extension Constant
	Specs

	Is An Extension Function
	Specs

	Is An Extension Interface
	Specs

	Is CLI Script
	Specs

	Is Extension Structure
	Specs

	Is Extension Trait
	Specs

	Is Global Constant
	Specs

	Is Interface Method
	Specs

	Is Library
	Specs

	Is Not Class Family
	Specs

	Is PHP Constant
	Specs

	Is PHP Structure
	Specs

	Is Stub Structure
	Specs

	Is Upper Family
	Specs

	Is_A() With String
	Suggestions
	Specs

	Isset Multiple Arguments
	Suggestions
	Specs

	Isset() On The Whole Array
	Suggestions
	Specs

	Joining file()
	Suggestions
	Specs

	Joomla usage
	Specs

	Json_encode() Without Exceptions
	Suggestions
	Specs

	Keep Files Access Restricted
	Suggestions
	Specs

	Labels
	Specs

	Laravel usage
	Specs

	Large Try Block
	Suggestions
	Specs

	Law of Demeter
	Specs

	Links Between Parameter And Argument
	Specs

	Linux Only Files
	Specs

	List Short Syntax
	Specs

	List With Array Appends
	Suggestions
	Specs

	List With Keys
	Specs

	List With Reference
	Suggestions
	Specs

	Local Globals
	Suggestions
	Specs

	Locally Unused Property
	Suggestions
	Specs

	Locally Used Property
	Specs

	Locally Used Property In Trait
	Specs

	Logical Mistakes
	Suggestions
	Specs

	Logical Operators Favorite
	Suggestions
	Specs

	Logical Should Use Symbolic Operators
	Suggestions
	Specs

	Logical To in_array
	Suggestions
	Specs

	Lone Blocks
	Suggestions
	Specs

	Long Arguments
	Suggestions
	Specs

	Long Preparation For Throw
	Suggestions
	Specs

	Lost References
	Suggestions
	Specs

	Lowered Access Level
	Suggestions
	Specs

	Magic Constant Usage
	Specs

	Magic Method Returntype Is Restricted
	Suggestions
	Specs

	Magic Methods
	Specs

	Magic Properties
	Specs

	Magic Visibility
	Specs

	Mail Usage
	Specs

	Make All Statics
	Specs

	Make Class Method Definition
	Specs

	Make Functioncall With Reference
	Specs

	Make Global A Property
	Suggestions
	Specs

	Make Magic Concrete
	Suggestions
	Specs

	Make One Call With Array
	Suggestions
	Specs

	Makes Class Constant Definition
	Specs

	Malformed Octal
	Suggestions
	Specs

	Manipulates INF
	Specs

	Manipulates NaN
	Suggestions
	Specs

	Mass Creation Of Arrays
	Specs

	Max Level Of Nesting
	Suggestions
	Specs

	Maybe Missing New
	Suggestions
	Specs

	Mbstring Third Arg
	Suggestions
	Specs

	Mbstring Unknown Encoding
	Suggestions
	Specs

	Mbstring Unknown Encodings
	Suggestions
	Specs

	Md5 Strings
	Specs

	Memoize MagicCall
	Suggestions
	Specs

	Merge If Then
	Suggestions
	Specs

	Method Collision Traits
	Specs

	Method Could Be Private Method
	Specs

	Method Could Be Static
	Suggestions
	Specs

	Method Has Fluent Interface
	Specs

	Method Is A Generator
	Specs

	Method Is Not An If
	Suggestions
	Specs

	Method Is Not For Fluent Interface
	Specs

	Method Is Overwritten
	Specs

	Method Property Confusion
	Suggestions
	Specs

	Method Signature Must Be Compatible
	Suggestions
	Specs

	Method Usage
	Specs

	Method Used Below
	Specs

	Methodcall On New
	Specs

	Methods That Should Not Be Used
	Specs

	Methods Without Return
	Suggestions
	Specs

	Mime Types
	Specs

	Minus One On Error
	Suggestions
	Specs

	Mismatch Parameter And Type
	Suggestions
	Specs

	Mismatch Parameter Name
	Suggestions
	Specs

	Mismatch Properties Typehints
	Suggestions
	Specs

	Mismatch Type And Default
	Suggestions
	Specs

	Mismatched Default Arguments
	Suggestions
	Specs

	Mismatched Ternary Alternatives
	Suggestions
	Specs

	Mismatched Typehint
	Suggestions
	Specs

	Missing Abstract Method
	Suggestions
	Specs

	Missing Assignation In Branches
	Specs

	Missing Attribute Attribute
	Suggestions
	Specs

	Missing Cases In Switch
	Suggestions
	Specs

	Missing Include
	Specs

	Missing Parenthesis
	Suggestions
	Specs

	Missing Some Returntype
	Suggestions
	Specs

	Missing Type In Definition
	Suggestions
	Specs

	Missing Typehint
	Suggestions
	Specs

	Missing Visibility
	Suggestions
	Specs

	Missing __isset() Method
	Suggestions
	Specs

	Mistaken Concatenation
	Specs

	Misused Yield
	Suggestions
	Specs

	Mixed Concat And Interpolation
	Suggestions
	Specs

	Mixed Keys In Array
	Suggestions
	Specs

	Mixed Keyword
	Suggestions
	Specs

	Mixed Typehint Usage
	Specs

	Mkdir Default
	Suggestions
	Specs

	Modernize Empty With Expression
	Suggestions
	Specs

	Modified Typed Parameter
	Suggestions
	Specs

	Modify Immutable
	Suggestions
	Specs

	Mono Or Multibytes Favorite
	Suggestions
	Specs

	More Than One Level Of Indentation
	Specs

	Multidimensional Arrays
	Specs

	Multiline Expressions
	Suggestions
	Specs

	Multiple Alias Definitions
	Suggestions
	Specs

	Multiple Alias Definitions Per File
	Specs

	Multiple Catch
	Specs

	Multiple Class Declarations
	Suggestions
	Specs

	Multiple Classes In One File
	Suggestions
	Specs

	Multiple Constant Definition
	Suggestions
	Specs

	Multiple Declaration Of Strict_types
	Suggestions
	Specs

	Multiple Definition Of The Same Argument
	Suggestions
	Specs

	Multiple Exceptions Catch()
	Specs

	Multiple Functions Declarations
	Specs

	Multiple Identical Closure
	Suggestions
	Specs

	Multiple Identical Trait Or Interface
	Suggestions
	Specs

	Multiple Index Definition
	Suggestions
	Specs

	Multiple Property Declaration
	Suggestions
	Specs

	Multiple Property Declaration On One Line
	Suggestions
	Specs

	Multiple Returns
	Specs

	Multiple Similar Calls
	Suggestions
	Specs

	Multiple Type Cases In Switch
	Suggestions
	Specs

	Multiple Type Variable
	Suggestions
	Specs

	Multiple Unset()
	Suggestions
	Specs

	Multiple Usage Of Same Trait
	Suggestions
	Specs

	Multiples Identical Case
	Suggestions
	Specs

	Multiply By One
	Suggestions
	Specs

	Must Call Parent Constructor
	Suggestions
	Specs

	Must Return Methods
	Suggestions
	Specs

	Named Argument And Variadic
	Suggestions
	Specs

	Named Parameter Usage
	Specs

	Named Regex
	Suggestions
	Specs

	Namespaces
	Specs

	Namespaces Glossary
	Specs

	Native Alias Functions Usage
	Suggestions
	Specs

	Negative Power
	Suggestions
	Specs

	Negative Start Index In Array
	Suggestions
	Specs

	Nested Attributes
	Specs

	Nested Ifthen
	Specs

	Nested Loops
	Specs

	Nested Match
	Suggestions
	Specs

	Nested Ternary
	Suggestions
	Specs

	Nested Ternary Without Parenthesis
	Suggestions
	Specs

	Never Called Parameter
	Suggestions
	Specs

	Never Keyword
	Suggestions
	Specs

	Never Typehint Usage
	Specs

	Never Used Properties
	Suggestions
	Specs

	New Constants In PHP 7.2
	Suggestions
	Specs

	New Constants In PHP 7.4
	Suggestions
	Specs

	New Dynamic Class Constant Syntax
	Specs

	New Functions In PHP 5.4
	Specs

	New Functions In PHP 5.5
	Specs

	New Functions In PHP 5.6
	Specs

	New Functions In PHP 7.0
	Specs

	New Functions In PHP 7.1
	Suggestions
	Specs

	New Functions In PHP 7.2
	Suggestions
	Specs

	New Functions In PHP 7.3
	Suggestions
	Specs

	New Functions In PHP 7.4
	Suggestions
	Specs

	New Functions In PHP 8.0
	Suggestions
	Specs

	New Functions In PHP 8.1
	Suggestions
	Specs

	New Functions In PHP 8.2
	Suggestions
	Specs

	New Functions In PHP 8.3
	Suggestions
	Specs

	New Initializers
	Specs

	New Line Style
	Specs

	New Object Then Immediate Call
	Suggestions
	Specs

	New On Functioncall Or Identifier
	Specs

	New Order
	Specs

	Next Month Trap
	Suggestions
	Specs

	No Append On Source
	Suggestions
	Specs

	No Boolean As Default
	Suggestions
	Specs

	No Choice
	Suggestions
	Specs

	No Class As Typehint
	Suggestions
	Specs

	No Class In Global
	Suggestions
	Specs

	No Constructor In Interface
	Suggestions
	Specs

	No Count With 0
	Suggestions
	Specs

	No Default For Referenced Parameter
	Suggestions
	Specs

	No Direct Access
	Specs

	No Direct Call To Magic Method
	Specs

	No Direct Usage
	Suggestions
	Specs

	No ENT_IGNORE
	Suggestions
	Specs

	No Empty Regex
	Suggestions
	Specs

	No Empty String With explode()
	Suggestions
	Specs

	No Hardcoded Hash
	Suggestions
	Specs

	No Hardcoded Ip
	Suggestions
	Specs

	No Hardcoded Path
	Suggestions
	Specs

	No Hardcoded Port
	Suggestions
	Specs

	No Initial S In Variable Names
	Suggestions
	Specs

	No Keyword In Namespace
	Suggestions
	Specs

	No List With String
	Suggestions
	Specs

	No Literal For Reference
	Suggestions
	Specs

	No Magic Method For Enum
	Suggestions
	Specs

	No Magic Method With Array
	Suggestions
	Specs

	No Max On Empty Array
	Suggestions
	Specs

	No More Curly Arrays
	Suggestions
	Specs

	No Named Parameters
	Suggestions
	Specs

	No Need For Else
	Suggestions
	Specs

	No Need For Triple Equal
	Specs

	No Need For get_class()
	Suggestions
	Specs

	No Net For Xml Load
	Suggestions
	Specs

	No Null For Index
	Suggestions
	Specs

	No Null For Native PHP Functions
	Specs

	No Null With Null Safe Operator
	Suggestions
	Specs

	No Object As Index
	Suggestions
	Specs

	No Parenthesis For Language Construct
	Suggestions
	Specs

	No Plus One
	Specs

	No Private Abstract Method In Trait
	Specs

	No Public Access
	Specs

	No Readonly Assignation In Global
	Specs

	No Real Comparison
	Suggestions
	Specs

	No Reference For Static Property
	Specs

	No Reference For Ternary
	Suggestions
	Specs

	No Reference On Left Side
	Specs

	No Referenced Void
	Suggestions
	Specs

	No Return For Generator
	Suggestions
	Specs

	No Return Or Throw In Finally
	Suggestions
	Specs

	No Return Used
	Suggestions
	Specs

	No Self Referencing Constant
	Suggestions
	Specs

	No Spread For Hash
	Suggestions
	Specs

	No Static Variable In A Method
	Suggestions
	Specs

	No String With Append
	Suggestions
	Specs

	No Substr Minus One
	Suggestions
	Specs

	No Valid Cast
	Suggestions
	Specs

	No Variable Needed
	Suggestions
	Specs

	No Weak SSL Crypto
	Suggestions
	Specs

	No array_merge() In Loops
	Suggestions
	Specs

	No get_class() With Null
	Specs

	No isset() With empty()
	Suggestions
	Specs

	No mb_substr In Loop
	Suggestions
	Specs

	Non Ascii Variables
	Suggestions
	Specs

	Non Breakable Space In Names
	Specs

	Non Integer Nor String As Index
	Specs

	Non Nullable Getters
	Suggestions
	Specs

	Non Static Methods Called In A Static
	Suggestions
	Specs

	Non-constant Index In Array
	Suggestions
	Specs

	Non-lowercase Keywords
	Suggestions
	Specs

	Nonexistent Variable In compact()
	Suggestions
	Specs

	Normal Methods
	Specs

	Not A Scalar Type
	Suggestions
	Specs

	Not Equal Is Not !==
	Suggestions
	Specs

	Not Not
	Suggestions
	Specs

	Not Or Tilde
	Suggestions
	Specs

	Not Same Name As File
	Specs

	Nowdoc Delimiter Glossary
	Specs

	Null On New
	Suggestions
	Specs

	Null Or Boolean Arrays
	Suggestions
	Specs

	Null Type Favorite
	Specs

	Nullable With Constant
	Suggestions
	Specs

	Nullable Without Check
	Suggestions
	Specs

	Numeric Literal Separator
	Specs

	Objects Don’t Need References
	Suggestions
	Specs

	Octal Glossary
	Specs

	Old Style Constructor
	Suggestions
	Specs

	Old Style __autoload()
	Suggestions
	Specs

	One Dot Or Object Operator Per Line
	Specs

	One Expression Brackets Consistency
	Specs

	One If Is Sufficient
	Suggestions
	Specs

	One Letter Functions
	Suggestions
	Specs

	One Object Operator Per Line
	Specs

	One Variable String
	Suggestions
	Specs

	Only First Byte
	Suggestions
	Specs

	Only Static Methods Class
	Specs

	Only Variable For Reference
	Suggestions
	Specs

	Only Variable Passed By Reference
	Suggestions
	Specs

	Only Variable Passed By Reference
	Suggestions
	Specs

	Only Variable Returned By Reference
	Specs

	OpenSSL Ciphers Used
	Specs

	Openssl Encrypt Default Algorithm Change
	Suggestions
	Specs

	Optimize Explode()
	Suggestions
	Specs

	Optional Parameter
	Specs

	Or Die
	Suggestions
	Specs

	Order Of Declaration
	Suggestions
	Specs

	Overload Existing Names
	Suggestions
	Specs

	Override
	Suggestions
	Specs

	Overwriting Variable
	Specs

	Overwritten Class Constants
	Suggestions
	Specs

	Overwritten Constant
	Specs

	Overwritten Exceptions
	Suggestions
	Specs

	Overwritten Foreach Var
	Suggestions
	Specs

	Overwritten Literals
	Suggestions
	Specs

	Overwritten Methods
	Specs

	Overwritten Properties
	Specs

	Overwritten Source And Value
	Suggestions
	Specs

	PHP 7.0 New Classes
	Suggestions
	Specs

	PHP 7.0 New Interfaces
	Specs

	PHP 7.0 Removed Directives
	Suggestions
	Specs

	PHP 7.0 Removed Functions
	Suggestions
	Specs

	PHP 7.0 Scalar Typehints
	Specs

	PHP 7.1 Microseconds
	Suggestions
	Specs

	PHP 7.1 Removed Directives
	Suggestions
	Specs

	PHP 7.1 Scalar Typehints
	Specs

	PHP 7.2 Deprecations
	Suggestions
	Specs

	PHP 7.2 Object Keyword
	Specs

	PHP 7.2 Removed Functions
	Suggestions
	Specs

	PHP 7.2 Scalar Typehints
	Specs

	PHP 7.3 Last Empty Argument
	Specs

	PHP 7.3 Removed Functions
	Suggestions
	Specs

	PHP 7.4 Constant Deprecation
	Suggestions
	Specs

	PHP 7.4 Removed Directives
	Suggestions
	Specs

	PHP 7.4 Removed Functions
	Specs

	PHP 7.4 Reserved Keyword
	Specs

	PHP 74 New Directives
	Suggestions
	Specs

	PHP 8.0 Removed Constants
	Suggestions
	Specs

	PHP 8.0 Removed Directives
	Suggestions
	Specs

	PHP 8.0 Removed Functions
	Suggestions
	Specs

	PHP 8.0 Resources Turned Into Objects
	Suggestions
	Specs

	PHP 8.0 Typehints
	Specs

	PHP 8.1 New Types
	Specs

	PHP 8.1 Removed Constants
	Suggestions
	Specs

	PHP 8.1 Removed Directives
	Suggestions
	Specs

	PHP 8.1 Removed Functions
	Suggestions
	Specs

	PHP 8.1 Resources Turned Into Objects
	Suggestions
	Specs

	PHP 8.1 Typehints
	Specs

	PHP 8.2 New Types
	Specs

	PHP 80 Named Parameter Variadic
	Suggestions
	Specs

	PHP Alternative Syntax
	Specs

	PHP Arrays Index
	Specs

	PHP Bugfixes
	Specs

	PHP Constant Usage
	Specs

	PHP Echo Tag Usage
	Specs

	PHP Exception
	Specs

	PHP Handlers Usage
	Specs

	PHP Interfaces
	Specs

	PHP Keywords As Names
	Suggestions
	Specs

	PHP Native Attributes
	Specs

	PHP Native Class Type Compatibility
	Suggestions
	Specs

	PHP Native Interfaces and Return Type
	Suggestions
	Specs

	PHP Overridden Function
	Suggestions
	Specs

	PHP Sapi
	Specs

	PHP Variables
	Specs

	PHP5 Indirect Variable Expression
	Suggestions
	Specs

	PHP7 Dirname
	Suggestions
	Specs

	PSR-11 Usage
	Specs

	PSR-13 Usage
	Specs

	PSR-16 Usage
	Specs

	PSR-3 Usage
	Specs

	PSR-6 Usage
	Specs

	PSR-7 Usage
	Specs

	Pack Format Inventory
	Specs

	Parameter Hiding
	Suggestions
	Specs

	Parent First
	Suggestions
	Specs

	Parent Is Not Static
	Suggestions
	Specs

	Parent, Static Or Self Outside Class
	Suggestions
	Specs

	Parenthesis As Parameter
	Suggestions
	Specs

	Path lists
	Specs

	Pathinfo() Returns May Vary
	Suggestions
	Specs

	Pear Usage
	Specs

	Perl Regex
	Specs

	Phalcon Usage
	Specs

	Php 7 Indirect Expression
	Suggestions
	Specs

	Php 7.1 New Class
	Specs

	Php 7.2 New Class
	Suggestions
	Specs

	Php 7.4 New Classes
	Suggestions
	Specs

	Php 8.0 Only TypeHints
	Specs

	Php 8.0 Variable Syntax Tweaks
	Specs

	Php 8.3 New Classes
	Suggestions
	Specs

	Php Ext Stub Property And Method
	Specs

	Php Native Reference Variable
	Specs

	Php7 Relaxed Keyword
	Specs

	Phpinfo
	Suggestions
	Specs

	Plus Plus Used On Strings
	Specs

	Possible Alias Confusion
	Suggestions
	Specs

	Possible Increment
	Suggestions
	Specs

	Possible Infinite Loop
	Specs

	Possible Interfaces
	Suggestions
	Specs

	Possible Missing Subpattern
	Suggestions
	Specs

	Possible TypeError
	Suggestions
	Specs

	Pre-Calculate Use
	Suggestions
	Specs

	Pre-increment
	Suggestions
	Specs

	Prefix And Suffixes With Typehint
	Specs

	Preprocess Arrays
	Suggestions
	Specs

	Preprocessable
	Suggestions
	Specs

	Print And Die
	Specs

	Printf Format Inventory
	Specs

	Printf Number Of Arguments
	Suggestions
	Specs

	Processing Collector
	Suggestions
	Specs

	Promoted Properties
	Specs

	Propagate Constants
	Specs

	Properties Declaration Consistence
	Suggestions
	Specs

	Property Cannot Be Readonly
	Suggestions
	Specs

	Property Could Be Local
	Suggestions
	Specs

	Property Could Be Private
	Suggestions
	Specs

	Property Export
	Suggestions
	Specs

	Property Invasion
	Suggestions
	Specs

	Property Names
	Specs

	Property Used Above
	Suggestions
	Specs

	Property Used Below
	Specs

	Property Used In One Method Only
	Suggestions
	Specs

	Property Variable Confusion
	Suggestions
	Specs

	Protocol lists
	Specs

	Public Reach To Private Methods
	Specs

	Queries In Loops
	Suggestions
	Specs

	Raised Access Level
	Suggestions
	Specs

	Random Without Try
	Suggestions
	Specs

	Random extension
	Specs

	Randomly Sorted Arrays
	Suggestions
	Specs

	Readonly Property Changed By Cloning
	Specs

	Readonly Usage
	Specs

	Real Functions
	Specs

	Real Variables
	Specs

	Recalled Condition
	Suggestions
	Specs

	Recursive Functions
	Specs

	Recycled Variables
	Suggestions
	Specs

	Redeclared PHP Functions
	Suggestions
	Specs

	Redeclared Static Variable
	Suggestions
	Specs

	Redefined Class Constants
	Specs

	Redefined Default
	Suggestions
	Specs

	Redefined Methods
	Specs

	Redefined PHP Traits
	Specs

	Redefined Private Property
	Suggestions
	Specs

	Redefined Property
	Suggestions
	Specs

	Reflection Export() Is Deprecated
	Suggestions
	Specs

	Regex Delimiter
	Specs

	Regex Inventory
	Specs

	Regex On Arrays
	Suggestions
	Specs

	Register Globals
	Suggestions
	Specs

	Relay Function
	Suggestions
	Specs

	Repeated Interface
	Suggestions
	Specs

	Repeated Regex
	Suggestions
	Specs

	Repeated print()
	Suggestions
	Specs

	Reserved Keywords In PHP 7
	Suggestions
	Specs

	Reserved Match Keyword
	Suggestions
	Specs

	Reserved Methods
	Suggestions
	Specs

	Resources Usage
	Specs

	Restrict Global Usage
	Suggestions
	Specs

	Results May Be Missing
	Suggestions
	Specs

	Rethrown Exceptions
	Suggestions
	Specs

	Return True False
	Suggestions
	Specs

	Return Typehint Usage
	Specs

	Return With Parenthesis
	Suggestions
	Specs

	Return void
	Specs

	Retyped Reference
	Suggestions
	Specs

	Reuse Existing Variable
	Suggestions
	Specs

	Rewrote Final Class Constant
	Suggestions
	Specs

	SQL queries
	Specs

	Safe Curl Options
	Suggestions
	Specs

	Safe HTTP Headers
	Suggestions
	Specs

	Safe Phpvariables
	Specs

	Same Conditions In Condition
	Suggestions
	Specs

	Same Name For Property And Method
	Suggestions
	Specs

	Same Variable Foreach
	Suggestions
	Specs

	Scalar Are Not Arrays
	Suggestions
	Specs

	Scalar Or Object Property
	Suggestions
	Specs

	Scalar Typehint Usage
	Specs

	Scope Resolution Operator
	Suggestions
	Specs

	Searching For Multiple Keys
	Suggestions
	Specs

	Self Using Trait
	Suggestions
	Specs

	Self-Transforming Variables
	Suggestions
	Specs

	Semantic Typing
	Suggestions
	Specs

	Sensitive Argument
	Specs

	Sequences In For
	Specs

	Serialize Magic Method
	Specs

	Session Lazy Write
	Suggestions
	Specs

	Session Variables
	Specs

	Set Array Class Definition
	Specs

	Set Aside Code
	Suggestions
	Specs

	Set Chaining Exception
	Suggestions
	Specs

	Set Class Method Remote Definition
	Specs

	Set Class Property Definition With Typehint
	Specs

	Set Class Remote Definition With Global
	Specs

	Set Class Remote Definition With Injection
	Specs

	Set Class Remote Definition With Local New
	Specs

	Set Class Remote Definition With Parenthesis
	Specs

	Set Class Remote Definition With Return Typehint
	Specs

	Set Class Remote Definition With Typehint
	Specs

	Set Clone Link
	Specs

	Set Cookie Safe Arguments
	Suggestions
	Specs

	Set Method Fnp
	Specs

	Set Parent Definition
	Specs

	Set class_alias() Definition
	Specs

	Setlocale() Uses Constants
	Suggestions
	Specs

	Several Instructions On The Same Line
	Suggestions
	Specs

	Shell Favorite
	Specs

	Shell Usage
	Specs

	Shell commands
	Specs

	Short Open Tags
	Specs

	Short Or Complete Comparison
	Specs

	Short Syntax For Arrays
	Specs

	Short Ternary
	Specs

	Should Be Single Quote
	Specs

	Should Cache Local
	Suggestions
	Specs

	Should Chain Exception
	Suggestions
	Specs

	Should Deep Clone
	Specs

	Should Have Destructor
	Suggestions
	Specs

	Should Make Alias
	Specs

	Should Preprocess Chr()
	Suggestions
	Specs

	Should Typecast
	Suggestions
	Specs

	Should Use Coalesce
	Suggestions
	Specs

	Should Use Existing Constants
	Suggestions
	Specs

	Should Use Explode Args
	Suggestions
	Specs

	Should Use Foreach
	Suggestions
	Specs

	Should Use Function
	Suggestions
	Specs

	Should Use Local Class
	Suggestions
	Specs

	Should Use Math
	Suggestions
	Specs

	Should Use Operator
	Suggestions
	Specs

	Should Use Prepared Statement
	Suggestions
	Specs

	Should Use SetCookie()
	Suggestions
	Specs

	Should Use Ternary Operator
	Suggestions
	Specs

	Should Use Url Query Functions
	Suggestions
	Specs

	Should Use array_column()
	Suggestions
	Specs

	Should Use array_filter()
	Suggestions
	Specs

	Should Use session_regenerateid()
	Suggestions
	Specs

	Should Yield With Key
	Suggestions
	Specs

	Sidelined Method
	Suggestions
	Specs

	Signature Trailing Comma
	Specs

	Silently Cast Integer
	Suggestions
	Specs

	Similar Integers
	Specs

	Simple Global Variable
	Suggestions
	Specs

	Simple Switch And Match
	Suggestions
	Specs

	Simplify Foreach
	Suggestions
	Specs

	Simplify Regex
	Suggestions
	Specs

	Single Use Variables
	Suggestions
	Specs

	Skip Empty Array
	Specs

	Slice Arrays First
	Suggestions
	Specs

	Slow Functions
	Suggestions
	Specs

	Solve Trait Constants
	Specs

	Solve Trait Methods
	Specs

	Special Integers
	Specs

	Spread Operator For Array
	Specs

	Sprintf Format Compilation
	Suggestions
	Specs

	Sqlite3 Requires Single Quotes
	Suggestions
	Specs

	StandaloneType True False Null
	Specs

	Static Call May Be Truly Static
	Suggestions
	Specs

	Static Call With Self
	Suggestions
	Specs

	Static Global Variables Confusion
	Suggestions
	Specs

	Static Inclusions
	Specs

	Static Loop
	Suggestions
	Specs

	Static Methods
	Specs

	Static Methods Called From Object
	Suggestions
	Specs

	Static Methods Can’t Contain $this
	Suggestions
	Specs

	Static Methods Cannot Call Non-Static Methods
	Suggestions
	Specs

	Static Properties
	Specs

	Static Variable Can Default To Arbitrary Expression
	Specs

	Static Variable In Namespace
	Suggestions
	Specs

	Static Variable Initialisation
	Specs

	Static Variables
	Specs

	Stomp
	Specs

	Strange Name For Constants
	Suggestions
	Specs

	Strange Name For Variables
	Suggestions
	Specs

	Strange Names In Classes
	Suggestions
	Specs

	Strict Comparison With Booleans
	Suggestions
	Specs

	Strict In_Array() Preference
	Specs

	Strict Or Relaxed Comparison
	Specs

	String
	Specs

	String Int Comparison
	Suggestions
	Specs

	String Interpolation Favorite
	Specs

	String May Hold A Variable
	Suggestions
	Specs

	Strings With Strange Space
	Suggestions
	Specs

	Strpos() Less Than One
	Suggestions
	Specs

	Strpos()-like Comparison
	Suggestions
	Specs

	Strtr Arguments
	Suggestions
	Specs

	Substr To Trim
	Suggestions
	Specs

	Substr() In Loops
	Suggestions
	Specs

	Substring First
	Suggestions
	Specs

	Super Global Usage
	Specs

	Super Globals Contagion
	Specs

	Superglobals
	Specs

	Suspicious Comparison
	Suggestions
	Specs

	Swapped Arguments
	Suggestions
	Specs

	Switch Fallthrough
	Suggestions
	Specs

	Switch To Switch
	Suggestions
	Specs

	Switch With Too Many Default
	Suggestions
	Specs

	Switch Without Default
	Suggestions
	Specs

	Swoole
	Specs

	Sylius usage
	Specs

	Symfony usage
	Specs

	Ternary In Concat
	Suggestions
	Specs

	Test Class
	Specs

	Test Then Cast
	Suggestions
	Specs

	This Could Be Iterable
	Suggestions
	Specs

	Throw
	Specs

	Throw Functioncall
	Suggestions
	Specs

	Throw In Destruct
	Suggestions
	Specs

	Throw Raw Exceptions
	Suggestions
	Specs

	Throw Was An Expression
	Specs

	Thrown Exceptions
	Specs

	Throws An Assignement
	Suggestions
	Specs

	Ticks Usage
	Specs

	Timestamp Difference
	Suggestions
	Specs

	Too Complex Expression
	Suggestions
	Specs

	Too Long A Block
	Suggestions
	Specs

	Too Many Array Dimensions
	Suggestions
	Specs

	Too Many Chained Calls
	Suggestions
	Specs

	Too Many Children
	Suggestions
	Specs

	Too Many Dereferencing
	Specs

	Too Many Extractions
	Suggestions
	Specs

	Too Many Finds
	Suggestions
	Specs

	Too Many Injections
	Suggestions
	Specs

	Too Many Local Variables
	Suggestions
	Specs

	Too Many Native Calls
	Suggestions
	Specs

	Too Many Parameters
	Suggestions
	Specs

	Too Many Stringed Elseif
	Suggestions
	Specs

	Too Much Indented
	Suggestions
	Specs

	Trailing Comma In Calls
	Specs

	Trait Is Not A Type
	Suggestions
	Specs

	Trait Methods
	Specs

	Trait Names
	Specs

	Trait Not Found
	Suggestions
	Specs

	Traits Usage
	Specs

	Trigger Errors
	Specs

	True False Inconsistant Case
	Specs

	Try With Finally
	Specs

	Try With Multiple Catch
	Specs

	Try Without Catch
	Specs

	Type Array Index
	Specs

	Type Could Be Integer
	Suggestions
	Specs

	Type Could Be Never
	Suggestions
	Specs

	Type Dodging
	Suggestions
	Specs

	Type Must Be Returned
	Suggestions
	Specs

	Typed Class Constants Usage
	Specs

	Typed Property Usage
	Specs

	Typehint Could Be Iterable
	Suggestions
	Specs

	Typehint Order
	Specs

	Typehinting Stats
	Specs

	Typehints
	Specs

	Typehints/CouldBeResource
	Specs

	Typo 3 usage
	Specs

	URL List
	Specs

	Unbinding Closures
	Suggestions
	Specs

	Uncaught Exceptions
	Suggestions
	Specs

	Unchecked Resources
	Suggestions
	Specs

	Unconditional Break In Loop
	Suggestions
	Specs

	Undefined ::class
	Suggestions
	Specs

	Undefined Caught Exceptions
	Suggestions
	Specs

	Undefined Class Constants
	Suggestions
	Specs

	Undefined Classes
	Suggestions
	Specs

	Undefined Constant Name
	Suggestions
	Specs

	Undefined Constants
	Suggestions
	Specs

	Undefined Enumcase
	Specs

	Undefined Functions
	Suggestions
	Specs

	Undefined Insteadof
	Suggestions
	Specs

	Undefined Interfaces
	Suggestions
	Specs

	Undefined Methods
	Suggestions
	Specs

	Undefined Parent
	Suggestions
	Specs

	Undefined Properties
	Suggestions
	Specs

	Undefined Trait
	Suggestions
	Specs

	Undefined Variable
	Suggestions
	Specs

	Undefined static:: Or self::
	Suggestions
	Specs

	Unfinished Object
	Suggestions
	Specs

	Unicode Blocks
	Specs

	Unicode Escape Partial
	Specs

	Unicode Escape Syntax
	Specs

	Uninitialized Property
	Suggestions
	Specs

	Union Typehint
	Specs

	Unitialized Properties
	Suggestions
	Specs

	Unknown Directive Name
	Specs

	Unknown Parameter Name
	Suggestions
	Specs

	Unknown Pcre2 Option
	Specs

	Unkown Regex Options
	Suggestions
	Specs

	Unpacking Inside Arrays
	Suggestions
	Specs

	Unpreprocessed Values
	Suggestions
	Specs

	Unreachable Class Constant
	Suggestions
	Specs

	Unreachable Code
	Suggestions
	Specs

	Unreachable Method
	Suggestions
	Specs

	Unresolved Catch
	Suggestions
	Specs

	Unresolved Classes
	Suggestions
	Specs

	Unresolved Instanceof
	Suggestions
	Specs

	Unresolved Use
	Suggestions
	Specs

	Unserialize Second Arg
	Suggestions
	Specs

	Unset Arguments
	Specs

	Unset In Foreach
	Suggestions
	Specs

	Unset() Or (unset)
	Suggestions
	Specs

	Unsupported Operand Types
	Suggestions
	Specs

	Unsupported Types With Operators
	Suggestions
	Specs

	Unthrown Exception
	Suggestions
	Specs

	Untyped No Default Properties
	Specs

	Unused Class Constant
	Suggestions
	Specs

	Unused Classes
	Suggestions
	Specs

	Unused Constants
	Suggestions
	Specs

	Unused Enumeration Case
	Suggestions
	Specs

	Unused Exception Variable
	Suggestions
	Specs

	Unused Functions
	Suggestions
	Specs

	Unused Global
	Suggestions
	Specs

	Unused Inherited Variable In Closure
	Suggestions
	Specs

	Unused Interfaces
	Suggestions
	Specs

	Unused Label
	Suggestions
	Specs

	Unused Methods
	Suggestions
	Specs

	Unused Parameter
	Suggestions
	Specs

	Unused Private Methods
	Suggestions
	Specs

	Unused Private Properties
	Suggestions
	Specs

	Unused Protected Methods
	Suggestions
	Specs

	Unused Public Methods
	Specs

	Unused Returned Value
	Specs

	Unused Trait In Class
	Suggestions
	Specs

	Unused Traits
	Suggestions
	Specs

	Unused Use
	Suggestions
	Specs

	Unusual Case For PHP Functions
	Suggestions
	Specs

	Unvalidated Data Cached In Session
	Suggestions
	Specs

	Upload Filename Injection
	Suggestions
	Specs

	Usage Of class_alias()
	Specs

	Use ::Class Operator
	Suggestions
	Specs

	Use === null
	Suggestions
	Specs

	Use Array Functions
	Suggestions
	Specs

	Use Arrow Functions
	Specs

	Use Basename Suffix
	Suggestions
	Specs

	Use Browscap
	Specs

	Use Cli
	Specs

	Use Closure Trailing Comma
	Suggestions
	Specs

	Use Composer Lock
	Specs

	Use Const And Functions
	Specs

	Use Constant As Arguments
	Suggestions
	Specs

	Use Constant Instead Of Function
	Suggestions
	Specs

	Use Constants As Returns
	Suggestions
	Specs

	Use Contravariance
	Specs

	Use Cookies
	Specs

	Use Covariance
	Specs

	Use DNF
	Specs

	Use DateTimeImmutable Class
	Suggestions
	Specs

	Use Debug
	Specs

	Use Enum Case In Constant Expression
	Specs

	Use File Append
	Suggestions
	Specs

	Use Instanceof
	Suggestions
	Specs

	Use List With Foreach
	Suggestions
	Specs

	Use Lower Case For Parent, Static And Self
	Suggestions
	Specs

	Use Named Boolean In Argument Definition
	Suggestions
	Specs

	Use NullSafe Operator
	Specs

	Use Nullable Type
	Specs

	Use PHP Attributes
	Specs

	Use PHP Object API
	Suggestions
	Specs

	Use PHP7 Encapsed Strings
	Specs

	Use Pathinfo
	Suggestions
	Specs

	Use Positive Condition
	Suggestions
	Specs

	Use Recursive count()
	Suggestions
	Specs

	Use Same Types For Comparisons
	Suggestions
	Specs

	Use System Tmp
	Suggestions
	Specs

	Use The Blind Var
	Suggestions
	Specs

	Use The Case Value
	Suggestions
	Specs

	Use This
	Suggestions
	Specs

	Use Variable Created Inside Loop
	Suggestions
	Specs

	Use Web
	Specs

	Use With Fully Qualified Name
	Suggestions
	Specs

	Use array_slice()
	Suggestions
	Specs

	Use class_alias()
	Specs

	Use const
	Suggestions
	Specs

	Use get_debug_type()
	Suggestions
	Specs

	Use is_countable
	Suggestions
	Specs

	Use json_decode() Options
	Suggestions
	Specs

	Use password_hash()
	Specs

	Use pathinfo() Arguments
	Suggestions
	Specs

	Use random_int()
	Suggestions
	Specs

	Use session_start() Options
	Suggestions
	Specs

	Use str_contains()
	Suggestions
	Specs

	Use str_ends_with()
	Suggestions
	Specs

	Use str_starts_with()
	Suggestions
	Specs

	Used Classes
	Specs

	Used Functions
	Specs

	Used Interfaces
	Specs

	Used Methods
	Specs

	Used Once Property
	Suggestions
	Specs

	Used Once Trait
	Suggestions
	Specs

	Used Once Variables
	Suggestions
	Specs

	Used Once Variables (In Scope)
	Suggestions
	Specs

	Used Private Methods
	Specs

	Used Protected Method
	Specs

	Used Static Properties
	Specs

	Used Trait
	Specs

	Used Use
	Specs

	Useless Abstract Class
	Suggestions
	Specs

	Useless Argument
	Suggestions
	Specs

	Useless Assignation Of Promoted Property
	Suggestions
	Specs

	Useless Brackets
	Suggestions
	Specs

	Useless Catch
	Suggestions
	Specs

	Useless Check
	Suggestions
	Specs

	Useless Coalesce
	Suggestions
	Specs

	Useless Constant Overwrite
	Suggestions
	Specs

	Useless Constructor
	Suggestions
	Specs

	Useless Default Argument
	Suggestions
	Specs

	Useless Final
	Specs

	Useless Global
	Suggestions
	Specs

	Useless Instructions
	Suggestions
	Specs

	Useless Interfaces
	Suggestions
	Specs

	Useless Method
	Suggestions
	Specs

	Useless Method Alias
	Suggestions
	Specs

	Useless Null Coalesce
	Suggestions
	Specs

	Useless NullSafe Operator
	Suggestions
	Specs

	Useless Parenthesis
	Suggestions
	Specs

	Useless Referenced Argument
	Suggestions
	Specs

	Useless Return
	Suggestions
	Specs

	Useless Short Ternary
	Suggestions
	Specs

	Useless Switch
	Suggestions
	Specs

	Useless Trailing Comma
	Suggestions
	Specs

	Useless Try
	Suggestions
	Specs

	Useless Type Casting
	Suggestions
	Specs

	Useless Type Check
	Suggestions
	Specs

	Useless Typehint
	Suggestions
	Specs

	Useless Unset
	Suggestions
	Specs

	Uses Default Values
	Suggestions
	Specs

	Uses Environment
	Specs

	Uses PHP 8 Match()
	Specs

	Using $this Outside A Class
	Specs

	Using Deprecated Feature
	Suggestions
	Specs

	Using Deprecated Method
	Suggestions
	Specs

	Using Short Tags
	Suggestions
	Specs

	Usort Sorting In PHP 7.0
	Suggestions
	Specs

	Utf8 Encode And Decode Are Deprecated
	Suggestions
	Specs

	Var Keyword
	Suggestions
	Specs

	Variable Anf Property Typehint
	Specs

	Variable Constants
	Specs

	Variable Global
	Specs

	Variable Is A Local Constant
	Specs

	Variable Is Not A Condition
	Suggestions
	Specs

	Variable Parameter Ambiguity In Arrow Function
	Suggestions
	Specs

	Variable References
	Specs

	Variable Variables
	Specs

	Variables With Long Names
	Suggestions
	Specs

	Variables With One Letter Names
	Suggestions
	Specs

	Void Is Not A Reference
	Suggestions
	Specs

	Weak Type With Array
	Suggestions
	Specs

	Weak Typing
	Suggestions
	Specs

	Weird Array Index
	Suggestions
	Specs

	While(List() = Each())
	Suggestions
	Specs

	Windows Only Constants
	Specs

	Wordpress usage
	Specs

	Written Only Variables
	Suggestions
	Specs

	Wrong Access Style to Property
	Suggestions
	Specs

	Wrong Argument Name With PHP Function
	Suggestions
	Specs

	Wrong Argument Type
	Suggestions
	Specs

	Wrong Attribute Configuration
	Suggestions
	Specs

	Wrong Case Namespaces
	Suggestions
	Specs

	Wrong Class Name Case
	Suggestions
	Specs

	Wrong Function Name Case
	Suggestions
	Specs

	Wrong Locale
	Suggestions
	Specs

	Wrong Number Of Arguments
	Suggestions
	Specs

	Wrong Number Of Arguments In Methods
	Suggestions
	Specs

	Wrong Optional Parameter
	Suggestions
	Specs

	Wrong Parameter Type
	Specs

	Wrong Precedence In Expression
	Suggestions
	Specs

	Wrong Range Check
	Suggestions
	Specs

	Wrong Type For Native PHP Function
	Suggestions
	Specs

	Wrong Type Returned
	Suggestions
	Specs

	Wrong Type With Call
	Suggestions
	Specs

	Wrong Type With Default
	Specs

	Wrong Typed Property Default
	Suggestions
	Specs

	Wrong Typehinted Name
	Suggestions
	Specs

	Wrong fopen() Mode
	Suggestions
	Specs

	Yield From Usage
	Specs

	Yield Usage
	Specs

	Yii usage
	Specs

	Yoda Comparison
	Specs

	__DIR__ Then Slash
	Suggestions
	Specs

	__debugInfo() Usage
	Specs

	__halt_compiler
	Specs

	__toString() Throws Exception
	Suggestions
	Specs

	array_key_exists() Speedup
	Suggestions
	Specs

	array_key_exists() Works On Arrays
	Suggestions
	Specs

	array_merge With Ellipsis
	Suggestions
	Specs

	array_merge() And Variadic
	Suggestions
	Specs

	class_alias() Supports Internal Classes
	Specs

	crypt() Without Salt
	Suggestions
	Specs

	curl_version() Has No Argument
	Suggestions
	Specs

	date() versus DateTime Preference
	Specs

	error_reporting() With Integers
	Suggestions
	Specs

	eval() Without Try
	Suggestions
	Specs

	ext/0mq
	Specs

	ext/CSV
	Specs

	ext/amqp
	Specs

	ext/apache
	Specs

	ext/apc
	Specs

	ext/apcu
	Specs

	ext/array
	Specs

	ext/bcmath
	Specs

	ext/bzip2
	Specs

	ext/calendar
	Specs

	ext/cmark
	Specs

	ext/com
	Specs

	ext/crypto
	Specs

	ext/ctype
	Specs

	ext/curl
	Specs

	ext/date
	Specs

	ext/db2
	Specs

	ext/dba
	Specs

	ext/decimal
	Specs

	ext/dio
	Specs

	ext/dom
	Specs

	ext/ds
	Specs

	ext/eaccelerator
	Specs

	ext/eio
	Specs

	ext/enchant
	Specs

	ext/ev
	Specs

	ext/event
	Specs

	ext/exif
	Specs

	ext/expect
	Specs

	ext/fam
	Specs

	ext/fann
	Specs

	ext/ffi
	Specs

	ext/file
	Specs

	ext/fileinfo
	Specs

	ext/filter
	Specs

	ext/fpm
	Specs

	ext/ftp
	Specs

	ext/gd
	Specs

	ext/gearman
	Specs

	ext/gender
	Specs

	ext/geoip
	Specs

	ext/gettext
	Specs

	ext/gmagick
	Specs

	ext/gmp
	Specs

	ext/gnupgp
	Specs

	ext/grpc
	Specs

	ext/hash
	Specs

	ext/hrtime
	Specs

	ext/ibase
	Specs

	ext/iconv
	Specs

	ext/igbinary
	Specs

	ext/imagick
	Specs

	ext/imap
	Specs

	ext/info
	Specs

	ext/inotify
	Specs

	ext/intl
	Specs

	ext/json
	Specs

	ext/judy
	Specs

	ext/ldap
	Specs

	ext/leveldb
	Specs

	ext/libsodium
	Specs

	ext/libxml
	Specs

	ext/lua
	Specs

	ext/lzf
	Specs

	ext/mail
	Specs

	ext/mailparse
	Specs

	ext/math
	Specs

	ext/mbstring
	Specs

	ext/mcrypt
	Specs

	ext/memcache
	Specs

	ext/memcached
	Specs

	ext/mongo
	Specs

	ext/mongodb
	Specs

	ext/msgpack
	Specs

	ext/mssql
	Specs

	ext/mysql
	Specs

	ext/mysqli
	Specs

	ext/ncurses
	Specs

	ext/newt
	Specs

	ext/nsapi
	Specs

	ext/ob
	Specs

	ext/oci8
	Specs

	ext/odbc
	Specs

	ext/opcache
	Specs

	ext/opencensus
	Specs

	ext/openssl
	Specs

	ext/parle
	Specs

	ext/password
	Specs

	ext/pcntl
	Specs

	ext/pcov
	Specs

	ext/pcre
	Specs

	ext/pdo
	Specs

	ext/pecl_http
	Specs

	ext/pgsql
	Specs

	ext/phalcon
	Specs

	ext/phar
	Specs

	ext/php-ast
	Specs

	ext/pkcs11
	Specs

	ext/posix
	Specs

	ext/protobuf
	Specs

	ext/pspell
	Specs

	ext/psr
	Specs

	ext/rar
	Specs

	ext/rdkafka
	Specs

	ext/readline
	Specs

	ext/redis
	Specs

	ext/reflection
	Specs

	ext/scrypt
	Specs

	ext/sdl
	Specs

	ext/seaslog
	Specs

	ext/sem
	Specs

	ext/session
	Specs

	ext/shmop
	Specs

	ext/simplexml
	Specs

	ext/snmp
	Specs

	ext/soap
	Specs

	ext/sockets
	Specs

	ext/sphinx
	Specs

	ext/spl
	Specs

	ext/spx
	Specs

	ext/sqlite
	Specs

	ext/sqlite3
	Specs

	ext/sqlsrv
	Specs

	ext/ssh2
	Specs

	ext/standard
	Specs

	ext/stats
	Specs

	ext/suhosin
	Specs

	ext/svm
	Specs

	ext/teds
	Specs

	ext/tidy
	Specs

	ext/tokenizer
	Specs

	ext/tokyotyrant
	Specs

	ext/trader
	Specs

	ext/uopz
	Specs

	ext/uuid
	Specs

	ext/v8js
	Specs

	ext/varnish
	Specs

	ext/vips
	Specs

	ext/wasm
	Specs

	ext/wddx
	Specs

	ext/weakref
	Specs

	ext/xattr
	Specs

	ext/xdebug
	Specs

	ext/xdiff
	Specs

	ext/xhprof
	Specs

	ext/xml
	Specs

	ext/xmlreader
	Specs

	ext/xmlrpc
	Specs

	ext/xmlwriter
	Specs

	ext/xsl
	Specs

	ext/xxtea
	Specs

	ext/yaml
	Specs

	ext/zend_monitor
	Specs

	ext/zip
	Specs

	ext/zlib
	Specs

	ext/zookeeper
	Specs

	filter_input() As A Source
	Suggestions
	Specs

	fputcsv() In Loops
	Suggestions
	Specs

	func_get_arg() Modified
	Suggestions
	Specs

	get_class() Without Argument
	Suggestions
	Specs

	idn_to_ascii() New Default
	Suggestions
	Specs

	include_once() Usage
	Suggestions
	Specs

	is_a() Versus instanceof
	Suggestions
	Specs

	isset() With Constant
	Suggestions
	Specs

	list() May Omit Variables
	Suggestions
	Specs

	mb_strrpos() Third Argument
	Suggestions
	Specs

	mcrypt_create_iv() With Default Values
	Suggestions
	Specs

	move_uploaded_file Instead Of copy
	Suggestions
	Specs

	openssl_random_pseudo_byte() Second Argument
	Suggestions
	Specs

	parse_str() Warning
	Suggestions
	Specs

	preg_match_all() Flag
	Suggestions
	Specs

	preg_replace With Option e
	Suggestions
	Specs

	self, parent, static Outside Class
	Suggestions
	Specs

	set_exception_handler() Warning
	Suggestions
	Specs

	strict_types Preference
	Suggestions
	Specs

	strip_tags() Skips Closed Tag
	Suggestions
	Specs

	strpos() Too Much
	Suggestions
	Specs

	strpos() With Integers
	Suggestions
	Specs

	time() Vs strtotime()
	Suggestions
	Specs

	var_dump()… Usage
	Suggestions
	Specs

	version_compare Operator
	Suggestions
	Specs

	Directory by Exakat version
	Directory by PHP Function
	Directory by PHP Features
	Directory by PHP Error message
	Directory by Exception

	Rulesets
	Introduction
	Summary
	List of rulesets
	All
	Specs

	Analyze
	Specs

	Appinfo
	Specs

	Attributes
	Specs

	CE
	Specs

	CI-checks
	Specs

	Changed Behavior
	Specs

	Class Review
	Specs

	Classdependencies
	Specs

	Coding conventions
	Specs

	CompatibilityPHP53
	Specs

	CompatibilityPHP54
	Specs

	CompatibilityPHP55
	Specs

	CompatibilityPHP56
	Specs

	CompatibilityPHP70
	Specs

	CompatibilityPHP71
	Specs

	CompatibilityPHP72
	Specs

	CompatibilityPHP73
	Specs

	CompatibilityPHP74
	Specs

	CompatibilityPHP80
	Specs

	CompatibilityPHP81
	Specs

	CompatibilityPHP82
	Specs

	CompatibilityPHP83
	Specs

	Dead code
	Specs

	Deprecated
	Specs

	Dump
	Specs

	First
	Specs

	Inventory
	Specs

	IsExt
	Specs

	IsPHP
	Specs

	IsStub
	Specs

	LintButWontExec
	Specs

	NoDoc
	Specs

	One Liners
	Specs

	PHP recommendations
	Specs

	Performances
	Specs

	Preferences
	Specs

	Rector
	Specs

	Security
	Specs

	Semantics
	Specs

	Suggestions
	Specs

	Surprising
	Specs

	Top10
	Specs

	Typechecks
	Specs

	php-cs-fixable
	Specs

	Reports
	Introduction
	Summary
	List of Reports
	Ambassador
	Ambassador
	Specs

	BeautyCanon
	BeautyCanon
	Specs

	ClassReview
	ClassReview
	Specs

	Classes dependendies HTML
	Classes dependendies HTML
	Specs

	Clustergrammer
	Clustergrammer
	Specs

	Code Flower
	Code Flower
	Specs

	Code Sniffer
	Code Sniffer
	Specs

	CompatibilityPHP56
	CompatibilityPHP56
	Specs

	CompatibilityPHP74
	CompatibilityPHP74
	Specs

	CompatibilityPHP80
	CompatibilityPHP80
	Specs

	CompatibilityPHP81
	CompatibilityPHP81
	Specs

	CompatibilityPHP82
	CompatibilityPHP82
	Specs

	CompatibilityPHP83
	CompatibilityPHP83
	Specs

	Composer
	Composer
	Specs

	Dependency Wheel
	Dependency Wheel
	Specs

	Diplomat
	Diplomat
	Specs

	Emissary
	Emissary
	Specs

	Exakat Json
	Exakat Json
	Specs

	Exakatyaml
	Exakatyaml
	Specs

	File dependendies
	File dependendies
	Specs

	File dependendies HTML
	File dependendies HTML
	Specs

	History
	History
	Specs

	Inventory
	Inventory
	Specs

	Json
	Json
	Specs

	Marmelab
	Marmelab
	Specs

	Meters
	Meters
	Specs

	Migration74
	Migration74
	Specs

	Migration80
	Migration80
	Specs

	Migration81
	Migration81
	Specs

	Migration82
	Migration82
	Specs

	Naming
	Naming
	Specs

	None
	None
	Specs

	OneLiners
	OneLiners
	Specs

	Owasp
	Owasp
	Specs

	Perfile
	Perfile
	Specs

	Perfule
	Perfule
	Specs

	PhpCompilation
	PhpCompilation
	Specs

	PhpConfiguration
	PhpConfiguration
	Specs

	Phpcity
	Phpcity
	Specs

	Phpcsfixer
	Phpcsfixer
	Specs

	PlantUml
	PlantUml
	Specs

	PublicAccess
	PublicAccess
	Specs

	RadwellCode
	RadwellCode
	Specs

	Rector
	Rector
	Specs

	Sarb
	Sarb
	Specs

	Sarif
	Sarif
	Specs

	SimpleTable
	SimpleTable
	Specs

	Sonarcube
	Sonarcube
	Specs

	Stats
	Stats
	Specs

	Stubs
	Stubs
	Specs

	StubsJson
	StubsJson
	Specs

	Text
	Text
	Specs

	Top10
	Top10
	Specs

	Topology Order
	Topology Order
	Specs

	TypeChecks
	TypeChecks
	Specs

	TypeSuggestion
	TypeSuggestion
	Specs

	Uml
	Uml
	Specs

	Unused
	Unused
	Specs

	Weekly
	Weekly
	Specs

	Xml
	Xml
	Specs

	Yaml
	Yaml
	Specs

	Cobblers
	Introduction
	List of Cobblers
	Add Brackets To Single Instructions
	Before
	After
	Reverse Cobbler
	Specs

	Add Final Class
	Before
	After
	Suggested Analysis
	Related Cobblers
	Reverse Cobbler
	Specs

	Add No Scream @
	Before
	After
	Suggested Analysis
	Reverse Cobbler
	Specs

	Array To Bracket
	Before
	After
	Specs

	Change Class
	Before
	After
	Parameters
	Related Cobblers
	Reverse Cobbler
	Specs

	Create Phpdoc
	Before
	After
	Reverse Cobbler
	Specs

	Gather Use Expression
	Before
	After
	Suggested Analysis
	Specs

	Logical To in_array()
	Before
	After
	Suggested Analysis
	Specs

	Make Static Closures And Arrow Functions
	Before
	After
	Suggested Analysis
	Reverse Cobbler
	Specs

	Multiple cobbler
	Before
	After
	Parameters
	Specs

	Plus One To Pre Plusplus
	Before
	After
	Specs

	Post to Pre Plusplus
	Before
	After
	Specs

	Remove A Method In A Class
	Before
	After
	Parameters
	Specs

	Remove Abstract
	Before
	After
	Specs

	Remove Brackets Around Single Instruction
	Before
	After
	Reverse Cobbler
	Specs

	Remove Dollar Curly
	Before
	After
	Specs

	Remove Final
	Before
	After
	Related Cobblers
	Reverse Cobbler
	Specs

	Remove Instructions
	Before
	After
	Suggested Analysis
	Specs

	Remove Noscream @
	Before
	After
	Suggested Analysis
	Reverse Cobbler
	Specs

	Remove Parenthesis
	Before
	After
	Suggested Analysis
	Specs

	Remove Readonly Option
	Before
	After
	Suggested Analysis
	Specs

	Remove Static From Closures And Arrow Functions
	Before
	After
	Suggested Analysis
	Reverse Cobbler
	Specs

	Remove The Attribute
	Before
	After
	Specs

	Remove Type
	Before
	After
	Parameters
	Suggested Analysis
	Reverse Cobbler
	Specs

	Remove Unused Use
	Before
	After
	Suggested Analysis
	Specs

	Remove Visibility
	Before
	After
	Specs

	Remove Written Only Variable
	Before
	After
	Suggested Analysis
	Specs

	Rename A Function
	Before
	After
	Parameters
	Suggested Analysis
	Related Cobblers
	Reverse Cobbler
	Specs

	Rename A Function
	Before
	After
	Parameters
	Reverse Cobbler
	Specs

	Rename A Namespace
	Before
	After
	Parameters
	Reverse Cobbler
	Specs

	Rename Class
	Before
	After
	Parameters
	Reverse Cobbler
	Specs

	Rename Class
	Before
	After
	Parameters
	Reverse Cobbler
	Specs

	Rename Class
	Before
	After
	Parameters
	Specs

	Rename Class Constant
	Before
	After
	Parameters
	Reverse Cobbler
	Specs

	Rename Constant
	Before
	After
	Parameters
	Reverse Cobbler
	Specs

	Rename Enums
	Before
	After
	Parameters
	Reverse Cobbler
	Specs

	Rename FunctionCalls
	Before
	After
	Parameters
	Suggested Analysis
	Related Cobblers
	Reverse Cobbler
	Specs

	Rename Interface
	Before
	After
	Parameters
	Reverse Cobbler
	Specs

	Rename Methodcall
	Before
	After
	Parameters
	Suggested Analysis
	Related Cobblers
	Reverse Cobbler
	Specs

	Rename Parameter
	Before
	After
	Parameters
	Specs

	Rename Property
	Before
	After
	Parameters
	Specs

	Set Null Type
	Before
	After
	Reverse Cobbler
	Specs

	Set Type Void
	Before
	After
	Suggested Analysis
	Related Cobblers
	Reverse Cobbler
	Specs

	Set Typehints
	Before
	After
	Parameters
	Suggested Analysis
	Related Cobblers
	Reverse Cobbler
	Specs

	Split Property Definitions
	Before
	After
	Suggested Analysis
	Specs

	Switch To Match
	Before
	After
	Suggested Analysis
	Related Cobblers
	Reverse Cobbler
	Specs

	Use Available Alias
	Before
	After
	Suggested Analysis
	Specs

	Var To Public
	Before
	After
	Parameters
	Related Cobblers
	Specs

	array_key_exists() Speedup
	Before
	After
	Suggested Analysis
	Specs

	Real Code Cases
	Introduction
	List of real code Cases
	$this Belongs To Classes Or Traits
	OpenEMR

	** For Exponent
	Traq
	TeamPass

	@ Operator
	Phinx
	PhpIPAM

	Abstract Or Implements
	Zurmo

	Add Default Value
	Zurmo
	Typo3

	Adding Zero
	Thelia
	OpenEMR

	Already Parents Interface
	WordPress
	Thelia

	Altering Foreach Without Reference
	Contao
	WordPress

	Always Positive Comparison
	Magento

	Ambiguous Array Index
	PrestaShop
	Mautic

	Ambiguous Visibilities
	Typo3

	Argument Should Be Typehinted
	Dolphin
	Mautic

	Assign And Lettered Logical Operator Precedence
	xataface

	Assign Default To Properties
	LiveZilla
	phpMyAdmin

	Avoid Concat In Loop
	SuiteCrm
	ThinkPHP

	Avoid Optional Properties
	ChurchCRM
	Dolibarr

	Avoid Substr() One
	ChurchCRM
	LiveZilla

	Avoid glob() Usage
	Phinx
	NextCloud

	Avoid set_error_handler $context Argument
	shopware
	Vanilla

	Bad Constants Names
	PrestaShop
	Zencart

	Bail Out Early
	OpenEMR
	opencfp

	Buried Assignation
	XOOPS
	Mautic

	Callback Function Needs Return
	Contao
	Phpdocumentor

	Can’t Instantiate Class
	WordPress

	Cast To Boolean
	MediaWiki
	Dolibarr

	Catch Overwrite Variable
	PhpIPAM
	SuiteCrm

	Check All Types
	Zend-Config
	Vanilla

	Check JSON
	Woocommerce

	Class, Interface, Enum Or Trait With Identical Names
	shopware
	NextCloud

	Closure Could Be A Callback
	Tine20
	NextCloud

	Common Alternatives
	Dolibarr
	NextCloud

	Compare Hash
	Traq
	LiveZilla

	Configure Extract
	Zurmo
	Dolibarr

	Continue Is For Loop
	XOOPS

	Could Be A Static Variable
	Dolphin
	Contao

	Could Be Abstract Class
	Edusoho
	shopware

	Could Be Else
	SugarCrm
	OpenEMR

	Could Be Private Class Constant
	Phinx

	Could Be Static Closure
	Piwigo

	Could Be Typehinted Callable
	Magento
	PrestaShop

	Could Use Compact
	WordPress

	Could Use Short Assignation
	ChurchCRM
	Thelia

	Could Use Try
	Mautic

	Could Use __DIR__
	Woocommerce
	Piwigo

	Could Use array_fill_keys
	ChurchCRM
	PhpIPAM

	Could Use array_unique
	Dolibarr
	OpenEMR

	Could Use self
	WordPress
	LiveZilla

	Could Use str_repeat()
	Zencart

	Dangling Array References
	Typo3
	SugarCrm

	Deep Definitions
	Dolphin

	Dependant Trait
	Zencart

	Deprecated PHP Functions
	Dolphin

	Disconnected Classes
	WordPress

	Don’t Echo Error
	ChurchCRM
	Phpdocumentor

	Don’t Loop On Yield
	Dolibarr
	Tikiwiki

	Don’t Mix ++
	Contao
	Typo3

	Don’t Send $this In Constructor
	Woocommerce
	Contao

	Don’t Unset Properties
	Vanilla
	Typo3

	Double array_flip()
	NextCloud

	Drop Substr Last Arg
	SuiteCrm
	Tine20

	Echo With Concat
	Phpdocumentor
	TeamPass

	Else If Versus Elseif
	TeamPass
	Phpdocumentor

	Empty Blocks
	Cleverstyle
	PhpIPAM

	Empty Classes
	WordPress

	Empty Function
	Contao

	Empty Instructions
	Zurmo
	ThinkPHP

	Empty Try Catch
	LiveZilla
	Mautic

	Empty With Expression
	HuMo-Gen

	Encoded Simple Letters
	Zurmo

	Eval() Usage
	XOOPS
	Mautic

	Exception Order
	Woocommerce

	Exit() Usage
	Traq
	ThinkPHP

	Failed Substr() Comparison
	Zurmo
	MediaWiki

	Foreach Reference Is Not Modified
	Dolibarr
	Vanilla

	Forgotten Visibility
	FuelCMS
	LiveZilla

	Function Subscripting, Old Style
	OpenConf

	Getting Last Element
	Thelia

	Hidden Use Expression
	Tikiwiki
	OpenEMR

	Identical Conditions
	WordPress
	Dolibarr

	Identical On Both Sides
	phpMyAdmin
	HuMo-Gen

	If With Same Conditions
	phpMyAdmin
	Phpdocumentor

	Illegal Name For Method
	PrestaShop
	Magento

	Incompatible Signature Methods
	SuiteCrm

	Incompatible Signature Methods With Covariance
	SuiteCrm

	Incompilable Files
	xataface

	Inconsistent Concatenation
	FuelCMS

	Inconsistent Variable Usage
	WordPress

	Indices Are Int Or String
	Zencart
	Mautic

	Invalid Constant Name
	OpenEMR

	Invalid Regex
	SugarCrm

	Is Actually Zero
	Dolibarr
	SuiteCrm

	Isset Multiple Arguments
	ThinkPHP
	LiveZilla

	Isset() On The Whole Array
	Tine20
	ExpressionEngine

	Joining file()
	WordPress
	SPIP

	Logical Mistakes
	Dolibarr
	Cleverstyle

	Logical Should Use Symbolic Operators
	Cleverstyle
	OpenConf

	Logical To in_array
	Zencart

	Lone Blocks
	ThinkPHP
	Tine20

	Long Arguments
	Cleverstyle
	Contao

	Lost References
	WordPress

	Make One Call With Array
	HuMo-Gen
	Edusoho

	Method Could Be Static
	FuelCMS
	ExpressionEngine

	Mismatched Default Arguments
	SPIP

	Mismatched Ternary Alternatives
	phpadsnew
	OpenEMR

	Mismatched Typehint
	WordPress

	Missing Cases In Switch
	Tikiwiki

	Mixed Concat And Interpolation
	SuiteCrm
	Edusoho

	Mkdir Default
	Mautic
	OpenEMR

	Multiple Alias Definitions
	ChurchCRM
	Phinx

	Multiple Constant Definition
	Dolibarr
	OpenConf

	Multiple Index Definition
	Magento
	MediaWiki

	Multiple Type Variable
	Typo3
	Vanilla

	Multiple Usage Of Same Trait
	NextCloud

	Multiples Identical Case
	SugarCrm
	ExpressionEngine

	Multiply By One
	SugarCrm
	Edusoho

	Named Regex
	Phinx
	shopware

	Native Alias Functions Usage
	Cleverstyle
	phpMyAdmin

	Nested Ifthen
	LiveZilla
	MediaWiki

	Nested Ternary
	SPIP
	Zencart

	Never Called Parameter
	Piwigo

	Never Used Properties
	WordPress

	Next Month Trap
	Contao
	Edusoho

	No Boolean As Default
	OpenConf

	No Choice
	NextCloud
	Zencart

	No Class As Typehint
	Vanilla
	phpMyAdmin

	No Class In Global
	Dolphin

	No Count With 0
	Contao
	WordPress

	No Direct Usage
	Edusoho
	XOOPS

	No Empty Regex
	Tikiwiki

	No Hardcoded Hash
	shopware
	SugarCrm

	No Hardcoded Ip
	OpenEMR
	NextCloud

	No Hardcoded Path
	Tine20
	Thelia

	No Hardcoded Port
	WordPress

	No Need For Else
	Thelia
	ThinkPHP

	No Parenthesis For Language Construct
	Phpdocumentor
	phpMyAdmin

	No Real Comparison
	Magento
	SPIP

	No Reference For Ternary
	phpadsnew

	No Return Used
	SPIP
	LiveZilla

	No array_merge() In Loops
	Tine20

	No isset() With empty()
	XOOPS

	Non Ascii Variables
	Magento

	Non Static Methods Called In A Static
	Dolphin
	Magento

	Non-constant Index In Array
	Dolibarr
	Zencart

	Not Not
	Cleverstyle
	Tine20

	Objects Don’t Need References
	Zencart
	XOOPS

	Old Style __autoload()
	Piwigo

	One If Is Sufficient
	Tikiwiki

	One Letter Functions
	ThinkPHP
	Cleverstyle

	One Variable String
	Tikiwiki
	NextCloud

	Only Variable Passed By Reference
	Dolphin
	PhpIPAM

	Or Die
	Tine20
	OpenConf

	Overwritten Source And Value
	ChurchCRM
	ExpressionEngine

	PHP Keywords As Names
	ChurchCRM
	xataface

	PHP7 Dirname
	OpenConf
	MediaWiki

	Parent First
	shopware
	PrestaShop

	Pathinfo() Returns May Vary
	NextCloud

	Phpinfo
	Dolphin

	Possible Increment
	Zurmo
	MediaWiki

	Possible Missing Subpattern
	phpMyAdmin
	SPIP

	Pre-increment
	ExpressionEngine
	Traq

	Preprocessable
	phpadsnew

	Printf Number Of Arguments
	PhpIPAM

	Property Could Be Local
	Mautic
	Typo3

	Property Used In One Method Only
	Contao

	Property Variable Confusion
	PhpIPAM

	Queries In Loops
	TeamPass
	OpenEMR

	Randomly Sorted Arrays
	Contao
	Vanilla

	Redefined Default
	Piwigo

	Redefined Private Property
	Zurmo

	Register Globals
	TeamPass
	XOOPS

	Relay Function
	TeamPass
	SPIP

	Repeated Regex
	Vanilla
	Tikiwiki

	Repeated print()
	Edusoho
	HuMo-Gen

	Rethrown Exceptions
	PrestaShop

	Return True False
	Mautic
	FuelCMS

	Safe Curl Options
	OpenConf

	Same Conditions In Condition
	TeamPass
	Typo3

	Scalar Or Object Property
	SugarCrm

	Several Instructions On The Same Line
	Piwigo
	Tine20

	Should Chain Exception
	Magento
	Tine20

	Should Preprocess Chr()
	phpadsnew

	Should Typecast
	xataface
	OpenConf

	Should Use Coalesce
	ChurchCRM
	Cleverstyle

	Should Use Existing Constants
	Tine20

	Should Use Foreach
	ExpressionEngine
	Woocommerce

	Should Use Math
	OpenEMR

	Should Use Operator
	Zencart
	SugarCrm

	Should Use Prepared Statement
	Dolibarr

	Should Use Ternary Operator
	ChurchCRM

	Should Use array_filter()
	xataface
	shopware

	Silently Cast Integer
	MediaWiki

	Simplify Regex
	Zurmo
	OpenConf

	Slice Arrays First
	WordPress

	Slow Functions
	ChurchCRM
	SuiteCrm

	Static Methods Can’t Contain $this
	xataface
	SugarCrm

	Strange Name For Variables
	FuelCMS
	PhpIPAM

	Strict Comparison With Booleans
	Phinx
	Typo3

	Strings With Strange Space
	OpenEMR
	Thelia

	Strpos()-like Comparison
	Piwigo
	Thelia

	Strtr Arguments
	SuiteCrm

	Substring First
	SPIP
	PrestaShop

	Suspicious Comparison
	PhpIPAM
	ExpressionEngine

	Switch To Switch
	Thelia
	XOOPS

	Switch Without Default
	Zencart
	Traq

	Ternary In Concat
	TeamPass

	Test Then Cast
	Dolphin
	SuiteCrm

	Throw Functioncall
	SugarCrm
	Zurmo

	Timestamp Difference
	Zurmo
	shopware

	Too Many Children
	Typo3
	Woocommerce

	Too Many Injections
	NextCloud
	Thelia

	Too Many Local Variables
	HuMo-Gen

	Too Many Native Calls
	SPIP

	Too Many Parameters
	WordPress
	ChurchCRM

	Unconditional Break In Loop
	LiveZilla
	MediaWiki

	Undefined Interfaces
	xataface

	Undefined Properties
	WordPress
	MediaWiki

	Undefined static:: Or self::
	xataface
	SugarCrm

	Unitialized Properties
	SPIP

	Unpreprocessed Values
	Zurmo
	Piwigo

	Unresolved Instanceof
	WordPress

	Unserialize Second Arg
	Piwigo
	LiveZilla

	Unused Functions
	Woocommerce
	Piwigo

	Unused Global
	Dolphin

	Unused Inherited Variable In Closure
	shopware
	Mautic

	Unused Interfaces
	Tine20

	Unused Parameter
	ThinkPHP
	phpMyAdmin

	Unused Private Properties
	OpenEMR
	phpadsnew

	Use ::Class Operator
	Typo3

	Use Basename Suffix
	NextCloud
	Dolibarr

	Use Constant As Arguments
	Tikiwiki
	shopware

	Use Instanceof
	TeamPass
	Zencart

	Use List With Foreach
	MediaWiki

	Use Named Boolean In Argument Definition
	phpMyAdmin
	Cleverstyle

	Use PHP Object API
	WordPress
	PrestaShop

	Use Pathinfo
	SuiteCrm

	Use Positive Condition
	SPIP
	ExpressionEngine

	Use Recursive count()
	WordPress
	PrestaShop

	Use const
	phpMyAdmin
	Piwigo

	Use pathinfo() Arguments
	Zend-Config
	ThinkPHP

	Use random_int()
	Thelia
	FuelCMS

	Use session_start() Options
	WordPress

	Used Once Variables
	shopware
	Vanilla

	Used Once Variables (In Scope)
	shopware

	Useless Brackets
	ChurchCRM
	Piwigo

	Useless Catch
	Zurmo
	PrestaShop

	Useless Check
	Magento
	Phinx

	Useless Global
	Zencart
	HuMo-Gen

	Useless Interfaces
	Woocommerce

	Useless Parenthesis
	Mautic
	Woocommerce

	Useless Referenced Argument
	Woocommerce
	Magento

	Useless Return
	ThinkPHP
	Vanilla

	Useless Switch
	Phpdocumentor
	Dolphin

	Useless Type Casting
	FuelCMS
	ThinkPHP

	Useless Unset
	Tine20
	Typo3

	Var Keyword
	xataface

	Weak Typing
	TeamPass

	While(List() = Each())
	OpenEMR
	Dolphin

	Written Only Variables
	Dolibarr
	SuiteCrm

	Wrong Access Style to Property
	HuMo-Gen

	Wrong Class Name Case
	WordPress

	Wrong Number Of Arguments
	xataface

	Wrong Optional Parameter
	FuelCMS
	Vanilla

	Wrong Parameter Type
	Zencart

	Wrong Range Check
	Dolibarr
	WordPress

	Wrong fopen() Mode
	Tikiwiki
	HuMo-Gen

	__DIR__ Then Slash
	Traq

	__debugInfo() Usage
	Dolibarr

	error_reporting() With Integers
	SugarCrm

	eval() Without Try
	FuelCMS
	ExpressionEngine

	include_once() Usage
	XOOPS
	Tikiwiki

	list() May Omit Variables
	OpenConf
	FuelCMS

	preg_match_all() Flag
	FuelCMS

	preg_replace With Option e
	Edusoho

	strpos() Too Much
	WordPress

	time() Vs strtotime()
	Woocommerce

	var_dump()… Usage
	Tine20
	Piwigo

	Installation
	Summary
	Requirements
	Download exakat.phar
	Installation with exakat.phar
	Installation on OSX
	OSX installation with tinkergraph 3.7.0
	OSX installation troubleshooting

	Installation on Alpine
	Alpine installation with Tinkergraph 3.7.0

	Installation on Debian/Ubuntu
	Debian/Ubuntu installation with Tinkergraph 3.7.0

	Installation guide with Composer
	Composer installation first run

	Installation guide with Docker
	Docker image for Exakat with projects folder

	Upgrading
	Upgrading
	Upgrading manually
	Upgrading gremlin-server

	Configuration
	Common Behavior
	General Philosophy
	Reminder of precedences
	Common Options

	Engine configuration
	Configuration File
	Available Options
	graphdb
	gsneo4j_host
	gsneo4j_host
	gsneo4j_folder
	tinkergraph_host
	tinkergraph_port
	tinkergraph_folder
	gsneo4jv3_host
	gsneo4jv3_port
	gsneo4jv3_folder
	tinkergraphv3_host
	tinkergraphv3_port
	tinkergraphv3_folder
	project_rulesets
	project_reports
	token_limit
	php
	php82
	php81
	php80
	php74
	php73
	php72
	php71
	php70
	php56
	php55
	php54
	php53
	php52
	php_extensions
	php_core
	stubs

	Custom rulesets

	Check Install

	Commands
	List of commands :
	anonymize
	Command
	Options
	Tips

	baseline
	Commands

	catalog
	Options

	clean
	Options

	cleandb
	Options

	cobble
	Options

	doctor
	Command
	Results
	Options

	help
	Results

	init
	Command
	Options
	Tips
	Examples

	project
	Command
	Options

	remove
	Command
	Options

	show
	Command
	Options

	report
	Command
	Options
	Report formats

	update
	Command
	Options

	upgrade
	Command
	Options

	Install
	Command
	Options

	Frequently Asked Questions
	Summary
	I need special command to get my code
	Can I checkout that branch?
	Can I clone with my ssh keys?
	After init, my project has no code!
	The project is too big
	The report XXX is not available
	Java Out Of Memory Error
	How can I run a very large project?
	Does exakat runs on Java 8?
	Where can I find the report
	Exakat only produces the default report
	Can I run exakat on local code?
	Can I run exakat on local code, without git or VCS?
	Can I ignore a dir or a file?
	Can I audit only one folder in vendor?
	Can I run Exakat with PHP 5?
	I get the error ‘The executable ‘ansible-playbook’ Vagrant is trying to run was not found’
	Can I run exakat on Windows?
	Does exakat send my code to a central server?
	“cat: write error: Broken pipe” : is it bad?
	Require a [gremlin]Argument

	Glossary
	Annex
	Credits
	Contribute
	External links
	Training Database

